Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

2

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

3

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

4

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

5

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

6

Current status of nonthermal heavy oil recovery  

Science Conference Proceedings (OSTI)

Heavy oils are an important resource worldwide, and yet two-thirds of the heavy oil deposits cannot be exploited by means of thermal recovery methods, because the effective energy production approaches energy input for reasons of formation thickness, depth, oil saturation and/or porosity. In such instances, especially if the heavy oil is not too viscous (below ca 1000 cp), it may be economical to employ nonthermal recovery methods. These include polymer flooding, alkaline flooding, CO/sub 2/ (gaseous) floods, solvent floods, and other more specialized recovery methods, such as emulsion flooding, and combination techniques. This work discusses nonthermal heavy oil recovery methods, based upon their application in the field. The processes and their mechanistic features are discussed in the light of laboratory observations, which tend to be more optimistic than field results. 48 references.

Alikhan, A.A.; Farouq Ali, S.M.

1983-01-01T23:59:59.000Z

7

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

8

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

The Stanford University Petroleum Research Institute (SUPRI-A) studies oil recovery mechanisms relevant to thermal and heavy-oil production. The scope of work is relevant across near-, mid-, and long-term time frames. In August of 2000 we received funding from the U. S. DOE under Award No. DE-FC26-00BC15311 that completed December 1, 2003. The project was cost shared with industry. Heavy oil (10 to 20{sup o} API) is an underutilized energy resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods. Heating reduces oil viscosity dramatically. Hence, thermal recovery is especially important because adding heat, usually via steam injection generally improves displacement efficiency. The objectives of this work were to improve our understanding of the production mechanisms of heavy oil under both primary and enhanced modes of operation. The research described spanned a spectrum of topics related to heavy and thermal oil recovery and is categorized into: (1) multiphase flow and rock properties, (2) hot fluid injection, (3) improved primary heavy-oil recovery, (4) in-situ combustion, and (5) reservoir definition. Technology transfer efforts and industrial outreach were also important to project effort. The research tools and techniques used were quite varied. In the area of experiments, we developed a novel apparatus that improved imaging with X-ray computed tomography (CT) and high-pressure micromodels etched with realistic sandstone roughness and pore networks that improved visualization of oil-recovery mechanisms. The CT-compatible apparatus was invaluable for investigating primary heavy-oil production, multiphase flow in fractured and unfractured media, as well as imbibition. Imbibition and the flow of condensed steam are important parts of the thermal recovery process. The high-pressure micromodels were used to develop a conceptual and mechanistic picture of primary heavy-oil production by solution gas drive. They allowed for direct visualization of gas bubble formation, bubble growth, and oil displacement. Companion experiments in representative sands and sandstones were also conducted to understand the mechanisms of cold production. The evolution of in-situ gas and oil saturation was monitored with CT scanning and pressure drop data. These experiments highlighted the importance of depletion rate, overburden pressure, and oil-phase chemistry on the cold production process. From the information provided by the experiments, a conceptual and numerical model was formulated and validated for the heavy-oil solution gas drive recovery process. Also in the area of mechanisms, steamdrive for fractured, low permeability porous media was studied. Field tests have shown that heat injected in the form of steam is effective at unlocking oil from such reservoir media. The research reported here elucidated how the basic mechanisms differ from conventional steamdrive and how these differences are used to an advantage. Using simulations of single and multiple matrix blocks that account for details of heat transfer, capillarity, and fluid exchange between matrix and fracture, the importance of factors such as permeability contrast between matrix and fracture and oil composition were quantified. Experimentally, we examined the speed and extent to which steam injection alters the permeability and wettability of low permeability, siliceous rocks during thermal recovery. Rock dissolution tends to increase permeability moderately aiding in heat delivery, whereas downstream the cooled fluid deposits silica reducing permeability. Permeability reduction is not catastrophic. With respect to wettability, heat shifts rock wettability toward more water wet conditions. This effect is beneficial for the production of heavy and medium gravity oils as it improves displacement efficiency. A combination of analytical and numerical studies was used to examine the efficiency of reservoir heating using nonconventional wells such as horizontal and multi

Anthony R. Kovscek; Louis M. Castanier

2003-12-31T23:59:59.000Z

9

Oil shale deposits of Thailand  

SciTech Connect

Oil-shale deposits occur in several areas of Thailand. Perhaps the most important deposit occurs at Mae Sod in Tak Province, West Thailand. Other well-known deposits are Li in Lamphum Province, Ko Kha District, Lampang Province, and Krabi in the southern peninsular region. The geological age of all these deposits is late Tertiary, as demonstrated by the presence of the fossils from the oil shale of the Mae Sod series, e.g., fish of the Ostariophysian family Cyprinidae.

Chakrabarti, A.K.

1976-06-01T23:59:59.000Z

10

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

11

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

12

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

13

Water issues associated with heavy oil production.  

Science Conference Proceedings (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

14

SUPRI heavy oil research program  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

15

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

Science Conference Proceedings (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

16

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

17

Definition of heavy oil and natural bitumen  

Science Conference Proceedings (OSTI)

Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

Meyer, R.F.

1988-08-01T23:59:59.000Z

18

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

19

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationÂ’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

20

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formations...

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pipelineable syncrude (synthetic crude) from heavy oil  

SciTech Connect

This patent describes a process for converting a metals-contaminated heavy crude oil characterized by an API gravity less than about 20{degrees} and a substantial Conradson Carbon Residue to a pipelineable and substantially upgraded syncrude with concomitant recovery of blown asphalt. It comprises: air-blowing at least the 650{degrees} F.{sup +} fraction of the heavy crude oil at a temperature of 390{degrees} to 600{degrees} F. under conditions effective to increase its combined oxygen content by at least 0.5 weight percent; deasphalting the air-blown crude oil with solvent whereby separately recovering a blown asphalt and an intermediate syncrude having a substantially lower concentration of metals and less Conradson Carbon residue than the heavy crude oil; and, visbreaking the intermediate syncrude at 800{degrees} to 950{degrees} F. and at a severity effective to impart to it pipelineable viscosity characteristics.

Rankel, L.A.

1989-06-12T23:59:59.000Z

22

Fluvial-deltaic heavy oil reservoir, San Joaquin basin  

SciTech Connect

Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

Miller, D.D.; McPherson, J.G.; Covington, T.E.

1989-03-01T23:59:59.000Z

23

Thermal processes for heavy oil recovery  

Science Conference Proceedings (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

24

Compositional changes in heavy oil steamflood simulators  

E-Print Network (OSTI)

The numerical simulation of heavy oil steamfloods has generally been conducted assuming that the oil is non-volatile. Reservoir simulation has traditionally ignored compositional effect s due to heat and steam and assumed that the hydrocarbon phase is non-volatile. This is equivalent to assuming that the equilibrium ratios, K-values, are zero. In order to properly model the mechanism of steamflooding, however, compositional effects need to be taken into account. In this study, laboratory data including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng-Robinson equation-of-state (PR-EOS) was used for all phase behavior calculations. Viscosity as a function of temperature and composition was modeled with the Pedersen correlation for heavy oils. Once a tuned equation-of-state, compositional fluid description was developed for the heavy oil, one-dimensional numerical simulations of the steamflooding process were performed. These simulations demonstrated the utility of the equation-of-state approach. In addition, it was concluded that compositional effects are essential for the proper modeling of low residual oil saturations seen in the field and the formation of an in-situ solvent bank at the steam-oil interface.

Lolley, Christopher Scott

1995-01-01T23:59:59.000Z

25

Mass Transfer Mechanisms during the Solvent Recovery of Heavy Oil.  

E-Print Network (OSTI)

??Canada has the second largest proven oil reserves next to Saudi Arabia which is mostly located in Alberta and Saskatchewan but is unconventional heavy oil… (more)

James, Lesley

2009-01-01T23:59:59.000Z

26

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

27

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-04-01T23:59:59.000Z

28

Texas Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Texas Downstream Charge Capacity of Operable ...

29

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

30

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-01-01T23:59:59.000Z

31

Research on oil recovery mechanisms in heavy oil reservoirs  

Science Conference Proceedings (OSTI)

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

32

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

Anthony R. Kovscek; Louis M. Castanier

2004-03-01T23:59:59.000Z

33

Method of producing heavy oils  

SciTech Connect

A method is described of producing viscous oils from a subterranean reservoir containing unconsolidated or friable sand, the reservoir being penetrated by at least one well in fluid communication therewith comprising: (a) first, stimulating the reservoir by injecting steam through the well at a pressure sufficient to fracture the reservoir adjacent the well; (b) next, shutting in the well for a period of time; (c) then, completing the well adjacent the reservoir with a gravel pack; (d) then, producing oil from the reservoir through the well; and (e) periodically, subsequently stimulating the reservoir by injecting steam through the well and into the reservoir at a pressure below the pressure which would fracture the reservoir adjacent the well.

Ferguson, N.B.

1987-02-24T23:59:59.000Z

34

Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering  

E-Print Network (OSTI)

Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

Lemkau, Karin Lydia

2012-01-01T23:59:59.000Z

35

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

Anthony R. Kovscek; Louis M. Castanier

2002-09-30T23:59:59.000Z

36

Heavy Oil Consumption Reduction Program (Quebec, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Solar Buying & Making Electricity Maximum Rebate $5 million per site Program Info Funding Source Government of Quebec State Quebec Program Type Rebate Program Provider Agence de l'efficacité énergétique This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out various analyses as well as implement energy efficient measures relating to heavy fuel oil or to switch to other forms of energy containing fewer pollutants, such as natural gas,

37

DEPOSITION OF TOXIC TRACE ELEMENTS AND HEAVY ...  

Science Conference Proceedings (OSTI)

... on sub-micrometer (ie, “fine”) particles was emitted from oil-fired power plants. Likewise, sele- nium is a marker of coal combustion particles; Zn ...

1999-06-25T23:59:59.000Z

38

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS  

Science Conference Proceedings (OSTI)

The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

Dr. Jorge Gabitto; Maria Barrufet

2003-05-01T23:59:59.000Z

39

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

40

Development Practices for Optimized MEOR in Shallow Heavy Oil Reservoirs  

Science Conference Proceedings (OSTI)

The goal of this project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in southwest Missouri and southeast Kansas using a combination of microbial enhanced oil recovery (MEOR) and hydraulic fracturing of vertical wells.

Shari Dunn-Norman

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reproducing MEES Is Strictly Prohibited MEES 47:11 15 March 2004 The Value Of Extra-Heavy Crude Oil From The Orinoco Belt  

E-Print Network (OSTI)

be recoverable. (This figure, to give us an idea of its magnitude, is equal to the proven crude oil reserves, with the exception of a few deposits in the Machete area, the type of crude found in the Orinoco Oil Belt is mobile essentially contains extra-heavy crude: crude oil of less than 10Âş API (in other words crude that is heavier

O'Donnell, Tom

42

Sand control in horizontal wells in heavy-oil reservoirs  

SciTech Connect

Recent advances in horizontal-well technology has greatly improved the potential for heavy oil recovery. Such recovery may be hampered, however, by sanding problems associated with most heavy-oil reservoirs. These reservoir sands are mostly unconsolidated and may lead to severe productivity-loss problems if produced freely. This paper offers recommendations for sand control in three Canadian heavy-oil reservoirs. Experimental evidence has shown that minimizing the annular space between the casing and the open hole is important, especially in the case of smaller wire space, lower oil viscosity, and thinner pay zone. Several types of wire-wrapped screens and flexible liners were tested for sand control. Only flexible liners reduced sand production to a negligible amount.

Islam, M.R. (Nova Husky Research Corp. (CA)); George, A.E. (Energy, Mines, and Resources (CA))

1991-07-01T23:59:59.000Z

43

Air toxics from heavy oil production and consumption  

SciTech Connect

This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

1992-12-22T23:59:59.000Z

44

Experiences with waterflooding Lloydminster heavy-oil reservoirs  

Science Conference Proceedings (OSTI)

This paper compares observed and theoretical behavior of waterflood performance in heavy-oil reservoirs in the Lloydminster area of western Canada. Lack of reliable primary production history makes determination of primary recovery difficult and consequently makes additional oil recovery by waterflood difficult to quantify. Comparison of predicted and actual performance indicates that the floods are behaving as well as, if not better than, expected. Extra oil recovery by waterflood is not expected to add to the primary recovery of 3 to 8% by more than 1 to 2% or original oil in place (OOIP).

Adams, D.M.

1982-08-01T23:59:59.000Z

45

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network (OSTI)

Society's growing demands for energy results in rapid increase in oil consumption and motivates us to make unconventional resources conventional resources. There are enormous amounts of heavy oil reserves in the world but the lack of cost effective technologies either for extraction, transportation, or refinery upgrading hinders the development of heavy oil reserves. One of the critical problems with heavy oil and bitumen is that they require large amounts of thermal energy and expensive catalysts to upgrade. This thesis demonstrates that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam processing lowers the thermal energy requirements and could sharply reduce the investment in catalysts. The design of the facilities can be simpler and will contribute to lowering the costs of transporting and processing heavy oil and bitumen. E-Beam technology uses the high kinetic energy of fast electrons, which not only transfer their energy but also interact with hydrocarbons to break the heavy molecules with lower thermal energy. In this work, we conducted three major stages to evaluate the applicability of E-Beam for heavy oil upgrading. First, we conducted laboratory experiments to investigate the effects of E-Beam on hydrocarbons. To do so, we used a Van de Graff accelerator, which generates the high kinetic energy of electrons, and a laboratory scale apparatus to investigate extensively how radiation effects hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional upgrading. The results of our study are very encouraging. From the experiments we found that E-Beam effect on hydrocarbon is significant. We used less thermal energy for distillation of n-hexadecane (n-C16) and naphtha with E-Beam. The results of experiments with asphaltene indicate that E-Beam enhances the decomposition of heavy hydrocarbon molecules and improves the quality of upgraded hydrocarbon. From the study of energy transfer mechanism, we estimated heat loss, fluid movement, and radiation energy distribution during the reaction. The results of our economic evaluation show that E-Beam upgrading appears to be economically feasible in petroleum industry applications. These results indicate significant potential for the application of E-Beam technology throughout the petroleum industry, particularly near production facilities, transportation pipelines, and refining industry.

Yang, Daegil

2009-12-01T23:59:59.000Z

46

The Role of the Flexicoking Process in Heavy Oil Processing  

E-Print Network (OSTI)

The recently commercialized FLEXICOKING Process has a significant role to play in developing, known heavy oil reserves. The process upgrades virtually any pumpable feed including residual, pitch or total crude. Combined with HYDROFINING, it produces a clean product slate composed of low Btu gas, high Btu gas, LPG, naphtha, distillate and gas oil. The low Btu gas falls within the definition of an "Alternate Fuel" under current legislation (PL 95-620). Originally developed for refinery bottoms conversion, the FLEXICOKING process can also be used as the primary technology for Stand Alone Energy Centers upgrading low quality, high metals, heavy crudes. These efficient energy centers can be located either at a heavy oil production field or integrated with an energy-intensive industrial complex.

Taylor, R. I.

1980-01-01T23:59:59.000Z

47

Field development options for a waterflooded heavy-oil reservoir  

Science Conference Proceedings (OSTI)

Battrum Unit 4 is a moderately heavy-oil reservoir in Saskatchewan producing under waterflood from a thin sand. This paper describes a history match of previous field behavior and systematically analyzes through the use of numerical simulation the potential benefits to production of further waterflooding (with and without infill drilling), steamflooding, and horizontal drilling. It is found that the remaining oil recovery potential of a steamflood with horizontal well is significantly higher than that of any of the waterflood options.

Kasraie, M. (Petroleum Recovery Inst., Calgary, Alberta (Canada)); Sammon, P.H. (Computer Modelling Group, Calgary, Alberta (Canada)); Jespersen, P.J. (Sceptre Resources Ltd., Calgary, Alberta (United States))

1993-09-01T23:59:59.000Z

48

Unfinished Oils - Heavy Gas Oils Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

49

Sovent Based Enhanced Oil Recovery for In-Situ Upgrading of Heavy Oil Sands  

Science Conference Proceedings (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO{sub 2}. The model also incorporated the characteristic of a highly varying CO{sub 2} density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Norman Munroe

2009-01-30T23:59:59.000Z

50

Experimental investigation of caustic steam injection for heavy oils  

E-Print Network (OSTI)

An experimental study has been conducted to compare the effect of steam injection and caustic steam injection in improving the recovery of San Ardo and Duri heavy oils. A 67 cm long x 7.4 cm O.D (outer diameter), steel injection cell is used in the study. Six thermocouples are placed at specific distances in the injection cell to record temperature profiles and thus the steam front velocity. The injection cell is filled with a mixture of oil, water and sand. Steam is injected at superheated conditions of 238oC with the cell outlet pressure set at 200 psig, the cell pressure similar to that found in San Ardo field. The pressure in the separators is kept at 50 psig. The separator liquid is sampled at regular intervals. The liquid is centrifuged to determine the oil and water volumes, and oil viscosity, density and recovery. Acid number measurements are made by the titration method using a pH meter and measuring the EMF values. The interfacial tensions of the oil for different concentrations of NaOH are also measured using a tensionometer. Experimental results show that for Duri oil, the addition of caustic results in an increase in recovery of oil from 52% (steam injection) to 59 % (caustic steam injection). However, caustic has little effect on San Ardo oil where oil recovery is 75% (steam injection) and 76 % (caustic steam injection). Oil production acceleration is seen with steam-caustic injection. With steam caustic injection there is also a decrease in the produced oil viscosity and density for both oils. Sodium hydroxide concentration of 1 wt % is observed to give the lowest oil-caustic interfacial tension. The acid numbers for San Ardo and Duri oil are measured as 6.2 and 3.57 respectively.

Madhavan, Rajiv

2009-05-01T23:59:59.000Z

51

Post Production Heavy Oil Operations: A Case for Partial Upgrading  

E-Print Network (OSTI)

The transportation of heavy oil is a pressing problem. Various methods have been devised to mitigate the reluctance to flow of these highly dense and viscous oils. This study is focused on evaluating a case for post-production partial upgrading of heavy oil. Specifically, we analyze the impact of visbreaking, a mild thermal cracking method, on the economic and energy demands of the post-production process. Using conservative modeling techniques and principles we find significant cost and energy savings can potentially result out of visbreaking. Cost savings result as a consequence of reduced diluent usage. Even the most conservative modeling scenario under consideration exhibits significant cost savings in the form of reduced diluent usage; these savings not only offset operational costs but provide short payback periods on capital expenditures. Additionally, the lower gravity blend resulting from visbreaking can also bring about energy and cost savings in pipeline transportation and positively impact the heavy oil value chain from the producer to a refinery or regional upgrading facility. From this basic analysis of the potential of visbreaking, we can recommend investing resources to study its viability in the field. Using this analysis as a tipping off point and with a detailed look at the chemistry of the oil in question it is possible to make a very viable case for visbreaking. In a similar vein, this analysis can serve as a guide in making a case for other partial upgrading methods as well.

