Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Assessment of heavy metal contamination of roadside soils in ...  

Science Conference Proceedings (OSTI)

Feb 16, 2008 ... heavy metals was found using factor analysis. Keywords Heavy metals Á Roadside soils Á. Transportation period Á Contamination index Á.

2

Plasma treatment of INEL soil contaminated with heavy metals  

Science Conference Proceedings (OSTI)

INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites.

Detering, B.A.; Batdorf, J.A.

1992-01-01T23:59:59.000Z

3

Sources of heavy metal contamination in Swedish wood waste used for combustion  

SciTech Connect

In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW.

Krook, J. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden)]. E-mail: joakr@ikp.liu.se; Martensson, A. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden); Eklund, M. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden)

2006-07-01T23:59:59.000Z

4

Separation of heavy metals: Removal from industrial wastewaters and contaminated soil  

Science Conference Proceedings (OSTI)

This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

Peters, R.W.; Shem, L.

1993-03-01T23:59:59.000Z

5

Separation of heavy metals: Removal from industrial wastewaters and contaminated soil  

SciTech Connect

This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

Peters, R.W.; Shem, L.

1993-01-01T23:59:59.000Z

6

Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams  

Science Conference Proceedings (OSTI)

High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

Vishnivetskaya, Tatiana A [ORNL; Mosher, Jennifer J [ORNL; Palumbo, Anthony Vito [ORNL; Yang, Zamin [ORNL; Podar, Mircea [ORNL; Brown, Steven D [ORNL; Brooks, Scott C [ORNL; Gu, Baohua [ORNL; Southworth, George R [ORNL; Drake, Meghan M [ORNL; Brandt, Craig C [ORNL; Elias, Dwayne A [ORNL

2011-01-01T23:59:59.000Z

7

Treatment of Heavy Metal Wastes - III - TMS  

Science Conference Proceedings (OSTI)

Ltd., Flin Fion, Manitoba, Canada R8A 1N9. 3:15 pm BREAK. 3:30 pm. An Integrated Bioremediation Route for Heavy Metal Contaminated Land Based on the ...

8

Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995  

SciTech Connect

Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

Dermatas, D.

1995-08-01T23:59:59.000Z

9

Plant rhamnogalacturonan II complexation of heavy metal cations  

DOE Patents (OSTI)

The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

O' Neill, Malcolm A. (Winterville, GA); Pellerin, Patrice J. M. (Montpellier, FR); Warrenfeltz, Dennis (Athens, GA); Vidal, Stephane (Combaillaux, FR); Darvill, Alan G. (Athens, GA); Albersheim, Peter (Athens, GA)

1999-01-01T23:59:59.000Z

10

Plant rhamnogalacturonan II complexation of heavy metal cations  

DOE Patents (OSTI)

The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

1999-03-02T23:59:59.000Z

11

Modeling heavy metal mass releases from urban battery litter  

Science Conference Proceedings (OSTI)

Consumer batteries littered on urban pavements release metals of environmental significance (Ag, Cd, Cr, Cu, Hg, Li, Mn, Ni, Pd, Ti, Zn) to stormwater runoff. Predicting the mass loading of any one metal is difficult because of the random composition ... Keywords: Heavy metals, filtered Poisson process, Mass loading, zinc, Stormwater contamination, Urban battery litter

Caleb Krouse; Aaron A. Jennings; Dario Gasparini

2009-04-01T23:59:59.000Z

12

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

13

Phytoremediation of Metal-Contaminated Soils  

DOE Green Energy (OSTI)

Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experiments were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.

Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.; Gobran, G.R.

2004-03-31T23:59:59.000Z

14

Heavy metals hazardous components of Eaf dust  

Science Conference Proceedings (OSTI)

Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the ... Keywords: electric arc furnace (EAF), furnace additives, hazard components, heavy metals, scrap composition, x-ray fluorescence spectroscopy

Cristiana-Zizi Rizescu; Zorica Bacinschi; Elena Valentina Stoian; Aurora Poinescu; Dan Nicolae Ungureanu

2011-02-01T23:59:59.000Z

15

Heavy metals in suspended powders from steelmaking  

Science Conference Proceedings (OSTI)

Motivations for controlling heavy metal concentrations in gas streams are diverse. Some of them are dangerous to health or to the environment (e.g. Hg, Cd, As, Pb, Cr), some may cause corrosion (e.g. Zn, Pb), some are harmful in other ways (e.g. Arsenic ... Keywords: anthropogenic sources, emissions, heavy metals, human health, pollution of ecosystem, toxic

Cristiana-Zizi Rizescu; Elena-Valentina Stoian; Aurora-Anca Poinescu; Sofia Teodorescu

2010-07-01T23:59:59.000Z

16

Situ formation of apatite for sequestering radionuclides and heavy metals  

DOE Patents (OSTI)

Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

Moore, Robert C. (Edgewood, NM)

2003-07-15T23:59:59.000Z

17

SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS  

Office of Scientific and Technical Information (OSTI)

SEPARATION SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS AND CONTAMINATED SOIL* Robert W. Peters + and Linda Shem Energy Systems Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 Abstract This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and

18

Experimental Research on Recovery of Heavy Metals from EAF ...  

Science Conference Proceedings (OSTI)

To recycle these heavy metals, it is quite important to know the reactivity and metallurgical behavior of these heavy metals contained in EAF stainless steel dust.

19

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

1999-01-01T23:59:59.000Z

20

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

22

Magnetic Process For Removing Heavy Metals From Water Employing Magnetites  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Process For Removing Heavy Metals From Water Employing Magnetic Process For Removing Heavy Metals From Water Employing Magnetites Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. Available for thumbnail of Feynman Center (505) 665-9090 Email Magnetic Process For Removing Heavy Metals From Water Employing Magnetites A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and

23

Heavy metals behaviour in a gasification reactor  

Science Conference Proceedings (OSTI)

Sludge coming from cleaning processes of wastewater, Municipal Solid Waste (MSW), and Refuse Derived Fuel (RDF) can be exploited for producing energy because of their heating value. Cleaning the produced syngas is important because of environmental troubles, ... Keywords: heavy metals, syngas, thermodynamic, waste gasification

Martino Paolucci; Carlo Borgianni; Paolo De Filippis

2011-07-01T23:59:59.000Z

24

Heavy metals in commercial fish in New Jersey  

SciTech Connect

Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. While attention has focused on self-caught fish, most of the fish eaten by the American public comes from commercial sources. We sampled 11 types of fish and shellfish obtained from supermarkets and specialty fish markets in New Jersey and analyzed them for arsenic, cadmium, chromium, lead, manganese, mercury, and selenium. We test the null hypothesis that metal levels do not vary among fish types, and we consider whether the levels of any metals could harm the fish themselves or their predators or pose a health risk for human consumers. There were significant interspecific differences for all metals, and no fish types had the highest levels of more than two metals. There were few significant correlations (Kendall tau) among metals for the three most numerous fish (yellowfin tuna, bluefish, and flounder), the correlations were generally low (below 0.40), and many correlations were negative. Only manganese and lead positively were correlated for tuna, bluefish, and flounder. The levels of most metals were below those known to cause adverse effects in the fish themselves. However, the levels of arsenic, lead, mercury, and selenium in some fish were in the range known to cause some sublethal effects in sensitive predatory birds and mammals and in some fish exceeded health-based standards. The greatest risk from different metals resided in different fish; the species of fish with the highest levels of a given metal sometimes exceeded the human health guidance or standards for that metal. Thus, the risk information given to the public (mainly about mercury) does not present a complete picture. The potential of harm from other metals suggests that people not only should eat smaller quantities of fish known to accumulate mercury but also should eat a diversity of fish to avoid consuming unhealthy quantities of other heavy metals. However, consumers should bear in mind that standards have a margin of safety.

Burger, Joanna [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States) and Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation, Piscataway, NJ 08854 (United States)]. E-mail: burger@biology.rutgers.edu; Gochfeld, Michael [Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States)

2005-11-15T23:59:59.000Z

25

Genetic manipulation of a cyanobacterium for heavy metal detoxivication  

DOE Green Energy (OSTI)

Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

McCormick, P.; Cannon, G.; Heinhorst, S.

1995-12-31T23:59:59.000Z

26

Heavy Metals Behavior of Municiple Solid Waste Incineration ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Heavy Metals Behavior of Municiple Solid Waste Incineration Bottom Ash with Magnetic Separation by Gi-Chun Han, Nam-Il Um, Kwang-Suk ...

27

Using Microwave Radiation for Removing Heavy Metal Ions and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Using Microwave Radiation for Removing Heavy Metal Ions and Producing Biofuels. Author(s), Aharon Gedanken. On-Site Speaker (Planned ) ...

28

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

29

Heavy metals in bullfrog (Rana catesbeiana) tadpoles: Effects of depuration before analysis  

SciTech Connect

Although tadpoles may well be excellent organisms to use as bioindicators of heavy metal contamination, the relationship of deposition in the body compared to the tail, and the effect of sediments or other debris in the digestive tract on heavy metal concentrations is unknown. The authors examined the effect of experimental depuration of bullfrog (Rana catesbeiana) tadpoles on heavy metal and selenium concentrations in intact tadpoles, as well as their bodies and tails. They defined depuration in this experiment as allowing defecation as an elimination process for intestinal contents. The authors maintained wild-caught tadpoles in clean water for 0, 24, 48, and 72 h to determine the effects of clearing on heavy metal concentrations. They also examined the concentrations of heavy metals in the whole body and digestive tract separately. The authors test the null hypotheses that no differences occur in metals as a function of time in uncontaminated water, and that no differences occur in metal concentrations in the body compared to the tail and to the digestive tract. They rejected these hypotheses based on regression models. Variance in concentrations of chromium (77%) and lead (70%) were explained by part and clearing time; for manganese (80%), mercury (64%), selenium (28%), and cadmium (25%) the variation was explained only by body part; for arsenic (53%), the variation was explained by part, clearing time, and weight of the various parts. For those metals in which clearing time explained part of the variation, metal concentrations in both the body and tail decreased after 24 and 48 h, but increased slightly thereafter. Clearing, however, did not greatly decrease metal concentrations in either the body or tail. These data suggest that for some metals (mercury, manganese, cadmium, selenium), clearing has no effect, and for others the effect is slight. For fresh tadpoles, however, the digestive tract contained significantly higher concentrations of all metals than either the body or head, probably reflecting metals absorbed to sediment particles in the gut.

Burger, J. [Rutgers Univ., Piscataway, NJ (United States); Snodgrass, J. [Rutgers Univ., Piscataway, NJ (United States)]|[Savannah River Ecology Lab., Aiken, SC (United States)

1998-11-01T23:59:59.000Z

30

Leachability of heavy metals from growth media containing source-separated municipal solid waste compost  

Science Conference Proceedings (OSTI)

The leaching of heavy metals in source-separated municipal solid waste (MSW) compost was determined by irrigation leaching of growth medium, admixed with varying amounts of compost, used for container grown plants. Perennial flowers (black-eyed Susan, Rudbeckia hirta L.) were grown in 2-L containers filled with the growth medium for a 10-wk period. Rainfall was supplemented with overhead irrigation to supply 2 cm of water per day. Leachates collected over each 2-wk period were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn using atomic spectrometry. Concentrations of the heavy metals in the leachates increased with increasing proportions of MSW compost in the growth medium, but decreased with time of leaching. Leaching of the metals occurred at relatively high concentrations initially, followed by continued leaching at low concentrations. The initial leaching of heavy metals is attributed to their soluble or exchangeable forms and the subsequent slow leaching to the solid compounds. The concentrations of the heavy metals remained below the current drinking water standards in all treatments throughout the leaching period. The results thus suggest that contamination of groundwater with heavy metals from source-separated MSW compost applied as a soil amendment should be negligible, as the low concentrations in the leachates leaving the surface soil would be further attenuated by the subsoil. 29 refs., 6 figs., 1 tab.

Sawhney, B.L.; Bugbee, G.J.; Stilwell, D.E. [Connecticut Agricultural Experimental Station, New Haven, CT (United States)

1994-07-01T23:59:59.000Z

31

Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2  

Science Conference Proceedings (OSTI)

Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

1991-02-01T23:59:59.000Z

32

Literature review on the use of bioaccumulation for heavy metal removal and recovery  

SciTech Connect

Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

1991-02-01T23:59:59.000Z

33

Heavy Liquid Metal Reactor Development - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

> Heavy Liquid Metal Reactor Development > Heavy Liquid Metal Reactor Development Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor (AFR) Heavy Liquid Metal Reactor Development Generation IV Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Advanced Reactor Development and Technology Heavy Liquid Metal Reactor Development Bookmark and Share STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge. Click on image to view larger image. Argonne has traditionally been the foremost institute in the US for

34

Modeling of Heavy Metals Ions Adsorption by Polyamidoamine ...  

Science Conference Proceedings (OSTI)

... that employ PAMAM dendrimers for adsorption of heavy metals from wastewater. ... Heat Treatment of Black Dross for the Production of a Value Added Material ... Mullites Bodies Produced From the Kaolin Residue Using Microwave Energy.

35

Improvement of Plants for Selenium and Heavy Metal Phytoremediation Through Genetic Engineering  

Science Conference Proceedings (OSTI)

Phytoremediation -- the use of plants to remove, stabilize, or detoxify pollutants -- has proved very promising for the cleanup of trace elements from contaminated soil and water. Under the EPRI-Genetics Research Program, investigators successfully used genetic engineering to create seven genetically altered lines of plants with superior capacities for the phytoremediation of selenium (Se) and heavy metals, such as Molybdenum (Mo), Tungsten (W), and Cadmium (Cd). These transgenic plants are more tolerant...

1999-12-13T23:59:59.000Z

36

Removal of radioactive materials and heavy metals from water using magnetic resin  

DOE Patents (OSTI)

Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

Kochen, Robert L. (Boulder, CO); Navratil, James D. (Simi Valley, CA)

1997-01-21T23:59:59.000Z

37

Mechanisms of metal release from contaminated coastal sediments  

E-Print Network (OSTI)

The fate of trace metals in contaminated coastal sediments is poorly understood, yet critical for effective coastal management. The aim of this thesis is to investigate and quantify the mechanisms leading to the release ...

Kalnejais, Linda H

2005-01-01T23:59:59.000Z

38

Cone Penetrometer for Subsurface Heavy Metals Detection. Semiannual report, November 1, 1996--March 31, 1997  

Science Conference Proceedings (OSTI)

Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd, has become an area of concern for many industrial and government organizations (1). Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2). Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser-induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices (3-15) including soil (16,17). Under the Department of Energy (DOE) Federal Energy Technology Center (FETC) Industry Program, Science {ampersand} Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metals detection that employs LIBS (18). The LIES-CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. As part of its contract with DOE FETC, SEA is scheduled to field test its LIBS-CPT system in September 1997.

Grisanti, Ames A.; Timpe, Ronald C.; Foster, H.J.; Eylands, Kurt E.; Crocker, Charlene R.

1997-12-31T23:59:59.000Z

39

PROCESS FOR SEPARATION OF HEAVY METALS  

DOE Patents (OSTI)

A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

Duffield, R.B.

1958-04-29T23:59:59.000Z

40

Original article Mobility of heavy metals in soil and their uptake  

E-Print Network (OSTI)

Original article Mobility of heavy metals in soil and their uptake by sunflowers grown at different) Abstract - A pot trial was carried out to study the effect of heavy metals on sunflowers (Helianthus annuus L.) grown on three different soils at different levels of heavy metal loading (added in 1987

Recanati, Catherine

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heavy Metal Immobilization Through Phosphate and Thermal Treatment of Dredged Sediments  

Science Conference Proceedings (OSTI)

Disposal of dredged sediments is expensive and poses a major challenge for harbor dredging projects. Therefore beneficial reuse of these sediments as construction material is highly desirable assuming contaminants such as heavy metals are immobilized and organics are mineralized. In this research, the effect of the addition of 2.5% phosphate, followed by thermal treatment at 700 C, was investigated for metal contaminants in dredged sediments. Specifically, Zn speciation was evaluated, using X-ray absorption spectroscopy (XAS), by applying principal component analysis (PCA), target transformation (TT), and linear combination fit (LCF) to identify the main phases and their combination from an array of reference compounds. In dredged sediments, Zn was present as smithsonite (67%) and adsorbed to hydrous manganese oxides (18%) and hydrous iron oxides (15%). Phosphate addition resulted in precipitation of hopeite (22%), while calcination induced formation of spinels, gahnite (44%), and franklinite (34%). Although calcination was previously used to agglomerate phosphate phases by sintering, we found that it formed sparingly soluble Zn phases. Results from the U.S. EPA toxicity characteristic leaching procedure (TCLP) confirmed both phosphate addition and calcination reduced leachability of heavy metals with the combined treatment achieving up to an 89% reduction.

Ndiba,P.; Axe, L.; Boonfueng, T.

2008-01-01T23:59:59.000Z

42

Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996  

Science Conference Proceedings (OSTI)

Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

NONE

1996-07-01T23:59:59.000Z

43

Bead and Process for Removing Dissolved Metal Contaminants  

DOE Patents (OSTI)

A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

2005-01-18T23:59:59.000Z

44

EM Task 13 -- Cone penetrometer for subsurface heavy metals detection. Semi-annual report, April 1--September 30, 1997  

SciTech Connect

Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations. Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time-consuming and costly. Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices including soil. Science and Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metal detection that employs LIBS. The LIBS/CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. The overall objectives of this project are to evaluate potential calibration techniques for the LIBS/CPT instrument and to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field.

Grisanti, A.A.; Timpe, R.C.; Foster, H.J.; Eylands, K.E.; Crocker, C.R.

1997-12-31T23:59:59.000Z

45

Wastewaters at SRS where heavy metals are a potential problem  

SciTech Connect

The principal objective of this report is to identify and prioritize heavy metal-containing wastewaters at the Savannah River Site (SRS) in terms of their suitability for testing of and clean-up by a novel bioremediation process being developed by SRTC. This process involves the use of algal biomass for sequestering heavy metal and radionuclides from wastewaters. Two categories of SRS wastewaters were considered for this investigation: (1) waste sites (primarily non-contained wastes managed by Environmental Restoration), and (2) waste streams (primarily contained wastes managed by Waste Management). An attempt was made to evaluate all sources of both categories of waste throughout the site so that rational decisions could be made with regard to selecting the most appropriate wastewaters for present study and potential future treatment. The investigation included a review of information on surface and/or groundwater associated with all known SRS waste sites, as well as waters associated with all known SRS waste streams. Following the initial review, wastewaters known or suspected to contain potentially problematic concentrations of one or more of the toxic metals were given further consideration.

Wilde, E.W.; Radway, J.C.

1994-11-01T23:59:59.000Z

46

Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc  

Science Conference Proceedings (OSTI)

The paper is a review and interpretation of research which has been conducted to determine the fate, transport, and potential effects of heavy metals and toxic organic compounds in Municipal Solid Waste (MSW)-composts and sewage sludges. Evaluation of research findings identified a number of pathways by which these contaminants can be transferred from MSW-compost or compost-amended soils to humans, livestock, or wildlife. The pathways consider direct ingestion of compost or compost-amended soil by livestock and children, plant uptake by food or feed crops, and exposure to dust, vapor, and water to which metals and organics have migrated.

Ryan, J.A.; Chaney, R.L.

1994-01-01T23:59:59.000Z

47

Heavy metals processing near-net-forming summary progress report  

SciTech Connect

This study utilized a converging-diverging nozzle to spray-form an alloy having a weight percent composition of 49.6% iron, 49.6% tungsten, and 0.8% carbon into samples for analysis. The alloy was a surrogate that displayed metallurgical characteristics similar to the alloys used in the heavy metals processing industry. US DOE facilities are evaluating advanced technologies which can simplify component fabrication, reduce handling steps, and minimize final machining. The goal of producing net-shaped components can be approached from several directions. In spray forming, molten metal is converted by a nozzle into a plume of fine droplets which quickly cool in flight and solidify against a substrate. The near-final dimension product that is formed receives additional benefits from rapid solidification. This single-step processing approach would aid the heavy metals industry by streamlining fabrication, improving production yields, and minimizing the generation of processing wastes. This Program effort provided a large selection of as-sprayed specimens. These samples were sprayed with gas-to-metal mass ratios ranging from 0.8:1 to 4:1. Samples targeted for analysis were produced from different spray conditions. Metallography on some samples revealed areas that were fully dense and homogeneous at 5,000X. These areas averaged grain sizes of 1 micron diameter. Other samples when viewed at 2,000X were highly segregated in the 10 micron diameter range. Deposit efficiencies of greater than 90% were demonstrated using the untailored spray system. Discharge gases were analyzed and two categories of particles were identified. One category of particle had a chemical composition characteristic of the alloy being sprayed and the second type of particle had a chemical composition characteristic of the ceramics used in the spray system component fabrication. Particles ranged in size from 0.07 to 3 microns in diameter. 8 refs., 67 figs., 20 tabs.

Watson, L.D. [Custom Spray Technologies, Inc., Rigby, ID (United States); Thompson, J.E. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1994-09-01T23:59:59.000Z

48

The Leaching Behavior of Heavy Metals in MSWI Bottom Ash ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... The Leaching Behavior of Heavy Metals in MSWI Bottom Ash by Carbonation Reaction with Diffeent Water Content by Nam-Il Um, Kwang-Suk ...