Lokhandwala, Taher

2012-12-01T23:59:59.000Z

52

Canadian oilsands, heavy oil poised for surge in development  

SciTech Connect

Operators in Canada`s oilsands and heavy oil regions are on the brink of a period of growth that could last well into the next century. Several factors are combining in a scenario a National Task Force report on oilsands says could dramatically increase investment and production in the next 25 years. By then, massive oilsands and heavy oil reserves in northern Alberta could account for as much as 50%--perhaps more--of Canada`s oil production. Technological improvements in recovery and processing have slashed production costs and put nonconventional oil on a more competitive footing with declining reserves of conventional crude in western Canada. At the same time, persistent lobbying by industry and a well researched national study have persuaded federal and provincial governments to introduce a new royalty and fiscal regime designed to bolster oilsands investment. New policies give clear incentives to investors to put money into oilsands and heavy oil projects. Policies also will provide a generic tax treatment for all new projects, long a major objective of oilsands promoters. Previously, royalty and tax agreements were negotiated for project case by case. This paper reviews the resource base and the new operational developments resulting from these policies.

NONE

1996-05-20T23:59:59.000Z

53

Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum  

Science Conference Proceedings (OSTI)

On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

Carbognani, L.; Hazos, M.; Sanchez, V. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.

1989-12-01T23:59:59.000Z

54

Simulation of a cold heavy oil production with sand (CHOPS) separation system  

Science Conference Proceedings (OSTI)

A simulation of a heavy oil well site separation process was developed to test some of the requirements of operating on the North Slope of Alaska. This simulation used estimates of the dynamic proportions of oil, water and sand coming from the oil well ... Keywords: iThink™, CHOPS, North Slope, Alaska, continuous simulation, heavy oil

John Danielsen; David B. Hoffman

2009-03-01T23:59:59.000Z

55

System and method for preparing near-surface heavy oil for extraction using microbial degradation  

DOE Patents (OSTI)

A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

2011-04-12T23:59:59.000Z

56

Laboratory study to determine physical characteristics of heavy oil after CO/sub 2/ saturation. Final report  

Science Conference Proceedings (OSTI)

As part of an on-going research program for enhanced oil recovery, the Bartlesville (Oklahoma) Energy Technology Center (BETC), US Department of Energy is performing research and development of recovery techniques for heavy oils. These techniques are being studied and developed to ultimately aid production from shallow, low productivity, heavy oil sand deposits in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. Four heavy oil samples ranging, from 10/sup 0/ to 20/sup 0/ API gravity, were tested to determine their physical characteristics before and after CO/sub 2/ saturation. The experimentation was conducted using a modified PVT apparatus designed and constructed at BETC. Viscosity, density, solubility, and swelling factor were determined at temperatures of 75/sup 0/, 140/sup 0/, and 200/sup 0/F and at 11 pressures ranging from 200 to 5000 psi at each temperature. The physical property changes of heavy oils due to CO/sub 2/ saturation appear to be crude-oil dependent. Future studies should include more types of crude oils and probably higher temperatures. 14 references, 31 figures, 19 tables.

Miller, J.S.; Jones, R.A.

1984-01-01T23:59:59.000Z

57

Geothermal and heavy-oil resources in Texas  

Science Conference Proceedings (OSTI)

In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

Seni, S.J.; Walter, T.G.

1994-01-01T23:59:59.000Z

58

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

59

An Application of Sequence Stratigraphy in Modelling Oil Yield Distribution: The Stuart Oil Shale Deposit, Queensland, Australia.  

E-Print Network (OSTI)

??The Stuart Oil Shale Deposit is a major oil shale resource located near Gladstone on the central Queensland coast. It contains an estimated 3.0 billion… (more)

Pope, Graham John

2005-01-01T23:59:59.000Z

60

Petroleum geology of heavy oil in the Oriente basin of Ecuador: Exploration and exploitation challenge for the 1990s  

Science Conference Proceedings (OSTI)

Published Ecuadorian government forecasts suggest that Oriente basin light oil (21-32{degree} API) production may start to decline in the early to mid-1990s. To maintain stabilized production into the next century, heavy oil reserves (10-20{degree} API) will have to be aggressively exploited. The Oriente's undeveloped proven plus probable heavy reserves are substantial and are expected to exceed 0.5 billion bbl. A recent discovery made by Conoc Ecuador Ltd., operator of Block 16 for a group which consists of O.P.I.C., Maxus, Nomeco, Murphy and Canam, is a good model for future exploration and exploitation of heavy oil in the remote eastern regions of the basin. Amo-1 tested a low-relief anticline (less than 100 ft vertical closure) and encountered 10-20{degree} API oil in five Cretaceous sandstone reservoirs (8,000-10,000 ft depth). Cumulative test production was 1,062 BOPD. Subsequent drilling along the trend resulted in three additional discoveries. The Cretaceous sands were transported from the Brazilian shield by the westward flowing proto-Amazon River and were deposited in fluviodeltaic, tidal, and high-energy marginal marine environments. Air permeabilities are high and geometric mean values approaching several darcies. Porosities average 18-22% in generally well-consolidated sands. The heavy oils are the result of mild biodegradation and/or expulsion from a thermally immature source. Oil-to-oil correlations suggest that all of the basin oils have the same or similar origin, probably marine calcareous shales of the Cretaceous Napo formation. The Block 16 project will provide a major step toward the strategic exploitation of the Oriente basin's heavy oil reserves, when it comes on stream in the early 1990s.

Leadholm, R.H. (Conoco Ecuador Ltd., Houston, TX (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Method for production of hydrocarbon diluent from heavy crude oil  

Science Conference Proceedings (OSTI)

This patent describes a method of producing a hydrocarbon diluent from a heavy crude oil extracted from an underground petroleum formation via a production well. It comprises: preheating a quantity of heavy crude oil extracted from the production well to yield a heated crude oil; separating in a separator vessel by flashing the heated crude oil to produce a first vapor fraction and a first liquid fraction; thermally cracking in a cracking unit at least a portion of the first liquid fraction to produce a first liquid effluent; quenching the first liquid effluent; introducing at least a portion of the quenched fist liquid effluent into a separator; condensing the first vapor fraction; separating in a separator vessel the condensed vapor fraction to produce a liquid hydrocarbon diluent middle fraction characterized in having a boiling range between about 400{degrees}-700{degrees}F. and a gas; and, directing the liquid hydrocarbon diluent into the formation via an injection well for enhancing production of petroleum from the formation via the production well.

McCants, M.F.

1992-05-05T23:59:59.000Z

62

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

63

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

Shari Dunn-Norman

2005-06-01T23:59:59.000Z

64

Treating paraffin deposits in producing oil wells  

Science Conference Proceedings (OSTI)

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

65

Experimental investigations in improving the VAPEX performance for recovery of heavy oil and bitumen.  

E-Print Network (OSTI)

??The process of vapor extraction (VAPEX) is a recovery process which targets the heavy oil and bitumen resources. Owing to high viscosity values for these… (more)

Rezaei, Nima

2010-01-01T23:59:59.000Z

66

Simulation studies of steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and… (more)

Venturini, Gilberto Jose

2012-01-01T23:59:59.000Z

67

Characterization,demulsification and transportation of heavy crude oil: Pipeline trasportation; emulsion stability; demulsification; droplet size; shear stress & shear rate  

Science Conference Proceedings (OSTI)

Stable concentrated oil-in-water (O/W) emulsions were prepared and their application for heavy oil pipeline transportation was investigated using very viscous Malaysian heavy crude oil. Two Malaysian heavy crude oil samples, Tapis and a blend of Tapis ...

Abdurahman H. Nour; Chew Fern Tan; Azhari H. Nour

2012-02-01T23:59:59.000Z

68

Deposit information in gasoline engines: Part I. Base oil effects in sequence VE deposits  

SciTech Connect

Base oil effects on sludge and deposit formation in the ASTM Sequence VE were studied with blends made using the same American Petroleum Institute (API) SG performance package and the same viscosity improver. One percent of the dispersant was removed from the formulation to accentuate base oil effects. Nine tests on six different 100N base oils were run. Sequence VE test lubricant drain analyses show differences in insolubles, viscosity, and particle size with base stock variations. The most significant base oil factors which can be used to predict Sequence VE sludge ratings are the base oil saturate content, polar content, and volatility. While all oils studied passed the Sequence VE API SG engine varnish and piston varnish requirements, higher levels of poly-nuclear aromatics (PNA`s) are shown to increase the severity of these ratings.

Supp, J.A.; Kornbrekke, R.E.; Roby, S.H. [Lubrizol Corporation, Wickliffe, OH (United States)

1994-12-01T23:59:59.000Z

69

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report  

SciTech Connect

The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

NONE

1995-11-01T23:59:59.000Z

70

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

71

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

Science Conference Proceedings (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

Shari Dunn-Norman

2003-09-05T23:59:59.000Z

72

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

73

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

74

Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta.  

E-Print Network (OSTI)

??Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a… (more)

Schiltz, Kelsey Kristine

2013-01-01T23:59:59.000Z

75

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

76

Optimal Control of Vapor Extraction of Heavy Oil.  

E-Print Network (OSTI)

??Vapor extraction (Vapex) process is an emerging technology for viscous oil recovery that has gained much attention in the oil industry. However, the oil production… (more)

Muhamad, Hameed

2012-01-01T23:59:59.000Z

77

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum  

E-Print Network (OSTI)

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C distribution of oil forms a plume along the continental shelf that we suggest represents a chronic fallout the distribution of the fallout over a period of 0.4-5 days. The extent of hydrocarbon loss is consistent for all

Fabrikant, Sara Irina

78

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

79

Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

(Advanced Vehicle Testing Activity) (Advanced Vehicle Testing Activity) Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles James Francfort American Filtration and Separations Society April 2005 Presentation Outline * Background & Objectives * Oil bypass filters - features & reported benefits * INL testing method * puraDYN oil bypass filters * Refined Global Solutions (RGS) oil bypass filters * Testing results & trends * Particulate and ferrography testing * Initial INL Oil Bypass Filter Economics * Potential fleet oil savings * Testing Status Bypass Filter Evaluation - Background * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program (Advanced Vehicle Testing Activity) * Vehicles operated by Idaho National Laboratory's Fleet Operations group * Idaho National Laboratory

80

Determination of concentration-dependent dispersion of propane in vapor extraction of heavy oil.  

E-Print Network (OSTI)

??Vapex (vapor extraction) is a solvent-based non-thermal in-situ heavy oil recovery process. In Vapex process, a vaporized hydrocarbon solvent is injected into an upper horizontal… (more)

Abukhalifeh, Hadil

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Trace metals in heavy crude oils and tar sand bitumens  

SciTech Connect

Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

Reynolds, J.G.

1990-11-28T23:59:59.000Z

82

NETL: News Release - Heavy Oil Potential Key to Alaskan North...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural...

83

Industrial Uses of Vegetable OilsChapter 7 Development of Soy Composites by Direct Deposition  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 7 Development of Soy Composites by Direct Deposition Processing eChapters Processing Press Downloadable pdf of Chapter 7 Development of Soy Composites by Direct Deposition

84

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

Science Conference Proceedings (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

85

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

Science Conference Proceedings (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with little capital investment. The first year period was divided into two phases--Phase I and Phase II. Each phase was 6 months in duration. Tasks completed in first six month period included soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. During the second six month period, five vertical wells were drilled through the Bluejacket and Warner Sands. These wells were drilled with air and logged openhole. Drilling locations were selected after reviewing results of background ERT and geochemical surveys. Three ERT wells (2,3,4) were arranged in an equilateral triangle, spaced 70 feet apart and these wells were completed open hole. ERT arrays constructed during Phase I, were installed and background surveys were taken. Two wells (1,5) were drilled, cased, cemented and perforated. These wells were located north and south of the three ERT wells. Each well was stimulated with a linear guar gel and 20/40 mesh Brady sand. Tiltmeters were used with one fracture treatment to verify fracture morphology. Work performed during the first year of this research project demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand. ERT work also provided a background image for future MEOR treatments. Well logs from the five wells drilled were consistent with previous logs from historical coreholes, and the quality of the formation was found to be as expected. Hydraulic fracturing results demonstrated that fluid leakoff is inadequate for tip screenout (TSO) and that a horizontal fracture was generated. At this point it is not clear if the induced fracture remained in the Warner Sand, or propagated into another formation. MEOR treatments were originally expected to commence during Phase II. Due to weather delays, drilling and stimulation work was not completed until September, 2003. Microbial treatments therefore will commence in October, 2003. Phase III, the first 10 months of the second project year, will focus primarily on repeated cycles of MEOR treatments, ERT measurements and well pumping.

Shari Dunn-Norman

2004-03-01T23:59:59.000Z

86

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

87

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

88

Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.

Allison, Edith

1996-12-01T23:59:59.000Z

89

Experimental and analytical modeling studies of steam injection with hydrocarbon additives to enhance recovery of San Ardo heavy oil.  

E-Print Network (OSTI)

??Experimental and analytical studies have been carried out to better understand production mechanisms of heavy oil under steam injection with propane and petroleum distillate as… (more)

Simangunsong, Roly

2006-01-01T23:59:59.000Z

90

Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils  

E-Print Network (OSTI)

Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples: San Francisco oil from Columbia with specific gravity of 28o-29o API, Duri oil with gravity of 19o-21o API, Jobo oil with gravity of 8o-9o API and San Ardo oil gravity of 11o-13o API. The additive used in all of the experiments is petroleum distillate. The experiments consist of using petroleum distillate as an additive for different samples of heavy crude oils. The experiments include making a mixture by adding petroleum distillate to oil samples and measuring surface tension, viscosity and density of pure oil samples and mixtures at different temperatures. The petroleum distillate/oil ratios are the following ratios: 1:100, 2:100, 3:100, 4:100 and 5:100. Experimental results showed that use of petroleum distillate as an additive increases API gravity and leads to reduction in viscosity and surface tension for all the samples. Results showed for all petroleum distillate/oil ratios viscosity and interfacial tension decreases with temperature. As petroleum distillate/oil ratio increases, oil viscosity and surface tension decrease more significantly at lower temperatures than at higher temperatures. After all experiments were completed an analytical correlation was done based on the experiment results to develop “mixing rules”. Using this correlation viscosity, density and surface tension of different petroleum distillate/oil mixtures were obtained (output).These had properties of pure oil and petroleum distillate, mixture ratios and temperatures at which measurement is supposed to be done (output). Using this correlation a good match was achieved. For all of the cases (viscosity, density and surface tension), correlation coefficient (R˛) was more than 0.9 which proved to be optimum for a really good match.

Abdullayev, Azer

2007-08-01T23:59:59.000Z

91

Observations and Modeling of Heavy Particle Deposition in a Windbreak Flow  

Science Conference Proceedings (OSTI)

This paper presents new observations of deposition of heavy particles (glass beads of gravitational settling velocity 8.7 cm s?1) within an undisturbed flow and within a flow disturbed by a porous windbreak fence. These data are then used to ...

T. Bouvet; J. D. Wilson; A. Tuzet

2006-09-01T23:59:59.000Z

92

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

93

Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery  

E-Print Network (OSTI)

This study presents the results of nano-particle and surfactant-stabilized solvent-based emulsion core flooding studies under laboratory conditions that investigate the recovery mechanisms of chemical flooding in a heavy oil reservoir. In the study, bench tests, including the phase behavior test, rheology studies and interfacial tension measurement are performed and reported for the optimum selecting method for the nano-emulsion. Specifically, nano-emulsion systems with high viscosity have been injected into sandstone cores containing Alaska North Slope West Sak heavy oil with 16 API, which was dewatered in the laboratory condition. The experiment results suggest that the potential application of this kind of emulsion flooding is a promising EOR (enhanced oil recovery) process for some heavy oil reservoirs in Alaska, Canada and Venezuela after primary production. Heavy oil lacks mobility under reservoir conditions and is not suitable for the application of the thermal recovery method because of environmental issues or technical problems. Core flooding experiments were performed on cores with varied permeabilities. Comparisons between direct injection of nano-emulsion systems and nano-emulsion injections after water flooding were conducted. Oil recovery information is obtained by material balance calculation. In this study, we try to combine the advantages of solvent, surfactant, and nano-particles together. As we know, pure miscible solvent used as an injection fluid in developing the heavy oil reservoir does have the desirable recovery feature, however it is not economical. The idea of nano-particle application in an EOR area has been recently raised by researchers who are interested in its feature-reaction catalysis-which could reduce in situ oil viscosity and generate emulsion without surfactant. Also, the nano-particle stabilized emulsions can long-distance drive oil in the reservoir, since the nano-particle size is 2-4 times smaller than the pore throat. In conclusion, the nano-emulsion flooding can be an effective enhancement for an oil recovery method for a heavy oil reservoir which is technically sensitive to the thermal recovery method.

Qiu, Fangda

2010-05-01T23:59:59.000Z

94

Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles  

E-Print Network (OSTI)

Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other vehicle operations that affect oil life like extended idle. Routine oil sampling is one way to ensure optimal oil intervals, but the price continuous analysis can be prohibitive. It is possible to use on board diagnostic (OBD) data to correlate oil degradation to engine usage in order to develop an algorithm that is applicable to many vehicles. While much research has been conducted for light duty vehicles, little has been completed for heavy duty vehicles, in particular vehicles that idle a majority of their time. This study uses multiple heavy duty vehicles that are monitored by monthly routine oil analysis and logging of on board diagnostic data to determine the effects extended idle has on the wear rate of oil. The vehicles were used in their normal operation; this resulted in an average idle run time of 60% of run time and no less than 50% in a single vehicle. At each sample the quality of the oil and the operation of the engines were assessed. The results of the oil analysis showed very little degradation of oil. As expected, a negative correlation was seen in viscosity and total base number (TBN) but not abnormal when compared to base oil. Significant degradation was not seen even after using the vehicle passed the manufacturer recommended oil intervals. Analysis of engine operation showed that the temperature of the oil was optimal for 85% of idle operation. In addition, oil pressures at idle were sufficiently higher than the minimum pressure recommended by the manufacturer, but was less than half of the average in use oil pressure. The combination of low pressure and optimal temperature has resulted in little oil degradation. The results from the study have shown that extended idling in the study vehicles can be treated similar to long trip interval service for oil degradation. Additionally, extended idling did not result in abnormal engine wear or excessive contamination.

Kader, Michael Kirk

2013-05-01T23:59:59.000Z

95

Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils  

Science Conference Proceedings (OSTI)

The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationâ??s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

Matthew Liberatore; Andy Herring; Manika Prasad; John Dorgan; Mike Batzle

2012-06-30T23:59:59.000Z

96

Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)  

DOE Data Explorer (OSTI)

The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

97

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS  

Office of Scientific and Technical Information (OSTI)

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS FINAL PROGRESS REPORT PERIOD: OCT 1999-MAY 2003 CONTRACT NUMBER: DE-FG26-99FT40615 PROJECT START DATE: October 1999 PROJECT DURATION: October 1999 - May 2003 TOTAL FUNDING REQUESTED: $ 199,320 TECHNICAL POINTS OF CONTACT: Jorge Gabitto Maria Barrufet Prairie View A&M State University Texas A&M University Department of Chemical Engineering Petroleum Engineering Department Prairie View, TX 77429 College Station TX, 77204 TELE:(936) 857-2427 TELE:(979) 845-0314 FAX: (936) 857-4540 FAX:(979) 845-0325 EMAIL:jgabitto@aol.com EMAIL:barrufet@spindletop. tamu.edu 1 EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

98

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

Science Conference Proceedings (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

99

Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water  

E-Print Network (OSTI)

to deliver these oils at low energy consumption. However, the possible accumulation of oil on the pipe walls alternative for the transportation of heavy crude oils. The lubricating effect of the aqueous film leads to reduced equivalent viscosities and, hence, low energy consumption. One of the possible problems associated

Loh, Watson

100

Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

1999-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

102

SUPRI Heavy Oil Research Program, SUPRI TR 85  

SciTech Connect

This report concerns progress made during the 1990--1991 fiscal year. Information is given an the following projects: (1) A Study of End Effects in Displacement Experiments; (2) Kinetics of In-Situ Combustion; (3) In-Situ Combustion with Metallic Additives; (4) Steam-Foam Studies in the Presence of Residual Oil; (5) Characterization of Surfactants in the Presence of Oil for Steam-Foam Applications; (6) CT Imaging of Steam and Steam Foam Laboratory Experiments; (7) Microvisualization of Foam Flow in Porous Media; (8) Transient Foam Flow in Porous Media with Cat Scanner; (9) Study of Matrix/Fracture Transfer During Steam Injections; (10) Transient Behavior of Gravity Drainage Wells; (11) Multivariate Optimization of Production Systems; (12) Ultrasonic Flowmeter. (VC)

Brigham, W.E.; Ramey, H.J. Jr.; Castanier, L.M.

1992-05-01T23:59:59.000Z

103

Modeling of wax deposition in a crude oil carrying pipeline.  

E-Print Network (OSTI)

??The oil modeled in this thesis has a large amount of paraffin and must be transported from where it is extracted to a refinery over… (more)

Montalvo, Preston

2012-01-01T23:59:59.000Z

104

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

105

The design of a modern steamflood in a thick, dipping, heavy oil reservoir  

SciTech Connect

In 1988, Mobil completed the design phase of a new steamflood project. This project is in a thick, moderately dipping, unconsolidated heavy oil reservoir. The design takes advantage of the gravity drainage recovery mechanism in the thick reservoir, allowing vertical steam zone expansion with minimal steam breakthrough. The steamflood was designed to be economic in the late 1980's period of low oil prices. The design was completed with an interdisciplinary teamwork approach using concurrent studies for expediency. This paper was first presented at the 1989 California Regional Meeting in Bakersfield. The presentation for this meeting will conclude with an update of project performance since 1989.

Atkinson, D.S.; Clayton, C.A.; Baldwin, J.O.; Smith, R.C. (Mobile E and P US, Inc., Denver, CO (United States))

1991-02-01T23:59:59.000Z

106

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

Science Conference Proceedings (OSTI)

In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2002-10-08T23:59:59.000Z

107

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

1991-01-01T23:59:59.000Z

108

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

1991-12-31T23:59:59.000Z

109

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network (OSTI)

Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of reservoir heating. Effects of various additives injected simultaneously with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela. The experiments were conducted using an injection cell packed with sandmix containing a mixture of sand, water, and Morichal oil. Experimental runs involved injection of steam, or propane, or a mixture of steam and propane into the cell at constant rate, temperature, and pressure. The injection was kept constant at 5 g/min for all runs. Five experiments were performed, namely, run 1 (50 wt.% steam and 50 wt.% propane), run 2 (100 wt.% steam), run 3 (75 wt.% steam and 25 wt.% propane), run 4 (100 wt.% propane), and run 5 (95 wt.% steam and 5 wt.% propane). Main findings for this study are as follows. First, it appears possible to accelerate recovery of Morichal oil using combined steam and propane injection. Oil recovery at 61% OOIP may be up to 0.23 pore volume faster than using steam injection alone, with gain in ultimate recovery of up to 5% OOIP. Second, with only propane injection, at temperature and pressure conditions tested, practically no oil is recovered. Steam is necessary to reduce interfacial tension and the oil viscosity, thus allowing propane to permeate through the oil. This increases propane miscibility with oil, further reducing the residual oil saturation, and enhances the displacement efficiency. It is recommended that further research be conducted to confirm the technical and economic feasibility of steam-propane injection, particularly for other crude oil types, and at pressure and temperature conditions encountered in the field.

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

110

Lyondell, Citgo join for heavy oil upgrade project at Houston refinery  

Science Conference Proceedings (OSTI)

Lyondell-Citgo Refining Co. Ltd. is beginning an $800-million upgrade and expansion of its Houston refinery. The project will enable the refinery. The project will enable the refinery to produce clean fuels while processing about 80% heavy, high-sulfur Venezuelan crude oil. The paper describes the Houston refinery, the expansion project, the technologies to be used, operational changes, environmental impacts, and construction.

Rhodes, A.K.

1994-03-21T23:59:59.000Z

111

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect

Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

Castle, J.W.; Molz, F.J.; Brame, S.E.; Falta, R.W.

2003-02-07T23:59:59.000Z

112

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

Science Conference Proceedings (OSTI)

Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

Castle, James W.; Molz, Fred J.

2003-02-07T23:59:59.000Z

113

SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES  

SciTech Connect

A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

David O. Ogbe; Tao Zhu

2004-01-01T23:59:59.000Z

114

SUPRI heavy oil research program. Fourteenth annual report, October 1, 1989--September 30, 1990  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

115

Evaluation of Wax Deposition and its Control during Production of Alaska North Slope Oils  

Office of Scientific and Technical Information (OSTI)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41248 Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Petroleum Development Laboratory Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755880 Fairbanks, Alaska 99775-5880 Prepared for: United States Department of Energy National Energy Technology Laboratory December 2008 Office of Fossil Energy Evaluation of Wax Deposition and Its Control During Production of Alaskan North Slope Oils Final Report Reporting Period: October 1, 2005-September 30, 2008 Principal Investigator: Tao Zhu University of Alaska Fairbanks P.O. Box 755880 Fairbanks, AK 99775-5880 fftz@uaf.edu, 907-474-5141 External Principal Investigator: Jack A. Walker

116

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network (OSTI)

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-VerdĂ­n, Carlos

117

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

118

Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics Lab, UH;  

E-Print Network (OSTI)

on an oil shale deposit. Samanta et al. (2005) extract lay- ers of material to minimize deviation between

119

Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation  

E-Print Network (OSTI)

Radiation technology can economically overcome principal problems of heavy oil processing arising from heavy oil�s unfavorable physical and chemical properties. This technology promises to increase considerably yields of valuable and environmentally satisfying products of thermal cracking; to simplify complexity of refinery configuration; and to reduce energy expenses of thermal cracking. Objectives of the present study are: � Evaluate heavy oil viscosities with respect to absorbed dose and effect of different solvents on the viscosity of irradiated crude oil by comparing selected physical properties of irradiated samples to a non-irradiated control group; � Investigate effect of e-beam radiation on the yields of light fractions comparing yields of radiation-thermal cracking to yields of conventional thermal cracking. The viscosity was used as an indicator of the change in the molecular structure of hydrocarbons upon irradiation. We found that the irradiation of pure oil leads to the increase of the molecular weight calculated from the Riazi-Daubert correlation. Thus, irradiation up to 10 kGy resulted in a 1.64% increase in the molecular weight, 20 kGy � 4.35% and 30 kGy � 3.28%. It was found that if irradiated oil was stored for 17 days, its viscosity increased by 14% on average. The irradiation of samples with added organic solvent in the following weight percentages 10, 5, 2.5wt.% resulted in the increase in the viscosity by 3.3, 3.6 and 14.5%, respectively. The irradiation of the sample with added distilled water also resulted in an increase in the viscosity. This increase mainly happened because the thermal component was absent in the activation energy and hydrogen, produced from radiolysis of solvent and water molecules in mixture with crude oil, and was not consumed by hydrocarbon molecules and no reduction in molecular size occurred. Implementation of radiation to the thermal cracking increased yields of light fractions by 35wt.% on average compared to the process where no radiation was present. The last chapter of this thesis discusses a profitability of installation the hypothetical radiation-thermal visbreaking unit. The calculation of profitability was performed by a rate of return on investment (ROI) method. It showed that implementation of radiation-thermal processing resulted in an increase of ROI from 16 to 60%.

Zhussupov, Daniyar

2006-12-01T23:59:59.000Z

120

Review and analysis of oil shale technologies. Volume I. Oil shale deposits, mining methods, and environmental concerns  

SciTech Connect

This volume describes and discusses oil shale deposits of the U.S., applicable methods for mining the shale, and the environmental concerns associated with oil shale technologies. Mining is required to supply shale to the retorts of aboveground processes. The majority of oil shale mining is expected to be by the underground room-and-pillar method. Surface mining (i.e., open pit mining) may also be used to supply material for surface retorts and may be appropriate for up to 15 to 20% of the oil shale resources. Principal environmental issues unique to true and modified in situ oil shale processing include disposal of retort water and drill cuttings, migration of fluids during and after in situ processing, surface thermal changes, and hazardous materials that may be leached from spent shale. Other site-specific problems of in situ processing include off-gas emissions, fugitive dust generation, land disturbance, and water usage. The environmental issues are similar for oil shale surface processes, except for surface thermal changes. The degree of impact, however, is expected greater than that for either the true or the modified in situ process.

Jee, C.K.; White, J.D.; Bhatia, S.K.; Nicholson, D.

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

122

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

123

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

124

Development of the Write Process for Pipeline-Ready Heavy Oil  

DOE Green Energy (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

125

Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair  

E-Print Network (OSTI)

Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main features of this process that lead to stable sweep and high oil recovery. These characteristics identify the CAGD process as a high-potential oil recovery method either in primary production or as a follow-up process in reservoirs that have been partially depleted. The CAGD process combines the advantages of both gravity drainage and conventional in-situ combustion (ISC). A combustion chamber develops in a wide area in the reservoir around the horizontal injector and consists of flue gases, injected air, and mobilized oil. Gravity drainage is the main mechanism for mobilized oil production and extraction of flue gases from the reservoir. A 3D laboratory cell with dimensions of 0.62 m, 0.41 m, and 0.15 m was designed and constructed to study the CAGD process. The combustion cell was fitted with 48 thermocouples. A horizontal producer was placed near the base of the model and a parallel horizontal injector in the upper part at a distance of 0.13 m. Peace River heavy oil and Athabasca bitumen were used in these experiments. Experimental results showed that oil displacement occurs mainly by gravity drainage. Vigorous oxidation reactions were observed at the early stages near the heel of the injection well, where peak temperatures of about 550şC to 690şC were recorded. Produced oil from CAGD was upgraded by 6 and 2şAPI for Peace River heavy oil and Athabasca bitumen respectively. Steady O2 consumption for both oil samples confirmed the stability of the process. Experimental data showed that the distance between horizontal injection and production wells is very critical. Close vertical spacing has negative effect on the process as coke deposits plug the production well and stop the process prematurely. CAGD was also laboratory tested as a follow-up process. For this reason, air was injected through dual parallel wells in a mature steam chamber. Laboratory results showed that the process can effectively create self-sustained combustion front in the previously steam-operated porous media. A maximum temperature of 617şC was recorded, with cumulative oil recovery of 12% of original oil in place (OOIP). Post-experiment sand pack analysis indicated that in addition to sweeping the residual oil in the steam chamber, the combustion process created a hard coke shell around the boundaries. This hard shell isolated the steam chamber from the surrounding porous media and reduced the steam leakage. A thermal simulator was used for history matching the laboratory data while capturing the main production mechanisms. Numerical analysis showed very good agreement between predicted and experimental results in terms of fluid production rate, combustion temperature and produced gas composition. The validated simulation model was used to compare the performance of the CAGD process to other practiced thermal recovery methods like steam assistance gravity drainage (SAGD) and toe to heel air injection (THAI). Laboratory results showed that CAGD has the lowest cumulative energy-to-oil ratio while its oil production rate is comparable to SAGD.

Rahnema, Hamid

2012-12-01T23:59:59.000Z

126

The Use of TaBoRR as a Heavy Oil Upgrader  

SciTech Connect

Preliminary testing has shown that Western Research Institute's (WRI) Tank Bottom Recovery and Remediation (TaBoRR{reg_sign}) technology shows promise for heavy oil upgrading. Approximately 70 to 75 wt% of a Canadian Cold Lake bitumen feed was converted to a partially upgraded overhead product that could be transported directly by pipeline or blended with the parent bitumen to produce transportable crude. TaBoRR{reg_sign} was originally developed to remediate tank bottom wastes by producing a distillate product and solid waste. TaBoRR{reg_sign}'s processing steps include breaking a water-oil emulsion, recovering a light hydrocarbon fraction by distillation in a stripper unit, and pyrolyzing the residua reducing it to additional overhead and a benign coke for disposal. Cold Lake bitumen was tested in WRI's bench-scale equipment to evaluate the potential use of TaBoRR{reg_sign} technology for heavy oil upgrading to produce a stable, partially (or fully) upgraded product that will allow diluent-reduced or diluent-free transportation of bitumen or ultra-heavy crudes to market. Runs were conducted at temperatures of low, intermediate and high severity in the stripper to produce stripper overhead and bottoms. The bottoms from each of these runs were processed further in a 6-inch screw pyrolyzer to produce pyrolyzer overhead for blending with the corresponding stripper overheads. Proceeding in this fashion yielded three partially upgraded crudes. The products from TaBoRR{reg_sign} processing, the parent bitumen, and bitumen blends were subjected to stability and compatibility testing at the National Centre for Upgrading Technology (NCUT). Chemical analyses of the overhead product blends have met pipeline specifications for viscosity and density; however the bromine number does not, which might indicate the need for mild hydrotreating. Storage stability tests showed the blends to be stable. The blends were also soluble and compatible with most other Alberta crudes.

Lee Brecher; Charles Mones

2009-02-05T23:59:59.000Z

127

Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition  

E-Print Network (OSTI)

This research is a study of the in-situ upgrading of Jobo crude oil using steam, tetralin or decalin, and catalyst (Fe(acac)?) at temperatures of 250 °C, 275 °C and 300 °C for 24 hours, 48 hours and 72 hours using an autoclave. Viscosity, API gravity and compositional changes were investigated. We found that tetralin and decalin alone were good solvents for heavy oil recovery. Tetralin or decalin at concentrations of 9% (weight basis) could reduce the Jobo crude oil viscosity measured at 50 °C by 44±2% and 39±3%. Steam alone had some upgrading effects. It could reduce the oil viscosity by 10% after 48 hours of contact at 300°C. Tetralin, decalin or catalyst showed some upgrading effects when used together with steam and caused 5.4±4%, 4±1% and 19±3% viscosity reduction compared with corresponding pre-upgrading mixture after 48 hours of reaction at 300°C. The combination of hydrogen donor tetralin or decalin and catalyst reduced the viscosity of the mixture the most, by 56±1% and 72±1% compared with pre-upgrading mixture. It meant that hydrogen donors and catalyst had strong synergetic effects on heavy oil upgrading. We also found that 300 °C was an effective temperature for heavy oil upgrading with obvious viscosity reduction in the presence of steam, hydrogen donors and catalyst. Reaction can be considered to have reached almost equilibrium condition after 48 hours. The GC-MS analysis of the gas component showed that light hydrocarbon gases and CO? were generated after reaction. The viscosity reduction from decalin use is larger than that of tetralin because decalin has more hydrogen atoms per molecule than tetralin. A mechanism of transferring H (hydrogen atom) from H?O and hydrogen donors to heavy oil, which can lead to structure and composition changes in heavy oil, is explained. The study has demonstrated that in-situ heavy oil upgrading has great potential applications in heavy and extra heavy oil recovery.

Zhang, Zhiyong

2011-05-01T23:59:59.000Z

128

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

Science Conference Proceedings (OSTI)

This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

2003-02-07T23:59:59.000Z

129

SURPI Heavy Oil Research Program, Twenty-Second Annual Report, SUPRI TR-117  

SciTech Connect

The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Present, SUPRI is working in five main directions: (1) Flow Properties Studies - To assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) In-Situ Combustion - To evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; (3) Steam with Additives- To develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) Formation Evaluation - To develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) Field Support Services - To provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

Brigham, William E.; Castanier, Louis M.; Kovscek, Anthony R.

1999-08-09T23:59:59.000Z

130

SUPRI Heavy Oil Research Program Twenty-First Annual Report, SUPRI TR-111  

Science Conference Proceedings (OSTI)

The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Present, SUPRI is working in five main directions: (1) Flow Properties Studies - To assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) In-Situ Combustion - To evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; (3) Steam with Additives- To develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) Formation Evaluation - To develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) Field Support Services - To provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

Brigham, William E.; Castanier, Louis; Kovscek, Anthony R.

1999-08-09T23:59:59.000Z

131

SUPRI Heavy Oil Research Program. Seventeenth annual report, February 8, 1993--February 7, 1994  

SciTech Connect

Research in the SUPRI Heavy Oil Research Project is summarized here. There are six subdivisions in this project. The goal of Project 1 is to assess the influence of different reservoir conditions on the absolute and relative permeability to oil and water and on capillary pressure. Project 2 deals with the evaluation of the effects of different reservoir parameters on the in-situ combustion process including reaction kinetics. The object of Project 3 is to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam. Project 4 is concerned with the development of techniques of formation evaluation such as tracer tests and pressure transient tests. Finally, Project 5 is concerned with the technical support for the design and monitoring of DOE sponsored or industry initiated field projects.

Brigham, W.E.; Castanier, L.M.