49

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

50

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

51

Trace metals in heavy crude oils and tar sand bitumens  

SciTech Connect

Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

Reynolds, J.G.

1990-11-28T23:59:59.000Z

52

Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent  

SciTech Connect

A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

2012-02-28T23:59:59.000Z

53

Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea  

Science Conference Proceedings (OSTI)

This study aims to estimate the spatial distribution patterns of six heavy metals: Arsenic (As), Cadmium (Cd), Copper (Cu), Mercury (Hg), Plumbum (Pb), Zinc (Zn) in the sediments of Caspian Sea. Ordinary kriging (OK), genetic algorithm based on artificial ... Keywords: Artificial neural network, Caspian Sea, Fuzzy inference system, Genetic algorithm, Heavy metals, Ordinary kriging, Spatial patterns

S. M. Kazemi; S. M. Hosseini

2011-03-01T23:59:59.000Z

54

Placental concentrations of heavy metals in a mother-child cohort  

SciTech Connect

Heavy metals are environmental contaminants with properties known to be toxic for wildlife and humans. Despite strong concerns about their harmful effects, little information is available on intrauterine exposure in humans. The aim of this study was to evaluate prenatal exposure to As, Cd, Cr, Hg, Mn, and Pb and its association with maternal factors in a population-based mother-child cohort in Southern Spain. Between 2000 and 2002, 700 pregnant women were recruited and 137 placentas from the cohort were randomly selected and analyzed for the selected metals by atomic absorption. Maternal sociodemographic and lifestyle factors were obtained by questionnaire after delivery. Bivariate analysis and multivariate linear regression were performed. Cd and Mn concentrations were detected in all placentas, while Cr, Pb, and Hg were found in 98.5%, 35.0%, and 30.7% of samples, respectively. The highest concentrations were observed for Pb (mean: 94.80 ng/g wet weight of placenta), followed by Mn (63.80 ng/g), Cr (63.70 ng/g), Cd (3.45 ng/g), and Hg (0.024 ng/g). Arsenic was not detected in any sample. Gestational age and smoking during pregnancy were associated with placental Cd concentrations, while no factor appeared to influence concentrations of Cr, Hg, Mn, or Pb. In comparison to results of European studies, these concentrations are in a low-intermediate position. Studies are required to investigate the factors contributing to early exposure to heavy metals and to determine how placental transfer of these toxic compounds may affect children's health.

Amaya, E., E-mail: eamayag@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain); Gil, F. [Department of Legal Medicine, Toxicology and Physic Anthropology, Faculty of Medicine, University of Granada, 18071 Granada (Spain)] [Department of Legal Medicine, Toxicology and Physic Anthropology, Faculty of Medicine, University of Granada, 18071 Granada (Spain); Freire, C. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain) [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain); National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), 21041-210 Rio de Janeiro (Brazil); Olmedo, P. [Department of Legal Medicine, Toxicology and Physic Anthropology, Faculty of Medicine, University of Granada, 18071 Granada (Spain)] [Department of Legal Medicine, Toxicology and Physic Anthropology, Faculty of Medicine, University of Granada, 18071 Granada (Spain); Fernandez-Rodriguez, M. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain)] [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain); Fernandez, M.F.; Olea, N. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain) [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada (Spain); CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain)

2013-01-15T23:59:59.000Z

55

Experimental investigation and thermodynamic modeling of extraction of heavy metal ions from aqueous solutions by chelation in supercritical carbon dioxide  

E-Print Network (OSTI)

Wastewater streams containing heavy metals are common in industry. To prevent the contamination of clean water sources, the Clean Water Act specifies limits on the heavy metal concentrations of industrial waste water. This creates a strong need for developing cost effective and environmentally friendly metal removal technologies. Solvent extraction has been recognized as one of the best methods for removing metals from wastewater. Although the metals are easily removed, this process has two major disadvantages. First, the solvent/metal solution must be subsequently purified. Second, since the solvent may be miscible in the aqueous phase, the residual solvent must be removed from the water stream. These disadvantages can be eliminated by substituting conventional organic solvents with supercritical fluids. The main objective of this research has been to investigate the potential and feasibility of heavy metal ion extraction through chelation in supercritical CO2. Copper has been chosen as the model contaminant as it is frequently found in industrial waste streams. Different chelating agents have been tested to find the most appropriate one for copper. Analytical methods have been developed to quantify supercritical and aqueous phase compositions. Specifically, an Atomic Absorption Analyzer and a Gas Chromatograph have been employed. Copper ions have been successfully extracted up to 97% on different isotherms. Considering the phase equilibria and the thirteen reactions taking place in the system, a thermodynamic model has been developed. This model predicts the system pH which is a important factor in design of metal extraction units. With the model the efficiency of the extraction with different chelating agents at different temperatures and pressures is easily estimated. The model is also capable of calculating the concentrations of chemical species present in the system. This study proposed a novel and viable technique for the remediation of metal ions in waste water streams. In conjunction with the developed model the efficiency of this process for a specific industrial application can be accurately estimated. The results of this study demonstrate that this process is both environmentally friendly and economically feasible for wide spread industrial use.

Uyansoy, Hakki

1995-01-01T23:59:59.000Z

56

Immobilization of heavy metals by calcium sulfoaluminate cement  

Science Conference Proceedings (OSTI)

Two types of calcium sulfoaluminate cement containing 20% and 30% phosphogypsum, respectively, were investigated for their ability in hazardous waste stabilization. Fourteen series of pastes were prepared, each containing the following soluble salt: Na{sub 2}CrO{sub 4}.4H{sub 2}O; Na{sub 2}Cr{sub 2}O{sub 7}.2H{sub 2}O; CrCl{sub 3}.6H{sub 2}O; Pb(NO{sub 3}){sub 2}; Zn(NO{sub 3}){sub 2}.6H{sub 2}O; ZnSO{sub 4}.7H{sub 2}O; and CdCl{sub 2}.5H2O. The level of pollution was 0.069 mol of heavy metal per Kg of cement. The study has been carried out by means of X-ray diffraction, thermal analysis, scanning electron microscopy, mercury intrusion porosimetry, electrical conductivity, and leaching tests. Very good retention of lead, cadmium, zinc and trivalent chromium is observed. The retention of hexavalent chromium depends upon the nature of the binder: the cement containing 20% gypsum develops the best behaviour. This is explained by the microstructure of the hydrated paste: in the paste containing 30% gypsum, delayed ettringite precipitates and damages the hardened paste.

Peysson, S. [Unite de Recherche en Genie Civil-MATERIAUX, Institut National des Sciences Appliquees de Lyon, Domaine Scientifique de la Doua, Batiment J. Tuset, 12, Avenue des Arts, 69 621 Villeurbanne Cedex (France); Pera, J. [Unite de Recherche en Genie Civil-MATERIAUX, Institut National des Sciences Appliquees de Lyon, Domaine Scientifique de la Doua, Batiment J. Tuset, 12, Avenue des Arts, 69 621 Villeurbanne Cedex (France)]. E-mail: Jean.Pera@insa-lyon.fr; Chabannet, M. [Unite de Recherche en Genie Civil-MATERIAUX, Institut National des Sciences Appliquees de Lyon, Domaine Scientifique de la Doua, Batiment J. Tuset, 12, Avenue des Arts, 69 621 Villeurbanne Cedex (France)

2005-12-15T23:59:59.000Z

57

Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana  

Science Conference Proceedings (OSTI)

The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevated concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.

Woodward, D.F. (National Fisheries Contaminant Research Center, Jackson, WY (United States)); Brumbaugh, W.G.; DeLonay, A.J.; Little, E.E. (National Fisheries Contaminant Research Center, Columbia, MO (United States)); Smith, C.E. (Bozeman Fish Technology Center, MT (United States))

1994-01-01T23:59:59.000Z

58

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

Science Conference Proceedings (OSTI)

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

59

Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals  

SciTech Connect

433 of 9384 ) United States Patent 5,000,859 Suciu ,   et al. March 19, 1991 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Suciu, Dan F. (Idaho Falls, ID); Wikoff, Penny M. (Idaho Falls, ID); Beller, John M. (Idaho Falls, ID); Carpenter, Charles J. (Lynn Haven, FL)

1991-01-01T23:59:59.000Z

60

Fiber optic/cone penetrometer system for subsurface heavy metals detection  

Science Conference Proceedings (OSTI)

This document describes a project designed to develop an intergrated fiber optic sensor/cone penetrometer system to analyze the heavy metals content of the subsurface as a site characterization tool.

Saggese, S.; Greenwell, R.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03T23:59:59.000Z

62

Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

63

Radioactively Contaminated Scrap Metal An International Approach to Monitoring, Interception & Managing  

E-Print Network (OSTI)

of uncontrolled radioactive source incidents. Aside from radiation exposure to workers and the public development of a database where countries can report scrap radiation incidents. Training: InternationalRadioactively Contaminated Scrap Metal An International Approach to Monitoring, Interception

64

Study of Metal Contamination in CMOS Image Sensors by Dark ...  

Science Conference Proceedings (OSTI)

Accelerated Light Induced Degradation, ALID, for Monitoring of Defects in PV Silicon .... Small Molecule/Metal Phthalocyanine Based Organic Photovoltaics.

65

Treatability studies and large-scale treatment of aqueous mixed waste containing heavy metals  

SciTech Connect

Wastes have accumulated at the Idaho National Engineering Laboratory through routine laboratory practices, experimental engineering operations, and decommissioning and decontamination of nuclear reactor facilities. A storage tank at the Test Area North held approximately 129,000 L of acidic wastewater and contained prohibited levels of lead and mercury. Radioactive constituents were also present; the most predominant being radiocesium Cs-137 and radiocobalt Co-60. Bench-scale studio were undertaken to evaluate ion exchange as a means of removing the contaminants. A set of breakthrough curves was obtained and identified capacity constraints, selectivities, and operating requirements of candidate resins. Treatment studies indicated that Purolite S-920 resin could effectively remove mercury, while Rohm and Haas` Amberlite 200-CH was used for lead and radionuclide removal. Based on these laboratory tests a full-scale facility, using multiple ion exchange columns, was designed and operated in the spring of 1994. The liquid effluents were discharged to an onsite evaporation pond and met RCRA disposal limits for hazardous metals and self-imposed radionuclide limits. All secondary wastes and residues were sampled and subjected to the to)dc characteristic leaching procedure. The resulting leachate concentrations were below RCRA discharge limits and, therefore, these will be disposed of at the onsite low-level disposal facility. After concluding the tank wastewater operations, enough reserve resin capacity was available to treat three additional mixed wastes residing onsite. These totaled about 1,900 L (500 gal) and contained prohibited levels of chromium, cadmium, and barium. Laboratory studies demonstrated that these heavy metals could also be removed by the existing resins. Treatment was performed at the full-scale facility with the effluents discharged to the evaporation pond.

Haefner, D.R.

1995-12-01T23:59:59.000Z

66

Method for removal of heavy metal from molten salt in IFR fuel pyroprocessing  

SciTech Connect

This report details the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR) which involves electrorefining spent fuel in a molten salt electrolyte (LiCl-KCI-U/PuCl{sub 3}) at 500{degree}C. The total heavy metal chloride concentration in the salt will be about 2 mol %. At some point, the concentrations of alkali, alkaline earth, and rare earth fission products in the salt must be reduced to lower the amount of heat generated in the electrorefiner. The heavy metal concentration in the salt must be reduced before removing the fission products from the salt. The operation uses a lithium-cadmium alloy anode that is solid at 500{degree}C, a solid mandrel cathode with a ceramic catch crucible below to collect heavy metal that falls off it, and a liquid cadmium cathode. The design criteria that had to be met by this equipment included the following: (1) control of the reduction rate by lithium, (2) good separation between heavy metal and rare earths, and (3) the capability to collect heavy metal and rare earths over a wide range of salt compositions. In tests conducted in an engineering-scale electrorefiner (10 kg uranium per cathode), good separation was achieved while removing uranium and rare earths from the salt. Only 13% of the rare earths was removed, while 99.9% of the uranium in the salt was removed; subsequently, the rare earths were also reduced to low concentrations. The uranium concentration in the salt was reduced to 0.05 ppm after uranium and rare earths were transferred from the salt to a solid mandrel cathode with a catch crucible. Rare earth concentrations in the salt were reduced to less than 0.01 wt % in these operations. Similar tests are planned to remove plutonium from the salt in a laboratory-scale (100--300 g heavy metal) electrorefiner.

Gay, E.C.; Miller, W.E.; Laidler, J.J.

1994-02-01T23:59:59.000Z

67

Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance  

Science Conference Proceedings (OSTI)

Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany)] [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)] [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany)] [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)] [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

2012-02-15T23:59:59.000Z

68

REVIEW ARTICLE FOCUS Quantum criticality in heavy-fermion metals  

E-Print Network (OSTI)

again1 . The transformation between ice and water also illustrates another concept in phase transitions the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy a quantum phase transition to a new ground state. As simple as this sounds, quantum phase transitions

Loss, Daniel

69

Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida  

SciTech Connect

A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

Seki, Hideshi; Suzuki, Akira [Hokkaido Univ., Hakodate (Japan)

1998-10-01T23:59:59.000Z

70

Contaminated scrap metal management on the Oak Ridge Reservation  

SciTech Connect

Large quantities of scrap metal are accumulating at the various Department of Energy (DOE) installations across the country as a result of ongoing DOE programs and missions in concert with present day waste management practices. DOE Oak Ridge alone is presently storing around 500,000 tons of scrap metal. The local generation rate, currently estimated at 1,400 tons/yr, is expected to increase sharply over the next couple of years as numerous environmental restoration and decommissioning programs gain momentum. Projections show that 775,000 tons of scrap metal could be generated at the K-25 Site over the next ten years. The Y-12 Plant and Oak Ridge National Laboratory (ORNL) have similar potentials. The history of scrap metal management at Oak Ridge and future challenges and opportunities are discussed.

Hayden, H.W.; Stephenson, M.J.; Bailey, J.K.; Weir, J.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Gilbert, W.C. [USDOE Oak Ridge Operations Office, TN (United States)

1993-09-01T23:59:59.000Z

71

Innovative technologies for recycling contaminated concrete and scrap metal  

SciTech Connect

Decontamination and decommissioning of US DOE`s surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019.

Bossart, S.J. [USDOE Morgantown Energy Technology Center, WV (United States); Moore, J. [USDOE Oak Ridge Operations Office, TN (United States)

1993-09-01T23:59:59.000Z

72

Using alternative chemicals in the flotation of heavy metals from lead mill tailings  

Science Conference Proceedings (OSTI)

The U.S. Bureau of Mines (USBM) investigated alternative chemicals for the flotation of heavy metal values from southeast Missouri lead mill tailings. The objectives of the study were to lower the Pb remaining in the reprocessed tailings to canola oil, to be as effective as classic sulfide flotation reagents.

Benn, F.W. [Bureau of Mines, Rolla, MO (United States)

1995-04-01T23:59:59.000Z

73

A fuzzy logic based system for heavy metals loaded wastewaters monitoring  

Science Conference Proceedings (OSTI)

The paper presents a fuzzy logic based system for wastewater quality monitoring with the purpose of attenuating the environmental impact of the heavy metals loaded wastewaters. The proposed method offers an improvement over the traditionally modelling ... Keywords: environmental indices, fuzzy logic, fuzzy rules, wastewater quality monitoring

Daniel Dunea; Mihaela Oprea

2010-04-01T23:59:59.000Z

74

Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash  

Science Conference Proceedings (OSTI)

Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.

Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Perutka, Libor [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Aschenbrenner, Philipp [Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Kraus, Petra [ASH DEC Umwelt AG, Donaufelderstrasse 101/4/5, A-1210 Vienna (Austria); Rechberger, Helmut [Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Winter, Franz, E-mail: franz.winter@tuwien.ac.at [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria)

2011-06-15T23:59:59.000Z

75

Influence of biologically-active substances on {sup 137}Cs and heavy metals uptake by Barley plant  

SciTech Connect

Available in abstract form only. Full text of publication follows: When solving the problem of contaminated agricultural lands rehabilitation, most of attention is concentrated on the effective means which allow the obtaining of ecologically safe production. The minimization of radionuclides and heavy metals (HM) content in farm products on the basis of their migration characteristics in agro-landscapes and with the regard for different factors influencing contaminants behavior in the soil-plant system is of great significance. Our investigation has shown that the effect of biologically active substances (BAS) using for seeds treatment on {sup 137}Cs transfer to barley grown on Cd contaminated soil was dependent on their properties and dosage, characteristics of soil contamination and biological peculiarities of plants, including stage of plants development. Seeds treatment by plant growth regulator Zircon resulted in a significant increase in {sup 137}Cs activity in harvest (40- 50%), increase in K concentration and significant reduction in Ca concentration. Increased Cd content in soil reduced {sup 137}Cs transfer to barley plants by 30-60% (p<0,05) and Zircon application further reduced its concentration. Ambiol and El also reduced {sup 137}Cs uptake by roots and Cd and Pb phyto-toxicity. The experimental data do not make it possible to link the BAS effect on inhibition of {sup 137}Cs absorption by plants directly with their influence on HM phyto-toxicity. The dependence of Concentration Ratio of {sup 137}Cs on the Ambiol and El dose was not proportional and the most significant decrease in the radionuclide uptake by plants was reported with the use of dose showing the most pronounced stimulating effect on the barley growth and development. The pre-sowing seed treatment with Ambiol increased Pb absorption by 35-50% and, on the contrary, decreased Cd uptake by plants by 30-40%. (authors)

Kruglov, Stanislav; Filipas, Alexander [Russian Institute of Agricultural Radiology and Agroecology, 249020 Obninsk (Russian Federation)

2007-07-01T23:59:59.000Z

76

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

1991-01-01T23:59:59.000Z

77

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

1991-12-31T23:59:59.000Z

78

Comparison of methods for leaching heavy metals from composts  

SciTech Connect

This paper presents the determination of total iron, copper, zinc, chromium, nickel, lead, cadmium and mercury contents in the compost obtained from sorted municipal organic solid waste applying the following methods of sample mineralization: 40% hydrofluoric acid with preliminary incineration of a sample, a mixture of concentrated nitric(V) and chloric(VII) acids with preliminary incineration of organic matter and a mixture of nitric(V) and chloric(VII) acids without sample incineration. The speciation analysis of Tessier was used to estimate the bioavailability of the metals. Elution degrees of the mobile forms of the metals from the compost with 10% nitric(V) acid and 1 mol/dm{sup 3} hydrochloric acid were compared. The contents of the elements in the eluates were determined applying atomic absorption spectrometry.

Ciba, Jerzy; Zolotajkin, Maria; Kluczka, Joanna; Loska, Krzysztof; Cebula, Jan

2003-07-01T23:59:59.000Z

79

Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas  

DOE Patents (OSTI)

A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

Huang, Hann-Sheng; Livengood, Charles David

1997-12-01T23:59:59.000Z

80

Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake  

SciTech Connect

Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

2008-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Means for obtaining a metal ion beam from a heavy-ion cyclotron source  

DOE Patents (OSTI)

A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

Hudson, E.D.; Mallory, M.L.

1975-08-01T23:59:59.000Z

82

Fixation and partitioning of heavy metals in slag after incineration of sewage sludge  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The contents and partitioning of HMs in slag of sludge incineration were examined. Black-Right-Pointing-Pointer The fixation rate decreases with residential time and finally keeps a constant. Black-Right-Pointing-Pointer Water mass fraction of 55% is optimal for the sediment for Ni, Mn, Zn, Cu and Cr. Black-Right-Pointing-Pointer Water mass fraction of 75% is optimal for the sediment for Pb. Black-Right-Pointing-Pointer We found higher temperature versus lower non-residual fraction except that of Pb. - Abstract: Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100 Degree-Sign C, furnace residence time 0-60 min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100 Degree-Sign C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100 Degree-Sign C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20 min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.

Chen Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100082 (China); Yan Bo, E-mail: yanbo2007@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

2012-05-15T23:59:59.000Z

83

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay  

E-Print Network (OSTI)

Swan Lake is a sub-bay of the Galveston Bay system. The area received runoff from a tin smelter via the Wah Chang Ditch which ran through it in the past but the ditch is now cut off by a hurricane protection levee. An industrial waste disposal facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster, mussel, snail, crab, fish, shrimp, and spartina) in the area. Sediments and organisms were analyzed for total Ag, Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, and Zn. Water samples were analyzed for Cd, Cu, Fe, Mn, and Sn. The variabilities and geographic trends in sediment trace metals indicated that waste disposal and airborne inputs from facilities located at the Tex Tin site were likely sources for metal pollution found in the sediments. Sediments in the study area showed elevated trace metals relative to Galveston Bay and other Texas bay sediments. Three different samplings of the Wah Chang Ditch showed no temporal patterns in metal distribution in the sediments. Lead especially was uniformly high on the three different trips, respectively averaging 1250 (Trip 1), 893 (Trip H), and 1350 ppm (Trip V). Metal enrichments at depth in the sediment column indicated that the Swan Lake area has recently received less input of metal contaminated sediment than in the past. Anthropogenic inputs did not greatly influence the natural concentrations of Fe, Al, and Ni in sediments either in the past or at present. Most organisms showed very small spatial variations. However, the oysters in Swan Lake are enriched in most metals relative to Galveston Bay and other U. S. Gulf of Mexico oysters. The mussels in this study do not reflect the unusually elevated environmental metal concentration in the sediments from which they were taken. Iron and Pb concentrations in oysters seemed to be directly related to sediment concentrations at each location. Oysters show higher concentrations in most metals than those in mussels. The Zn level was II 3 times higher in oysters. For organisms collected from the Swan Lake area trace metal concentrations were generally in the order oysters > snail > crab > shrimp > fish. Metal concentrations in Wah Chang Ditch water were very elevated relative to those of the Brazos River and Galveston Bay and closely reflect those in sediments of the Wah Chang Ditch.