1994-09-01T23:59:59.000Z

132

Analysis of an interwell tracer test in a depleted heavy-oil reservoir  

SciTech Connect

This paper presents field data and analyses of an interwell tracer test conducted in the Niitsu oil field, which is a fully depleted heavy-oil reservoir of unconsolidated sand formation. Water containing a chemical tracer was injected at a constant rate into an injector surrounded by three production wells. Effluent analyses showed very early breakthrough of injected water at two of the producing wells. The test results suggest a strong areal heterogeneity of the tested formation. An appropriate analytic model was used to obtain a preliminary interpretation of the results. A modified three-dimensional (3D) black-oil model developed to simulate th polymer flood process was then used for analyzing the data in more detail. The model treats tracer solution as a fourth component and can also account for adsorption of tracer. Simulation efforts were concentrated on matching the breakthrough times and tracer profiles after breakthrough. Through both the analytic and the simulation work, the reservoir is characterized by a highly heterogeneous distribution of horizontal permeability, a thin layer of high permeability, and a natural waterdrive that cause a preferential flow trend in a direction toward one producer. The authors conclude that the interwell tracer test is an effective tool for evaluating reservoir heterogeneities and a quantitative analysis of test data is done with the polymer option of a black-oil simulator.

Ohno, K.; Nanba, T.; Horne, R.N.

1987-12-01T23:59:59.000Z

133

Experimental Study of Steam Surfactant Flood for Enhancing Heavy Oil Recovery After Waterflooding  

E-Print Network (OSTI)

Steam injection with added surface active chemicals is one of general EOR processes aimed to recover residual oil after primary production processes. It has been demonstrated that, after waterflooding, an oil swept area can be increased by steam surfactant flow due to the reduced steam override effect as well as reduced interfacial tension between oil and water in the formation. To investigate the ability to improve recovery of 20.5oAPI California heavy oil with steam surfactant injection, several experiments with a one-dimensional model were performed. Two experimental models with similar porous media, fluids, chemicals, as well as injection and production conditions, were applied. The first series of experiments were carried out in a vertical cylindrical injection cell with dimensions of 7.4 cm x 67 cm. The second part of experiment was conducted using a horizontal tube model with dimensions of 3.5 cm x 110.5 cm. The horizontal model with a smaller diameter than the vertical injection cell is less subject to channel formation and is therefore more applicable for the laboratory scale modeling of the one-dimensional steam injection process. Nonionic surfactant Triton X-100 was coinjected into the steam flow. For both series of experimental work with vertical and horizontal injection cells, the concentration of Triton X-100 surfactant solution used was chosen 3.0 wt%. The injection rates were set to inject the same 0.8 pore volumes of steam for the vertical model and 1.8 pore volumes of steam for horizontal model. The steam was injected at superheated conditions of 200oC and pressure of 100 psig. The liquid produced from the separator was sampled periodically and treated to determine oilcut and produced oil properties. The interfacial tension (IFT) of the produced oil and water were measured with an IFT meter and compared to that for the original oil. The experimental study demonstrated that the average incremental oil recovery with steam surfactant flood is 7 % of the original oil-in-place above that with pure steam injection.

Sunnatov, Dinmukhamed

2010-05-01T23:59:59.000Z

134

Simulation study to investigate development options for a super-heavy oil reservoir  

E-Print Network (OSTI)

A reservoir simulation study was performed on a heavy oil reservoir with the main objective of evaluating possible development options beyond the existing cold production method. The 206-acre area simulated - part of a significantly larger oil accumulation - lies about 3000 ft. ss. and has a gross thickness of 560 ft. The simulated area contains 120 MMSTB oil of 9° API gravity with in situ viscosity of 6,000 cp. Production began in 1992 with the reservoir being drained by one vertical well, one slanted well and one horizontal well. The simulation study was conducted in a systematic manner using two types of commercial reservoir simulators to minimize computational time. For history matching the cold production period and forecasting of cold production cases, a black oil simulator was used (ECLIPSE 100). A fairly satisfactory match of the production and pressure data was obtained which required an analytical aquifer to be attached to the northern part of the reservoir. For thermal EOR cases, the oil was simulated as a hydrocarbon consisting of three pseudo components. These cases were run using a thermal compositional simulator (ECLIPSE 300). Simulation results indicate oil recovery, for the area developed by the existing horizontal well and two new horizontal wells, to be as follows. For cold production, the oil recovery amounts to 13% of original-oil-in-place (OOIP). With cyclic steam injection, the recovery factor is slightly increased to 15% OOIP. However, with steam flooding -utilizing the new horizontal wells as injectors - the recovery factor is significantly increased to 22% OOIP. Steam flooding is evidently superior to cyclic steam injection primarily due to the fact that the reservoir is pressurized in the former EOR method and not in the latter, and to the fact that cyclic steam injection is more a near-wellbore thermal stimulation process as opposed to a more reservoir-wide heating process under steam flooding. Finally, with steam-propane injection (at a constant steam:propane mass ratio of 100:5), the oil recovery factor is further increased to 26% OOIP. Simulation results indicate this EOR method creates a more favorable distribution of heat in the reservoir, thus better sweep efficiency and reduction in produced water cut. Selection of development options to be implemented would depend on the economics of each case. Economic evaluation of the various cases has not been covered in the thesis and is best done by the operator of the field.

Diaz Franco, Jose Manuel

2001-01-01T23:59:59.000Z

135

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

136

Energy deposition in hard dihadron triggered events in heavy-ion collisions  

E-Print Network (OSTI)

The experimental observation of hadrons correlated back-to-back with a (semi-)hard trigger in heavy ion collisions has revealed a splitting of the away side correlation structure in a low to intermediate transverse momentum (P_T) regime. This is consistent with the assumption that energy deposited by the away side parton into the bulk medium produced in the collision excites a sonic shockwave (a Mach cone) which leads to away side correlation strength at large angles. A prediction following from assuming such a hydrodynamical origin of the correlation structure is that there is a sizeable elongation of the shockwave in rapidity due to the longitudinal expansion of the bulk medium. Using a single hadron trigger, this cannot be observed due to the unconstrained rapidity of the away side parton. Using a dihadron trigger, the rapidity of the away side parton can be substantially constrained and the longitudinal structure of the away side correlation becomes accessible. However, in such events several effects occur which change the correlation structure substantially: There is not only a sizeable contribution due to the fragmentation of the emerging away side parton, but also a systematic bias towards small energy deposition into the medium and hence a weak shockwave. In this paper, both effects are addressed.

Thorsten Renk

2008-04-08T23:59:59.000Z

137

Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils  

Science Conference Proceedings (OSTI)

Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.

Tao Zhu; Jack A. Walker; J. Liang

2008-12-31T23:59:59.000Z

138

The feasibility of recovering medium to heavy oil using geopressured- geothermal fluids  

DOE Green Energy (OSTI)

The feasibility, economics and environmental concerns of producing more domestic oil using thermal enhanced oil recovery (TEOR) are reviewed and the unique nature of geopressured-geothermal (GPGT) fluids for thermal recovery are outlined. Current methods of TEOR are briefly discussed and it is noted that these methods are presently under scrutiny by both federal and state air quality agencies; and moreover, they often involve costly operational and mechanical problems associated with heating water on the surface for injection into the target reservoir. The characteristics of the GPGT resources as seen through previous Department of Energy (DOE) studies from sites in Louisiana and Texas are discussed. These studies indicate sufficient quantities of GPGT fluids can be produced to sustain a TEOR project. The Alworth Field in the south Texas Mirando Trend is proposed as a TEOR pilot site. The target reservoirs for injection of the GPGT fluids are the Jackson and Yegua sandstones of the upper Eocene Epoch. The reservoirs contain an estimated 4 MMbbls of heavy oil in place (OIP) (18.6{degree}API) of which it is estimated that at least 1 MMbbls could be recovered by TEOR. The problems associated with using the GPGT fluids for TEOR include those normally associated with hot water flooding but in addition the reaction of the brine from the geopressured-geothermal reservoir with the target reservoir is uncertain. Under the elevated temperatures associated with GPGT TEOR, actual increased porosity and permeability are possible. 120 refs., 40 figs., 13 tabs.

Negus-de Wys, J.; Kimmell, C.E.; Hart, G.F.; Plum, M.M.

1991-09-01T23:59:59.000Z

139

Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation  

E-Print Network (OSTI)

A global steady increase of energy consumption coupled with the decline of conventional oil resources points to a more aggressive exploitation of heavy oil. Heavy oil is a major source of energy in this century with a worldwide base reserve exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential in performing reliable modeling studies of fluid flow in the reservoir. We simulated cyclic steam injections on the highly viscous Hamaca oil, with a viscosity of over 10,000 cp at ambient temperature, and the production was drastically impacted by up to an order of magnitude when using improper mixing rules to describe the oil viscosity. This thesis demonstrates the importance of these mixing rules and alerts reservoir engineers to the significance of using different options simulators have built in their platforms to describe the viscosity of heavy oils. Log linear and power mixing rules do not provide enough flexibility to describe the viscosity of extra heavy oil with temperature. A recently implemented mixing rule in a commercial simulator has been studied providing satisfactory results. However, the methodology requires substantial interventions, and cannot be automatically updated. We provide guidelines to improve it and suggest more flexible mixing rules that could easily be implemented in commercial simulators. We also provide a methodology to determine the adequate time for each one of the periods in cyclic steam injection: injection, soaking and production. There is a lot of speculation in this matter and one of the objectives of this thesis is to better understand and provide guidelines to optimize oil production using proper lengths in each one of these periods. We have found that the production and injection periods should be similar in time length. Nevertheless, the production period should not be less than the injection period. On the other hand, the soaking period should be as short as possible because it is unproductive time in terms of field oil production for the well and therefore it translates into a negative cash flow for a company.

Mago, Alonso Luis

2003-05-01T23:59:59.000Z

140

Effects of Conjugated Linoleic Acid, Fish Oil and Soybean Oil on PPARs (? & ?) mRNA Expression in Broiler Chickens and Their Relation to Body Fat Deposits  

E-Print Network (OSTI)

Abstract: An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7 % for single fat and 3.5 + 3.5 % for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60 % CLA, so 7 % and 3.5 % dietary inclusions of CLA LUTA60 were equal to 4.2 % and 2.1 % CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ? 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ? 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybeanInt. J. Mol. Sci. 2011, 12 8582 oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPAR? gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other

Maryam Royan; Goh Yong Meng; Fauziah Othman; Awis Qurni Sazili; Bahman Navidshad

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method for rubblizing an oil shale deposit for in situ retorting  

DOE Patents (OSTI)

A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

Lewis, Arthur E. (Los Altos, CA)

1977-01-01T23:59:59.000Z

142

Modelling the costs of non-conventional oil: A case study of Canadian bitumen  

E-Print Network (OSTI)

in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

Méjean, A; Hope, Chris

143

QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS  

SciTech Connect

Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop

James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

2002-10-30T23:59:59.000Z

144

Feasibility of steam injection process in a thin, low-permeability heavy oil reservoir of Arkansas -- a numerical simulation study  

Science Conference Proceedings (OSTI)

This report details the findings of an in-depth study undertaken to assess the viability of the steam injection process in the heavy oil bearing Nacatoch sands of Arkansas. Published screening criteria and DOE`s steamflood predictive models were utilized to screen and select reservoirs for further scrutiny. Although, several prospects satisfied the steam injection screening criteria, only a single candidate was selected for detailed simulation studies. The selection was based on the availability of needed data for simulation and the uniqueness of the reservoir. The reservoir investigated is a shallow, thin, low-permeability reservoir with low initial oil saturation and has an underlying water sand. The study showed that the reservoir will respond favorably to steamdrive, but not to cyclic steaming. Steam stimulation, however, is necessary to improve steam injectivity during subsequent steamdrive. Further, in such marginal heavy oil reservoirs (i.e., reservoir characterized by thin pay zone and low initial oil saturation) conventional steamdrive (i.e., steam injection using vertical wells) is unlikely to be economical, and nonconventional methods must be utilized. It was found that the use of horizontal injectors and horizontal producers significantly improved the recovery and oil-steam ratio and improved the economics. It is recommended that the applicability of horizontal steam injection technology in this reservoir be further investigated.

Sarkar, A.K.; Sarathi, P.S.

1993-12-01T23:59:59.000Z

145

INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES  

Science Conference Proceedings (OSTI)

This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

Yannis C. Yortsos

2003-02-01T23:59:59.000Z

146

Heavy oil/plastic co-processing - subtask 4.1. Topical report, February 1, 1994--February 1, 1995  

DOE Green Energy (OSTI)

Western Research Institute (WRI) is developing a low-temperature thermal decomposition process to alleviate the problems associated with disposal of waste plastics and at the same time generate a product stream in the gasoline boiling range for use in the refining and petrochemical industries. The technology being developed by WRI is significantly different from conventional thermal decomposition processes used to recover distillates from waste plastics. The key to this difference is the application of a decomposition initiator concept that allows operation of the process at temperatures below those used in other thermal decomposition processes. The WRI technology utilizes the decomposition initiator to enhance thermal decomposition of waste plastics in the presence of a low-value heavy oil at temperatures below those normally used for thermal decomposition. Operation of the process at lower temperatures produces higher yields of distillate product and lower yields of gaseous and char products than conventional processes. The activity of the initiator was identified in earlier research studying the thermal decomposition of polymers. This activity was observed to result in a decrease in the temperature required to thermally decompose plastics in the presence of a heavy oil. These early experiments indicated that the initiator was native to the plastics matrix, but the identity and possible mode of action were not determined. This study was undertaken to identify the active initiator in the plastics matrix and define its activity. The experiments performed in this study were conducted in a batch-type reactor. The particular elements of the activity that were addressed included: (1) the kinetics of the reaction, (2) the effects of diluting the plastics with the heavy oil, and (3) the effects of using different types of heavy oil.

NONE

1998-12-31T23:59:59.000Z

147

ECC-D4 Electostatic Oil Cleaner Design for Heavy-Duty Gas Turbine Applications.  

E-Print Network (OSTI)

?? The turbine technology improvements from 1980 onwards have considerably increased mechanical and thermal stresses on turbine oils which, cause oil oxidation and thereby turbine… (more)

Gorur, Murat

2010-01-01T23:59:59.000Z

148

U.S. FOB Costs of Canadian Bow River Heavy Crude Oil ...  

U.S. Energy Information Administration (EIA)

Referring Pages: F.O.B. Costs of Imported Crude Oil for Selected Crude Streams; F.O.B. Costs of Imported Crude Oil for Selected Crude Streams

149

Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs  

E-Print Network (OSTI)

This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its vicinity can be extracted by circulating water relatively colder than reservoir temperature. We use compositional reservoir simulation coupled with a semianalytical equation of the wellbore heat loss approximation to estimate surface heat recovery. Additionally, sensitivity analyses provide understanding of the effect of various parameters on heat recovery in the artificial geothermal resources. Using the current state-of-art technology, the cumulative electrical power generated from heat recovered is about 246 MWhr accounting for 90percent downtime. Characteristics of heat storage within the reservoir rock were identified. The factors with the largest impact on the energy recovery during the water injection phase are the duration of the steamflood (which dictates the amount of heat accumulated in the reservoir) and the original reservoir energy in place. Outlet reservoir-fluid temperatures are used to approximate heat loss along the wellbore and estimate surface fluid temperature using the semianalytical approaches. For the injection well with insulation, results indicate that differences in fluid temperature between surface and bottomhole are negligible. However, for the conventional production well, heat loss is estimated around 13 percent resulting in the average surface temperature of 72 degrees C. Producing heat can be used in two applications: direct uses and electricity generation. For the electricity generation application that is used in the economic consideration, the net electrical power generated by this arrival fluid temperature is approximately 3 kW per one producing pattern using Ener-G-Rotors.

Limpasurat, Akkharachai

2010-08-01T23:59:59.000Z

150

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

Science Conference Proceedings (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

151

Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope  

Science Conference Proceedings (OSTI)

The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

Shirish Patil; Abhijit Dandekar; Santanu Khataniar

2008-12-31T23:59:59.000Z

152

Deposition of the trace heavy metals polonium and plutonium onto marine surfaces  

SciTech Connect

Plutonium and polonium assays of the giant kelp revealed that most of the Pu and Po was in the surface scrapings. Both nuclides were concentrated to 1000 times their sea water concentrations; there was usually 200 times more Po activity than Pu. Field experiments using Macrocystis pyrifera showed that Pu and Po accumulated in proportion with time and surface area and that approximately four times more Pu and Po were found on oldest tissues. When glass microscope slides were exposed alongside living plants, deposition rates for Po were identical and Po deposited about 200 times faster than Pu. (HLW)

Hodge, V.F.; Folsom, T.R.; Cowen, J.P.; Parks, G.J. Jr.

1974-12-13T23:59:59.000Z

153

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal additives mixed with oil and their influence on oil properties such as viscosity and API gravity. The main objective of my research is to determine if a catalyst mixed with a hydrogen donor (tetralin) is going to affect the Jobo crude oil properties while undergoing in-situ combustion. Six runs were performed with Jobo crude oil (9-11şAPI) from the Orinoco Belt in Venezuela. Four of the runs were successful. Two of them are base runs; the remaining ones are with tetralin with concentration of 5 wt% (of oil) and catalyst with concentration of 750 ppm. For all runs, the following were kept constant: the air injection rate (3 std. L/min) and production (combustion tube outlet) pressure, 300 psig. Concentration by weight of oil, water, and sand in the samples were approximately 4.8%, 4.2%, and 91% respectively. Oil viscosity at the end of combustion at 40oC decreased from 42.3 and 73.6 to 16.6 and 25.2; API gravity at the end of combustion increased from 18.4 and 16.8 to 20 and 18.8. Oil recovery is higher; combustion front velocity is faster in the case of additives, water production decreased. Since oil viscosity decreased and API gravity increased oil moves faster and consequently combustion time is lower.

Huseynzade, Samir

2007-12-01T23:59:59.000Z

154

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal additives mixed with oil and their influence on oil properties such as viscosity and API gravity. The main objective of my research is to determine if a catalyst mixed with a hydrogen donor (tetralin) is going to affect the Jobo crude oil properties while undergoing in-situ combustion. Six runs were performed with Jobo crude oil (9-11şAPI) from the Orinoco Belt in Venezuela. Four of the runs were successful. Two of them are base runs; the remaining ones are with tetralin with concentration of 5 wt% (of oil) and catalyst with concentration of 750 ppm. For all runs, the following were kept constant: the air injection rate (3 std. L/min) and production (combustion tube outlet) pressure, 300 psig. Concentration by weight of oil, water, and sand in the samples were approximately 4.8%, 4.2%, and 91% respectively. Oil viscosity at the end of combustion at 40°C decreased from 42.3 and 73.6 to 16.6 and 25.2; API gravity at the end of combustion increased from 18.4 and 16.8 to 20 and 18.8. Oil recovery is higher; combustion front velocity is faster in the case of additives, water production decreased. Since oil viscosity decreased and API gravity increased oil moves faster and consequently combustion time is lower.

Huseynzade, Samir

2007-12-01T23:59:59.000Z

155

Microbiology for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The U. S. Department of Energy has sponsored several projects to investigate the feasibility of using microorganisms to enhance oil recovery. Microbes from the Wilmington oilfield, California, were found to be stimulated in growth by polyacrylamide mobility-control polymers and the microbes also can reduce the viscosity of the polyacrylamide solutions. Microbes have been discovered that produce surface active molecules, and several mixed cultures have been developed that make low viscosity, non-wetting, emulsions of heavy oils (/sup 0/API oil deposits, in China for enhanced recovery of light oils and successful field tests have been conducted in Romania and Arkansas.

Donaldson, E.C.

1983-06-01T23:59:59.000Z

156

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

157

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

158

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

159

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

160

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

Science Conference Proceedings (OSTI)

This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

Yortsos, Yanis C.

2000-01-19T23:59:59.000Z

162

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

163

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

164

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

165

Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-Situ Recovery  

E-Print Network (OSTI)

, and of unconventional deposits such as heavy oils, tar sands and oil shales.” As conventional oil becomes scarcer, the transport sector will remain dependent on petroleum resources, if no oil substitute is available. Fuels from non-conventional oil resources... www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-situ Recovery EPRG Working Paper 1005...

Méjean, A; Hope, Chris

166

California Crude Oil Prices  

U.S. Energy Information Administration (EIA)

... of different quality crudes vary over time based on the value the market places on such quality attributes. A heavy crude oil has more heavy, ...

167

Innovative Technology Improves Upgrading Process for Unconventional Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

168

SUPRI Heavy Oil Research Program, SUPRI TR 85. Annual report, October 1, 1990--September 30, 1991  

SciTech Connect

This report concerns progress made during the 1990--1991 fiscal year. Information is given an the following projects: (1) A Study of End Effects in Displacement Experiments; (2) Kinetics of In-Situ Combustion; (3) In-Situ Combustion with Metallic Additives; (4) Steam-Foam Studies in the Presence of Residual Oil; (5) Characterization of Surfactants in the Presence of Oil for Steam-Foam Applications; (6) CT Imaging of Steam and Steam Foam Laboratory Experiments; (7) Microvisualization of Foam Flow in Porous Media; (8) Transient Foam Flow in Porous Media with Cat Scanner; (9) Study of Matrix/Fracture Transfer During Steam Injections; (10) Transient Behavior of Gravity Drainage Wells; (11) Multivariate Optimization of Production Systems; (12) Ultrasonic Flowmeter. (VC)

Brigham, W.E.; Ramey, H.J. Jr.; Castanier, L.M.

1992-05-01T23:59:59.000Z

169

A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery  

E-Print Network (OSTI)

A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short string (SS) is completed in the top quarter of the reservoir, while the long string (LS) is completed in the bottom quarter of the reservoir. The method requires an initial warm-up stage where steam is injected into both strings for 21 days; then the LS is opened to production while the SS continues to inject steam for 14 days. After the initial warm-up, the following schedule is repeated: the LS is closed and steam is injected in the SS for 21 days; then steam injection is stopped and the LS is opened to production for 180 days. There is no soak period. Simulations to compare the performance of the TINBOP method against that of a conventional cyclic steam injector (perforated across the whole reservoir) have been made. Three reservoir types were simulated using 2-D radial, black oil models: Hamaca (9�°API), San Ardo (12�°API) and the SPE fourth comparative solution project (14�°API). For the first two types, a 20x1x20 10-acre model was used that incorporated typical rock and fluid properties for these fields. Simulation results indicate oil recovery after 10 years was 5.7-27% OIIP with TINBOP, that is 57-93% higher than conventional cyclic steam injection (3.3-14% OIIP). Steam-oil ratios were also decreased with TINBOP (0.8-3.1%) compared to conventional (1.2-5.3%), resulting from the improved reservoir heating efficiency.

Matus, Eric Robert

2006-08-01T23:59:59.000Z

170

Heavy Oil Process Monitor: Automated On-Column Asphaltene Precipitation and Re-Dissolution  

Science Conference Proceedings (OSTI)

An automated separation technique was developed that provides a new approach to measuring the distribution profiles of the most polar, or asphaltenic components of an oil, using a continuous flow system to precipitate and re-dissolve asphaltenes from the oil. Methods of analysis based on this new technique were explored. One method based on the new technique involves precipitation of a portion of residua sample in heptane on a polytetrafluoroethylene-packed (PTFE) column. The precipitated material is re-dissolved in three steps using solvents of increasing polarity: cyclohexane, toluene, and methylene chloride. The amount of asphaltenes that dissolve in cyclohexane is a useful diagnostic of the thermal history of oil, and its proximity to coke formation. For example, about 40 % (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolves in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. The automated procedure takes one hour. Another method uses a single solvent, methylene chloride, to re-dissolve the material that precipitates on heptane on the PTFE-packed column. The area of this second peak can be used to calculate a value which correlates with gravimetric asphaltene content. Currently the gravimetric procedure to determine asphaltenes takes about 24 hours. The automated procedure takes 30 minutes. Results for four series of original and pyrolyzed residua were compared with data from the gravimetric methods. Methods based on the new on-column precipitation and re-dissolution technique provide significantly more detail about the polar constituent's oils than the gravimetric determination of asphaltenes.

John F. Schabron; Joseph F. Rovani; Mark Sanderson

2007-03-31T23:59:59.000Z

171

Hydroprocessing of heavy oils for the production of fuel-cell quality fuels. Final technical report, September 30, 1977-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on a program to establish whether heavy oils such as No. 4 or No. 6 fuel oil can be hydrogasified or hydrotreated to produce a steam-reforming feed suitable for use in an integrated fuel cell power generation facility. Hydrogasification data show that methane is the major gas product, along with a certain amount of coke formation. The liquid product was similar to the feed oil indicating that the oil did not fully enter the reaction. The hydrotreating apparatus was fully tested and proved to be operational. A trial run on No. 4 fuel oil using a Ni/MoO/sub 3/ hydrodesulfurization finishing catalyst showed very good sulfur removal to the gas phase, along with substantial reduction of specific gravity in the liquid product over the feed oil. Whereas the coke formation during hydrogasification is a clear disadvantage, further testing is required of the hydrotreating catalysts to determine quantitatively how efficient the sulfur removal can be and how amenable steam reforming the hydrotreated oil will be.

Jarvi, G.A.; Camara, E.H.; Marianowski, L.G.; Lee, A.L.; Vasil, D.R.; Oberle, R.D.

1978-01-01T23:59:59.000Z

172

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network (OSTI)

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

173

Modeling and simulation of oil transport and transformation for studying piston deposits  

E-Print Network (OSTI)

The formation of carbonaceous engine deposits is a long standing and well documented phenomenon limiting the lifetime of diesel engines. Carbon remnants coat the surfaces of the combustion chamber, piston, and valves. As ...

Grimley, Thomas Patrick

2009-01-01T23:59:59.000Z

174

Human factors in the management of Becon Construction Company's Heavy Oil Test Station Project. Final report  

Science Conference Proceedings (OSTI)

In January 1986, the Becon Construction Company - an open-shop contractor based in Houston, Texas - mobilized a work force to a construction project location at the Belridge Oil Field, near Bakersfield, California. The construction craftsmen and helpers in Becon's work force were expected to improve their level of productivity as the work proceeded because of the knowledge and skills that they would acquire as a result of the repetitive nature of the work. As it was originally organized, the Becon HOTS project represented almost a pure laboratory environment in which to collect data concerning the learning effect on worker productivity as well as to statistically isolate the impact on productivity of such external factors as weather, absenteeism, turnover, and especially work methods improvement techniques and pay incentives. From the outset of the HOTS project, the project manager had established an accurate system to quantitatively measure and compare the total manhours that each crew - civil, mechanical, electrical, and prefabrication -- performed at individual HOTS construction locations. Additionally, it was initially assumed that the project manager would be relatively free to implement changes to the job site conditions involving incentive pay and work methods improvement. The subsequent effect of these changes on the productivity of separate work crews could then be evaluated in terms of measured manhours per crew per HOTS.

Maurer, D.

1986-11-01T23:59:59.000Z

175

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994  

SciTech Connect

Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

Sharma, G.D.

1995-07-01T23:59:59.000Z

176

Depositional setting and reservoir geology of Kuparuk River oil field, North Slope, Alaska  

SciTech Connect

The Kuparuk River field is located approximately 20 mi (32 km) west of the Prudhoe Bay field and produces from the Lower Cretaceous Kuparuk River formation. The lower member of the Kuparuk is a sequence of interbedded sandstone, siltstone, and mudstone. Individual sandstone beds in the lower member are up to 5 ft (1.5 m) thick and consist of fine-grained, well-sorted quartzarenite. The basal part of the lower member contains five sandstone-rich cycles that prograde to the southeast. Each individual cycle strikes northeast-southwest and is up to 80 ft (254 m) thick, 40 mi (64 km) long, and 15 mi (25 km) wide. The lower member sandstones are interpreted to be storm deposits derived from a northerly source and deposited on a broad marine shelf. The upper member was deposited on an erosional unconformity and contains two sandstone intervals. These sandstone intervals are quartzose, glauconitic, very fine to coarse grained, poorly to moderately sorted, and intensely bioturbated. Both upper member sandstones are interpreted to have been deposited as subtidal sand bodies. The upper and lower member sandstones have similar average porosities (23%), but the average permeability of upper member sandstone is considerably higher than the average permeability of the lower member. Natural fractures in siderite-demented zones enhance the permeability of the upper member sandstone. Reservoir performance indicates that permeability is greatest in a north-south direction in upper member sandstones, and that a north-south directional permeability may also exist in lower member sandstone. North-south-oriented line-drive waterflood patterns will be utilized in areas where a north-south directional permeability is suspected.

Paris, C.E.; Masterson, D.W.

1985-04-01T23:59:59.000Z

177

Will lecture on: Unconventional Oil and Gas  

E-Print Network (OSTI)

are not yet resolved. Ten years ago this category comprised heavy oil, oil shale, coal bed methane, tight gas, and economic aspects of gas shale and tight oil development. The role of oil shale in the emerging energy applied research on heavy oil, gas hydrate, gas shale, tight oil, and oil shale reservoirs. He advises

Schuster, Assaf

178

Frequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea-sured and modeled data  

E-Print Network (OSTI)

an increasingly critical issue, focus has been placed on development of unconventional oil and gas re- sources wells have been used in unconventional (i.e., low-permeability) reservoirs where oil and gas resources water supplies as a result of addressing the nation's energy needs through increased oil and shale gas

179

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca… (more)

Rivero Diaz, Jose Antonio

2012-01-01T23:59:59.000Z

180

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

Science Conference Proceedings (OSTI)

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

182

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

183

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

184

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, December 1, 1992--December 31, 1993  

SciTech Connect

The shallow Cretaceous sands of the Schrader Bluff Reservoir occur between depths of 4,000 and 4,800 feet below surface and are estimated to contain up to 1.5 billion barrels of oil in place. The field is currently under production by primary depletion. Initial production indicated that primary recovery will fall short of earlier estimates and waterflooding will have to be employed much earlier than expected. A large portion of the oil-in-place thus would still be left behind in this reservoir after primary and secondary recovery methods have been applied. Enhanced oil recovery (EOR) techniques will be needed to recover the additional portion of remaining oil in this huge reservoir and to add significant additional reserves. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader Bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Such studies are essential because the API gravity of the crude in Schrader Bluff reservoir varies significantly from well to well. Coreflood experiments are also needed to determine effect of solvent slug size, WAG ratio and solvent composition on the oil recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This report contains the following: reservoir description; slim tube displacement studies; and coreflood experiments.

Sharma, G.D.

1994-01-01T23:59:59.000Z

185

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

186

Getty mines oil sands in California  

Science Conference Proceedings (OSTI)

A large deposit of oil-laden diatomaceous earth in the McKittrick oil field 40 miles west of Bakersfield, California, has resisted all efforts at production by standard means. Getty Oil Co. is in the pilot phase of a project to recover the Diatomite's oil by an open pit mining operation. It also could have significant implications for other California oil fields, possibly setting the stage for the mining of oil sands in shallow fields like Kern River, S. Belridge, and Lost Hills to maximize oil recovery. A report on the project is summarized. The Diatomite is estimated to have 500 million bbl of oil in reserves, of which 380 million bbl are recoverable. The estimated amount of recoverable oil exceeds the McKittrick field's cumulative production of 240 million bbl. A pilot plant was built to test solvent extraction method of recovering heavy oil. The multistep process involves a series of 6 extractors. The Lurgi retorting plant employs a 2-step heating process to separate hydrocarbons from crushed ore.

Rintoul, B.

1983-11-01T23:59:59.000Z

187

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

188

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

189

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff pool, Milne Point Unit, Alaska. Quarterly report, October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

The ultimate objective of this three-year research project is to evaluate the performance of the hydrocarbon miscible solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This will be accomplished through measurement of PVT and fluid properties of Schrader Bluff oil, determination of phase behavior of Schrader Bluff oil solvent mixtures, asphaltene precipitation tests, slim tube displacement tests, core flood experiments and reservoir simulation studies. The expected results from this project include: determination of optimum hydrocarbon solvent composition suitable for hydrocarbon miscible solvent slug displacement process, optimum slug sizes of solvent needed, solvent recovery factor, solvent requirements, extent and timing of solvent recycle, displacement and sweep efficiency to be achieved and oil recovery.

Sharma, G.D.

1993-12-31T23:59:59.000Z

190

System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves  

DOE Patents (OSTI)

A method for mitigating the deposition of wax on production tubing walls. The method comprises positioning at least one ultrasonic frequency generating device adjacent the production tubing walls and producing at least one ultrasonic frequency thereby disintegrating the wax and inhibiting the wax from attaching to the production tubing walls. A system for mitigating the deposition of wax on production tubing walls is also provided.

Towler, Brian F. (Laramie, WY)

2007-09-04T23:59:59.000Z

191

An application of Crosswell Tomography using a hydrophone receiver array and airgun source to monitor steam migration in an unconsolidated, heavy-oil sandstone, West Coalinga Field, California  

SciTech Connect

This crosswell tomography field trial demonstrates the viability and cost- reducing benefits of a hydrophone receiver array and airgun source for monitoring steam (heat) migration within an unconsolidated, heavy-oil sandstone. This project represents one of the first applications of hydrophone receivers in such an environment. Data quality from the hydrophone array proved more than adequate for P-wave tomography while costs were reduced dramatically from estimates using a clamped geophone array. Additionally, the resolution provided by the capture of travel-time data from interwell areas offered a distinct advantage over conventional monitoring techniques limited to observation wells. Two crosswell surveys were conducted in the vicinity of a new, infill steam injector. The purpose was to monitor steam migration within an 80-foot thick, sandstone interval by detecting the heat-induced velocity decrease between the first survey, conducted just before steam injection, and the second survey conducted approximately three months later. Difference plots of the two surveys clearly define regions of significant temperature change and contact temperature logs corroborate the zone of peak change. The crosswell tomography data and the inferred steam migration characteristics immediately altered an operational strategy for the drive and were later a factor in the abandonment of continuous steam injection.

Blevens, D.M. (Chevron USA Production Co., Bakersfield, CA (United States)); Fairborn, J.W. (Wellseismic Computing Services, Balboa, CA (United States))

1996-01-01T23:59:59.000Z

192

The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992  

SciTech Connect

The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1992-08-01T23:59:59.000Z

193

Literature survey and documentation on organic solid deposition problem. Status report  

Science Conference Proceedings (OSTI)

Organic solid deposition is often a major problem in petroleum production and processing. Recently, this problem has attracted more attention because operating costs have become more critical to the profit of oil production. Also, in miscible gas flooding, asphaltene deposition often occurs in the wellbore region after gas breakthrough and causes plugging. The organic deposition problem is particularly serious in offshore oil production. Cooling of crude oil when it flows through long-distance pipelines under sea water may cause organic deposition in the pipeline and result in plugging. NIPER`s Gas EOR Research Project has been devoted to the study of the organic solid deposition problem for three years. NIPER has received many requests for technical support. Recently, the DeepStar project committee on thermo-technology development and standardization has asked NIPER to provide them with NIPER`s expertise and experience. To assist the oil industry, NIPER is preparing a state-of-the-art review on the technical development for the organic deposition problem. In the first quarter, this project has completed a literature survey and documentation. total of 258 publications (114 for wax, 124 for asphaltene, and 20 for related subjects) were collected and categorized. This literature survey was focused on the two subjects: wax and asphaltene. The subjects of bitumen, asphalt, and heavy oil are not included. Also, the collected publications are mostly related to production problems.

Chung, Ting-Horng

1993-12-01T23:59:59.000Z

194

Oil & Gas Broad Based Solicitation  

NLE Websites -- All DOE Office Websites (Extended Search)

Operator Point of Contact Phone Email Heavy Oil Gas Flooding VSP Reservoir Characterization Iron Creek Energy Group and Nielson & Associates, Inc. Joe Sinner 3075272869...

195

California Crude Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... of different quality crudes vary over time based on the value the market places on such quality attributes. A heavy crude oil has more heavy, ...

196

The extraction of bitumen from western oil sands: Volume 2. Final report  

Science Conference Proceedings (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

197

Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of  

E-Print Network (OSTI)

Jordan G. Mimoun1 , Carlos Torres-Verdi´n2 , and William E. Preeg3 ABSTRACT Pulsed neutron capture (PNC.S.A. E-mail: jordan.g.mimoun@exxonmobil.com. 2 The University of Texas at Austin, Department of Petroleum, energy, or time, and they can easily include arbitrary distributions of material proper- ties

198

Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits  

SciTech Connect

The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

1981-10-13T23:59:59.000Z

199

Environmental, health, safety, and socioeconomic concerns associated with oil recovery from US tar-sand deposits: state-of-knowledge  

SciTech Connect

Tar-sand petroleum-extraction procedures undergoing field testing for possible commercial application in the US include both surface (above-ground) and in situ (underground) procedures. The surface tar-sand systems currently being field tested in the US are thermal decomposition processes (retorting), and suspension methods (solvent extraction). Underground bitumen extraction procedures that are also being field tested domestically are in situ combustion and steam-injection. Environmental, health, safety, and socioeconomic concerns associated with construction and operation of 20,000-bbl/d commercial tar-sand surface and in situ facilities have been estimated and are summarized in this report. The principal regulations that commercial tar-sand facilities will need to address are also discussed, and environmental control technologies are summarized and wherever possible, projected costs of emission controls are stated. Finally, the likelihood-of-occurrence of potential environmental, health, and safety problems that have been determined are reviewed, and from this information inference is made as to the environmental acceptability of technologically feasible 20,000-bbl/d commercial tar-sand oil-extraction procedures.

Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

1982-01-08T23:59:59.000Z

200

PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT  

E-Print Network (OSTI)

sands are an important unconventional energy re- source. The total inplace volume of heavy-oil is muchFrequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea) properties of heavy-oil sands over a range of frequencies (2 - 2000Hz) covering the seismic bandwidth

Laughlin, Robert B.