Park, Junesoo

1995-01-01T23:59:59.000Z

84

Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

85

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.  

Science Conference Proceedings (OSTI)

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

2004-11-01T23:59:59.000Z

86

Purification of alkali metal nitrates  

DOE Patents (OSTI)

A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

1985-05-14T23:59:59.000Z

87

Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility  

SciTech Connect

Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

Mack, J.E.; Williams, L.C.

1982-01-01T23:59:59.000Z

88

Heavy-metal toxicity phenomena in laboratory-scale ANFLOW bioreactors  

DOE Green Energy (OSTI)

An energy-conserving wastewater treatment system was developed based on an anaerobic, upflow (ANFLOW) bioreactor. Since many applications of the ANFLOW process could involve the treatment of wastewaters containing heavy metals, the potentially toxic effects of these metals on the biological processes occurring in ANFLOW columns (primarily acetogenesis and methanogenesis) were investigated. Both step and pulse inputs of zinc ranging from 100 to 1000 mg/L were added to synthetic wastewaters being treated in ANFLOW columns with 0.057-m/sup 3/ volumes. Column responses were used to develop descriptive models for toxicity phenomena in such systems. It was found that an inhibition function could be defined and used to modify a model based on plugflow with axial dispersion and first-order kinetics for soluble substrate removal. The inhibitory effects of zinc on soluble substrate removal were found to be predominantly associated with its sorption by biosolids. Sorption initially occurred in the lower regions of the column, but was gradually observed in higher regions as the sorption capacity of the lower regions was exhausted. Sorption phenomena could be described with the Freundlich equation. Sorption processes were accompanied by shifts of biological processes to regions higher in the columns. A regenerative process was observed when feeding of wastewaters without zinc was resumed. It was postulated that regeneration could be based on sloughing of layers of biofilms, or other biosolids involved in zinc sorption, followed by continued growth of lower layers of biofilms not involved in heavy-metal sorption.

Rivera, A.L.

1982-04-01T23:59:59.000Z

89

Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals  

DOE Patents (OSTI)

Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

Hobson, D.O.; Alexeff, I.; Sikka, V.K.

1987-08-10T23:59:59.000Z

90

Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals  

DOE Patents (OSTI)

Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

1988-01-01T23:59:59.000Z

91

EVALUATION OF A METHOD USING COLLOIDAL GAS APHRONS TO REMEDIATE METALS-CONTAMINATED MINE DRAINAGE WATERS  

SciTech Connect

Experiments were conducted in which three selected metals-contaminated mine drainage water samples were treated by chemical precipitation followed by flotation using colloidal gas aphrons (CGAs) to concentrate the precipitates. Drainage water samples used in the experiments were collected from an abandoned turn-of-the-century copper mine in south-central Wyoming, an inactive gold mine in Colorado's historic Clear Creek mining district, and a relatively modern gold mine near Rapid City, South Dakota. The copper mine drainage sample was nearly neutral (pH 6.5) while the two gold mine samples were quite acidic (pH {approx}2.5). Metals concentrations ranged from a few mg/L for the copper mine drainage to several thousand mg/L for the sample from South Dakota. CGAs are emulsions of micrometer-sized soap bubbles generated in a surfactant solution. In flotation processes the CGA microbubbles provide a huge interfacial surface area and cause minimal turbulence as they rise through the liquid. CGA flotation can provide an inexpensive alternative to dissolved air flotation (DAF). The CGA bubbles are similar in size to the bubbles typical of DAF. However, CGAs are generated at ambient pressure, eliminating the need for compressors and thus reducing energy, capital, and maintenance costs associated with DAF systems. The experiments involved precipitation of dissolved metals as either hydroxides or sulfides followed by flotation. The CGAs were prepared using a number of different surfactants. Chemical precipitation followed by CGA flotation reduced contaminant metals concentrations by more than 90% for the copper mine drainage and the Colorado gold mine drainage. Contaminant metals were concentrated into a filterable sludge, representing less than 10% of the original volume. CGA flotation of the highly contaminated drainage sample from South Dakota was ineffective. All of the various surfactants used in this study generated a large sludge volume and none provided a significant concentration factor with this sample. For the two samples where CGA flotation was effective, the separation was very rapid and the concentrate volume was reduced when compared to gravity separation under similar conditions. Effective separations were achieved with very low chemical dosages and low residence times, suggesting the possibility of economic viability for processes based on this concept. The CGA flotation experiments described in the following report were conducted to provide preliminary data with which to assess the technical feasibility of using the method for remediation of metals-contaminated mine drainage waters. The experiments were conducted using common, low-cost, precipitating reagents and CGA prepared from several surfactants. Results were evaluated in terms of metals concentration reduction, reagent consumption, and concentrate volume. The results of these preliminary experiments indicate that CGA flotation may be a useful tool for the treatment of some types of mine drainage.

R. Williams Grimes

2002-06-01T23:59:59.000Z

92

In situ removal of contamination from soil  

DOE Patents (OSTI)

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

93

NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS  

Science Conference Proceedings (OSTI)

Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

Roederer, Ian U.; Thompson, Ian B. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sobeck, Jennifer S. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Cowan, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Frebel, Anna [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Ivans, Inese I. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schatz, Hendrik [Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824 (United States); Sneden, Christopher [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

2012-12-15T23:59:59.000Z

94

Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst  

DOE Patents (OSTI)

A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

Gorin, Everett (San Rafael, CA)

1981-01-01T23:59:59.000Z

95

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

96

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

97

Heavy Element Dispersion in the Metal-Poor Globular Cluster M92  

E-Print Network (OSTI)

Dispersion among the light elements is common in globular clusters (GCs), while dispersion among heavier elements is less common. We present detection of r-process dispersion relative to Fe in 19 red giants of the metal-poor GC M92. Using spectra obtained with the Hydra multi-object spectrograph on the WIYN Telescope at Kitt Peak National Observatory, we derive differential abundances for 21 species of 19 elements. The Fe-group elements, plus Y and Zr, are homogeneous at a level of 0.07-0.16 dex. The heavy elements La, Eu, and Ho exhibit clear star-to-star dispersion spanning 0.5-0.8 dex. The abundances of these elements are correlated with one another, and we demonstrate that they were produced by r-process nucleosynthesis. This r-process dispersion is not correlated with the dispersion in C, N, or Na in M92, indicating that r-process inhomogeneities were present in the gas throughout star formation. The r-process dispersion is similar to that previously observed in the metal-poor GC M15, but its origin in M...

Roederer, Ian U

2011-01-01T23:59:59.000Z

98

HEAVY-ELEMENT DISPERSION IN THE METAL-POOR GLOBULAR CLUSTER M92  

SciTech Connect

Dispersion among the light elements is common in globular clusters (GCs), while dispersion among heavier elements is less common. We present detection of r-process dispersion relative to Fe in 19 red giants of the metal-poor GC M92. Using spectra obtained with the Hydra multi-object spectrograph on the WIYN Telescope at Kitt Peak National Observatory, we derive differential abundances for 21 species of 19 elements. The Fe-group elements, plus Y and Zr, are homogeneous at a level of 0.07-0.16 dex. The heavy-elements La, Eu, and Ho exhibit clear star-to-star dispersion spanning 0.5-0.8 dex. The abundances of these elements are correlated with one another, and we demonstrate that they were produced by r-process nucleosynthesis. This r-process dispersion is not correlated with the dispersion in C, N, or Na in M92, indicating that r-process inhomogeneities were present in the gas throughout star formation. The r-process dispersion is similar to that previously observed in the metal-poor GC M15, but its origin in M15 or M92 is unknown at present.

Roederer, Ian U. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sneden, Christopher, E-mail: iur@obs.carnegiescience.edu [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States)

2011-07-15T23:59:59.000Z

99

Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Streams  

E-Print Network (OSTI)

Contact: Dwayne A. Elias (eliasda@ornl.gov, 865-574-0956) DOE/Office of Science/Biological & Environmental. Elias (eliasda@ornl.gov, 865-574-0956) DOE/Office of Science/Biological & Environmental Research #12;

100

Heavy Metals contamination in two bioluminescent bays of Puerto Rico Yadira Soto Viruet  

E-Print Network (OSTI)

Forest Science 46(4) 2000 521 Emergy Evaluation of Reforestation Alternatives in Puerto Rico Howard ways of reforesting degraded lands in Puerto Rico were evaluated using emergy (spelled with an "m for six scenarios for reforestation of degraded land in Puerto Rico: (1) the natural succession within

Gilbes, Fernando

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technical assessment of processes to enable recycling of low-level contaminated metal waste  

Science Conference Proceedings (OSTI)

Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

Reimann, G.A.

1991-10-01T23:59:59.000Z

102

Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed monitoring of coupled hydrological, geochemical/geophysical, and microbial processes. In the following manuscript we will (1) discuss contaminant fate and transport problems in humid regimes, (2) efforts to immobilize metals and radionuclides in situ via bioremediation, and (3) state-of-the-art techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides. These included (a) in situ solution and solid phase monitoring, (b) in situ and laboratory microbial community analysis, (c) noninvasive geophysical methods, and (d) solid phase speciation via high resolution spectroscopy.

Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

2004-11-14T23:59:59.000Z

103

Metagenomic and Cultivation-Based Analysis of Novel Microorganisms and Functions in Metal-Contaminated Environments  

E-Print Network (OSTI)

uranium and vanadium-contaminated site, the Old Rifle Mill in Rifle, Colorado, USA. From these enrichments

Yelton, Alexis Pepper

2012-01-01T23:59:59.000Z

104

Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals  

Science Conference Proceedings (OSTI)

This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 deg. C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.

Sun Ying; Zheng Jianchang [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Zou Luquan [Shanghai Center of Solid Waste Disposal, Shanghai (China); Liu Qiang; Zhu Ping [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Qian Guangren, E-mail: grqian@mail.shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

2011-02-15T23:59:59.000Z

105

The development of coil short circuits when transformer windings become contaminated with metal-containing colloidal particles  

SciTech Connect

The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may serve as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.

L'vov, S. Yu. ['Presselektro' Ltd. (Russian Federation); Lyut'ko, E. O. [JSC 'R and D Center for Power Engineering' (Russian Federation); Bondareva, V. N.; Komarov, V. B. [Russian Academy of Sciences, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); L'vov, Yu. N. [JSC 'R and D Center for Power Engineering' (Russian Federation)

2012-01-15T23:59:59.000Z

106

Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)  

DOE Green Energy (OSTI)

Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

Ellison, P.G.; Hyder, M.L.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); Coryell, E.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

107

Removal of heavy metals from aqueous waste streams using surface-modified nanosized TiO{sub 2} photocatalysts.  

DOE Green Energy (OSTI)

Titanium dioxide (TiO{sub 2}) colloidal particles ({approximately}45{angstrom}) whose surfaces were modified with chelating agents for photocatalytic removal of heavy-metal ions and their subsequent reduction to metallic form were investigated. Experiments were performed on nanoparticle TiO{sub 2} colloids derivatized with bidentate and tridentate ligands (thiolactic acid [TLA], cysteine, and alanine [ALA]) in batch mode in a photoreactor with 254nm light. We used catalysts designed and synthesized for selective and efficient removal of Pb and Cu with and without added hole scavenger (methanol). Parallel experiments also have been carried out in the dark to study metal ion adsorption properties. Solutions have been filtered to remove TiO{sub 2}, and metal particulates. Both the native solution and the metal deposited on the nanocrystalline TiO{sub 2} particles were analyzed. Results demonstrate that for the case of lead, the most effective TiO{sub 2} surface modifier was TLA (>99% Pb(II) removed from solution). Experiments performed to study Cn removal using TiO{sub 2} colloids modified with alanine showed that copper ions were effectively removed and reduced to metallic form in the presence of methanol.

Meshkov, N. K.

1998-08-27T23:59:59.000Z

108

Reactant Carrier Microfoam Technology for In-Situ Remediation of Radionuclide and Metallic Contaminants in Deep Vadose Zone  

SciTech Connect

The U.S. Department of Energy (DOE) is currently developing advanced remedial technologies for addressing metal and radionuclide (Cr, Tc, and U) contamination in deep vadose zone environments. One of the transformational technology alternatives being considered by the DOE Office of Environmental Management, is the use of Reactant Carrier Microfoams (RCM) as a minimally invasive method for delivery and emplacement of reagents for in-situ immobilization of contaminants. Penetration of low permeability zones deep within the subsurface for Enhance Oil Recovery (EOR) has been well-established. Use of surfactant foams have also been explored for mobilizing DNAPL from sediments. So far, the concept of using RCM for immobilizing labile metal and long-lived radionuclide contaminants in the deep vadose zone has not been explored. We, at the Pacific Northwest National Laboratory (PNNL), conducted studies to develop stable foams as a means to deliver reductive and/or precipitating reactants to the deep subsurface. To test the feasibility of this approach, we developed a preliminary foam formulation consisting of a mixture of an anionic and a nonionic surfactant with a reactant consisting of a 9:1 blend of tripoly- and orthophosphate. The MSE Technology Applications, Inc (MSE) in collaboration with PNNL, conducted a scale-up test to evaluate the efficacy of this reactant carrier foam for in-situ immobilization of U containing sediment zones in a heterogenous sediment matrix. The data indicated that successful immobilization of U contamination is feasible using specifically tailored reactant carrier foam injection technology. Studies are continuing for developing more robust optimized RCM for highly mobile contaminants such as Cr (VI), Tc (VII) in the deep vadose zone.

Mattigod, Shas V.; Zhong, Lirong; Jansik, Danielle P.; Foote, Martin; Hart, Andrea T.; Wellman, Dawn M.

2010-07-01T23:59:59.000Z

109

Heavy metal inventory and fuel sustainability of recycling TRU in FBR design  

Science Conference Proceedings (OSTI)

Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239. Higher breeding ratio of MOX fuel and TRU fuel types at equilibrium condition are estimated from converted fertile material during reactor operation into fissile material of plutonium such as converted uranium fuel (converted U-238 into Pu-239) or additional converted fuel from MA into Pu-238 and changes into Pu-239 by capturing neutron. Loading LWR SF gives better fuel breeding capability and increase inventory of MA for doping material of MOX fuel; however, it requires more supply MA inventory for TRU fuel type.

Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2012-06-06T23:59:59.000Z

110

Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. Black-Right-Pointing-Pointer Increase in moisture and in temperature was opposite impact on HMs contribution. Black-Right-Pointing-Pointer The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 Degree-Sign C, 950 Degree-Sign C, and 1150 Degree-Sign C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 Degree-Sign C and 1150 Degree-Sign C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700-1000 Degree-Sign C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000-1200 Degree-Sign C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.

Zhang Yanguo; Li Qinghai; Jia Jinyan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Meng Aihong, E-mail: mengah@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Science and Technology, Tsinghua University, Beijing 100084 (China)

2012-12-15T23:59:59.000Z

111

Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake  

E-Print Network (OSTI)

Metals and sediment microbial biomass Ruxton, G. D. , and N.and sediment microbial biomass DiazRavina, M. , and E.Metals and sediment microbial biomass Hedges, J. I. , and J.

Gough, Heidi L.

2011-01-01T23:59:59.000Z

112

Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles  

SciTech Connect

The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

L'vov, S. Yu. [LLC 'Presselektro' (Russian Federation); Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F. [A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IFCE of RAS) (Russian Federation); Lyut'ko, E. O.; L'vov, Yu. N. [JSC 'R and D Centre for Power Engineering' (Russian Federation); Ershov, B. G. [A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IFCE of RAS) (Russian Federation)

2011-05-15T23:59:59.000Z

113

Evaluation of the impact of contaminant on trace metal content of compost.  

E-Print Network (OSTI)

??Literature reviews indicated that batteries, ferrous, non-ferrous materials, and electronic products are major contributors of trace metals in municipal solid waste (MSW). In order to… (more)

Zhou, Lixian

2010-01-01T23:59:59.000Z

114

Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...  

DOE Green Energy (OSTI)

The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

Terence L. Marsh

2004-05-26T23:59:59.000Z

115

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

116

Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals  

SciTech Connect

The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

1993-09-01T23:59:59.000Z

117

Pipelineable syncrude (synthetic crude) from heavy oil  

SciTech Connect

This patent describes a process for converting a metals-contaminated heavy crude oil characterized by an API gravity less than about 20{degrees} and a substantial Conradson Carbon Residue to a pipelineable and substantially upgraded syncrude with concomitant recovery of blown asphalt. It comprises: air-blowing at least the 650{degrees} F.{sup +} fraction of the heavy crude oil at a temperature of 390{degrees} to 600{degrees} F. under conditions effective to increase its combined oxygen content by at least 0.5 weight percent; deasphalting the air-blown crude oil with solvent whereby separately recovering a blown asphalt and an intermediate syncrude having a substantially lower concentration of metals and less Conradson Carbon residue than the heavy crude oil; and, visbreaking the intermediate syncrude at 800{degrees} to 950{degrees} F. and at a severity effective to impart to it pipelineable viscosity characteristics.

Rankel, L.A.

1989-06-12T23:59:59.000Z

118

Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments  

E-Print Network (OSTI)

Immobilization of Metals and Radionuclides in Contaminatedsubsurface metals and radionuclides. Research within DOE’stoxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a

2004-01-01T23:59:59.000Z

119

Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana  

SciTech Connect

The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as US Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. The authors evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m[sup 2] did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach--the Sediment Quality Triad--provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

Canfield, T.J.; Kemble, N.E.; Brumbaugh, W.G.; Dwyer, F.J.; Ingersoll, C.G.; Fairchild, J.F. (National Biological Survey, Columbia, MO (United States). Midwest Science Center)

1994-12-01T23:59:59.000Z

120

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network (OSTI)

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal dab was collected from the United States Geologic Survey (USGS) measurement and covered the twenty-one year span 1970- 1990. The ESRD data was gathered from the Texas Department of Health Kidney Program ESRD Registry for the five-year span 1988-1992. This registry included more than 99% of incident ESRD cases over the same time period. The 1990 U.S. Census data was used to estimate county population by age, race and sex. Exposure was defined as residence in a county with ground water measurements that fell in the highest quartile for each metal (mercury 0.297ug/, arsenic 3.216ug/l, lead 4.685ug/l, cadmium 1.423ug/l, cumulative metal level 8.911ug/l). Outcome was defined as an incident case of ESRD between the years 1988-1992 and examined as five-year incidence of ESRD per 10,000 persons. Among 254 Texas counties, 52 had at least 7 years of metal measurements for lead and cadmium, 51 counties had at least 7 years of metal measurements for arsenic and mercury and 50 counties had 7 years of measurements for all four metals. Linear and logistic regression procedures were carried out to examine the relationship between heavy metal ground water levels and incidence of ESRD. None of the metals demonstrated a statistically significant positive relationship with five-year incidence of ESRD per 10,000 persons. Counties with high levels of heavy metals did not indicate an increased odds of having a five-year ESRD incidence per 10,000 persons above the 1988-1992 state average. The percentage of Black or Hispanic persons in a county was a positive predictor of increased five-year incidence of ESRD per 10,000 persons.

Bishop, Scott Alan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste  

SciTech Connect

There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

G. B. Cotten (Parsons); J. D. Navratil (INEEL); H. B. Eldredge (U of Idaho)

1999-03-01T23:59:59.000Z

122

Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals  

SciTech Connect

An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

Mimendia, Aitor; Merkoci, Arben; Valle, Manel del [Sensors and Biosensors Group, Chemistry Dept., Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Legin, Andrey [Chemistry Dept, St. Petersburg University, Universitetskaya nab. 7/9, 199034 St. Petersburg (Russian Federation)

2009-05-23T23:59:59.000Z

123

Comparison of multiple ecogenomics methods for determining ecosystem function in uranium-contaminated environments  

E-Print Network (OSTI)

to attenuate nletal and radionuclide contamination.problem of metal and radionuclide contamination of soil and

2007-01-01T23:59:59.000Z

124

Carcinogenic heavy metals replace Ca{sup 2+} for DNA binding and annealing activities of mono-ubiquitinated annexin A1 homodimer  

Science Conference Proceedings (OSTI)

Mono-ubiquitinated annexin A1 was purified from rat liver nuclei. The homodimer form of mono-ubiquitinated annexin A1 was able to unwind dsDNA in a Mg{sup 2+}- and ATP-dependent manner, and to anneal ssDNA in a Ca{sup 2+}-dependent manner. Phospholipids decreased the concentration of Ca{sup 2+} required for maximal annealing activity. Heavy metals such as As{sup 3+}, Cr{sup 6+}, Pb{sup 2+} and Cd{sup 2+} substituted for Ca{sup 2+} in the ssDNA binding and annealing activities of annexin A1. While these metals inhibited the unwinding of dsDNA by nuclear annexin A1 in the presence of Mg{sup 2+} and ATP, they enhanced dsDNA-dependent ATPase activity of annexin A1. Heavy metals may have produced dsDNA, a substrate for the DNA unwinding reaction, via the DNA annealing reaction. DNA synthesomes were isolated from L5178Y tk(+/-) mouse lymphoma cells in exponential growth, and were found to contain helicase activities. The As{sup 3+}- or Cr{sup 6+}-induced increases in ssDNA binding activity of DNA synthesomes were reduced by a mono-specific anti-annexin A1 antibody, but not by anti-Ig antibody. Anti-annexin A1 antibody also blocked the inhibitory and stimulatory effects of As{sup 3+} or Cr{sup 6+} towards DNA unwinding and annealing activities of DNA synthesomes. Based on these observations, it can be concluded that the effects of heavy metals on DNA annealing and unwinding activities are mediated, at least in substantial part, through actions of the mono-ubiquitinated annexin A1 homodimer.