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Balancing oil and environment... responsibly.  

Science Conference Proceedings (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

202

Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's  

E-Print Network (OSTI)

) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

Watson, Andrew

203

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we added numerical solution along streamline subroutines to our streamline compositional simulator. The WAG injection algorithms are being developed. We studied the wettability of the reservoir oil and formulated a four-phase relative permeability model based on two-phase relative permeabilities. The effect of new relative permeability formulations on a five-spot pattern WAG recovery was evaluated. Effect of horizontal wells on pattern sweep has been initiated. A model quarter five-spot experiment is being designed. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, evaluation of complex well-architecture and design of model quarter five-spot experiment.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

204

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

205

Chemical Methods for Ugnu Viscous Oils  

Science Conference Proceedings (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

206

Applications: Oil and gas production  

E-Print Network (OSTI)

on Health, Safety & Environment in Oil & Gas E&P SPE/EAGE European Unconventional Resources Conference SPE International Conference PennWell Unconventional Oil and Gas Europe PennWell Underwater Intervention Marine Exploration Society Conference UGAS SPE Middle East Unconventional Gas Conference WHOC World Heavy Oil

207

Geology of the Tambaredjo oil field, Suriname  

SciTech Connect

After the initial discovery in the sixties of oil below the coastal plain of Suriname (S. America), the State Oil Company of Suriname started production of the unique Tambaredjo field in 1982. The heavy, biodegraded oil (14-16[degrees] API) is produced under compaction drive, from the Paleocene T-sand (average thickness 5 m) at a depth of about 300 m. More than 300 wells have been drilled in an area of about 200 km[sup 2]. High resolution seismics makes it possible to correlate units down to 2 m thick. This dense network of bore holes is very suitable for geological correlations and 3D modeling. The T-sand reservoir consists of angular, medium to coarse grained unconsolidated sands with interfingering clays and lignites. The sands are deposited on a well cemented erosional Cretaceous basement. The reservoir is sealed by locally continuous clays. The oil is trapped in structural highs created by syn-sedimentary rejuvenated basement faults. The depositional environment of the T-sand ranges from fluviatile to deltaic. Frequent avulsion and synsedimentary faulting created a highly compartmented reservoir. Although interconnectedness of the sand bodies is high, clay smears and silting out of the edges confine reservoir compartments. The best genetic sand units such as channel fills or mouth bar deposits hardly correlate over more than a few hundred meters. The Tambaredjo oil field offers an unique opportunity to study the detailed sedimentology and petroleum geology of a fluvio-deltaic transitional realm on the passive margin along the Guiana coast.

Dronkert, H. (Delft Univ. of Technology (Netherlands)); Wong, T.E. (Geological Survey of the Netherlands, Haarlem (Netherlands))

1993-02-01T23:59:59.000Z

208

Fiscal Policy and Utah's Oil and Gas Industry  

E-Print Network (OSTI)

unconventional sources, such as oil sands and oil shale. It is important to note that overall reserve figures. Although Utah contains large deposits of oil shale and oil sands, both of which can be processed to yield from oil shale and oil sands is exempt from the state oil and gas severance tax. Utah also levies

Provancher, William

209

The use of oil shale ash in the production of biodiesel from waste vegetable oil  

Science Conference Proceedings (OSTI)

Oil shale ash obtained from combustion of local oil shale deposits was used in this study as a heterogeneous catalyst to produce biodiesel from waste vegetable oil (WVO). Two alcohols with high and low boiling points

A. Al-Otoom; M. Allawzi; A. Ajlouni; F. Abu-Alrub; M. Kandah

2012-01-01T23:59:59.000Z

210

Role of crude-oil components in surfactant interaction. [Effect of acids, bases and heavy ends hydrocarbons (alkanes) on the solubilization, optimal salinity and interfacial tension of surfactant systems  

Science Conference Proceedings (OSTI)

Three crude oils from Bell Creek, Bradford, and Delaware-Childers fields were separated into distillates, acids, bases and heavy ends hydrocarbon. The effect of these components on the solubilization, optimal salinity, and bases shifted the optimal salinity significantly; their effects on the solubilization and interfacial tension are smaller. The bases appear to interact with the sulfonates, causing desorption from the interface, phase separation, and higher interfacial tension. The hydrocarbons, as expected have the strongest influence on the properties studied, due to their high concentration. The importance of the chemical nature and molecular weights of these components was also apparent. Even though the product sigma*/sup 2/..gamma.. is not constant, it was found that there is a definite relation between the solubilization (sigma*) and the interfacial tension (..gamma..). This is true even for such complex compounds as acids and bases. 41 references, 6 figures, 14 tables.

Tham, M.K.; Lorenz, P.B.

1983-09-01T23:59:59.000Z

211

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

Science Conference Proceedings (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

212

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated… (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

213

Light-Heavy Crude & Product Price Differences  

U.S. Energy Information Administration (EIA)

Similar light-heavy price difference trends are seen in both the crude oil and the product markets. However, there are some short-term product market changes that ...

214

Oil & Gas Broad Based Solicitation  

NLE Websites -- All DOE Office Websites (Extended Search)

University Point of Contact Phone Email Heavy Oil Gas Flooding VSP Reservoir Characterization UTK Robert D. Hatcher, Jr. 865-974-6565 bobmap@utk.edu X X Stanford Gary Mavko...

215

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the...

216

Oil price analysis  

Science Conference Proceedings (OSTI)

The transport has been in the whole history of mankind the basic and determining mover of the human society shape. It determined not only the position of towns, but also their inner design and it was also last but not least the basic element of the economic ... Keywords: GDP, deposit, fuels, history, market equilibrium, oil, oil reserves, price

Zdenek Riha; Viktorie Jirova; Marek Honcu

2011-12-01T23:59:59.000Z

217

A study on the Jordanian oil shale resources and utilization  

Science Conference Proceedings (OSTI)

Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale

Ahmad Sakhrieh; Mohammed Hamdan

2012-01-01T23:59:59.000Z

218

Nuclear Maintenance Applications Center: Turbine Oil Compatibility  

Science Conference Proceedings (OSTI)

As oil companies continue to consolidate product lines, utilities are faced with oil formulation changes. These new generation oils contain updated additive packages and more highly refined base stocks, which raise concerns over performance and oil compatibility within existing systems. Moreover, the reformulated oils may not perform as expected when mixed with traditional in-service oils or may not perform as expected in some machines. Prior experiences with foaming and deposit issues seem to have been ...

2008-03-26T23:59:59.000Z

219

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

220

Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery  

SciTech Connect

A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

Science Conference Proceedings (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

222

Energy, Oil Sands and Sustainable Development  

E-Print Network (OSTI)

Wells by Downhole Temperature Measurement for Unconventional Oil and Gas Wells (Projects 2.5.21) ­ Dr) 845-1307 ­ http://www.pe.tamu.edu Agenda Heavy Oil, Stimulation/IOR, Environmental, Well Construction Steam-Solvent Injection to Increase Efficiency of Thermal Oil Recovery Processes (Project 1

Barthelat, Francois

223

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

224

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents (OSTI)

An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

1998-01-01T23:59:59.000Z

225

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents (OSTI)

An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

Gross, K.C.; Markun, F.; Zawadzki, M.T.

1998-04-28T23:59:59.000Z

226

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy FreedomCAR & Vehicle Technologies Program Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy...

227

Crude Oil Price Forecast - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Cutbacks in heavy crude oil production targeted by Mexico, Saudi Arabia and to some degree Venezuela should help narrow the differential. The ...

228

TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS  

SciTech Connect

As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multiphase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines. The following deliverables are scheduled during the first three projects of the program: (1) Single-Phase Studies, with three different black oils, which will yield an enhanced computer code for predicting paraffin deposition in deepwater and surface pipelines. (2) Two-Phase Studies, with a focus on heat transfer and paraffin deposition at various pipe inclinations, which will be used to enhance the paraffin deposition code for gas-liquid flow in pipes. (3) Deposition Physics and Water Impact Studies, which will address the aging process, improve our ability to characterize paraffin deposits and enhance our understanding of the role water plays in paraffin deposition in deepwater pipelines. As in the previous two studies, knowledge gained in this suite of studies will be integrated into a state-of-the-art three-phase paraffin deposition computer program.

Michael Volk; Cem Sarica

2003-10-01T23:59:59.000Z

229

Photosensitivity of Pulsed Laser Deposited Amorphous (GeSe2)100 ...  

Science Conference Proceedings (OSTI)

Photosensitivity of deposited layers in as-deposited as well as relaxed state was ... Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and ...

230

Light-Heavy Price Difference Varies - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The light-heavy crude oil price differential is not constant, and depends on many market factors that derive from the crude market, from the refining market (which ...

231

Energy Policy and Economics 021 "Dynamics of the Oil Transition  

E-Print Network (OSTI)

are produced, primarily from coal [16]. Oil shale is only produced in minor quantities around the world rejected) and often cleaned of impurities such as heavy metals and sulfur before use. Oil shale from which oil is naturally created [13]. Oil shale must be heated in the absence of oxygen to 300

Kammen, Daniel M.

232

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

233

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

234

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

235

Liquid Metal Heat Exchanger for Geologic Deposits - Energy ...  

Researchers at ORNL developed a down-well heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract ...

236

Light & Heavy Product Price Differences - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This figure shows how light and heavy products were moving relative to crude oil. The top line is the 3-2-1 spread that captures the margins of gasoline and ...

237

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

Science Conference Proceedings (OSTI)

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

238

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

239

TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS  

SciTech Connect

As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

Cem Sarica; Michael Volk

2004-06-01T23:59:59.000Z

240

Process for tertiary oil recovery using tall oil pitch  

DOE Patents (OSTI)

Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

Radke, Clayton J. (El Cerrito, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fifth symposium on oil shale  

SciTech Connect

Papers presented at symposium May 2-3, 1968 at Denver, discusses legal and economic problems facing federal policy toward oil shale deposits exploitation, processing of oil shale above surface and in situ and underground mining methods and equipment to be used.

1968-10-04T23:59:59.000Z

242

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

243

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of biodegraded'' vs. biotreated'' crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

244

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of ``biodegraded`` vs. ``biotreated`` crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

245

Heavy crudes and bitumen categorized to help assess resources, techniques  

SciTech Connect

As conventional crude oil reserves decrease and prices go up, heavy crude oil (HCO) is getting more attention from oil companies and governments. It was felt that some clarification was needed regarding these products and a review of known fields was conducted to sort out ranges of physical and composition characteristics for definition and classification purposes. A summary of this review with a proposal for classification was presented at the Second International Conference on Heavy Crude and Tar Sands held in Caracas in Feb. 1982. This Caracas conference, organized jointly by the United Nations Institute for Training and Research (UNITAR) and Petroleos de Venezuela debated the definition, characteristics, reserves/resources, production/enhanced oil recovery, and upgrading of heavy crude oils. This work is based, in part, on some of the Caracas conference's discussions.

Byramjee, R.J.

1982-07-04T23:59:59.000Z

246

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

247

Australian developments in oil shale processing  

SciTech Connect

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

248

Heavy and Thermal Oil Recovery Production Mechanisms  

E-Print Network (OSTI)

not infringe privately owned rights. Reference herein to any specific commercial product, process, or service and waterflood performance in fractured and unfractured rocks. Steam injection is accompanied by condensation condensation will occur during the initial stages of steam injection. Heating will be due to release of latent

249

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

Science Conference Proceedings (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

250

UNITAR boosts cogeneration for heavy crude production  

SciTech Connect

The UNITAR/UNDP Information Center for Heavy Crude and Tar Sands publicized the favorable effect of cogeneration on the economics of generating steam for in situ recovery of heavy oil. Although cogeneration of electricity with the production of steam for heavy crude production is a rapidly growing activity in California, it is still unknown in other countries where heavy crude is produced. The study concentrated on two specific cases: a heavy crude cogeneration plant in Kern County in California and a heavy crude production plant at Wolf Lake in Alberta, Canada. A comparison of the two cases showed that due to the specific conditions in California, cogeneration can reduce, in this specific case, the cost of production of heavy crude by $4.80 per barrel whereas in the case of Wolf Lake, cogeneration would not be economic (electricity prices in relation to natural gas prices are much lower in Canada). One of the purposes of the UNITAR study was to direct attention in other countries producing heavy crude to the advantages of cogeneration.

Not Available

1987-03-01T23:59:59.000Z

251

Experimental Studies Focused on the Pore-Scale Aspects of Heavy Oil and Bitumen Recovery Using the Steam Assisted Gravity Drainage (SAGD) and Solvent-Aided SAGD (SA-SAGD) Recovery Processes.  

E-Print Network (OSTI)

??Increasing energy consumption and continuous depletion of hydrocarbon reservoirs will result in a conventional oil production peak in the near future. Thus, the gap between… (more)

Mohammadzadeh Shanehsaz, Omidreza

2012-01-01T23:59:59.000Z

252

RESEARCH ON OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

E-Print Network (OSTI)

the fracture, and fastest breakthrough times. Using fine-grid simulations and a commercial simulator, fracture is the dissolution of a siliceous rock matrix when it is subjected to hot steam condensate (Bhat and Kovscek 1998 of this paper for commercial purposes without the written consent of the Society of Petroleum Engineers

253

Bacterial systems for selective plugging in secondary oil production  

SciTech Connect

In order to improve the secondary recovery of petroleum from Lower Cretaceous bitumen and heavy oil deposits in Alberta, Canada, plugging studies of anaerobic bacteria, capable of the controlled production of slime, in situ were undertaken. Known cultures of L. mesenteroides (NRRL B512, B512F, B742 and B523) and 75 wild strains were tested in a model core flooding apparatus for their ability to produce stable, water insoluble polysaccharide slimes. Slime was not formed using glucose/fructose nutrient but was formed by the known cultures and four wild strains when sucrose nutrient media was used. However, wherein the polysaccharides slime produced by the wild strains was found to be water soluble dextran polymers and thus unstable, that produced by the known L. mesenteroides strains was water insoluble and stable. It is thus possible to produce a water stable core plug by injecting an appropriate strain of L. mesenteroides followed by an injection of sucrose solution.

Jack, T.R.; Diblasio, E.; Thompson, B.G.; Ward, V.

1983-03-01T23:59:59.000Z

254

AEO2012 considers three cases for the future of world oil prices ...  

U.S. Energy Information Administration (EIA)

... coal-to-liquids, biomass-to-liquids, gas-to-liquids, extra-heavy oils, and oil shale. Download CSV Data. The Annual Energy Outlook 2012 (AEO2012) ...

255

Syria Energy Data, Statistics and Analysis - Oil, Gas, Electricity ...  

U.S. Energy Information Administration (EIA)

... announced a bidding round for the development of oil shale deposits in al-Khanasir, 60 miles southeast of Aleppo. The area for bid consists of 14 blocks, ...

256

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Greene, Janet L. Hopson, and Jia Li L. Greene, Janet L. Hopson, and Jia Li A risk analysis is presented of the peaking of world conventional oil pro- duction and the likely transition to unconventional oil resources such as oil sands, heavy oil, and shale oil. Estimates of world oil resources by the U.S. Geological Survey (USGS) and C. J. Campbell provide alternative views of ultimate world oil resources. A global energy scenario created by the International Institute of Applied Systems Analysis and the World Energy Council provides the context for the risk analysis. A model of oil resource depletion and expansion for 12 world regions is combined with a market equilibrium model of conventional and unconventional oil sup- ply and demand. The model does not use Hubbert curves. Key variables

257

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

258

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network (OSTI)

" and "Unconventional." Conventional oil is typically the highest quality, lightest oil, which flows from underground reservoirs with comparative ease, and it is the least expensive to produce. Unconventional oils are heavy the problem will be pervasive and long lasting. Oil peaking repre- sents a liquid fuels prob- lem

Hughes, Larry

259

Understanding the chemistry relating heavy crude feedstock with product slate and quality: Topical report  

SciTech Connect

The differences in composition between conventional and heavy petroleum bring forth a group of problems affecting processing, blending, storage, and use. Typical problems include: catalyst poisoning and deactivation; high hydrogen consumption in processing; fouling of catalytic cracking units; intermediate stream instability, compatibility, and corrosiveness; higher probability of toxicity and mutagenicity of products; unpredictable product slate; inaccurate process designs; high process energy requirements; and product instability, corrosiveness, and failure to meet specifications. All of these point to the need for a better understanding of the chemistry of the heavy crudes, and an adequate data base for the design of new processes. The National Institute for Petroleum and Energy Research (NIPER) has initiated a program for developing the technology background necessary to make the transition to a heavy oil-based industry. This program is concerned with composition of heavy oils and fractions derived from them, thermodynamics of compounds occurring in or produced from heavy oil, processing, and product quality. Although each of these is addressed by projects with individual goals, they fit together and support each other in combining to form a technical foundation for heavy oil refining technology. Although the chemistry of heavy oils (the compounds and their reactions) is the unifying element, the purpose is to provide technology for the engineering developments necessary to produce our transportation fuel requirements from heavy oils. 94 refs., 59 figs., 73 tabs.

Sutterfield, D.; Brinkman, D.W.; Good, W.D.; Anderson, R.P.; Wells, J.W.

1988-01-01T23:59:59.000Z

260

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

262

METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR  

DOE Patents (OSTI)

A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

Vernon, H.C.

1962-08-14T23:59:59.000Z

263

HEAVY-ION RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY  

E-Print Network (OSTI)

In: Biological and Medical Research with Accelerated Heavyeds. Biological and Medical Research with Accelerated HeavyIn: Biological and Medical Research with Accelerated Heavy

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

264

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-Print Network (OSTI)

Solids-stabilized water-in-oil emulsions have been suggested as a drive fluid to recover viscous oil through a piston-like displacement pattern. While crude heavy oil was initially suggested as the base oil, an alternative oil ? used engine oil was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively large supply, and potential solution of used engine oil disposal. In this research, different types of used engine oil (mineral based, synthetic) were tested to make W/O emulsions simply by blending in brine. A series of stable emulsions was prepared with varied water contents from 40~70%. Viscosities of these emulsions were measured, ranging from 102~104 cp at low shear rates and ambient temperature. Then an emulsion made of 40% used engine oil and 60% brine was chosen for a series of coreflood experiments, to test the stability of this emulsion while flowing through porous media. Limited breakdown of the effluent was observed at ambient injection rates, indicating a stability of the emulsion in porous media. Pressure drops leveled off and remained constant at constant rate of injection, indicating steady-state flows under the experimental conditions. No plug off effect was observed after a large volume of emulsion passed through the cores. Reservoir scale simulations were conducted for the emulsion flooding process based on the emulsion properties tested from the experiments. Results showed significant improvement in both displacement pattern and oil recovery especially compared to water flooding. Economics calculations of emulsion flooding were also performed, suggesting this process to be highly profitable.

Fu, Xuebing

2012-12-01T23:59:59.000Z

265

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

Science Conference Proceedings (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based compositional simulator to model water flood, gas flood and WAG flood. Horizontal wells increase well deliverability over vertical wells, but sweep efficiency can decrease. The well performance depends on the well length, position, heterogeneity, and viscosity ratio. The productivity increase due to electromagnetic heating is a function of power intensity, flow rate, and frequency etc. The productivity of a well can be doubled by electromagnetic heating. A high-pressure quarter 5-spot model has been constructed to evaluate the sweep efficiency of miscible WAG floods. WAG displacement reduces bypassing compared to gas floods and improves oil recovery in cores. As the WAG ratio decreased and slug size increased, oil recovery increased. Oil was recovered faster with increased slug size and decreased WAG ratio in the simulations for field cases studied.

Kishore K. Mohanty

2004-12-01T23:59:59.000Z

266

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

267

Process for upgrading arsenic-containing oils  

DOE Patents (OSTI)

A method is provided for avoiding feed-transfer-line plugging by a deposit comprising arsenic in hydroprocessing an oil containing an arsenic contaminant. In the method, a mixture of hydrogen gas and the oil is formed in situ in a bed of porous particulate contact material.

Sullivan, Richard F. (San Rafael, CA)

1979-01-01T23:59:59.000Z

268

Block Heavy Hitters  

E-Print Network (OSTI)

e study a natural generalization of the heavy hitters problem in thestreaming context. We term this generalization *block heavy hitters* and define it as follows. We are to stream over a matrix$A$, and report all *rows* ...

Andoni, Alexandr

2008-05-02T23:59:59.000Z

269

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 39, quarter ending June 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1984-12-01T23:59:59.000Z

270

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 41, quarter ending December 31, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-07-01T23:59:59.000Z

271

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 42, quarter ending March 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-11-01T23:59:59.000Z

272

Oil shale mining and the environment. [Colorado  

SciTech Connect

Experimental mining of oil shale, to date, has been conducted only in the shallow Mahogany Zone and has utilized only the room and pillar mining method. The U.S. Bureau of Mines is planning a demonstration mine in the deep, thick oil-shale deposits in Colorado. This study describes the 4 mining concepts that are planned for demonstration and the interrelationship of these concepts and the environment. The environmental aspects of oil-shale development also are discussed.

Rajaram, V.; Kauppila, T.A.; Bolmer, R.L.

1977-01-01T23:59:59.000Z

273

Geothermal water may be used for heavy crude recovery  

SciTech Connect

A brief article reports a statement from the USSR on the use of 158 -212/sup 0/F geothermal water in order to increase the yield of high paraffin or waxy oil. The article suggests the conclusion that wherever geothermal resources are close to heavy crude fields, geothermal steam might be used for heavy crude production. It notes that geothermal hot water pipelines in Iceland, transport hot water for municipal heating over a distance of 24 miles.

Not Available

1987-03-01T23:59:59.000Z

274

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

Science Conference Proceedings (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

275

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-Print Network (OSTI)

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

276

Deposition of micron liquid droplets on wall in impinging turbulent air jet  

E-Print Network (OSTI)

The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by ...

Liu, Tianshu

277

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

278

Method of blasting a subterranean deposit  

SciTech Connect

A blasting method is described for mining of a subterranean oil-shale deposit. A raise is driven upward into a designated block of a subterranean oil-shale deposit from the roof of an undercutting cavity. A number of blasting holes are driven horizontally into the block from the raise in a fan-shaped pattern at each of a number of vertically spaced levels and are at least partially loaded with explosives. The charges are detonated sequentially in an upward progression to effect fragmentation and expansion of the overlaying block into the undercutting cavity. (11 claims)

Janssen, A.T.

1975-11-04T23:59:59.000Z

279

World Oil Prices and Production Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

In AEO2010, the price of light, low-sulfur (or sweet) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for total liquids, which includes conventional petroleum liquidssuch as conventional crude oil, natural gas plant liquids, and refinery gainin addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

Information Center

2010-05-11T23:59:59.000Z

280

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

282

Heading off the permanent oil crisis  

SciTech Connect

The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

MacKenzie, J.J. [World Resources Inst., Washington, DC (United States)

1996-11-01T23:59:59.000Z

283

Deposition Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

284

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

285

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

286

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

287

NETL: News Release - DOE Oil Recovery Project Extends Success through  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 5 , 2007 DOE Oil Recovery Project Extends Success through Technology Transfer New Technologies & Techniques Boost U.S. Proved Oil Reserves, Travel the Globe WASHINGTON, DC - A groundbreaking oil-recovery project funded by the U.S. Department of Energy (DOE) is coming to a close, but its success will continue to be felt throughout the United States and the world. MORE INFO Read 03.10.06 Techline: DOE-Funded Project Revives Aging California Oilfield The project, titled "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterizations and Thermal Production Technologies," began in 1995 with the goal of increasing recoverable heavy oil reserves in those sections of the Wilmington oilfield operated by Long

288

Reactions between backstreaming perfluorinated polyether pump oil and various metals in an oxygen plasma  

Science Conference Proceedings (OSTI)

Deposition of backstreaming oil vapor onto work pieces in a vacuum chamber can be a serious source of contamination. In addition to the contamination due to the backstreaming oil

Yi?Shung Chaug; Richard Adams

1993-01-01T23:59:59.000Z

289

Sixty-sixth annual report of the state oil and gas supervisor  

DOE Green Energy (OSTI)

This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

Not Available

1981-01-01T23:59:59.000Z

290

EFFECTS OF OIL ON MARINE ECOSYSTEMS: A REVIEW FOR ADMINISTRATORS AND POLICY MAKERS  

E-Print Network (OSTI)

) the long history of natural oil seepage in the Santa Bar- bara Channel and 2) the unusually heavy winterEFFECTS OF OIL ON MARINE ECOSYSTEMS: A REVIEW FOR ADMINISTRATORS AND POLICY MAKERS DALE R. EVANS1 is reviewed. The focus is on studies on crude oil. and the results are discussed with the purpose of providing

291

Degradation and resilience in Louisiana salt marshes after the BPDeepwater Horizon oil spill  

E-Print Network (OSTI)

Degradation and resilience in Louisiana salt marshes after the BP­Deepwater Horizon oil spill Brian (high resil- ience) but also permanent marsh area loss after the BP­Deepwater Horizon oil spill. Field that heavy oil cov- erage on the shorelines of Louisiana marshes, already experiencing elevated retreat

Silliman, Brian

292

VISUALIZATION OF SOLUTION GAS DRIVE IN VISCOUS OIL SUPRI TR -126  

E-Print Network (OSTI)

is important during nucleation. Li and Yortsos (1991) visualized gas formation by pressure decline of solution gas drive behavior in heavy oil. Five different natural and synthetic oils were used, one of whichVISUALIZATION OF SOLUTION GAS DRIVE IN VISCOUS OIL SUPRI TR - 126 By D.S. George and A.R. Kovscek

293

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

294

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

Science Conference Proceedings (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

295

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

296

Trajectory Models for Heavy Particles in Atmospheric Turbulence: Comparison with Observations  

Science Conference Proceedings (OSTI)

The simplest “random flight” models for the paths of heavy particles in turbulence have been tested against previous observations of the deposition of glass beads from an elevated source in the atmospheric surface layer. For the bead sizes ...

John D. Wilson

2000-11-01T23:59:59.000Z

297

Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

Kirkendall, B.; Roberts, J.

2001-02-28T23:59:59.000Z

298

Electromagnetic Imaging of C02 Sequestration at an Enhanced Oil Recovery Site  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California. The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

Kirkendall, B; Roberts, J

2001-02-28T23:59:59.000Z

299

Western oil shale conversion using the ROPE copyright process  

DOE Green Energy (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

300

Overview - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... (tar sands, oil shales) or created liquids (gas-to-liquids, coal oil). Canadian and Venezuelan heavy oil and tar sands and similar deposits are ...

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

302

Borehole gravity surveys in the Cretaceous-Tertiary Sagavanirktok Formation, Kuparuk River oil field, Alaska  

SciTech Connect

Detailed borehole gravity surveys (sponsored by the US Department of Energy) were made in three wells in the Kuparuk River and westernmost Prudhoe Bay oil fields, Alaska from depths as shallow as 15 m to as great as 1,340 m through permafrost and underlying heavy oil bearing sandstones of the Sagavanirktok Formation. A subbituminous coal-bearing sequence and the stability field for methane hydrate occur partly within and partly below the permafrost zone, whose base, defined by the 0{degree}C isotherm, varies from 464 to 564 m. The surveys provided accurate, large-volume estimates of in-situ bulk density from which equivalent porosity was calculated using independent grain and pore-fluid density information. This density and porosity data helped to define the rock mass properties within the hydrate stability field and the thermal conductivity, seismic character, and compaction history of the permafrost. Bulk density of the unconsolidated to poorly consolidated sections ranges mostly from 1.9 to 2.3 g/cm{sup 3}. The shallow permafrost section appears to be slightly overcompacted in comparison to similar sedimentary sequences in nonpermafrost regions. The cause of this apparent overcompaction is unknown but may be due to freeze-thaw processes that have similarly affected sea floor and surficial deposits elsewhere in the Arctic. Fluctuations of bulk density appear to be controlled principally by (1) textural variations of the sediments, possibly exaggerated locally within the permafrost zone by excess ice, (2) presence or absence of carbonaceous material, and (3) type of pore-fluid (water-ice vs. water vs. hydrocarbons). As hypothetical models predict bulk-density is slightly lower opposite one interval of possible methane hydrate. Porosity may be as high as 40-45% for selected coarser grained units within the permafrost zone, and as high as 30-35% in a series of well sorted, heavy oil-bearing sandstones.

Beyer, L.A. (Geological Survey, Menlo Park, CA (USA))

1990-05-01T23:59:59.000Z

303

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

304

Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration  

Science Conference Proceedings (OSTI)

Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

Hill, D.W.; Sande, J.J. [Shell Western E& P Inc., Bakersfield, CA (United States); Doe, P.H. [Shell Development Co., Houston, TX (United States)

1995-04-01T23:59:59.000Z

305

2007 Heavy Vehicle Systems Optimization Program Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HEAVY VEHiclE SYSTEMS HEAVY VEHiclE SYSTEMS OPTiMiZATiON PROGRAM V EH icl E T E c HNO l OG i ES P ROGRAM Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2007 Annual Progress Report for Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Heavy Vehicle Systems Optimization Program FY 2007 Annual Report CONTENTS I. AERODYNAMIC DRAG REDUCTION ........................................................................... 1

306

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

307

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

308

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

309

Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective  

Science Conference Proceedings (OSTI)

This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

Greene, David L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Li, Jia [University of Tennessee, Knoxville (UTK)

2005-01-01T23:59:59.000Z

310

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

311

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

312

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

313

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

at the same time. Capable of accelerating 70 trillion protons with every pulse, and heavy ions such as gold and iron, the AGS receives protons and other ions from the AGS...

314

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

315

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting) [60]. (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three States, the richest oil shale deposits are on Federal lands in Northwest Colorado.

Information Center

2009-03-31T23:59:59.000Z

316

Heavy crude and tar sands: Hydrocarbons for the 21st century. Volume 2, Reservoir behavior, drilling and production  

SciTech Connect

Volume 2 is devoted to heavy oil reservoir behavior, production, and the drilling and completion of wells to meet the special needs of these fascinating but difficult oils and bitumens. The volume begins with four papers describing approaches to the recovery of heavy oil and to two fields subject to different recovery mechanisms. Although most heavy oil fields are produced with the assistance of steam stimulation, which commenced in Venezuela, or steam flood, many other methods for the improvement of recovery are potentially applicable. The seven reports on pilot projects examine mostly the results of studies on the dominant thermal recovery methods - steam stimulation, steam flood, and in situ combustion. The behavior of reservoirs under development through use of horizontal wells is the subject of three reports, of vertical wells, nine papers. Much is still to be teamed concerning the relative advantages of these two distinctive methods of reservoir development. The 18 reports on drilling and production are of great importance to the science and engineering of heavy oil because of the problems heavy oil causes after it is induced to flow to the well bore. Artificial lifting of the oil has traditionally centered on the use of sucker rods, but other methods, such as chamber or cavity-pump lift may prove to be efficacious. Horizontal well drilling is a logical approach to maximizing the amount of reservoir exposed to the well bore but this entails special problems in bore-hole clean-up. Heavy oils, too, pose special, frequently very difficult gravel packing problems. Sand production with heavy oil has always posed both economic and technological difficulties and major effort is devoted to overcoming them, as evidenced by the reports in this section. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

Meyer, R.F. [ed.] [Geological Survey, Washington, DC (United States)

1991-12-31T23:59:59.000Z

317

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Deposition Data Available This data set, prepared by Elizabeth Holland and colleagues, contains data for wet and dry nitrogen-species deposition for the United States and...

318

Modeling Foamy Oil Flow in Porous Media D.D. Joseph, A.M. Kamp, R. Bai  

E-Print Network (OSTI)

Modeling Foamy Oil Flow in Porous Media D.D. Joseph½, A.M. Kamp¾, R. Bai½ ½Univ. of Minnesota, Dept, PO Box 76343, Caracas 1070-A, Venezuela October 2001 Abstract Certain heavy oils which foam under so- lution gas drive. These oils not only stabilize foam, but also stabilize dis- persion of gas

Joseph, Daniel D.

319

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

320

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

322

Beginning of an oil shale industry in Australia  

Science Conference Proceedings (OSTI)

This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

1989-01-01T23:59:59.000Z

323

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

324

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

325

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

326

Effect of modifying host oil on coprocessing  

Science Conference Proceedings (OSTI)

The world`s supply of petroleum crudes is becoming heavier in nature so that the amount of vacuum bottoms has been steadily increasing. Coprocessing of coal with these resids (1,000 F+) is an attractive way of obtaining useful distillates from these readily available cheap materials. The objective of this work is to pretreat the host oil in ways that would improve its performance in coprocessing with coal. The following are examples of some ways in which heavy oil could be made into a better host oil: converting aromatic structures to hydroaromatics capable of donating hydrogen to coal, cracking the heavy oil to lower molecular weight material that would be a better solvent, and removing metals, sulfur, and nitrogen. The work reported here used a Venezuelan oil obtained from the Corpus Christi refinery of Citgo. Two coals, Illinois No. 6 and Wyodak subbituminous, were coprocessed with host oils. The authors have found that mild pretreatment of a Citgo resid (1,000 F) using either Mo naphthenate or Mo/Fe{sub 2}O{sub 3}/SO{sub 4}, as well as a pretreatment using the homogeneous catalyst Co{sub 2}(CO){sub 8} under synthesis gas can increase the available (donatable) hydrogen content of the resid. When these pretreated oils were thermally (no added catalyst) coprocessed with an Illinois No. 6 coal, about 90 wt% of the coal (maf) was converted to soluble products. This high coal conversion was realized even at a high coal loading of 50 wt%. The products from coprocessing coal and oil were equally split between high boiling material, mostly asphaltenes, and distillate. Distillate yields appeared to be affected by the concentration of coal in the feed, with maximum yields at coal loadings below 50 wt%.

Hajdu, P.E.; Tierney, J.W.; Wender, I.

1995-05-01T23:59:59.000Z

327

Oil shale in Colorado, the '80s  

SciTech Connect

An overview of near-future oil shale development in Colorado, including an assessment of Colorado's oil shale deposits is presented. A description of the state-of-the-art oil shale technology is also included, and an in-depth look at current projects is given. Also noted are governmental and legal aspects involved, with six areas of specific concern to Colorado pointed out. (JMT)

1979-01-01T23:59:59.000Z

328

Liability issues surrounding oil drilling mud sumps  

Science Conference Proceedings (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

329

Conceptual Design of Carbon Steels to Support Heavy Crude Refinement Using Neural Network Modeling and Evolutionary Optimization  

Science Conference Proceedings (OSTI)

The oil industries in the entire World and particularly in Mexico, have been taking an important relevance. There are two major challenges in this industry. The first one is the exploration and utilization of crude oil in deep sea, the second one is ... Keywords: soft computing applications, heavy crude refinement process

Luis Torres-Trevińo; Arturo Reyes-Valdes

2008-09-01T23:59:59.000Z

330

Super Heavy Element Discovery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Super Heavy Element Discovery SHARE Super Heavy Element Discovery The location of the Transactinides (super-heavy elements) shown on the Periodic Table. ORNL is internationally...

331

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

332

Industrial Utilization of Coal-Oil Mixtures  

E-Print Network (OSTI)

Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM:. Economics and details of industrial conversion to COM are discussed. CoaLiquid, Inc. of Louisville, KY, which uses ultrasonic emulsification to stabilize the cm:, has been a leader in commercial demonstration in industrial equipment. Some of these demonstrations are discussed, along with implications for the future use of COM.

Dunn, J. E.; Hawkins, G. T.

1982-01-01T23:59:59.000Z

333

Converting Green River shale oil to transportation fuels  

DOE Green Energy (OSTI)

Shale oils contain significant quantities of nitrogen, oxygen, and heavy metals. Removing these contaminants is a major consideration in the catalytic conversion of shale oil to transportation fuels. Hydrotreating can remove substantially all of these elements, while coking only removes most of the heavy metals. Pilot plant data for three processing schemes were generated during the course of this study: hydrotreating followed by hydrocracking, hydrotreating followed by fluid catalytic cracking, and delayed coking followed by hydrotreating. Yields and product inspections are presented for these three cases.

Sullivan, R.F.; Stangeland, B.E.

1978-01-01T23:59:59.000Z

334

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

in Proc. of the Inertial Fusion Science and ApplicationsP. Abbott, P. F. Peterson, Fusion Science and Technology 44March 15–20, 2004 Heavy Ion Fusion– Using Heavy Ions to Make

Celata, C.M.

2004-01-01T23:59:59.000Z

335

Identifying heavy Higgs bosons  

SciTech Connect

Two techniques for identifying heavy Higgs bosons produced at SSC energies are discussed. In the first, the Higgs boson decays into ZZ, with one Z decaying into an e-pair or ..mu..-pair and the other into a neutrino pair. In the second, the production of the Higgs boson by WW fusion is tagged by detecting the quarks that produced the bremsstrahlung virtual W's. The associated Higgs decay is identified by one leptonic and one hadronic decay. Both methods appear capable of finding a heavy Higgs boson provided the SSC design parameters are achieved. 16 refs., 2 figs., 2 tabs.

Cahn, R.N.

1986-06-01T23:59:59.000Z

336

Middle East: stratigraphic evolution and oil habitat: discussion  

SciTech Connect

The paper, Middle East: Stratigraphic Evolution and Oil Habitat, by R.J. Murris (AAPG Bull. v. 64, p. 597-618) is discussed. Problems with the time-stratigraphic units used in the article are pointed out, along with the source rocks of the petroleum deposits, the depositional cyclicity, subsidence and sea level fluctuation, and the Middle East geosyncline. (JMT)

Ibrahim, M.W.