Hirata, Aiko; Corcoran, George B.; Hirata, Fusao, E-mail: fhirata@wayne.ed

2010-10-01T23:59:59.000Z

125

Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels  

Science Conference Proceedings (OSTI)

To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

2009-06-15T23:59:59.000Z

126

Portable spotter for fluorescent contaminants on surfaces  

DOE Patents (OSTI)

A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

Schuresko, Daniel D. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

127

Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams  

DOE Patents (OSTI)

Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

Spiegel, Ella F. (Louisville, CO); Sammells, Anthony F. (Boulder, CO)

2001-01-01T23:59:59.000Z

128

Superfund Record of Decision (EPA region 8): Libby Ground Water Contamination Site, Libby, Montana, September 1986. Final report  

SciTech Connect

Abandoned wood-treating operations on the mill property are the source of ground-water contamination at the Libby Ground Water Contamination site in the northwest corner of Montana. In 1979, shortly after installation of private wells, some homeowners detected the presence of a creosote odor, and EPA monitoring in 1981 confirmed ground-water contamination. Based on 1984 well sample results, Champion International Corporation implemented the Buy Water Plan. Under this program, individuals with contaminated ground water wells agree to cease using their wells and use water from the public water system operated by the City of Libby. The program, indefinite in term, would be terminated upon the elimination of the threat of contamination, if the well owner provides a written termination notice, or if other alternatives become available. The primary contaminants of concern include: VOCs, PAHs, PCP, organics, inorganics, heavy metals, and creosote. Selected remedies are proposed and included in the report.

Not Available

1986-09-26T23:59:59.000Z

129

HOW ENVIRONMENTAL RISK FROM LEACH ING OF HEAVY METALS IN ASH RESIDUES FROM COMBUSTION OF MUNIC IPAL SOLID WASTE  

E-Print Network (OSTI)

Laboratories which led to the use of acid tests such as the EP and TCLP tests. [25] 13 #12;CONCLUSIONS and soluble metals in the ash from Waste-to Energy (WTE) facilities has led to a public concern about why has led to the requirement for continuous monitoring of oxygen , carbon monoxide (CO) , and acid gases

Columbia University

130

Ecological Interactions Between Metals and Microbes That Impact Bioremediation  

DOE Green Energy (OSTI)

Previous work showed the correlation between bacterial biomass, population structure and the amount of lead, chromium and aromatic compounds present along a 21.6 m transect in which the concentrations of both heavy metals (Pb and Cr) and aromatic compounds varied 2-3 orders of magnitude. This work suggested that (a) biomass level was better correlated to the level of biodegradable organic C than the level of heavy metals, (b) microbial community composition differed between highly contaminated soils and uncontaminated ones, and (c) substantial microbial activity was found even in the highly contaminated soils. One confounding factor in these analyses was that the contaminated soils contained Pb, Cr, and aromatic hydrocarbons. Therefore, it was difficult to determine which factors were most important in the shifts of microbial community composition. Therefore, experiments were conducted in microcosms in which individual factors could be systematically varied. In this case, soils were used from the Seymour, IN site which had low levels of contamination, and the microbial community had little chance to adapt to heavy metals or aromatic compounds.

Konopka, Allan E.

2003-06-01T23:59:59.000Z

131

Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash  

Science Conference Proceedings (OSTI)

A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2008-11-15T23:59:59.000Z

132

[Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996  

Science Conference Proceedings (OSTI)

A critical requirement in DOE`s efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP`s ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities.

NONE

1996-07-01T23:59:59.000Z

133

Toxicity of metal-contaminated sediments from the upper Clark Fork River, Montana, to aquatic invertebrates and fish in laboratory exposures  

SciTech Connect

Sediments of the upper Clark Fork River, from the Butte and Anaconda area to Milltown Reservoir (230 km downstream), are contaminated with As, Cd, Cu, Pb, Mn, and Zn primarily from mining activities. The toxicity of pore water from these sediments was determined using Daphnia magna, rainbow trout, and Microtox[reg sign]. However, pore-water data from these exposures were questionable because of changes in the toxicity of pore-water samples after 5 to 7 d of storage. Whole-sediment tests were conducted with Hyalella azteca, Chironomus riparius, rainbow trout (Oncorhynchus mykiss) 21- to 28-d exposure and Daphnia magna. Sediment samples from Milltown Reservoir and the Clark Fork River were not generally lethal to test organisms. However, both reduced growth and delayed sexual maturation of amphipods were associated with exposure to elevated concentrations of metals in sediments from the reservoir and river. Relative sensitivity (most sensitive to least sensitive) of organisms in whole-sediment toxicity tests was: Hyalella azteca > Chironomus riparius > rainbow trout > Daphnia magna. Relative sensitivity (most sensitive to least sensitive) of the three end points evaluated with Hyalella azteca was: length > sexual maturation > survival. The lack of lethal effects on organisms may be related to temporal differences in sediment, acid-volatile sulfide, or organic carbon.

Kemble, N.E.; Brumbaugh, W.G.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G. (National Biological Survey, Columbia, MO (United States). Midwest Science Center); Monda, D.P. (Pyramid Lake Fisheries, Sutcliffe, NV (United States)); Woodward, D.F. (National Biological Survey, Jackson, WY (United States). Midwest Science Center)

1994-12-01T23:59:59.000Z

134

The Affect of the Hydrogen to Heavy Metal Ratio (H/HM) on Reactivity and Discharge Isotopics of Homogeneous Thoria-Urania Fuel  

DOE Green Energy (OSTI)

Calculations were performed using MOCUP, which includes the use of MCNP for neutron transport and ORIGEN for depletion. The MOCUP calculations were done using a unit cell (pin cell) model, where the ThO2 varied from 65-75wt% and the UO2 varied from 25-35wt%. The fission products and actinides being tracked in the calculations account for >97% of the parasitic captures in the fuel. The fuel pin was surrounded by four reflecting planes, where typical parameters were used for a 17x17 PWR assembly. The hydrogen to heavy metal ratio (H/HM) was varied by increasing or decreasing the water density in the cell. The results show that the drier lattices have insufficient reactivity due to the limited enrichment of the uranium. However, a slightly wetter lattice will increase the reactivity-limited burnup by 26% for the 25% UO2 – 75% ThO2, and 19% for the 35% UO2 – 65% ThO2 as compared to the standard coolant density. This is appears to be consistent with similar studies done with all-uranium lattices, where advantages are gained by hardening or further softening the neutron spectrum. Although some advantage is gained by softening the spectrum, the same can be said of all-uranium fueled cores. The spectral changes and, to a lesser extent, competing resonances between the 238U and bred-in 233U appear to hamper advantages in the conversion of thorium in homogeneous fuel that might otherwise be gained by shifting the neutron spectrum. Physically separating the uranium and thorium (e.g., in micro-heterogeneous and seed-and-blanket arrangements) have been shown alleviate this problem. A change in moderation may further enhance the reactivity-limited burnup of these lattices, and will be the focus of future work.

Weaver, Kevan Dean; Herring, James Stephen

2002-04-01T23:59:59.000Z

135

Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility  

E-Print Network (OSTI)

is located here. Also a fume hood suitable for radioactive work is here. Roghelio is the man to consult cool off (in a Erlenmeyer bottle under running water or using magnetic stirrer) before adding one drop of EtBr 2,5µl/50ml gel solution (stock solution's concentration is 10mg/ml) pipette stock solution

Maynard, J. Barry

136

MOIRA-PLUS: A decision support system for the management of complex fresh water ecosystems contaminated by radionuclides and heavy metals  

Science Conference Proceedings (OSTI)

The accidental release of radioactive substances into the environment leads to the necessity of applying suitable countermeasures for the restoration of the polluted environment. However, despite their obvious benefits, such interventions may result ... Keywords: Countermeasures, Decision systems, Fresh water ecosystems, MOIRA DSS, Modelling, Multi-attribute analysis

Luigi Monte; John E. Brittain; Eduardo Gallego; Lars Håkanson; Dmitry Hofman; Antonio Jiménez

2009-05-01T23:59:59.000Z

137

FORMING PROTECTIVE FILMS ON METAL  

DOE Patents (OSTI)

Methods are described of inhibiting the corrosion of ferrous metal by contact with heavy liquid metals such as bismuth and gallium at temperatures above 500 icient laborato C generally by bringing nltrogen and either the metal zirconium, hafnium, or titanium into reactlve contact with the ferrous metal to form a thin adherent layer of the nitride of the metal and thereafter maintaining a fractional percentage of the metal absorbed in the heavy liquid metal in contact with the ferrous metal container. The general purpose for uslng such high boiling liquid metals in ferrous contalners would be as heat transfer agents in liquid-metal-fueled nuclear reactors.

Gurinsky, D.H.; Kammerer, O.F.; Sadofsky, J.; Weeks, J.R.

1958-12-16T23:59:59.000Z

138

Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report  

SciTech Connect

The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States); Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Civil Engineering

1993-04-01T23:59:59.000Z

139

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents (OSTI)

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, Lamar T. (Knoxville, TN)

1988-01-01T23:59:59.000Z

140

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents (OSTI)

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, L.T.

1987-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lead contamination in street soils of Nairobi City and Mombasa Island, Kenya  

SciTech Connect

The advent of modern industrialization and, in particular, the motor vehicle has witnessed dramatic increases in lead usage both as a component of lead-acid storage battery and from 1923 as organic lead alkyl anti-knock additive in petroleum. Several workers have established a correlation between increasing lead concentration in roadside soils and vehicular traffic density. Although researchers studied the heavy metal content in Lake Victoria sediments, no urban roadside soils were investigated. Since lead is used as a petrol additive in Kenya, it is necessary to document the extent and magnitude of lead contamination of roadside soils in inland and coastal urban environments and evaluate its environmental implications.

Onyari, J.M.; Wandiga, S.O.; Njenga, G.K.; Nyatebe, J.O. (Univ. of Nairobi (Kenya))

1991-05-01T23:59:59.000Z

142

Contamination control device  

DOE Patents (OSTI)

A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

Clark, Robert M. (Ligonier, PA); Cronin, John C. (Greensburg, PA)

1977-01-01T23:59:59.000Z

143

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01T23:59:59.000Z

144

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13T23:59:59.000Z

145

Reversible photodeposition and dissolution of metal ions  

DOE Patents (OSTI)

A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

1994-01-01T23:59:59.000Z

146

Contaminant plumes containment and remediation focus area. Technology summary  

Science Conference Proceedings (OSTI)

EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

NONE

1995-06-01T23:59:59.000Z

147

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

148

Soil washing as a potential remediation technology for contaminated DOE sites  

Science Conference Proceedings (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. (Argonne National Lab., IL (United States)); Natsis, M.E. (Princeton Univ., NJ (United States)); Walker, J.S. (USDOE, Washington, DC (United States))

1993-01-01T23:59:59.000Z

149

Soil washing as a potential remediation technology for contaminated DOE sites  

Science Conference Proceedings (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. [Argonne National Lab., IL (United States); Natsis, M.E. [Princeton Univ., NJ (United States); Walker, J.S. [USDOE, Washington, DC (United States)

1993-03-01T23:59:59.000Z

150

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference Room 137-226 Presented by Darius Morris, Stanford Synchrotron Radiation Lightsource Fluid catalytic cracking (FCC) is a refining process for converting large and/or heavy molecules of oil feedstock into smaller and lighter hydrocarbons such as gasoline. During the cracking process, metal contaminants from the oil feedstock deactivate and restrict access into the catalyst particle, thus reducing the yield of gasoline byproducts. Full-field transmission X-ray microscopy (TXM) has been used to determine the 3D composition and structure of an equilibrated (spent) FCC particle in

151

Contamination Sources  

Science Conference Proceedings (OSTI)

...Some beryllium-monitored data obtained at LLNL for an 8 h TWA are (Ref 22): Machining beryllium metal: <0.0083 to 0.23 μg/m 3 Milling high-fired BeO: <0.08 to <0.1 μg/m 3 BeO parts cleaning: <0.05 μg/m 3 Laser welding beryllium metal: <0.035 μg/m 3...

152

Contaminated nickel scrap processing  

Science Conference Proceedings (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

153

Alkali metal nitrate purification  

DOE Patents (OSTI)

A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

1986-02-04T23:59:59.000Z

154

Method for separating constituents from solution employing a recyclable Lewis acid metal-hydroxy gel  

DOE Patents (OSTI)

This invention permits radionuclides, heavy metals, and organics to be extracted from solution by scavenging them with an amorphous gel. In the preferred embodiment, a contaminated solution (e.g. from soil washing, decontamination, or groundwater pumping) is transferred to a reaction vessel. The contaminated solution is contacted by the sequestering reagent which might contain for example, aluminate and EDTA anions in a 2.5 M NaOH solution. The pH of the reagent bearing solution is lowered on contact with the contaminated solution, or for example by bubbling carbon dioxide through it, causing an aluminum hydroxide gel to precipitate as the solution drops below the range of 1.8 to 2.5 molar NaOH (less than pH 14). This precipitating gel scavenges waste contaminants as it settles through solution leaving a clean supernatant which is then separated from the gel residue by physical means such as centrifugation, or simple settling. The gel residue containing concentrated contaminants is then redissolved releasing contaminants for separations and processing. This is a critical point: the stabilized gel used in this invention is readily re-dissolved by merely increasing the pH above the gels phase transition to aqueous anions. Thus, concentrated contaminants trapped in the gel can be released for convenient separation from the sequestering reagent, and said reagent can then be recycled.

Alexander, D.H.

1995-12-31T23:59:59.000Z

155

Predicting Nickel Precipitate Formation in Contaminated Soils. (3717)  

E-Print Network (OSTI)

Predicting Nickel Precipitate Formation in Contaminated Soils. (3717) Authors: E. Peltier* - Univ in contaminated soils plays a crucial role in determining the long term fate of toxic metal pollutants speciation in laboratory contaminated soils with thermodynamic and kinetic analyses of precipitate stability

Sparks, Donald L.

156

Bioremediation of uranium contaminated soils and wastes  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

Francis, A.J.

1998-12-31T23:59:59.000Z

157

Heavy Vehicle Propulsion Materials Program  

DOE Green Energy (OSTI)

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

Sidney Diamond; D. Ray Johnson

1999-04-26T23:59:59.000Z

159

Integrated decontamination process for metals  

DOE Patents (OSTI)

An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

1991-01-01T23:59:59.000Z

160

Ecological Interactions Between Metals and Microbes That Impact Bioremediation  

DOE Green Energy (OSTI)

Bacterial Community Diversity at a Mixed Waste Contaminated Site The correlation between bacterial population structure and lead, chromium and organic compounds present along a 21.6 m transect was examined. There was a gradient of heavy metal (Cr and Pb) and petroleum hydrocarbon contamination in these soils. A 16S rDNA analysis method and fatty acid methyl esters derived from phospholipids (PLFA) analysis were used to compare microbial communities. Soil microbial DNA was extracted and community fingerprint patterns for each sample location were produced by DGGE separation of the V3 region of the 16S rRNA genes amplified by PCR. Visual analysis of DGGE patterns indicated that sample locations with high concentrations of total toluene (12,000 mg kg-1), xylenes (8,000 mg kg-1), methylene chloride (10,000 mg kg-1), lead (17,000 mg kg-1) and chromium (3,200 mg kg-1) have a different community composition from the community with lower metals (200 mg kg-1) and organics (1200 mg kg-1) content. Microbial biomass, indicated by total phospholipid-P, was greatest in soils with highest organic contamination.

Konopka, Allan E.

2001-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

General information on process contaminants(3-MCPD). Reference list included. Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants deter

162

Resources Process Contaminants  

Science Conference Proceedings (OSTI)

General Information on process contaminants(3-MCPD). Reference list included. Resources Process Contaminants 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants dete

163

Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation  

DOE Green Energy (OSTI)

Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

Ow, David W. ow@pgec.ams.usda.gov

2000-09-01T23:59:59.000Z

164

Texas Bentonites as Amendments of Aflatoxin-Contaminated Poultry Feed  

E-Print Network (OSTI)

Aflatoxins are toxic organic compounds produced by fungi in grains. Moderately contaminated grains that cannot be used as food are often directed to animal feed. Economically-feasible detoxification measures for contaminated feeds are needed. The objectives of this research were to identify effective bentonites as aflatoxin adsorbents and to evaluate the performance of the clays as aflatoxin amendments in feed for broiler chickens. Five bentonite samples from Gonzales, Texas, USA were collected and analyzed against the published selection criteria for aflatoxin adsorbents: aflatoxin adsorption capacity, pH, cation exchange capacity (CEC), organic carbon, particle size distribution, and mineralogical and structural compositions. Two bentonites were identified as potentially good aflatoxin adsorbents based on the analyses. These two bentonites were selected for an in vivo poultry experiment where chickens were fed with aflatoxin-contaminated corn (1400 ppb) to test the detoxification efficacy of the clays. Detailed mineralogy analyses were conducted on these two samples (4TX and 1TX) after size fractionation. Clay 4TX and 1TX contained 87 percent and 65 percent clay, respectively. Smectite was the dominant mineral phase in both clay fractions. Quartz and feldspars were also present in both samples. These minerals are unlikely to cause harmful effects on the chickens. The presence of pyrite and heavy metals in 1TX raised concerns about its use in animal feed. The clays were introduced into feed by mixing the dry bentonite powder with the feed for twelve minutes in a mechanical mixer. The body weight was increased by 21 percent with clay 4TX and 14 percent with clay 1TX in the aflatoxin diet. The concentration of total aflatoxins in liver was reduced by 36 percent with the addition of clays. Liver visual appearance was also improved from pale red to a more reddish color resembling the healthy red liver. All chickens fed clean feed had significantly higher body weights than those fed with highly contaminated feed, suggesting that the clays did not completely eliminate aflatoxin toxicity. The published aflatoxin binder selection criteria were useful for screening bentonites as aflatoxin amendments. The selected bentonites based on the criteria could effectively sequester aflatoxins in vivo. Yet direct mixing of bentonite as dry powder to highly contaminated poultry feed could not eliminate the toxicity of aflatoxins.

Barrientos Velazquez, Ana Luisa

2011-05-01T23:59:59.000Z

165

Metals removal from spent salts  

DOE Patents (OSTI)

A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

166

HEAVY-ION RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY  

E-Print Network (OSTI)

In: Biological and Medical Research with Accelerated Heavyeds. Biological and Medical Research with Accelerated HeavyIn: Biological and Medical Research with Accelerated Heavy

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

167

The Effect of Environmental Contaminants on Mating Dynamics and Population Viability in a Sex-Role-Reversed Pipefish  

E-Print Network (OSTI)

Understanding how anthropogenic activity impacts the health and viability of wildlife populations is one of the most important tasks of environmental biology. A key concern related to bi-products of human activity is the accumulation of environmental pollutants within aquatic environments. Pollutants such as endocrine disruptors and heavy metals have the potential to impact both human and wildlife populations in contaminated areas. While much research has focused on how these compounds impact natural selection processes, such as viability and reproduction, their effect on sexual selection processes is not as clear. The goal of this dissertation was to address how environmental contaminants impact sexual selection processes in a sex-role reversed pipefish and evaluate how these effects may impact long-term population viability. Here we show that short periods of exposure to environmentally relevant concentrations of a synthetic estrogen result in male pipefish with female-like secondary sexual traits. While these males are capable of reproduction, exposed males are discriminated against by females in mate choice tests. In natural populations, this type of discrimination could reduce male mating opportunities, potentially reducing their reproductive success. In an additional component of this dissertation, it was discovered that pipefish populations around Mobile Bay, specifically Weeks Bay, are currently being exposed to significantly elevated levels of mercury. These populations are genetically distinct from coastal populations but moderate levels of gene flow occur among sites, and gene flow between contaminated and non-contaminated population may be influencing how environmental contaminants are impacting genetic diversity and population viability. In the case of endocrine disruptors, migration between contaminated and non-contaminated sites may negatively impact population viability. Morphological traits induced with exposure to contaminants may be maintained for extended periods of time, therefore, the effect the exposed phenotype has on mating dynamics and sexual selection could be carried to non-contaminated sites if exposed individuals move to new populations. On the other hand, immigration of individuals from non-contaminated sites into contaminated areas may help maintain genetic diversity within exposed populations. In conclusion, the work presented in this dissertation shows that the presence of environmental toxins can significantly impact sexual selection processes, which in turn can have profound effects on the viability and future evolutionary trajectory of populations. Future work in this area should not only address how these toxins impact individual fitness, but should also address how population structure may be influencing the severity of these compounds on natural populations.

Partridge, Charlyn G.

2009-12-01T23:59:59.000Z

168

Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)  

Science Conference Proceedings (OSTI)

This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an overview of the basic microbial processes that occur in bioremediation. The fifth section looks at specific in s

Palmisano, Anna; Hazen, Terry

2003-09-30T23:59:59.000Z

169

PROCESS FOR THE SEPARATION OF HEAVY METALS  

DOE Patents (OSTI)

A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

Gofman, J.W.; Connick, R.E.; Wahl, A.C.

1959-01-27T23:59:59.000Z

170

Treatment of Heavy Metal Wastes II - TMS  

Science Conference Proceedings (OSTI)

Session Chairs: P.R. Khangaonkar, School of Materials and Minerals Engineering, Universiti Sains Malaysia, Perak Campus, Tronoh 31750, Malaysia; Co-chair: ...

171

Analytical mass leaching model for contaminated soil and soil stabilized waste  

Science Conference Proceedings (OSTI)

An analytical model for evaluating mass leaching from contaminated soil or soil stabilized waste is presented. The model is based on mass transport due to advection, dispersion, and retardation and can be used to evaluate the suitability and/or efficiency of soil washing solutions based on the results of column leaching studies. The model differs from more traditional models for column leaching studies in that the analysis is based on the cumulative mass of leachate instead of leachate concentration. A cumulative mass basis for leaching eliminates the requirement for determination of instantaneous effluent concentrations in the more traditional column leaching approach thereby allowing for the collection of relatively large effluent volumes. The cumulative masses of three heavy metals -- Cd, Pb, and Zn -- leached from two specimens of soil mixed with fly ash are analyzed with the mass leaching model to illustrate application and limitation of the model.

Shackelford, C.D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Civil Engineering; Glade, M.J. [Parsons Engineering Science, Inc., Denver, CO (United States)

1997-03-01T23:59:59.000Z

172

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

FRANCIS,A.J.

1998-09-17T23:59:59.000Z

173

Characterization of Minerals, Metals, and Materials (Electronic Format)  

Science Conference Proceedings (OSTI)

May 1, 2007 ... 133-136]The Leaching Behavior of Heavy Metals in MSWI Bottom Ash by Carbonation Reaction with Diffeent Water Content[pp.

174

Life Cycle Based Greenhouse Gas Footprints of Metal Production ...  

Science Conference Proceedings (OSTI)

The Removal of Heavy Metals and Upgrading Crude Bio-oil from Pteris Vittata Stems and Leaves Harvest Using Hydrothermal Upgrading Process ...

175

Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report  

Science Conference Proceedings (OSTI)

An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

Haas, J.C.; Olivo, C.A.; Wilson, K.B.

1994-04-01T23:59:59.000Z

176

Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel  

SciTech Connect

The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

Clark, E.A.

1995-04-03T23:59:59.000Z

177

Block Heavy Hitters  

E-Print Network (OSTI)

e study a natural generalization of the heavy hitters problem in thestreaming context. We term this generalization *block heavy hitters* and define it as follows. We are to stream over a matrix$A$, and report all *rows* ...

Andoni, Alexandr

2008-05-02T23:59:59.000Z

178

Resources for Process Contaminants  

Science Conference Proceedings (OSTI)

Detailed information regarding 3-MCPD esters and a reference list by topic. Resources for Process Contaminants 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants de

179

Metal decontamination for waste minimization using liquid metal refining technology  

Science Conference Proceedings (OSTI)

The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

Joyce, E.L. Jr.; Lally, B. [Los Alamos National Lab., NM (United States); Ozturk, B.; Fruehan, R.J. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1993-09-01T23:59:59.000Z

180

Definition of heavy oil and natural bitumen  

Science Conference Proceedings (OSTI)

Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

Meyer, R.F.

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

How to treat and recycle heavy clear brine fluids  

Science Conference Proceedings (OSTI)

Clear brine fluids, such as CaCl/sub 2/, are replacing muds in well completions and workovers. These ''solids-free'' fluids have caused increases in well productivity of as much as 850%. To use the fluids in higher density ranges, it is necessary to blend the CaCl/sub 2/ brines with the more expensive bromide fluids. This, in turn, has increased the importance of reclaiming weighted brines to make their use more cost effective. To reclaim clear fluids, the solids picked up during use are removed and the fluid is reused or reweighted. A common problem though is the post-precipitation of dissolved contaminants that may appear in the used brines after several days or weeks in storage. Precipitation also may occur if other heavy fluids are added to adjust density before reuse. Laboratory tests have identified the solids as primarily iron hydroxides and halides. (Halides are salts containing a halogen-flourine, chlorine, bromine, or iodine.) Additional experimentation has shown that pH adjustment at the well site or before transfer to storage facilities can provide a simple and effective way of controlling the precipitation of metal hydroxides and halides. This article discusses methods of pH control, measurement, and adjustment, which will allow for optimum use of clear brine fluids.

Pasztor, A.J.; Snover, J.S.

1983-07-01T23:59:59.000Z

182

Removal of metal ions from aqueous solution  

DOE Patents (OSTI)

A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

1990-01-01T23:59:59.000Z

183

Removal of metal ions from aqueous solution  

DOE Patents (OSTI)

A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly ({gamma}-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ({gamma}-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

1988-08-26T23:59:59.000Z

184

Catalytic destruction of groundwater contaminants in reactive extraction wells  

DOE Green Energy (OSTI)

A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

2002-01-01T23:59:59.000Z

185

Analysis of surface contaminants on beryllium and aluminum windows  

Science Conference Proceedings (OSTI)

An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined.

Gmur, N.F.

1987-06-01T23:59:59.000Z

186

An integrated decontamination process for metals  

DOE Patents (OSTI)

An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

Snyder, T.S.; Whitlow, G.A.

1989-06-08T23:59:59.000Z

187

Melioration of the radiocesium contaminated land  

E-Print Network (OSTI)

A method is described of radiocesium fixation in soils contaminated by this radionuclide. To immobilize radiocesium, the soil surface is treated with aqueous hexacyanoferrate solution of alkaline metals. It has been experimentally shown that application of K4 [Fe(CN)6]{\\bullet}3H2O at a rate of 1,3g/kg soil reduces the fraction of exchangeable 137Cs 100-fold (100 times). The method is effective for the plots where contamination is concentrated in the top 1 - 2 cm soil layer.

I. E. Epifanova; E. G. Tertyshnik

2012-03-22T23:59:59.000Z

188

Metal Aminoboranes  

Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be ...

189

SUPRI heavy oil research program  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

190

Contamination Control Techniques  

SciTech Connect

Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

EBY, J.L.

2000-05-16T23:59:59.000Z

191

Tritium Surface Contamination  

SciTech Connect

Glovebox wipe surveys were conducted to correlate surface tritium contamination with atmospheric tritium levels. Surface contamination was examined as a function of tritium concentration and of tritium form, HT/T2 and HTO. The relationship between atmospheric HTO concentration and cleanup time was also investigated.

Sienkiewicz, Charles J.

1985-04-01T23:59:59.000Z

192

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

193

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

194

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

at the same time. Capable of accelerating 70 trillion protons with every pulse, and heavy ions such as gold and iron, the AGS receives protons and other ions from the AGS...

195

Time Evolution of Activity Concentration of Natural Emitters in a Scenario Affected By Previous Phosphogypsum Contamination  

Science Conference Proceedings (OSTI)

The estuary formed by the confluence of Tinto and Odiel river-mouths is located in the South of Spain, close to Huelva town. This estuary has been deeply studied through the years because it has a double particularity. On one hand, since the beginning of the 1960s, the estuary has been affected by direct and indirect phosphogypsum (pg.) releases from two phosphoric acid and fertilizers factories that are working in the area. On the other hand, the pyrite mining operations upstream the Odiel and Tinto rivers has caused historically the formation of H{sub 2}SO{sub 4}, through oxidation of the natural sulphur deposits, the acidification of the waters and the consequent mobilisation of heavy metals from the mining area to the Huelva estuary. As a consequence, enhancement contamination levels in natural emitters from the {sup 238}U series were found in the surroundings of the factories in the previous years to 1998. However, in 1998 the management policy of waste releases drastically changed in the area, and direct discharges to Tinto and Odiel River had to be ceased.A thorough study of the affected zone is being carried out. Riverbed sediments and water samples have been analyzed from four different sampling campaigns in the estuary during the years 1999, 2001, 2002 and 2005. Different radioanalytical techniques have been employed to obtain the activity concentrations of U-isotopes, Th-isotopes, {sup 226}Ra, {sup 210}Pb and {sup 210}Po. Furthermore, the results for the rates of de-contamination of the area are presented. This data will be discussed in order to establish the present status of the contamination in the area, and moreover, to predict the time-evolution of the self-cleaning.

Villa, M.; Hurtado, S. [Centro de Investigation, Tecnologia e Innovation. CUIUS. Universidad de Sevilla. Av. Reina Mercedes 4B. 41012-Sevilla (Spain); Mantero, J.; Manjon, G.; Garcia-Tenorio, R. [E. T. S. Arquitectura. Dpto. de Fisica Aplicada II. Universidad de Sevilla. Av. Reina Mercedes, 2. 41012-Sevilla (Spain); Mosqueda, F.; Vaca, F. [Dpto. de Fisica Aplicada. Facultad de Ciencias Experimentales. Universidad de Huelva. Campus de El Carmen. 21007-Huelva (Spain)

2008-08-07T23:59:59.000Z

196

Experimental Study of In Situ Combustion with Tetralin and Metallic Catalysts.  

E-Print Network (OSTI)

??Experimental studies showed the feasibility of adding metallic catalysts and tetralin for the upgrade and increased recovery of heavy oil during the in situ combustion… (more)

Palmer-Ikuku, Emuobonuvie

2010-01-01T23:59:59.000Z

197

A Novel Sorbent-Based Process for High Temperature Trace Metals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent-Based Process for High Temperature Trace Metals Removal from Coal-Derived Syngas Description Gasification converts coal and other heavy feedstocks into synthesis gas...

198

Heavy fermions in an optical lattice  

Science Conference Proceedings (OSTI)

We employ a mean-field theory to study ground-state properties and transport of a two-dimensional gas of ultracold alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus a parabolic confining potential. In a homogenous system, this mean-field theory is believed to give a qualitatively correct description of heavy-fermion metals and Kondo insulators: It reproduces the Kondo-like scaling of the quasiparticle mass in the former and the same scaling of the excitation gap in the latter. In order to understand ground-state properties in a trap, we extend this mean-field theory via local-density approximation. We find that the Kondo insulator gap manifests as a shell structure in the trapped density profile. In addition, a strong signature of the large Fermi surface expected for heavy-fermion systems survives the confinement and could be probed in time-of-flight experiments. From a full self-consistent diagonalization of the mean-field theory, we are able to study dynamics in the trap. We find that the mass enhancement of quasiparticle excitations in the heavy-Fermi liquid phase manifests as slowing of the dipole oscillations that result from a sudden displacement of the trap center.

Foss-Feig, Michael [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); JILA, Boulder, Colorado 80309 (United States); Hermele, Michael; Gurarie, Victor [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Rey, Ana Maria [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); JILA, Boulder, Colorado 80309 (United States); National Institute of Standards and Technology, Boulder, Colorado 80309 (United States)

2010-11-15T23:59:59.000Z

199

Modeling for Airborne Contamination  

SciTech Connect

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

200

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Towards Heavy Fermions in Europium Intermetallic Compounds Towards Heavy Fermions in Europium Intermetallic Compounds Print Wednesday, 29 July 2009 00:00 For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Hazen, T.C.; Fliermans, C.B.

1992-12-31T23:59:59.000Z

202

Removal of metal ions from aqueous solution  

DOE Patents (OSTI)

A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

1990-11-13T23:59:59.000Z

203

Chemical tailoring of steam to remediate underground mixed waste contaminents  

DOE Patents (OSTI)

A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

1999-01-01T23:59:59.000Z

204

Nucleic acids encoding metal uptake transporters and their uses  

DOE Patents (OSTI)

The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

Schroeder, Julian I. (La Jolla, CA); Antosiewicz, Danuta M. (Warsaw, PL); Schachtman, Daniel P. (Tranmere, AU); Clemens, Stephan (San Diego, CA)

1999-01-01T23:59:59.000Z

205

HTO Contamination on Polymeric Materials  

Science Conference Proceedings (OSTI)

Contamination and Waste / Proceedings of the Ninth International Conference on Tritium Science and Technology

Yasunori Iwai; Kazuhiro Kobayashi; Toshihiko Yamanishi

206

Super Heavy Element Discovery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Super Heavy Element Discovery SHARE Super Heavy Element Discovery The location of the Transactinides (super-heavy elements) shown on the Periodic Table. ORNL is internationally...

207

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

208

Metal Aminoboranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

209

Identifying heavy Higgs bosons  

SciTech Connect

Two techniques for identifying heavy Higgs bosons produced at SSC energies are discussed. In the first, the Higgs boson decays into ZZ, with one Z decaying into an e-pair or ..mu..-pair and the other into a neutrino pair. In the second, the production of the Higgs boson by WW fusion is tagged by detecting the quarks that produced the bremsstrahlung virtual W's. The associated Higgs decay is identified by one leptonic and one hadronic decay. Both methods appear capable of finding a heavy Higgs boson provided the SSC design parameters are achieved. 16 refs., 2 figs., 2 tabs.

Cahn, R.N.

1986-06-01T23:59:59.000Z

210

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

in Proc. of the Inertial Fusion Science and ApplicationsP. Abbott, P. F. Peterson, Fusion Science and Technology 44March 15–20, 2004 Heavy Ion Fusion– Using Heavy Ions to Make

Celata, C.M.

2004-01-01T23:59:59.000Z

211

Astron. Nachr. / AN 335, No. 1, 1 9 (2014) / DOI This.is/not.aDOI High resolution study of the abundance pattern of the heavy elements in  

E-Print Network (OSTI)

of the abundance pattern of the heavy elements in very metal-poor field stars. M. Spite1, and F. Spite1 GEPI, Nucleosynthesis. The abundances of heavy elements in EMP stars are not well explained by the simple view of the r-poor matter. The abundances found in the CEMP- r+s stars reflect the transfer of heavy elements

Recanati, Catherine

212

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Science Conference Proceedings (OSTI)

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30T23:59:59.000Z

213

HEAVY WATER MODERATED POWER REACTORS. Progress Report for October 1959  

SciTech Connect

Continued progress is reported on the design and construction of the Heavy Water Components Test Reactor; 78% of the firm design and 17% of the construction were complete at the end of October 1959. Approximateiy 15% of the firm design for the isolated coolant loops of the HWCTR was also complete. The results of further fabrication tests and irradiation tests of fuel tubes of natural uranium metal are reported. One of the metal tubes failed under irradiation, while other irradiations of metal fuels progressed satisfactorily. (auth)

Hood, R.R.; Isakoff, L. comps.

1959-11-01T23:59:59.000Z

214

Areawide chemical contamination  

SciTech Connect

Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

Miller, R.W.

1981-04-17T23:59:59.000Z

215

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

216

Heavy Vehicle Systems  

Science Conference Proceedings (OSTI)

Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

Sid Diamond; Richard Wares; Jules Routbort

2000-04-11T23:59:59.000Z

217

DEVELOPMENTS IN HEAVY QUARKONIUM SPECTROSCOPY  

E-Print Network (OSTI)

­ 1­ DEVELOPMENTS IN HEAVY QUARKONIUM SPECTROSCOPY Written May 2012 by S. Eidelman (Budker Inst. Navas (Univ. Granada), and C. Patrignani (Univ. Genova, INFN). A golden age for heavy quarkonium physics at HERA and the Tevatron matured; and heavy-ion collisions at RHIC opened a window on the deconfinement

218

Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research  

SciTech Connect

This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

1992-04-01T23:59:59.000Z

219

Single-layer transition metal sulfide catalysts  

SciTech Connect

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

220

Single-layer transition metal sulfide catalysts  

DOE Patents (OSTI)

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

222

Directly susceptible, noncarbon metal ceramic composite crucible  

DOE Patents (OSTI)

A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

Holcombe, Jr., Cressie E. (Farragut, TN); Kiggans, Jr., James O. (Oak Ridge, TN); Morrow, S. Marvin (Kingston, TN); Rexford, Donald (Pattersonville, NY)

1999-01-01T23:59:59.000Z

223

Subsurface Contamination Control  

Science Conference Proceedings (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-12-12T23:59:59.000Z

224

Subsurface Contamination Control  

Science Conference Proceedings (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

225

Biosorption beads for removal of dissolved metals from aqueous streams  

DOE Patents (OSTI)

This invention is comprised of a process for removing heavy metals from aqueous waste streams 5 by contacting such streams with certain biological adsorbents, either living, dead or in fragments, that may be immobilized in gel beads. 1 tab.

Scott, C.D.

1988-01-21T23:59:59.000Z

226

Enabling Sustainability through the Physics of Metals & Materials ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Heavy metals in natural water, industrial water and wastewaters are a worldwide ... complexes is released as HCN gas under strength acidic conditions ... Northern Regions of Russia as Alternative Sources of Pure Water for ...

227

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

Technetium is a radioactive product of the nuclear fission process. During reprocessing of spent or partially spent fuel from nuclear reactors, the technetium can be released and contaminate other, otherwise good, metals. A specific example is equipment in gaseous diffusion uranium enrichment cascades which have been used to process fuel which was returned from reactors, so-called reactor returns. These returns contained volatile technetium compounds which contaminated the metals in the equipment. Present regulations require that technetium be removed before the metal can be re-used at non-radioactive sites. Removing the technetium from contaminated metals has two desirable results. First, the large amount of nonradioactive metal produced by the process herein described can be recycled at a much lower cost than virgin metal can be produced. Second, large amounts of radioactively contaminated metal can be reduced to relatively small amounts of radioactive slag and large amounts of essentially uncontaminated metal. A new and improved process for removing technetium from iron and other metals is described in which between 1/10 atom % and 5 atom % of manganese is added to the contaminated metal in order to replace the technetium.

Leitnaker, James M.; Trowbridge, Lee D.

1997-12-01T23:59:59.000Z

228

A Linear Combination Analyses Approach For Directly Speciating Ni Contaminated Soils.  

E-Print Network (OSTI)

A Linear Combination Analyses Approach For Directly Speciating Ni Contaminated Soils. (S02-trivedi215458-Oral) Abstract: To provide an accurate description of the fate of Ni in aerial- contaminated soils to combine multiple analytical techniques to accurately determine metal speciation in complex soil systems

Sparks, Donald L.

229

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

230

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

231

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

232

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

233

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

234

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

235

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

236

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

237

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

Schunck, N; Kortelainen, M; McDonnell, J; Moré, J; Nazarewicz, W; Pei, J; Sarich, J; Sheikh, J; Staszczak, A; Stoitsov, M; Wild, S M

2011-01-01T23:59:59.000Z

238

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

N. Schunck; A. Baran; M. Kortelainen; J. McDonnell; J. Moré; W. Nazarewicz; J. Pei; J. Sarich; J. Sheikh; A. Staszczak; M. Stoitsov; S. M. Wild

2011-07-25T23:59:59.000Z

239

Heavy Vehicle Propulsion Materials  

DOE Green Energy (OSTI)

The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

Ray Johnson

2000-01-31T23:59:59.000Z

240

Heavy Ions - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

242

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

243

HOW LINDE MAKES HEAVY WATER FROM HYDROGEN  

SciTech Connect

A heavy water plant to be operated in conjunction with an ammonium nitrate fertilizer plant is described. Initial electrolytic deuterium enrichment of hydrogen takes place in a three-stage water electrolysis plant. A part of the hydrogen produced for the ammonia synthesis plant is run through the hydrogen distillation plant, the deuterium drained off, and the hydrogen returned. Natural water is used to scrub deuterium from electrolytic hydrogen before feeding to the cells. Contaminants such as water, carbon dioxide, and nitrogen are frozen out, and the purified enriched hydrogen is fractionated following an interim step which catalyzes concentrated HD to an equilibrium mixture of D/sub 2/ , HD, and H/sub 2/. Pure oxygen burns the final fractionation product to water containing 99.8% deuterium oxide. (J.R.D.)

1959-02-23T23:59:59.000Z

244

Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants  

Science Conference Proceedings (OSTI)

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.

Jonathan S. Dordick; Jay Grate; Jungbae Kim

2007-02-19T23:59:59.000Z

245

Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal  

SciTech Connect

Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Bonomi, G.; Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P.; Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy)

2010-08-04T23:59:59.000Z

246

Purifying contaminated water  

DOE Patents (OSTI)

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

247

in situ Calcite Precipitation for Contaminant Immobilization  

SciTech Connect

in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at a well (which can lead to clogging). A final particularly attractive characteristic of this approach is its long-term sustainability; the remediation scheme is geared toward environments that are already saturated with respect to calcite, and in such systems the bulk of any newly precipitated calcite will remain stable once engineered manipulations cease. This means that the co-precipitated contaminants will be effectively sequestered over the long term. We are currently conducting integrated field, laboratory, and computational research to evaluate a) the relationships between urea hydrolysis rate, calcite precipitation rate, and trace metal partitioning under environmentally relevant conditions; and b) the coupling between flow/flux manipulations and calcite precipitate distribution and metal uptake. We are also assessing the application of geophysical and molecular biological tools to monitor the relevant chemical and physical processes. The primary emphasis is on field-scale processes, with the laboratory and modeling activities designed specifically to support the field studies. Field experiments are being conducted in perched water (vadose zone) at the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory; the VZRP provides an uncontaminated setting that is an analog of the 90Sr-contaminated vadose zone at the Idaho Nuclear Technology and Engineering Center. A summary of results to date will be presented.

Yoshiko Fujita; Robert W. Smith

2009-08-01T23:59:59.000Z

248

Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment  

SciTech Connect

The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

Neu, M.P. [Lawrence Berkeley Lab., CA (United States)

1993-11-01T23:59:59.000Z

249

DOE Science Showcase - Rare Earth Metal Research from DOE Databases |  

Office of Scientific and Technical Information (OSTI)

Rare Earth Metal Research from DOE Databases Rare Earth Metal Research from DOE Databases Information Bridge Energy Citations Database Highlighted documents of Rare Earth Metal research in DOE databases Information Bridge - Corrosion-resistant metal surfaces DOE R&D Project Summaries - Structural and magnetic studies on heavy rare earth metals at high pressures using designer diamonds Energy Citations Database - Intermultiplet transitions in rare-earth metals DOE Green Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain Technology and Resources Transformation Act of 2010 WorldWideScience.org - China produces most of the world's rare earth metals DOepatents - Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

250

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

251

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

252

Air toxics from heavy oil production and consumption  

SciTech Connect

This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

1992-12-22T23:59:59.000Z

253

The Role of the Flexicoking Process in Heavy Oil Processing  

E-Print Network (OSTI)

The recently commercialized FLEXICOKING Process has a significant role to play in developing, known heavy oil reserves. The process upgrades virtually any pumpable feed including residual, pitch or total crude. Combined with HYDROFINING, it produces a clean product slate composed of low Btu gas, high Btu gas, LPG, naphtha, distillate and gas oil. The low Btu gas falls within the definition of an "Alternate Fuel" under current legislation (PL 95-620). Originally developed for refinery bottoms conversion, the FLEXICOKING process can also be used as the primary technology for Stand Alone Energy Centers upgrading low quality, high metals, heavy crudes. These efficient energy centers can be located either at a heavy oil production field or integrated with an energy-intensive industrial complex.

Taylor, R. I.

1980-01-01T23:59:59.000Z

254

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

255

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network (OSTI)

et al. , ,8iolog·ical and Medical Research with Acceleratedet al. , "Biological and Medical Research with J\\cceleratedic Heavy Ions in Medical and Scientific Research, Edmonton,

Gough, R.A.

2013-01-01T23:59:59.000Z

256

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

257

Recovery of Mercury From Contaminated Liquid Wastes  

SciTech Connect

The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles.

1998-06-12T23:59:59.000Z

258

Light Metals  

Science Conference Proceedings (OSTI)

Alternative processes; Anode design and operation; Cell fundamentals and ... Hot-rolling technologies; Deformation of materials; Primary metal production.

259

Very high energy heavy-ion accelerators  

SciTech Connect

A review is given of various programs for building heavy ion accelerators. Topics discussed are (1) options of reaching very high energies with heavy ions; (2) present performance of the superHILAC and the Bevalac; (3) heavy ion sources; (4) applications of heavy ion accelerators outside of basic research; and (5) reliability and operating costs of heavy ion sources. (PMA)

Grunder, H.A.

1975-10-01T23:59:59.000Z

260

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans  

DOE Green Energy (OSTI)

The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.

D. Ray Johnson; Sidney Diamond

2001-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method for mobilization of hazardous metal ions in soils  

DOE Patents (OSTI)

A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

Dugan, Patrick R. (Idaho Falls, ID); Pfister, Robert M. (Powell, OH)

1995-01-01T23:59:59.000Z

262

Method for improved decomposition of metal nitrate solutions  

DOE Patents (OSTI)

A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

Haas, Paul A. (Knoxville, TN); Stines, William B. (Knoxville, TN)

1983-10-11T23:59:59.000Z

263

Method for improved decomposition of metal nitrate solutions  

DOE Patents (OSTI)

A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

Haas, P.A.; Stines, W.B.

1981-01-21T23:59:59.000Z

264

Development of a Pulp Process Treating Contaminated HEPA Filters (III)  

SciTech Connect

The Pulp Process (PP) Treatment option was conceived as a replacement for the current Filter Leaching System (FLS). The FLS has operated at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory since 1995 to treat radioactive, mixed waste HEPA filters. In recent years, the FLS has exhibited difficulty in removing mercury from the HEPA filters as the concentration of mercury in the spent HEPA filters has increased. The FLS leaches and washes the whole filter without any preparation or modification. The filter media and the trapped calcine particles are confined in a heavy filter housing that contributes to poor mixing zones around the edges of the filter, low media permeability, channeling of the liquid through cracks and tears in the filter media, and liquid retention between leach and rinse cycles. In the PP, the filter media and the trapped calcine particles are separated from the filter housing and treated as a pulp, taking advantage of improved contact with the leach solution that cannot be achieved when the media is still in the HEPA filter housing. In addition to removing the mercury more effectively, the PP generates less volume of liquid waste, requires a shorter leach cycle time, and possesses the versatility for treating filters of different sizes. A series of tests have been performed in the laboratory to demonstrate the advantages of the PP concept. These tests compare the PP with the FLS under controlled conditions that simulate the current operating parameters. A prior study using blended feed, a mixture of shredded clean HEPA filter media and non-radioactive calcine particles, indicated that the PP would significantly increases the calcine dissolution percentages. In this study, hazardous-metal contaminated HEPA filter media was studied. The results of side-by-side tests indicated that the PP increased the mercury removal percentage by 80% and might be a solution to the mercury removal problem encountered by the current FLS. A patent application has been filed for the PP and the patent is pending. In order to validate the PP and collect information for engineering design and economical feasibility studies, pilot plant scale tests are planned.

Hu, J. S.; Ramer, J.; Argyle, M. D.; Demmer, R. L.

2002-02-28T23:59:59.000Z

265

Contaminant-Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes  

SciTech Connect

The current debate over possible decontamination processes for U.S. Department of Energy (DOE) facilities is centered on disparate decontamination problems, but the key contaminants (uranium [U], plutonium [Pu], and neptunium [Np]) are universally important. There is no single decontamination technique or agent for all metal surfaces and contaminants with which DOE is faced. However, more innovative agents used alone or in conjunction with traditional processes can increase the potential to reclaim for future use some of these valuable resources or, at the least, decontaminate the metal surfaces to allow disposal as nonradioactive, nonhazardous material. This debate underscores several important issues: (1) regardless of the decontamination scenario, metal (Fe, U, Pu, Np) oxide film removal from the surface is central to decontamination; and (2) simultaneous oxide dissolution and sequestration of actinide contaminants against re-adsorption to a clean metal surface will influence the efficacy of a process or agent and its cost.

Ainsworth, Calvin C.; Hay, Benjamin P.; Traina, Samuel J.; Myneni, Satish C. B.

2002-06-01T23:59:59.000Z

266

Heavy Machine Shop | Central Fabrication Services | Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Machine Shop Heavy Machine Shop The Heavy Machine Shop facility is located in building 479, and may be accessed by the main door on the north face or front of the building....

267

Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum  

Science Conference Proceedings (OSTI)

On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

Carbognani, L.; Hazos, M.; Sanchez, V. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.

1989-12-01T23:59:59.000Z

268

Emission Standards for Contaminants (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

269

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

270

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

271

Radioactive scrap metal decontamination technology assessment report  

SciTech Connect

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

1996-04-01T23:59:59.000Z

272

SYNCHROTRONS FOR HEAVY IONS - BEVALAC EXPERIENCE  

E-Print Network (OSTI)

Heavy Ions ir. Medical and Scientific Research", Edmonton,Heavy Ions in Medical and Scientific Research" Edmonton,vigorous medical and nuclear science research groups. The

Grunder, H.A.

2010-01-01T23:59:59.000Z

273

Glimpse of heavy electrons reveals "hidden order"  

NLE Websites -- All DOE Office Websites (Extended Search)

Glimpse of heavy electrons reveals "hidden order" Glimpse of heavy electrons reveals "hidden order" The remarkable breakthrough helps validate theory behind the observed increase...

274

DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT  

NLE Websites -- All DOE Office Websites (Extended Search)

Yale Heavy Ion Linear Accelerator - Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Radium CT.05-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Yale Heavy Ion Linear Accelerator CT.05-1 - MED Memorandum; To the Files, Thru Ruhoff, et. al.;

275

Precious Metals  

Science Conference Proceedings (OSTI)

"Advances in the Extractive Metallurgy of Selected Rare and Precious Metals" ( 1991 Review of Extractive Metallurgy), J.E. Hoffmann, April 1991, pp. 18-23.

276

Chemistry of Metal Contaminants in Water Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

but also revealed additional structural features. Finally, both ab initio and ab initioclassical molecular dynamics simulations of the Zn2+ ion in aqueous solution using 64 and...

277

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

278

Heavy Ion Collisions at RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

279

United abominations: Density functional studies of heavy metal chemistry  

Science Conference Proceedings (OSTI)

Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.

Schoendorff, George

2012-04-02T23:59:59.000Z

280

Biosorption of Heavy Metal Ions from Wastewater by ... - TMS  

Science Conference Proceedings (OSTI)

Aug 1, 2003 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description The ability of ...

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Heavy Metal Survey of a Spent Alkaline Battery Waste ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title ...

282

Magnetic Process For Removing Heavy Metals From Water Employing...  

NLE Websites -- All DOE Office Websites (Extended Search)

is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix...

283

Method and device for electroextraction of heavy metals from ...  

The main advantage of the invention is the improvement in rate of ... Applications and Industries. ... Six cylindrical steel electrodes form two triode ...

284

Theoretical Studies on Heavy Metal Sulfides in Solution  

DOE Green Energy (OSTI)

'Calculating the stabilities, Raman and UV spectra and acidities of As sulfides in aqueous solution', J. A. Tossell, M. D. Zimmermann and G. R. Helz. Some of the Raman spectra obtained by reacting aqueous As(OH)3 with aqueous bisulfide are shown, taken from Wood, et al. (2002). To interpret these spectra we have carried out an extensive series of calculations, detailed for the case of AsS(SH){sub 2}{sup -} in Table 1 below. By employing state of the art quantum chemical techniques to determine gas-phase harmonic and anharmonic frequencies and solution phase corrections we can accurately match features in the experimental spectrum shown in the top figure. The AsS(SH){sub 2}{sup -}...22 H{sub 2}O nanocluster employed is shown in the lower figure. For this species we have calculated the equilibrium structure and the harmonic vibrational spectrum at the CBSB7 B3LYP level. For the free solute species AsS(SH){sub 2}{sup -} we have carried out a whole series of calculations, evaluating harmonic and anharmonic vibrational frequencies at a number of different quantum mechanical levels. In the spectra below, Fig. 3 and Fig. 5 from Wood, et al. (2002), the features around 700-800 cm{sup -1} are attributed to As-O stretches and those around 350-450 cm{sup -1} to As-S stretches. In the nanocluster an isolated vibrational feature is observed at 425 cm{sup -1}, an As=S stretch, close to the value (415 cm{sup -1}) determined by Wood, et al. (2002). Analysis of the calculated frequencies for AsS(SH){sub 2}{sup -} within a polarizable continuum model yields a similar result. Taking the highest level harmonic results, obtained from a CCSD calculation, and adding anharmonic and PCM corrections at the B3LYP level (designated (3) + (5) - (1) in Table 1) gives a frequency for the intense high frequency As=S stretch within 15 cm{sup -1} of experiment. Although there is still interesting work to be done on the stabilities and the Raman and UV spectra of As sulfides, most of the basic concepts have been worked out and we are therefore proposing to move to a new area, that of humic acids (while continuing our studies complexes formed by As oxides and sulfides, now applied to functional groups present in humic acids).

Tossell, John A.

2007-10-31T23:59:59.000Z

285

Phosphate and thermal stabilization of heavy metals in dredged sediments.  

E-Print Network (OSTI)

??Treatment and reuse of dredged harbor sediments in construction as an alternative to disposal reduces costs and conserves resources. This research focused on leachability of… (more)

Ndiba, Peter Kuria

2009-01-01T23:59:59.000Z

286

The physics of heavy flavors  

SciTech Connect

We review the physics of heavy quark flavors, including weak decays, onium, tau leptons, mixing, the Kobayashi-Maskawa matrix, and CP violation in B decay. 36 refs., 12 figs.

Gilman, F.J.

1987-12-01T23:59:59.000Z

287

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC...

288

Relativistic Heavy Ion Collider, RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

The Relativistic Heavy Ion Collider website has moved to www.bnl.govrhicdefault.asp Sponsored by the U.S. Department of Energy Office of Science, Office of Nuclear Physics. Last...

289

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

290

LCLS Heavy Met Outgassing Tests  

Science Conference Proceedings (OSTI)

A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

Kishiyama, K. I.

2010-12-01T23:59:59.000Z

291

Metal resistance sequences and transgenic plants  

DOE Patents (OSTI)

The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

1999-10-12T23:59:59.000Z

292

Tritium removal from contaminated water via infrared laser multiple-photon dissociation  

Science Conference Proceedings (OSTI)

Isotope separation by means of infrared-laser multiple-photon dissociation offers an efficient way to recover tritium from contaminated light or heavy water found in fission and fusion reactors. For tritium recovery from heavy water, chemical exchange of tritium into deuterated chloroform is followed by selective laser dissociation of tritiated chloroform and removal of the tritiated photoproduct, TCl. The single-step separation factor is at least 2700 and is probably greater than 5000. Here we present a description of the tritium recovery process, along with recent accomplishments in photochemical studies and engineering analysis of a recovery system.

Maienschein, J.L.; Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Hsiao, P.

1983-01-01T23:59:59.000Z

293

Concerns Regarding Lead Contamination and Radiological Controls...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Concerns Regarding Lead Contamination and Radiological Controls at the Nevada Test Site, INS-O-06-02 Concerns Regarding Lead Contamination and Radiological Controls at...

294

Data Center Economizer Contamination and Humidity Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Data Center Economizer Contamination and Humidity Study Title Data Center Economizer Contamination and Humidity Study Publication Type...

295

ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS  

SciTech Connect

This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

Knox, A.; Paller, M.; Roberts, J.

2012-02-13T23:59:59.000Z

296

Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999  

DOE Green Energy (OSTI)

The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

Johnson, D.R.

2000-01-01T23:59:59.000Z

297

A full featured monitoring, control and data management system for liquid metal coolant loops  

Science Conference Proceedings (OSTI)

The heavy liquid metals (HLM) lead and lead-bismuth are considered as coolant and spallation material in accelerator driven systems (ADS) for nuclear waste transmutation. To investigate the viability of HLM cooled reactor systems the Karlsruhe Lead Laboratory ...

Cord H. Lefhalm; Viktor Krieger

2005-06-01T23:59:59.000Z

298

Reductive dissolution and metal transport in lake coeur d alene sediments  

E-Print Network (OSTI)

in Coeur d'Alene Lake, Idaho. Environ. Sci. Technol. 32,heavy metals in the sediment of Lake Coeur d'Alene, Idaho.Masters Thesis, University of Idaho, Moscow, Idaho. Zachara,

Sengor, Sevinc.S.; Spycher, Nicolas.F.; Ginn, Timothy.R.; Moberly, James; Peyton, B.; Sani, Rajesh.K.

2007-01-01T23:59:59.000Z

299

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

300

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Characterization of a New Family of Metal Transport Proteins  

SciTech Connect

Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic information on how plants acquire metals. An important long term goal of our research program is to understand how metals such as zinc, cadmium and iron are transported across membranes. Our research is focused on a new family of metal transporters, which we have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. We have identified a family of 24 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which we have designated the ''ZIP'' genes, provides a rich source of material with which to undertake studies on metal transport in eukar

Guerinot, Mary Lou; Eide, David

1999-06-01T23:59:59.000Z

302

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

303

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

304

Jet quenching and heavy quarks  

E-Print Network (OSTI)

Jet quenching and more generally physics at high transverse momentum P_T scales is a cornerstone of the heavy-ion physics program at the LHC. In this work, the current understanding of jet quenching in terms of a QCD shower evolution being modified by the surrounding medium is reviewed along with the evidence for this picture from light parton high P_T observables. Conceptually, the same QCD shower description should also be relevant for heavy quarks, but with several important modifications introduced by the quark masses. Thus especially in the limit of small jet energy over quark mass E_jet/m_q, the relevant physics may be rather different from light quark jets, and several attempts to explain the observed phenomenology of heavy quarks at high P_T are discussed here.

Thorsten Renk

2013-09-12T23:59:59.000Z

305

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

306

Hadron Production in Heavy Ion Collisions  

E-Print Network (OSTI)

2A GeV 3 Hadron Production from AGS to RHIC 3.1 SystematicsHadron Production in Heavy Ion Collisions Hans Georg RitterAC02- 05CH11231. Hadron Production in Heavy Ion Collisions

Ritter, Hans Georg

2009-01-01T23:59:59.000Z

307

Heavy Vehicle and Engine Resource Guide  

DOE Green Energy (OSTI)

The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

Not Available

2004-03-01T23:59:59.000Z

308

Proton Distribution in Heavy Nuclei  

DOE R&D Accomplishments (OSTI)

It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

Johnson, M. H; Teller, E.

1953-11-13T23:59:59.000Z

309

JGI - Why Sequence Contaminated Groundwater?  

NLE Websites -- All DOE Office Websites (Extended Search)

Contaminated Groundwater? Contaminated Groundwater? Because the majority of microorganisms in nature have never been cultured, little is known about their genetic properties, biochemical functions, and metabolic characteristics. Although the sequence of the microbial community "genome" can now be determined with high-throughput sequencing technology, the complexity and magnitude of most microbial communities make meaningful data acquisition and interpretation difficult. Thus, the sequence determination of a groundwater microbial community with manageable diversity and complexity (~20 phylotypes) is a timely challenge. The samples for this project come from the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Well FW-010. The overall objective is to provide a fundamental and comprehensive

310

Decontamination of metals using chemical etching  

DOE Patents (OSTI)

The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

Lerch, Ronald E. (Kennewick, WA); Partridge, Jerry A. (Richland, WA)

1980-01-01T23:59:59.000Z

311

Mobilization of trace elements in aquifers by biodegradation of hydrocarbon contaminants. Master Thesis  

Science Conference Proceedings (OSTI)

This study had two objectives: (1) to determine the extent of metal mobility within petroleum-contaminated aquifers, (2) to determine if biodegradation of petroleum hydrocarbons can explain metal mobility. The approach reviewed analytical results from 2305 groundwater sampling events, taken from 958 wells, located at 136 sites found at 53 Air Force installations. The study showed that high levels of metals are present at petroleum hydrocarbon sites where metals would not generally be expected. Of the metals with drinking water maximum contaminant levels (MCLs), mercury and silver were detected the least frequently. Barium and copper were detected at the sites, but fewer than 2.5 percent of the samples exceeded their MCLs. All other metals exceeded their MCLs in at least 2.5 percent of the samples, with antimony and lead exceeding their MCLs in 19 percent and 10 percent of samples, respectively. Higher concentrations of barium and manganese were most strongly correlated with petroleum hydrocarbon contamination, and relatively strong correlations also existed for aluminum, arsenic, iron, and lead. Major cations such as calcium, magnesium, sodium and potassium were least affected by petroleum hydrocarbons concentrations.

Kearney, S.L.

1997-12-01T23:59:59.000Z

312

Light-Heavy Price Difference Varies  

U.S. Energy Information Administration (EIA)

Light-Heavy Price Difference Varies ; Function of Crude Market Factors ; Function of Conversion Capacity ; Function of Product Market Factors

313

Summary of the Heavy Flavours Working Group  

E-Print Network (OSTI)

This is a summary of the contributions presented in the Heavy Flavours Working Group of the DIS2006 Workshop.

U. Karshon; I. Schienbein; P. Thompson

2006-08-10T23:59:59.000Z

314

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

315

Heavy Vehicle and Engine Resource Guide  

DOE Green Energy (OSTI)

A comprehensive product catalog of medium and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options.

Not Available

2001-10-01T23:59:59.000Z

316

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

317

Thermostat Metals  

Science Conference Proceedings (OSTI)

...A thermostat metal is a composite material (usually in the form of sheet or strip) that consists of two or more materials bonded together, of which one can be a nonmetal. Because the materials bonded together to form the composite differ in

318

METAL COMPOSITIONS  

DOE Patents (OSTI)

Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

Seybolt, A.U.

1959-02-01T23:59:59.000Z

319

Heavy Tails: Performance Models and Scheduling Disciplines  

E-Print Network (OSTI)

Heavy Tails: Performance Models and Scheduling Disciplines Sindo N´u~nez-Queija based on joint ITC´u~nez-Queija CWI & TU/e #12;Heavy Tails: Performance Models and Scheduling Disciplines Part I ­ Introduction and Methodology Tales to tell: · traffic measurements and statistical analysis · traffic modeling · heavy

Núñez-Queija, Rudesindo

320

Finding Interesting Correlations with Conditional Heavy Hitters  

E-Print Network (OSTI)

Finding Interesting Correlations with Conditional Heavy Hitters Katsiaryna Mirylenka, Themis Srivastava AT&T Labs, Florham Park, NJ, USA {graham, divesh}@research.att.com Abstract-- The notion of heavy of Conditional Heavy Hitters to identify such items, with applications in network monitoring, and Markov chain

Palpanas, Themis

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry  

Science Conference Proceedings (OSTI)

The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

Blunt, D.L.; Smith, K.P.

1995-08-01T23:59:59.000Z

322

Sidelobe Contamination in Bistatic Radars  

Science Conference Proceedings (OSTI)

The problem of sidelobe contamination in a bistatic network is explored. The McGill bistatic network consists of one S-band Doppler radar and two low-gain passive receivers at remote sites. Operational experience with the bistatic network ...

Ramón de Elía; Isztar Zawadzki

2000-10-01T23:59:59.000Z

323

Method for refining contaminated iridium  

DOE Patents (OSTI)

Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

Heshmatpour, Bahman (Waltham, MA); Heestand, Richard L. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

324

HEAVY BARYONS: A COMBINED LARGE Nc AND HEAVY QUARK EXPANSION FOR ELECTROWEAK CURRENTS  

E-Print Network (OSTI)

The combined large Nc and heavy quark limit for baryons containing a single heavy quark is discussed. The combined large Nc and heavy quark expansion of the heavy quark bilinear operators is obtained. In the combined expansion the corrections proportional to mN/mQ are summed to all orders. In particular, the combined expansion can be used to determine semileptonic form factors of heavy baryons in the combined limit. 1

Boris A. Gelman

2002-01-01T23:59:59.000Z

325

Bounds on Heavy-to-Heavy Weak Decay Form Factors  

E-Print Network (OSTI)

We provide upper and lower bounds on the semileptonic weak decay form factors for $B \\to D^(*)$ and $\\Lambda_b \\to \\Lambda_c$ decays by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to second order in $\\Lambda_{QCD}/m_Q$ and first order in $\\alpha_s$. The $O(\\alpha_s^2 \\beta_0)$ corrections to the bounds at zero recoil are also presented.

Chiang, C W

2001-01-01T23:59:59.000Z

326

Bounds on Heavy-to-Heavy Weak Decay Form Factors  

E-Print Network (OSTI)

We provide upper and lower bounds on the semileptonic weak decay form factors for $B \\to D^(*)$ and $\\Lambda_b \\to \\Lambda_c$ decays by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to second order in $\\Lambda_{QCD}/m_Q$ and first order in $\\alpha_s$. The $O(\\alpha_s^2 \\beta_0)$ corrections to the bounds at zero recoil are also presented.

Cheng-Wei Chiang

2000-09-18T23:59:59.000Z

327

Bounds on Heavy-to-Heavy Baryonic Form Factors  

E-Print Network (OSTI)

Upper and lower bounds are established on the Lambda_b -> Lambda_c semileptonic decay form factors by utilizing inclusive heavy-quark-effective-theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. Several form factor models used in the literature are compared with our bounds.

Cheng-Wei Chiang

1999-07-29T23:59:59.000Z

328

Bounds on Heavy-to-Heavy Baryonic Form Factors  

E-Print Network (OSTI)

Upper and lower bounds are established on the Lambda_b -> Lambda_c semileptonic decay form factors by utilizing inclusive heavy-quark-effective-theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. Several form factor models used in the literature are compared with our bounds.

Chiang, C W

2000-01-01T23:59:59.000Z

329

Zero sound in strange metals with hyperscaling violation from holography  

E-Print Network (OSTI)

Hyperscaling violating `strange metal' phase of heavy fermion compounds can be described holographically by probe D-branes in the background of a Lifshitz space-time (dynamical exponent $z$ and spatial dimensions $d$) with hyperscaling violation (corresponding exponent $\\theta$). Without the hyperscaling violation, strange metals are known to exhibit zero sound mode for $zheat and the null energy condition of the background dictate that $\\thetaconductivity of the systems and briefly comment on the results.

Parijat Dey; Shibaji Roy

2013-06-30T23:59:59.000Z

330

UNDERWATER COATINGS FOR CONTAMINATION CONTROL  

SciTech Connect

The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

331

Heavy flavor production from photons and hadrons  

Science Conference Proceedings (OSTI)

The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e/sup +/e/sup -/ annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed. (WHK)

Heusch, C.A.

1982-01-01T23:59:59.000Z

332

EVALUATION OF FIRE HAZARDS WHILE REPACKAGING PLUTONIUM-CONTAMINATED SCRAP IN HB-LINE  

DOE Green Energy (OSTI)

The potential for a fire while repackaging plutonium-contaminated scrap was evaluated. The surface-to-mass ratio indicates the metal alone will not spontaneously ignite. Uranium hydride can form when uranium metal is exposed to water vapor or hydrogen; uranium hydride reacts rapidly and energetically with atmospheric oxygen. The plutonium-contaminated scrap has been inside containers qualified for shipping, and these containers are leak-tight. The rate of diffusion of water vapor through the seals is small, and the radiolytic hydrogen generation rate is low. Radiography of samples of the storage containers indicates no loose oxide/hydride powder has collected in the storage container to date. The frequently of a fire while repackaging the plutonium-contaminated scrap is extremely unlikely.

Hallman, D

2003-12-18T23:59:59.000Z

333

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

334

Scrap metal management issues associated with naturally occurring radioactive material  

Science Conference Proceedings (OSTI)

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

Smith, K.P.; Blunt, D.L.

1995-08-01T23:59:59.000Z

335

Regulatory Resources for Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

Regulatory information and references for 3-MCPD(3-Monochloropropane-1,2-diol )process contaminants. Regulatory Resources for Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certifi

336

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

337

Analytical Requirements for Petroleum Contaminated Soils  

E-Print Network (OSTI)

Analytical Requirements for Petroleum Contaminated Soils According to 20 NMAC 9.1.704 704. REQUIRED), or other applicable statutes. Page 1 of 1Analytical Requirements for Petroleum Contaminated Soils 4

338

Energy Conservation in Metals  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Energy Conservation in Metals. Sponsorship, The Minerals, Metals and ...

339

Natural Contamination from the Mancos Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos...

340

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Measurements and Standards for Contaminants in ...  

Science Conference Proceedings (OSTI)

Measurements and Standards for Contaminants in Environmental Samples. ... Kelly, WR, Long, SE, and Seiber, JR, Standard Reference Materials ...

2013-07-23T23:59:59.000Z

342

Google Earth Tour: How Contaminants Got There  

NLE Websites -- All DOE Office Websites (Extended Search)

Google Earth Tour: How Contaminants Got There Click here to load the tour...then click the play button below...

343

PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS  

DOE Patents (OSTI)

This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

Sutton, J.B.

1958-02-18T23:59:59.000Z

344

Topological superconductivity and Majorana fermions in metallic surface states  

E-Print Network (OSTI)

Heavy metals, such as Au, Ag, and Pb, often have sharp surface states that are split by strong Rashba spin-orbit coupling. The strong spin-orbit coupling and two-dimensional nature of these surface states make them ideal ...

Potter, Andrew Cole

345

CLEANING OF RADIOACTIVE CONTAMINATED OCCUPATIONAL CLOTHING  

SciTech Connect

The soiling and contamination of work clothing and ways of removing this contamination are discussed. Means of disinfection, washing tests with radioactive-contaminated cotton clothing, construction of the laundry, and cleaning protective clothing of plastic and other materials with the help of washing methods and polyphosphates are described. (M.C.G.)

Siewert, G.; Schikora, Th.

1963-11-01T23:59:59.000Z

346

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

347

Contaminated Outdoor High Voltage Insulators  

Science Conference Proceedings (OSTI)

The external insulation of power lines and outdoor substations is a weak point in transmission systems. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions with high contamination levels, regular maintenance and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as cleaning the insulato...

2009-12-22T23:59:59.000Z

348

Simultaneously Extracted Metals/Acid-Volatile Sulfide and Total Metals in Surface Sediment from the Hanford Reach of the Columbia RIver and the Lower Snake River  

Science Conference Proceedings (OSTI)

Metals have been identified as contaminants of concern for the Hanford Reach because of upriver mining, industrial activities, and past nuclear material production at the US Department of Energy's Hanford Site. This study was undertaken to better understand the occurrence and fate of metals in sediment disposition areas in the Columbia and Snake Rivers.

Patton, Gregory W.; Crecelius, Eric A.

2001-01-24T23:59:59.000Z

349

Underwater Coatings for Contamination Control  

Science Conference Proceedings (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to be applied by divers after scrubbing loose contamination off the basin walls and floors using a ship hull scrubber and vacuuming up the sludge. A special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pool with no airborne contamination problems.

Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

350

Mechanochemical processing for metals and metal alloys  

DOE Patents (OSTI)

A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

2001-01-01T23:59:59.000Z

351

Doffing Procedures for Firefighters' Contaminated Turnout Gear: Documentation for Videotape  

Science Conference Proceedings (OSTI)

Firefighting in an area contaminated by radioactive materials can result in contaminated clothing that requires careful handling. This report documents a videotape that provides simple how-to procedures for doffing contaminated or potentially contaminated firefighter turnout gear.

1992-07-01T23:59:59.000Z

352

Advanced technologies for decomtamination and conversion of scrap metal  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

1999-05-27T23:59:59.000Z

353

MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT  

Science Conference Proceedings (OSTI)

Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

M.A. Ebadian, Ph.D.

2001-01-01T23:59:59.000Z

354

Heavy-Ion Physics with CMS  

E-Print Network (OSTI)

This article presents a brief overview of the CMS experiment capabilities to study the hot and dense matter created in relativistic heavy-ion collisions. The CERN Large Hadron Collider will provide collisions of Pb nuclei at 5.5 TeV per nucleon. The CMS heavy ion group has developed a plethora of physics analyses addressing many important aspects of heavy-ion physics in preparation for a competitive and successful program.

Aneta Iordanova

2008-06-06T23:59:59.000Z

355

Heavy ions and string theory  

E-Print Network (OSTI)

We review a selection of recent developments in the application of ideas of string theory to heavy ion physics. Our topics divide naturally into equilibrium and non-equilibrium phenomena. On the non-equilibrium side, we discuss generalizations of Bjorken flow, numerical simulations of black hole formation in asymptotically anti-de Sitter geometries, equilibration in the dual field theory, and hard probes. On the equilibrium side, we summarize improved holographic QCD, extraction of transport coefficients, inclusion of chemical potentials, and approaches to the phase diagram. We close with some possible directions for future research.

Oliver DeWolfe; Steven S. Gubser; Christopher Rosen; Derek Teaney

2013-04-29T23:59:59.000Z

356

Field-Scale Evaluation of Biostimulation for Remediation of Uranium-Contaminated Groundwater at a Proposed NABIR Field Research Center in Oak Ridge, TN  

DOE Green Energy (OSTI)

A hydrologic, geochemical and microbial characterization of the Area 3 field site has been completed. The formation is fairly impermeable, but there is a region of adequate flow approximately 50 feet bgs. The experiment will be undertaken within that depth interval. Groundwater from that depth is highly acidic (pH 3.2), and has high levels of nitrate, aluminum, uranium, and other heavy metals, as well as volatile chlorinated solvents (VOCs). Accordingly, an aboveground treatment train has been designed to remove these contaminants. The train consists of a vacuum stripper to remove VOCs, two chemical precipitation steps to adjust pH and remove metals, and a fluidized bed bioreactor to remove nitrate. The aboveground system will be coupled to a belowground recirculation system. The belowground system will contain an outer recirculation cell and a nested inner recirculation cell: the outer cells will be continuously flushed with nitrate-free treated groundwater. The inner cell will receive periodic inputs of uranium, tracer, and electron donor. Removal of uranium will be determined by comparing loss rates of conservative tracer and uranium within the inner recirculation cell. Over the past year, a detailed workplan was developed and submitted for regulatory approval. The workplan was presented to the Field Research Advisory Panel (FRAP), and after some extensive revision, the FRAP authorized implementation. Detailed design drawings and numerical simulations of proposed experiments have been prepared. System components are being prefabricated as skid-mounted units in Michigan and will be shipped to Oak Ridge for assembly. One manuscript has been submitted to a peer reviewed journal. This paper describes a novel technique for inferring subsurface hydraulic conductivity values. Two posters on this project were presented at the March 2002 NABIR PI meeting. One poster was presented at the Annual conference of the American Society for Microbiology in Salt Lake City, UT in May 2002.

Criddle, Craig S.

2003-06-01T23:59:59.000Z

357

Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001  

Science Conference Proceedings (OSTI)

This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

Huang, Chin-Pao

2001-05-31T23:59:59.000Z

358

Seismic Imaging of UXO-Contaminated Underwater Sites (Interim Report)  

E-Print Network (OSTI)

Imaging of UXO-Contaminated Underwater Sites” Roland GrittoImaging of UXO-Contaminated Underwater Sites” over the first

Gritto, Roland; Korneev, Valeri; Nihei, Kurt; Johnson, Lane

2004-01-01T23:59:59.000Z

359

Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions  

SciTech Connect

Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials.

Hamp, S. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Jackson, T.J. [Geraghty and Miller, Inc., Albuquerque, NM (United States); Dotson, P.W. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

360

Factorization for hadronic heavy quarkonium production  

E-Print Network (OSTI)

We briefly review several models of heavy quarkonium production in hadronic collisions, and discuss the status of QCD factorization for these production models.

Jian-Wei Qiu

2006-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recent Heavy Flavor Results at RHIC  

E-Print Network (OSTI)

We summarize the recent experimental results of heavy favor physics from the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Lab (BNL) at Long Island, New York, USA.We will discuss the directly reconstructed open charm mesons as well as electrons from heavy favor hadron decays. The charm and bottom quark production cross-sections have also been measured. We will also discuss JPsi and Upsilon states in p+p and heavy ion collisions. The studies described here were carried out and reported by the STAR and PHENIX collaborations at RHIC.

Wenqin Xu

2011-10-13T23:59:59.000Z

362

Isospin Splittings of Doubly Heavy Baryons  

SciTech Connect

The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.

Brodsky, Stanley J.; /SLAC; Guo, Feng-Kun; /Bonn U., HISKP /Bonn U.; Hanhart, Christoph; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.

2011-08-18T23:59:59.000Z

363

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

364

Heavy ion physics at the LHC  

E-Print Network (OSTI)

Heavy Ion Physics at the LHC ? R. VogtLaboratory, Berkeley, CA USA Physics Department, Universityfor addressing unique physics issues in a completely new

Vogt, R.

2004-01-01T23:59:59.000Z

365

Desiccant contamination research: Report on the desiccant contamination test facility  

DOE Green Energy (OSTI)

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

366

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

367

Environmental geochemistry of radioactive contamination.  

Science Conference Proceedings (OSTI)

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Bryan, Charles R.; Siegel, Malcolm Dean

2003-09-01T23:59:59.000Z

368

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

1997-01-01T23:59:59.000Z

369

Extracting metals directly from metal oxides  

DOE Patents (OSTI)

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25T23:59:59.000Z

370

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

Vijayan, S.; Wong, C.F.; Buckley, L.P.

1994-11-22T23:59:59.000Z

371

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

1994-01-01T23:59:59.000Z

372

Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment  

Science Conference Proceedings (OSTI)

This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

Hicks, D.S.

1996-03-01T23:59:59.000Z

373

Hydrogen Contamination of Niobium Surfaces  

DOE Green Energy (OSTI)

The presence of hydrogen is blamed for dramatic reductions in cavity Q's. Hydrogen concentration is difficult to measure, so there is a great deal of Fear, Uncertainty, and Doubt (FUD) associated with the problem. This paper presents measurements of hydrogen concentration depth profiles, commenting on the pitfalls of the methods used and exploring how material handling can change the amount of hydrogen in pieces of niobium. Hydrogen analysis was performed by a forward scattering experiment with Helium used as the primary beam. This technique is variously known as FRES (Forward Recoil Elastic Scattering), FRS, HFS (Hydrogen Forward Scattering), and HRA (Hydrogen Recoil Analysis). Some measurements were also made using SIMS (Secondary Ion Mass Spectrometry). Both HFS and SIMS are capable of measuring a depth profile of Hydrogen. The primary difficulty in interpreting the results from these techniques is the presence of a surface peak which is due (at least in part) to contamination with either water or hydrocarbons. With HFS, the depth resolution is about 30 nm, and the maximum depth profiled is about 300 nm. (This 10-1 ratio is unusually low for ion beam techniques, and is a consequence of the compromises that must be made in the geometry of the experiment, surface roughness, and energy straggling in the absorber foil that must be used to filter out the forward scattered helium.) All the observed HFS spectra include a surface peak which includes both surface contamination and any real hydrogen uptake by the niobium surface. Some contamination occurs during the analysis. The vacuum in the analysis chamber is typically a few times 10{sup -6} torr, and some of the contamination is in the form of hydrocarbons from the pumping system. Hydrocarbons normally form a very thin (less than a monolayer) film which is in equilibrium between arrival rate and the evaporation rate. In the presence of the incoming ion beam, however, these hydrocarbons crack on the surface into non-volatile components. Equilibrium is lost, and the surface builds up a layer of carbon-based gunk.

Viet Nguyen-Tuong; Lawrence Doolittle

1993-10-01T23:59:59.000Z

374

Heavy Squarks at the LHC  

E-Print Network (OSTI)

The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1.

JiJi Fan; David Krohn; Pablo Mosteiro; Arun M. Thalapillil; Lian-Tao Wang

2011-02-01T23:59:59.000Z

375

Heavy Flavour results from Tevatron  

SciTech Connect

The CDF and D0 experiments finalize the analysis of their full statistics collected in the p{bar p} collisions at a center-of-mass energy of {radical}s = 1.96 TeV at the Fermilab Tevatron collider. This paper presents several new results on the properties of hadrons containing heavy b- and c-quarks obtained by both collaborations. These results include the search for the rare decays B{sup 0}, B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} (CDF), the study of CP asymmetry in B{sub s} {yields} J{psi}{phi} decay (CDF, D0), the measurement of the like-sign dimuon charge asymmetry (D0), the measurement of CP asymmetry in D{sup 0} {yields} K{sup +}K{sup -} and D{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays (CDF), and the new measurement of the B{sub s} {yields} D{sub s}{sup (*)+} D{sub s}{sup (*)-} branching fraction (CDF). Both experiments still expect to produce more results on the properties of heavy flavours.

Borissov, G.; /Lancaster U.

2012-06-01T23:59:59.000Z

376

Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope  

DOE Patents (OSTI)

This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

Tanaka, John (Storrs, CT); Reilly, Jr., James J. (Bellport, NY)

1978-01-01T23:59:59.000Z

377

Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998  

DOE Green Energy (OSTI)

The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

Johnson, D.R.

1999-01-01T23:59:59.000Z

378

Situ treatment of contaminated groundwater  

DOE Green Energy (OSTI)

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

379

Waste site reclamation with recovery of radionuclides and metals  

DOE Patents (OSTI)

A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

Francis, A.J.; Dodge, C.J.

1994-03-08T23:59:59.000Z

380

UNITAR boosts cogeneration for heavy crude production  

SciTech Connect

The UNITAR/UNDP Information Center for Heavy Crude and Tar Sands publicized the favorable effect of cogeneration on the economics of generating steam for in situ recovery of heavy oil. Although cogeneration of electricity with the production of steam for heavy crude production is a rapidly growing activity in California, it is still unknown in other countries where heavy crude is produced. The study concentrated on two specific cases: a heavy crude cogeneration plant in Kern County in California and a heavy crude production plant at Wolf Lake in Alberta, Canada. A comparison of the two cases showed that due to the specific conditions in California, cogeneration can reduce, in this specific case, the cost of production of heavy crude by $4.80 per barrel whereas in the case of Wolf Lake, cogeneration would not be economic (electricity prices in relation to natural gas prices are much lower in Canada). One of the purposes of the UNITAR study was to direct attention in other countries producing heavy crude to the advantages of cogeneration.

Not Available

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heavy Vehicle Technologies Program Retrospective and Outlook  

DOE Green Energy (OSTI)

OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions.

James J. Eberhardt

1999-04-10T23:59:59.000Z

382

Applications of RESRAD family of computer codes to sites contaminated with radioactive residues.  

Science Conference Proceedings (OSTI)

The RESIL4D family of computer codes was developed to provide a scientifically defensible answer to the question ''How clean is clean?'' and to provide useful tools for evaluating human health risk at sites contaminated with radioactive residues. The RESRAD codes include (1) RESRAD for soil contaminated with radionuclides; (2) RESRAD-BUILD for buildings contaminated with radionuclides; (3) RESRAD-CHEM for soil contaminated with hazardous chemicals; (4) RESRAD-BASELINE for baseline risk assessment with measured media concentrations of both radionuclides and chemicals; (5) RESRAD-ECORISK for ecological risk assessment; (6) RESRAD-RECYCLE for recycle and reuse of radiologically contaminated metals and equipment; and (7) RESRAD-OFFSITE for off-site receptor radiological dose assessment. Four of these seven codes (RESRAD, RESRAD-BUILD, RESRAD-RECYCLE, and RESRAD-OFFSITE) also have uncertainty analysis capabilities that allow the user to input distributions of parameters. RESRAD has been widely used in the United States and abroad and approved by many federal and state agencies. Experience has shown that the RESRAD codes are useful tools for evaluating sites contaminated with radioactive residues. The use of RESRAD codes has resulted in significant savings in cleanup cost. Analysis of 19 site-specific uranium guidelines is discussed in the paper.

Yu, C.; Kamboj, S.; Cheng, J.-J.; LePoire, D.; Gnanapragasam, E.; Zielen, A.; Williams, W. A.; Wallo, A.; Peterson, H.

1999-10-21T23:59:59.000Z

383

Process for reducing radioactive contamination in phosphogypsum  

Science Conference Proceedings (OSTI)

A process of two crystallization stages for reducing radioactive contamination of phosphogypsum is disclosed. In the process anhydrite crystals are obtained through dehydration of the radiation containing phosphogypsum in strong sulfuric acid; a portion of the anhydrite crystals containing the radioactive contamination is converted to substantially radiation free gypsum by crystallizing out on a large solids concentration of radiation free gypsum seed crystals; and coarse radiation free gypsum crystals are separated from small anhydrite crystal relics containing substantially all of the radioactive contamination.

Gaynor, J.C.; Palmer, J.W.

1983-06-14T23:59:59.000Z

384

Concentration and removal of tritium and/or deuterium from water contaminated with tritium and/or deuterium  

DOE Patents (OSTI)

Concentration of tritium and/or deuterium that is a contaminant in H.sub.2 O, followed by separation of the concentrate from the H.sub.2 O. Employed are certain metal oxo complexes, preferably with a metal from Group VIII. For instance, [Ru.sup.IV (2,2',6',2"-terpyridine)(2,2'-bipyridine)(O)](ClO.sub.4).sub.2 is very suitable.

Meyer, Thomas J. (Chapel Hill, NC); Narula, Poonam M. (Carrboro, NC)

2001-01-01T23:59:59.000Z

385

Electron-State Hybridization in Heavy-Fermion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-State Hybridization in Heavy-Fermion Systems Electron-State Hybridization in Heavy-Fermion Systems Print Wednesday, 27 September 2006 00:00 Heavy-fermion systems are...

386

Heavy photon search experiment at JLAB  

SciTech Connect

The Heavy Photon Search (HPS) experiment in Hall-B at Jefferson Lab will search for new heavy vector boson(s), aka "heavy photons", in the mass range of 20 MeV/c{sup 2} to 1000 MeV/c{sup 2} using the scattering of high energy, high intensity electron beams off a high Z target. The proposed measurements will cover the region of parameter space favored by the muon g-2 anomaly, and will explore a significant region of parameter space, not only at large couplings ({alpha}'/{alpha} > 10{sup -7}), but also in the regions of small couplings, down to {alpha}'/{alpha}~10{sup -10}. The excellent vertexing capability of the Si-tracker uniquely enables HPS to cover the small coupling region. Also, HPS will search for heavy photons in an alternative to the e{sup +} e{sup -} decay mode, in the heavy photon's decay to {mu}{sup +}{mu}{sup -}.

Stepanyan, Stepan [JLAB

2013-11-01T23:59:59.000Z

387

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

388

Helicity probabilities for heavy quark fragmentation into heavy-light excited mesons  

E-Print Network (OSTI)

After a brief review on how heavy quark symmetry constraints the helicity fragmentation probabilities for a heavy quark hadronizes into heavy-light hadrons, we present a heavy quark fragmentation model to extract the value for the Falk-Peskin probability $w_{3/2}$ describing the fragmentation of a heavy quark into a heavy-light meson whose light degrees of freedom have angular momentum ${3 \\over 2}$. We point out that this probability depends on the longitudinal momentum fraction $z$ of the meson and on its transverse momentum $p_\\bot$ relative to the jet axis. In this model, the light degrees of freedom prefer to have their angular momentum aligned transverse to, rather than along, the jet axis. Implications for the production of excited heavy mesons, like $D^{**}$ and $B^{**}$, are briefly discussed.

Tzu Chiang Yuan

1995-03-08T23:59:59.000Z

389

Radiological Worker Training - Radiological Contamination Control...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C....

390

Accident Investigation Report Plutonium Contamination in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Investigation Report Plutonium Contamination in the Zero Power Physics Reactor Facility at the Idaho National Laboratory, November 8, 2011 January 2012 Disclaimer...

391

Spectroscopy of Very Heavy Elements  

Science Conference Proceedings (OSTI)

Advances in spectroscopic techniques have meant that heavy nuclei in the upper right-hand corner of the nuclear chart have become amenable to detailed study. This detailed spectroscopic data can provide a stringent test for current nuclear structure theories. Experiments to investigate the structure of nuclei in the region of {sup 254}No can yield information concerning moments of inertia, stability against fission with rotation, single-particle properties, excitation energies of two quasi-particle states, and so on. A brief overview of the techniques used and recent results from studies in the region of {sup 254}No are presented, along with a summary of future developments which will allow further advances to be made.

Greenlees, P. T.; Herzberg, R.-D.; Ketelhut, S.; Eeckhaudt, S.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Leino, M.; Nyman, M.; Peura, P.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Ackermann, D.; Hessberger, F.-P. [GSI, D-64291 Darmstadt (Germany); Butler, P. A.; Gray-Jones, C. [Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE (United Kingdom)] (and others)

2008-05-12T23:59:59.000Z

392

HEAVY WATER MODERATED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

Szilard, L.

1958-04-29T23:59:59.000Z

393

Metallic Glass II  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Application of Metallic Glass for High Performance Si Solar Cell: ... of the metallic glasses during heating is dependent on the thermal stability of ...

394

Light Metals 2010  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Softcover book: Light Metals 2008 Volume 2: Aluminum Reduction. Hardcover book and CD-ROM: Light Metals 2009 ...

395

Bulk Metallic Glasses IX  

Science Conference Proceedings (OSTI)

... of elements to form metallic-glass alloys] have resulted in the required cooling rate ... Bauschinger Effect in Metallic Glass Nanowires under Cyclic Loading.

396

Refractory Metals Committee  

Science Conference Proceedings (OSTI)

The Refractory Metals Committee is part of the Structural Materials Division. Our Mission: Includes all technical aspects of the science of refractory metals and ...

397

Principal Metals Online  

Science Conference Proceedings (OSTI)

Topic Title: WEB RESOURCE: Principal Metals Online Topic Summary: Principal Metals inventory database. Created On: 2/9/2007 5:41 AM, Topic View:.

398

Bulk Metallic Glasses XI  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... A Bulk Metallic Glass with Record-breaking Damage Tolerance ... Oxidation on the Surface Characteristics of Zr-based Bulk Metallic Glasses.

399

Electron-State Hybridization in Heavy-Fermion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-State Hybridization in Heavy-Fermion Systems Print Heavy-fermion systems are characterized by electrons with extremely large effective masses. The corresponding...

400

Deformation Prediction of a Heavy Hydro Turbine Blade During ...  

Science Conference Proceedings (OSTI)

Presentation Title, Deformation Prediction of a Heavy Hydro Turbine Blade During ... Abstract Scope, Heavy hydro turbine castings are made of martensitic ...

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study”, KfK-3480,a possible heavy ion fusion reactor design [1]. The final

2005-01-01T23:59:59.000Z

402

CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR  

Science Conference Proceedings (OSTI)

The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

Vinson, Dennis

2010-06-01T23:59:59.000Z

403

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

404

Using Metal Hydride to Store Hydrogen  

DOE Green Energy (OSTI)

Hydrogen is the lightest element. At ambient conditions on a volume basis it stores the least amount of energy compared to other fuel carriers such as natural gas and gasoline. For hydrogen to become a practical fuel carrier, a way must be found to increase its volumetric energy density to a practical level. Present techniques being developed include compressed gas, cryogenic liquid and absorbed solid. Each of these techniques has its advantages and disadvantages. And none of them appears to be satisfactory for use in a hydrogen economy. In the interim all of them are used for demonstration purposes. Metal hydrides store hydrogen in a solid form under moderate temperature and pressure that gives them a safety advantage. They require the least amount of energy to operate. Their stored hydrogen density is nearing that of liquid hydrogen. But they are heavy and the weight is their main disadvantage. Current usable metal hydrides can hold no more than about 1.8 percent hydrogen by weight. However much effort is underway to find lighter materials. These include other solid materials other than the traditional metal hydrides. Their operation is expected to be similar to that of metal hydride and can use the technology developed for metal hydrides.

Heung, L.K.

2003-03-12T23:59:59.000Z

405

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network (OSTI)

beams inside a heavy ion fusion reactor chamber * Agustin F.of a Heavy Ion Fusion reactor heavily depends on the maximum

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

406

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network (OSTI)

beams inside a heavy ion fusion reactor chamber * Agustin F.efficiency of a Heavy Ion Fusion reactor heavily depends on

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

407

Demonstration of Fixatives to Control Contamination and Accelerate D&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Stage: Demonstration D&D Toolbox - ORNL Fixatives Demonstration Demonstration of fixatives on the ORNL 2000 Complex Page 1 of 2 Oak Ridge National Laboratory Tennessee Massachusetts New Jersey Demonstration of Fixatives to Control Contamination and Accelerate Deactivation and Decommissioning (D&D) Challenge The 2000 Complex at the Oak Ridge National Laboratory (ORNL) has been identified as a high risk facility. The 50-year-old series of connected metal buildings has deteriorated to the point that it has been condemned and is unsafe for routine human entry. Additionally, the polychlorinated biphenyl (PCB) and lead-containing paint which is flaking off the exterior of the rusting metal building is the single largest source of PCB contamination to the

408

Dismantling an alpha-contaminated facility  

SciTech Connect

The difficult task of removing large pieces of highly contaminated equipment from an obsolete plutonium-239 facility was completed in a seven-month operation that included structural alteration of the process building. Detailed job planning, job execution and contamination control were major factors in accomplishing the task. (auth)

Caldwell, R.D.; Harper, R.M.

1975-09-01T23:59:59.000Z

409

CONTAMINATION CONTROL AT THE HANFORD LAUNDRY  

SciTech Connect

The laundry operation consists of a decontamination laundry, non- regulated laundry service, and a central mask cleaning station. Control of radioactive contamination is accomplished by presorting at the point of use, minimizing handling of contaminated articles, and the discharge of waste effluents under controlled conditions. Procedures are described in detail. (C.H.)

Linderoth, C.E.; Little, G.A.

1962-05-11T23:59:59.000Z

410

Method of removing contaminants from plastic resins  

DOE Patents (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-11-18T23:59:59.000Z

411

Method for removing contaminants from plastic resin  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-30T23:59:59.000Z

412

Method of removing contaminants from plastic resins  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

2007-08-07T23:59:59.000Z

413

Method of removing oxidized contaminants from water  

DOE Patents (OSTI)

The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

1998-07-21T23:59:59.000Z

414

Method of removing oxidized contaminants from water  

DOE Patents (OSTI)

The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

Amonette, James E. (Richland, WA); Fruchter, Jonathan S. (Richland, WA); Gorby, Yuri A. (Richland, WA); Cole, Charles R. (West Richmond, WA); Cantrell, Kirk J. (West Richmond, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

415

Modelling the Spectral Effects of Water and Soil as Surface Contaminants in a High Resolution Optical Image Simulation  

E-Print Network (OSTI)

indicated that as the particle size decreased, there was a corresponding increase in reflectance. The layer, painted metal and roofing material. The environmental effects that we chose to model were dust iv #12;v in the reflective and thermal regions. The spectral effects of these contaminants were measured in the field

Salvaggio, Carl

416

The Role of Molecular Scale Investigations in Advanci,ng the Frontiers of Contaminant Speciation and Bioavailability in Soils  

E-Print Network (OSTI)

Speciation and Bioavailability in Soils Donald L. Sparks* Department of Plant and Soil Sciences, University. Contamination of soils and waters with metals, oxyanions, radionuclides, nutri~nts, and organic chemicals is the focus of research in a variety of fields including soil and environmental sciences and' engineering

Sparks, Donald L.

417

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network (OSTI)

Reduction of trichloroethylene (TCE), chromium (VI), and 2,4 dinitrotoluene (2,4-DNT) by zero valent iron and palladized iron under anaerobic conditions was investigated. Reduction experiments of the contaminants were carried out individually and in combination. All three target contaminants were effectively reduced by both iron (Feo) and palladized iron (Pd/Fe'). However, the rate of reduction by Pd/Fe' was found to be much faster than that by Feo. The reduction of all the contaminants in mixed waste was found to be slower than in the individual experiments, but the difference was most significant in the 2,4-DNT reduction. This observation indicates that there may be a possibility of competition for reactive sites among the contaminants and precipitation resulting from CR(VI) reduction may coat iron surfaces, which may ultimately slow the whole zero valent metals (ZVMS) treatment process in remediating mixed waste sites. The 20 mg/L of CR(VI) was reduced below detection limits in 10 hours by Fe' and in 1.5 hours by the same amount of Pd/Fe' in individual experiment. An initial concentration of 20 mg/L of TCE was reduced below detection limits in 72 hours by Pd/Fe' whereas only 62% of TCE was reduced by the same amount of Fe' in 144 hours in individual experiment. The reaction orders of 1.84 and 2.04 for total TCE loss alone and in mixed waste by Fe' indicates that the reaction mechanisms are complex. The reduction of 72 mg/L of 2,4-DNT proceeded to below detection limits within 3 hours by both Fe' and Pd/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2,4-DAT alone occurred, these results indicate the possibility of other intermediates or products formation under aerobic conditions. Overall, the results demonstrated the potential application of ZVMs in reducing mixed wastes containing both inorganic and organic contaminant interactions before implementing a ZVMs treatment system, which may help in designing a proper remedial system.

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

418

Corrosion of valve metals  

DOE Green Energy (OSTI)

A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized. (FS)

Draley, J.E.

1976-01-01T23:59:59.000Z

419

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

420

METAL PRODUCTION AND CASTING  

DOE Patents (OSTI)

This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

Magel, T.T.

1958-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy metal contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ceramic to metal seal  

DOE Patents (OSTI)

Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

422

Characterization of the Deltaproteobacteria in Contaminated and Uncontaminated Surface Stream Sediments and Identification of Potential Mercury Methylators  

Science Conference Proceedings (OSTI)

Microbial communities were examined in surface stream sediments at five contaminated sites and one control site near Oak Ridge, TN in order to identify bacteria that could be contributing to mercury methylation. The phylogenetic composition of the sediment bacterial community was examined over three quarterly sampling periods (36 samples) using 16s rRNA pyrosequencing. Only 3064 sequences (0.85 % of the total community) were identified as Deltaproteobacteria by the RDP classifier at the 99% confidence threshold. Constrained ordination techniques indicated significant positive correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl mercury concentrations in the contaminated sites. On the contrary, the distribution of organisms related to Byssovorax was significantly correlated to inorganic carbon, nitrate and uranium concentrations. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in the sediments of the site, while the majority of the members present at the contaminated sites were either known metal reducers/methylators or metal tolerant species.

Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL; Elias, Dwayne A [ORNL; Podar, Mircea [ORNL; Brooks, Scott C [ORNL; Brown, Steven D [ORNL; Brandt, Craig C [ORNL; Palumbo, Anthony Vito [ORNL

2012-01-01T23:59:59.000Z

423

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

424

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

425

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

426

Trending: Metal Oxo Bonds  

NLE Websites -- All DOE Office Websites (Extended Search)

Trending: Metal Oxo Bonds Print Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide variety of important emergent technologies, including industrial catalysis, biomimetic transformations, and artificial photosynthesis. To address this problem, a research team from four national laboratories, three Department of Energy synchrotron user facilities, and the University of Washington has applied spectroscopic and computational analyses to a number of metal oxides, quantifying trends in metal oxo bonding for groups of metals across the periodic table.

427

RF Breakdown of Metallic Surfaces in Hydrogen  

DOE Green Energy (OSTI)

In earlier reports, microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments were used to investigate the mechanism of RF breakdown of tungsten, molybdenum, and beryllium electrode surfaces. Plots of remnants were consistent with the breakdown events being due to field emission, due to the quantum mechanical tunnelling of electrons through a barrier as described by Fowler and Nordheim. In the work described here, these studies have been extended to include tin, aluminium, and copper. Contamination of the surfaces, discovered after the experiments concluded, have cast some doubt on the proper qualities to assign to the metallic surfaces. However, two significant results are noted. First, the maximum stable RF gradient of contaminated copper electrodes is higher than for a clean surface. Second, the addition of as little as 0.01% of SF6 to the hydrogen gas increased the maximum stable gradient, which implies that models of RF breakdown in hydrogen gas will be important to the study of metallic breakdown.

BastaniNejad, M.; Elmustafa, A.A.; /Old Dominion U.; Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia

2009-05-01T23:59:59.000Z

428

SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Ferrihydrite banner Nano biogenic uraninite Energy and biogeochemistry: Nuclear fuel and weapons production have produced radionuclide and heavy metal contamination in terrestrial...

429

Argonne Chemical Sciences & Engineering - National Security ...  

NLE Websites -- All DOE Office Websites (Extended Search)

to ultra-pure levels. This includes water tainted by heavy metals, biological, radionuclide contaminations. This system is compatible with in-tank processing. Selective...

430

CX-010566: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05232013 Location(s):...

431

2-4 High-Performance Mass Spectrometry Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

through soil and into groundwater. The mechanism for this reduction in contaminant mobility is the transfer of an electron to the heavy metal through cell surface proteins...

432

Contaminant-Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes  

SciTech Connect

The current debate over possible decontamination processes for DOE facilities is centered on disparate decontamination problems, but the key contaminants (Thorium [Th],uranium [U], and plutonium [Pu]) are universally important. Innovative agents used alone or in conjunction with traditional processes can increase the potential to reclaim for future use some these valuable resources or at the least decontaminate the metal surfaces to allow disposal as nonradioactive, nonhazardous material. This debate underscores several important issues: (1) regardless of the decontamination scenario, metal (Fe, U, Pu, Np) oxide film removal from the surface is central to decontamination; and (2) simultaneous oxide dissolution and sequestration of actinide contaminants against re-adsorption to a clean metal surface will influence the efficacy of a process or agent and its cost. Current research is investigating the use of microbial siderophores (chelates) to solubilize actinides (i.e., Th, U, Pu) from the surface of Fe oxide surfaces. Continuing research integrates (1) studies of macroscopic dissolution/desorption of common actinide (IV) [Th, U, Pu, Np] solids and species sorbed to and incorporated into Fe oxides, (2) molecular spectroscopy (FTIR, Raman, XAS), to probe the structure and bonding of contaminants, siderophores and their functional moieties, and how these change with the chemical environment, (3) and molecular mechanics and electronic structure calculations to design model siderophore compounds to test and extend the MM3 model.

Ainsworth, Calvin C.; Hay, Benjamin P.; Traina, Samuel J.; Myneni, Satish C. B.

2003-06-01T23:59:59.000Z

433

A 3 MEGAJOULE HEAVY ION FUSION DRIVER  

E-Print Network (OSTI)

Research, Office of Inertia! Fusion, Research Division ofA 3 MEGAJOULE HEAVY ION FUSION DRIVER* A. Faltens, E. Hoyer,Research, Office of Inertial Fusion, Research Division of

Faltens, A.

2010-01-01T23:59:59.000Z

434

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

435

Magnetism and superconductivity of heavy fermion matter  

E-Print Network (OSTI)

The interplay of magnetism and unconventional superconductivity (d singlet wave or p triplet wave) in strongly correlated electronic system (SCES) is discussed with recent examples found in heavy fermion compounds. A short presentation is given on the formation of the heavy quasiparticle with the two sources of a local and intersite enhancement for the effective mass. Two cases of the coexistence or repulsion of antiferromagnetism and superconductivity are given with CeIn3 and CeCoIn5. A spectacular example is the emergence of superconductivity in relatively strong itinerant ferromagnets UGe2 and URhGe. The impact of heavy fermion matter among other SCES as organic conductor or high TC oxide is briefly pointed out. Key words: heavy fermion, superconductivity, antiferromagnetism, ferromagnetism

J. Flouquet A; G. Knebel A; D. Braithwaite A; D. Aoki B; J. P. Brison C; F. Hardy A; A. Huxley A; S. Raymond A; B. Salce A; I. Sheikin D

2005-01-01T23:59:59.000Z

436

Hadron Production in Heavy Ion Collisions  

E-Print Network (OSTI)

We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.

Helmut Oeschler; Hans Georg Ritter; Nu Xu

2009-08-12T23:59:59.000Z

437

Statistics of Heavy Rainfall Occurrences in Taiwan  

Science Conference Proceedings (OSTI)

The seasonal variations of heavy rainfall days over Taiwan are analyzed using 6-yr (1997–2002) hourly rainfall data from about 360 rainfall stations, including high-spatial-resolution Automatic Rainfall and Meteorological Telemetry System ...

Ching-Sen Chen; Yi-Leng Chen; Che-Ling Liu; Pay-Liam Lin; Wan-Chin Chen

2007-10-01T23:59:59.000Z

438