1981-03-01T23:59:59.000Z

337

CHLORIDE DEPOSITION FROM STEAM ONTO SUPERHEATER FUEL CLAD MATERIALS  

SciTech Connect

Experimemts using Cl/sup 36/ in a steam test loop were conducted to study the deposition behavior of chlorides on BONUS superheater fuel assembly materials. The moisture content of the steam was varied between 0 and 0.5 wt%, and superheat was added up to 15 deg F before the steam passed over the test cartridge heater. The effects of vaiiables on the chloride deposition on the heater were studied in detail. Chloride deposition from moist steam was found to result in heavy, adherent deposits which are conducive to severe chloride stress corrosion of austenitic steels, while removal of all moisture from the incoming steam reduces the chloride deposition and minimizes the chloride stress corrosion. The heater surface condition was found to be a very important variable; deposition is increased by surface defects and pits. Neither the temperature of steam or heater nor the amount of superheat had an appreciable effect on the deposition, when no moisture existed in the steam. However, low steam velocities and spacer protoberances increase the deposition. Different clad materials (Inconel and Type 304 and 347 stainless steel) with similar surface conditions did not affect the deposition, although subsequent corrosion effects do modify the deposition behavior. Recommendations are given for the control of chloride deposition in nuclear superheater reactor systems. (D.L.C.)

Bevilacqua, F.; Brown, G.M.

1963-10-18T23:59:59.000Z

338

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

339

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

340

Lifecycle-analysis for heavy vehicles.  

DOE Green Energy (OSTI)

Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

Gaines, L.

1998-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

342

Heavy Vehicle Systems  

Science Conference Proceedings (OSTI)

Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

Sid Diamond; Richard Wares; Jules Routbort

2000-04-11T23:59:59.000Z

343

DEVELOPMENTS IN HEAVY QUARKONIUM SPECTROSCOPY  

E-Print Network (OSTI)

­ 1­ DEVELOPMENTS IN HEAVY QUARKONIUM SPECTROSCOPY Written May 2012 by S. Eidelman (Budker Inst. Navas (Univ. Granada), and C. Patrignani (Univ. Genova, INFN). A golden age for heavy quarkonium physics at HERA and the Tevatron matured; and heavy-ion collisions at RHIC opened a window on the deconfinement

344

Results of oil-shale investigations in northeastern Nevada  

SciTech Connect

The major focus of this oil-shale investigation has been on specific localities of oil-shale resource potential. Three main areas of oil-shale occurrence have been studied in detail: the Elko area, Pinon Range area, and Coal Mine Canyon. Geologic mapping, stratigraphic studies, and sampling to delimit the lateral extent of the oil shale deposits were in progress prior to the cooperative agreement with Nevada DOE. These surface geologic studies have been summarized in this report. The results of surface geologic studies conducted near Elko suggested that the Elko area represented the best and most accessible oil-shale deposits; therefore, the Elko area was selected as the site of a shallow exploratory drilling program. Essential to this study was the obtaining of fresh, unweathered oil-shale samples from the Elko area. The samples were obtained from the core-drilling program and tested for oil yield by Fischer assays. The oil yields determined from these samples, together with the geology have provided an improved basis for resource estimates for the oil-shale deposit at Elko. In addition to the more detailed field studies, a literature survey was conducted to develop a bibliography related to oil shale in Nevada and to use as a basis for identifying other oil-shale occurrences. The literature search was also extended to include information on petroleum source rocks that contain organic-rich shales with possible potential as additional oil-shale resources. The annotated bibliography is included in the appendix. 88 refs., 8 figs., 5 tabs.

Moore, S.W.; Madrid, H.B.; Server, G.T. Jr.

1983-01-01T23:59:59.000Z

345

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

346

World Oil Prices and Production Trends in AEO2009 (released in AEO2009)  

Reports and Publications (EIA)

The oil prices reported in AEO2009 represent the price of light, low-sulfur crude oil in 2007 dollars [50]. Projections of future supply and demand are made for liquids, a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquidssuch as conventional crude oil and natural gas plant liquidsin addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

Information Center

2009-03-31T23:59:59.000Z

347

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

348

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

349

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

350

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

Science Conference Proceedings (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

351

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

352

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

353

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

354

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

355

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

356

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

Schunck, N; Kortelainen, M; McDonnell, J; Moré, J; Nazarewicz, W; Pei, J; Sarich, J; Sheikh, J; Staszczak, A; Stoitsov, M; Wild, S M

2011-01-01T23:59:59.000Z

357

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

N. Schunck; A. Baran; M. Kortelainen; J. McDonnell; J. Moré; W. Nazarewicz; J. Pei; J. Sarich; J. Sheikh; A. Staszczak; M. Stoitsov; S. M. Wild

2011-07-25T23:59:59.000Z

358

Heavy Vehicle Propulsion Materials  

DOE Green Energy (OSTI)

The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

Ray Johnson

2000-01-31T23:59:59.000Z

359

A comprehensive simulation study of steamflooding light-oil reservoirs after waterflood  

Science Conference Proceedings (OSTI)

Steamflooding, the most successful among enhanced recovery methods, has been applied mainly to heavy-oil reservoirs. This paper presents a comprehensive simulation study on the use of steamflooding after waterflood in light-oil reservoirs. Some important observations are made on this new application of the process. Guidelines are developed not only for selecting reservoir candidates for steamflooding, but also for designing and operating steamfloods in watered-out reservoirs. Relative importance of key mechanisms to oil recovery is also discussed.

Chu, C.

1988-06-01T23:59:59.000Z

360

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),Figure 3. Price of crude oil contract maturing December ofbarrels per day. Monthly crude oil production Iran Iraq

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

362

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

363

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

364

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

365

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

366

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

367

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

368

China's Global Oil Strategy  

E-Print Network (OSTI)

is an important oil source for China, yet unlike itsthe United States as a major oil source outside the volatileto be a critical source of oil, and one that is almost

Thomas, Bryan G

2009-01-01T23:59:59.000Z

369

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

370

China's Global Oil Strategy  

E-Print Network (OSTI)

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

371

Heavy Ions - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

372

The Experimental Study on the Wax-Deposit Law in High-Pour-Point Crude Oi1 Transportation  

Science Conference Proceedings (OSTI)

High pour point properties of crude oil are generally due to the high wax content, so the study of the laws and the characteristics of wax deposition are significant for taking steps to save energy and transport safely. For the wax deposition of high ... Keywords: pipeline transportation, high-pour-point waxy crude, wax deposition law, DSC, experimental study

Wang Zhihua; Si Minglin; Wang Jinxiu; Li Jungang

2009-10-01T23:59:59.000Z

373

SUPRI HEAVY OIL RESEARCH PROGRAM TWENTY-FIRST ANNUAL REPORT  

E-Print Network (OSTI)

and transmission to transportation to the production of faster, smaller, more versatile computers and storage superconductivity, with potential application to energy transmission and other areas. OBJECTIVES FOR 20 PETAFLOPS

374

Heavy-duty diesel engine oil aging effects on emissions.  

E-Print Network (OSTI)

??Diesel engines are highly reliable, durable and are used for wide range of applications with low fuel usage owing to its higher thermal efficiency compared… (more)

Dam, Mrinmoy.

2010-01-01T23:59:59.000Z

375

SUPRI HEAVY OIL RESEARCH PROGRAM TWENTY-SECOND ANNUAL REPORT  

E-Print Network (OSTI)

Ottawa (170-200) room-250°F photo cell + frequency counter independent independent 4 Unsteady State (JBN and hot) are matched by using only one set of relative permeability curves, which would indicate of the experimental data (i.e. cold and hot) using a single set of relative permeability curves, which would indicate

376

FUNDAMENTAL CHEMISTRY OF HEAVY OIL W. V. Steele  

E-Print Network (OSTI)

the technology for commercially viable hydrogen-powered fuel cells to power the nation with no pollution to refineries in the U.S. Emphasis was placed on finding the degrees of condensation and substitution

377

SUPRI HEAVY OIL RESEARCH PROGRAM TWENTIETH ANNUAL REPORT  

E-Print Network (OSTI)

registered in Argentina produced no continental connection to the Caribbean transgression, registered

378

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03T23:59:59.000Z

379

Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin  

E-Print Network (OSTI)

Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back-arc basin ...

Craddock, Paul R

2009-01-01T23:59:59.000Z

380

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 40, quarter ending September 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial technology.

Linville, B. (ed.)

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 43, quarter ending June 30, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: (1) chemical flooding; gas displacement thermal recovery/heavy oil; resource assessment technology; extraction technology;environmental technology; and microbial technology. (AT)

Not Available

1986-05-01T23:59:59.000Z

382

China's Global Oil Strategy  

E-Print Network (OSTI)

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

383

Understanding Crude Oil Prices  

E-Print Network (OSTI)

5. Monthly oil production for Iran, Iraq, and Kuwait, inday. Monthly crude oil production Iran Iraq Kuwait Figure 6.Arabia PRODUCTION QUOTA Iran PRODUCTION QUOTA Venezuela

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

384

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

385

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

386

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

387

Expansion of the commercial output of Estonian oil shale mining and processing  

Science Conference Proceedings (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

388

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

389

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

390

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network (OSTI)

et al. , ,8iolog·ical and Medical Research with Acceleratedet al. , "Biological and Medical Research with J\\cceleratedic Heavy Ions in Medical and Scientific Research, Edmonton,

Gough, R.A.

2013-01-01T23:59:59.000Z

391

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

392

direct_deposit_111609  

NLE Websites -- All DOE Office Websites (Extended Search)

PROTECT YOUR BANKING INFORMATION: PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby authorize Los Alamos National Laboratory, hereinafter called The Laboratory, to initiate credit entries and, if necessary, debit entries and adjustments for any credit entries in error to my account listed on this form. If deposit is for:

393

Mark Jaccard has been professor in the School of Resource and Environmental Management at Simon Fraser University,  

E-Print Network (OSTI)

the development of fuels from unconventional oil like oil sands, heavy oil and oil shale. Others supported half of the world's extra-heavy oil resource and is currently developing some of it. Oil shale petroleum products. The U.S. has large deposits of oil shale but has only conducted pilot projects

394

Oil spill still motivates Santa Barbara to be green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green May 14, 2010 - 11:58am Addthis The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan Joshua DeLung Many residents of Santa Barbara County in California still remember the 1969 oil spill there, when an oil drill six miles off the county's coast blew out, spilling an estimated 8,000 to 10,000 barrels of crude oil. The resulting oil slick covered 800 square miles of ocean, killing thousands of birds and marine animals and depositing tar on beaches throughout the

395

Using alternative chemicals in the flotation of heavy metals from lead mill tailings  

Science Conference Proceedings (OSTI)

The U.S. Bureau of Mines (USBM) investigated alternative chemicals for the flotation of heavy metal values from southeast Missouri lead mill tailings. The objectives of the study were to lower the Pb remaining in the reprocessed tailings to canola oil, to be as effective as classic sulfide flotation reagents.

Benn, F.W. [Bureau of Mines, Rolla, MO (United States)

1995-04-01T23:59:59.000Z

396

Eco Oil 4  

DOE Green Energy (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

397

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

398

Very high energy heavy-ion accelerators  

SciTech Connect

A review is given of various programs for building heavy ion accelerators. Topics discussed are (1) options of reaching very high energies with heavy ions; (2) present performance of the superHILAC and the Bevalac; (3) heavy ion sources; (4) applications of heavy ion accelerators outside of basic research; and (5) reliability and operating costs of heavy ion sources. (PMA)

Grunder, H.A.

1975-10-01T23:59:59.000Z

399

The Application of Paraffin Deposition Model of Wellbore for Condensate Gas Well  

Science Conference Proceedings (OSTI)

The safety hazard caused by paraffin precipitation to normal oil and gas production cannot be ignored. Therefore, it is necessary to develop the paraffin precipitation, deposition mechanism, and variation discipline of phase state, prediction technology ... Keywords: deposition mechanism, paraffin precipitation, condensate gas reservoir

Xi-an Wang; Min Yang

2011-10-01T23:59:59.000Z

400

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

402

Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era  

Science Conference Proceedings (OSTI)

Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

Edwards, J.D. [Univ. of Colorado, Boulder, CO (United States)

1997-08-01T23:59:59.000Z

403

Drivers Behind Growing U.S. Product Exports & Shrinking Light-Heavy Price Differences  

Gasoline and Diesel Fuel Update (EIA)

‚§ This presentation focuses on what is behind the recent growth in product exports, if they will ‚§ This presentation focuses on what is behind the recent growth in product exports, if they will persist, and what do they imply for U.S. refiners. 1 1 1  At the same time, light-heavy price differences in both product and crude oil markets have been shrinking. One of the products that is showing increasing exports, residual fuel oil, provides some insights into this market dynamic, which will also be discussed. Over the past several years, major changes in oil product markets worldwide are having f S f f 2 significant impacts on U.S. refiners. The presentation will focus on two major products - gasoline and middle distillates (jet fuel, kerosene, diesel and heating oil) - as well as residual fuel oil, which plays a small role in the U.S., but a larger role internationally.

404

Oil shale of the Uinta Basin, northeastern Utah  

SciTech Connect

The Tertiary rocks, which occupy the interior of the Uinta basin, have been subdivided into four formations: Wasatch, Green River, Bridger, and Uinta. The division is based on stratigraphic and paleontologic evidence. Hydrocarbon materials have been found in all four formations, although bedded deposits (asphaltic sandstone and oil shale) are known only in the Wasatch and Green River. Veins of gilsonite, elaterite, ozocerite, and other related hydrocarbons cut all the Tertiary formation of the Uinta basin. Good oil shale (Uinta basin of Utah) is black or brownish black except on weathered surfaces, where it is blue-white or white. It is fine grained, slightly calcareous, and usually free from grit. It is tough and in thin-bedded deposits remarkably flexible. Although oil shale consists of thin laminae, this is not apparent in some specimens until after the rock has been heated and the oil driven off. Freshly broken oil shale gives off a peculiar odor similar to that of crude petroleum. Oil shale contains a large amount of carbonaceous matter (largely remains of lower plants, including algae), which is the source of the distillation products. Thin splinters of oil shale will burn with a very sooty flame and give off an asphaltic odor. Lean specimens of oil shale have a higher specific gravity than rich specimens and are generally heavier than coal.

Winchester, D.E.

1918-01-01T23:59:59.000Z

405

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

406

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

407

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

408

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

409

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

410

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

Science Conference Proceedings (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

411

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Authors: Danielle Lehle and Michael D. Vanden Berg, Utah Geological Survey. Venue: Economic Geology of the Rocky Mountain Region session, May 11, 2009, Geological Society of America-Rocky Mountain Section annual meeting, Orem, Utah, May 11-13, 2009. http://www.geosociety.org/sectdiv/rockymtn/09mtg/index.htm [external site] Abstract: The upper Green River formationÂ’s oil shale deposits located within the Uinta Basin of Utah and the Piceance Creek Basin of Colorado contain remarkably similar stratigraphic sequences despite being separated by the Douglas Creek arch. Individual horizons, as well as individual beds, can be traced for hundreds of miles within and between the two basins. However, changes in the topography-controlled runoff patterns between the basins, as well as changes in localized climate conditions throughout upper Green River time, created significant differences between basin-specific deposits. These variations affected the richness and thickness of each oil shale zone, resulting in basin-specific preferred extraction techniques (i.e., in-situ in Colorado and mining/retort in Utah). ColoradoÂ’s oil-shale resource was mapped and quantified by the USGS in the late 1970s, whereas this study is the first attempt at quantifying UtahÂ’s overall resource by specific oil shale horizon. This presentation focuses on the Mahogany zone (MZ) and the stratigraphically lower R-6 zone; subsequent work will define other important horizons.

412

Policy Analysis of the Canadian Oil Sands Experience  

SciTech Connect

For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

None, None

2013-09-01T23:59:59.000Z

413

Heavy Machine Shop | Central Fabrication Services | Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Machine Shop Heavy Machine Shop The Heavy Machine Shop facility is located in building 479, and may be accessed by the main door on the north face or front of the building....

414

Radionuclide deposition control  

DOE Patents (OSTI)

The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

Brehm, William F. (Richland, WA); McGuire, Joseph C. (Richland, WA)

1980-01-01T23:59:59.000Z

415

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

416

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

417

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

418

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

419

Method for controlling boiling point distribution of coal liquefaction oil product  

DOE Patents (OSTI)

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-12-21T23:59:59.000Z

420

Method for controlling boiling point distribution of coal liquefaction oil product  

SciTech Connect

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

422

First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement  

SciTech Connect

The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

Not Available

1980-01-01T23:59:59.000Z

423

SYNCHROTRONS FOR HEAVY IONS - BEVALAC EXPERIENCE  

E-Print Network (OSTI)

Heavy Ions ir. Medical and Scientific Research", Edmonton,Heavy Ions in Medical and Scientific Research" Edmonton,vigorous medical and nuclear science research groups. The

Grunder, H.A.

2010-01-01T23:59:59.000Z

424

Glimpse of heavy electrons reveals "hidden order"  

NLE Websites -- All DOE Office Websites (Extended Search)

Glimpse of heavy electrons reveals "hidden order" Glimpse of heavy electrons reveals "hidden order" The remarkable breakthrough helps validate theory behind the observed increase...

425

Evaluation of the pollution abatement technologies available for treatment of wastewater from oil shale processing  

SciTech Connect

A review covers the conventional and in-situ oil shale processing technologies and their status of development; the sources and characteristics of the wastewaters from oil shale retorting operation, from leaching of spent shale, from cooling tower and boiler blowdowns, from oil refining operations, from saline aquifer, and from minor sources, such as from air pollution control equipment, runoff from dust control, and sanitary wastewaters; and wastewater treatment methods applicable for treating wastewater from oil shale processes including physical, chemical, biological, and tertiary treatment methods and specific processes for removing specific pollutants (e.g., phenols, cyanides, heavy metals) from wastewaters. 31 references.

Sung, R.D.; Prien, C.H.

1977-01-01T23:59:59.000Z

426

Exponential growth, energetic Hubbert cycles, and the advancement of technology  

E-Print Network (OSTI)

the climate, and made all fossil fuels, coal, crude oil, natural gas, gas hydrates, oil shale, etc deposit of organic carbon. 2 The new fossil fuel resources are tar sands, ultra heavy oil, oil shale

Patzek, Tadeusz W.

427

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

428

Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. Final report  

Science Conference Proceedings (OSTI)

During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At the Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention was paid to heavy crude oils from Venezuela, California, Alabama, Arkansas, Wyoming, Alaska, and other oil producing areas. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified