Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heavy Element Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Heavy Element Chemistry Heavy Element Chemistry Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Heavy Element Chemistry Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the chemistry of the heavy elements, focused on the actinides, but also includes the transactinide elements and some fission products. The unique molecular bonding of these elements is explored using experiment and theory to elucidate electronic and molecular structure as well as reaction thermodynamics. Emphasis is placed on resolving the f-electron challenge; the chemical and physical

2

The Search for Heavy Elements  

ScienceCinema (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

None

2010-01-08T23:59:59.000Z

3

The Search for Heavy Elements  

SciTech Connect

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

2008-04-17T23:59:59.000Z

4

Chemistry 330 / Study Guide 217 Toxic Heavy Metals  

E-Print Network (OSTI)

Chemistry 330 / Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored for this section. #12;Chemistry 330 / Study Guide 219 Common Features--Toxicity of the Heavy Metals Objectives. Metals--especially heavy metals--pose a unique environmental pollution problem. Heavy metals

Short, Daniel

5

Helioseismic limit on heavy element abundance  

E-Print Network (OSTI)

Primary inversions of accurately measured solar oscillation frequencies coupled with the equations of thermal equilibrium and other input physics, enable us to infer the temperature and hydrogen abundance profiles inside the Sun. These profiles also help in setting constraints on the input physics as well as on heavy element abundance in the solar core. Using different treatments of plasma screening for nuclear reaction rates, limits on the cross-section of proton-proton nuclear reaction as a function of heavy element abundance in the solar core are obtained and an upper limit on heavy element abundance in the solar core is also derived from these results.

H. M. Antia; S. M. Chitre

2002-09-08T23:59:59.000Z

6

Superheavy Element Nuclear Chemistry at RIKEN  

SciTech Connect

A gas-jet transport system has been coupled to the RIKEN gas-filled recoil ion separator GARIS to startup superheavy element (SHE) chemistry at RIKEN. The performance of the system was appraised using an isotope of element 104, {sup 261}Rf, produced in the {sup 248}Cm({sup 18}O,5n){sup 261}Rf reaction. Alpha-particles of {sup 261}Rf separated with GARIS and extracted to a chemistry laboratory were successfully identified with a rotating wheel apparatus for alpha spectrometry. The setting parameters such as the magnetic field of the separator and the gas-jet conditions were optimized. The present results suggest that the GARIS/gas-jet system is a promising approach for exploring new frontiers in SHE chemistry: (i) the background radioactivities of unwanted reaction products are strongly suppressed, (ii) the intense beam is absent in the gas-jet chamber and hence high gas-jet efficiency is achieved, and (iii) the beam-free condition also allows for investigations of new chemical systems.

Haba, Hiromitsu; Kaji, Daiya; Kasamatsu, Yoshitaka; Kudou, Yuki; Morimoto, Kouji; Morita, Kosuke; Ozeki, Kazutaka; Yoneda, Akira [Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198 (Japan); Kikunaga, Hidetoshi; Komori, Yukiko; Ooe, Kazuhiro; Shinohara, Atsushi; Yoshimura, Takashi [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Sato, Nozomi; Toyoshima, Atsushi [Advanced Science Research Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Yokoyama, Akihiko [Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

2010-05-12T23:59:59.000Z

7

Heavy Element Synthesis Reactions W. Loveland Oregon State University  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy element synthesis reactions and heavy element properties * Hot (E*35-60 MeV) and Cold (E*15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic...

8

Before There Was Chemistry: The Origin of the Elements as an Introduction to Chemistry  

Science Journals Connector (OSTI)

The use of cosmology as an interdisciplinary introduction to a chemistry course is discussed. Students read a variety of nontext sources in order to piece together the events of the early universe that led to the creation of the elements. An introduction ...

Neil Glickstein

1999-03-01T23:59:59.000Z

9

Disentangling Effects of Nuclear Structure in Heavy Element Formation  

SciTech Connect

Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming {sup 232}Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

Hinde, D. J.; Thomas, R. G.; Rietz, R. du; Diaz-Torres, A.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rafiei, R.; Rodriguez, M. D. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

2008-05-23T23:59:59.000Z

10

Neutrino-driven wind simulations and nucleosynthesis of heavy elements  

E-Print Network (OSTI)

Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear astrophysics problem that requires understanding advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons against forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested to be a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations point already to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.

A. Arcones; F. -K. Thielemann

2012-07-11T23:59:59.000Z

11

High temperature chemistry of advanced heavy water reactor fuel  

Science Journals Connector (OSTI)

The Department of Atomic Energy envisages the use of thoria based fuel in the third phase of nuclear power generation. The fuel will consist of solid solution of thorium-uranium and thorium-plutonium in the form of their oxides. The former will contain 2.5 mole % UO2 while the latter about 4 mole % PuO2. Since no other country in the world has used such fuel, no data is available on its behavior under long-term irradiation. The high temperature chemistry of fuel can however provide some insight into the behavior of such fuel during irradiation and could be of considerable help in the assessment of its long-term integrity. The high temperature chemistry of the fuel essentially involves the measurement of thermodynamic properties of the compounds formed in the multi-component systems comprising the fuel matrix, the fission products and the clad. The physical integrity of the fuel under long-term irradiation can be predicted with the help of basic thermodynamic data such as the Gibbs energy of formation of various compounds and their thermophysical properties such as thermal conductivity and coefficient of thermal expansion derived from experimental measurements. The paper highlights the measurements made on some typical systems relevant to the prediction of thoria based fuel behaviour during long-term irradiation. The experimental problems faced in such measurements are also discussed.

S.R. Dharwadkar

2002-01-01T23:59:59.000Z

12

Heavy elements in Globular Clusters: the role of AGB stars  

E-Print Network (OSTI)

Recent observations of heavy elements in Globular Clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few Globular Clusters only. We show that the combined pollution of AGB stars with mass ranging between 3 to 6 M$_\\odot$ may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two different neutron-capture nucleosynthesis episodes. The first is due to the 13C(a,n)16O reaction and takes place during the interpulse periods. The second is due to the 22Ne(a,n)25Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Sr, Y, Zr). The first mainly operates in the less-massive AGB stars, while the second dominates in th...

Straniero, Oscar; Piersanti, Luciano

2014-01-01T23:59:59.000Z

13

Dr Jenifer BRALEY Assistant Professor Department of Chemistry &  

E-Print Network (OSTI)

Fundamental actinide chemistry Nuclear fuel reprocessing Nuclear forensics Medical radioisotope production � DOE Early Career Award � Heavy Element Chemistry, 2014 � SCUREF Junior Faculty Award, 2013 � U.S. DOE

14

At an Elemental Crossroad: Investigating the Chemistry of Protactinium...  

NLE Websites -- All DOE Office Websites (Extended Search)

orbitals are the defining characteristic of the actinides as well as the rare-earth elements. This is critical because the relative energies of the orbitals that...

15

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry1354608000000ChemistrySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Chemistry Some of these...

16

Rapid Neutron Absorption by Heavy Nuclei Forms Transplutonium Elements  

Science Journals Connector (OSTI)

Thermonuclear synthesis of transplutonium elements has been postulated since californium was discovered in thermonuclear bomb tests, he notes. ...

1963-06-03T23:59:59.000Z

17

Folden Group - Heavy Element Nuclear and Radiochemistry at Texas...  

NLE Websites -- All DOE Office Websites (Extended Search)

elements. This involves measuring the production cross sections for a variety of nuclear fusion reactions, and using theoretical models to interpret the results. Our work is...

18

Heavy Element Abundances in Presolar Silicon Carbide Grains from Low-Metallicity AGB Stars  

E-Print Network (OSTI)

Heavy Element Abundances in Presolar Silicon Carbide Grains from Low-Metallicity AGB Stars Peter explosions. Silicon carbide is the best studied presolar mineral. Based on its isotopic compositions the identified presolar minerals are diamond, silicon carbide (SiC), graphite, silicon nitride (Si3N4), corundum

19

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdou, Hanan E. - Department of Chemistry, Texas A&M University Agmon, Noam - Institute of Chemistry, Hebrew...

20

Heavy-Ion Fusion Mechanism and Predictions of Super-Heavy Elements Production  

SciTech Connect

Fusion process is shown to firstly form largely deformed mono-nucleus and then to undergo diffusion in two-dimensions with the radial and mass-asymmetry degrees of freedom. Examples of prediction of residue cross sections are given for the elements with Z = 117 and 118.

Abe, Yasuhisa [RCNP, Osaka University, Ibaraki (Osaka), 567-0047 (Japan); Shen Caiwan [School of Science, Huzhou Teachers College, Huzhou (Zhejiang), 313000 (China); Boilley, David [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076, France and Univ. Caen, BP 5186, F-14032 Caen (France); Giraud, Bertrand G. [IPT, CEA/DSM, CEA-Saclay, Gif-sur-Yvette, F-91191 (France); Kosenko, Grigory [Department of Physics, Omsk University, Omsk, RU-644077 (Russian Federation)

2009-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfacesinterfaces, catalysis, chemical dynamics (gas-phase...

22

Heavy Elements in the Lyman-$?$\\ Forest: Abundances and Clustering at z=3  

E-Print Network (OSTI)

For the purpose of studying the properties of heavy-elements associated with the Lyman-$\\alpha$\\ forest, we observed the gravitational lens Q1422+2309. We used the HIRES instrument on the W.M. Keck telescope to obtain a high-resolution, very high signal-to-noise spectrum of this z=3.63 quasar; the spectrum covers wavelengths from below Lyman-$\\beta$\\ up to the C IV emission line. Consistent with previous estimates, we find that a moderate fraction of the Ly-$\\alpha$\\ forest clouds have been enriched with heavy elements at a level significantly below solar abundance. However, unlike the fairly uniform distribution of Ly-$\\alpha$\\ forest lines, we show that the C IV absorption lines are clustered on large velocity scales.

D. S. Womble; W. L. W. Sargent; R. S. Lyons

1995-11-09T23:59:59.000Z

23

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships between surface properties and parameters relevant to potential applications and devices. Catalysts play a central role in processes relevant to energy, the environment, and biology. Researchers are working to develop cheaper and smarter catalysts that are fine tuned to accelerate reactions that, for example, drive fuel-refinement, sweep toxins from emissions, or convert starch to sugar.

24

Neutrinos and the synthesis of heavy elements: the role of gravity  

E-Print Network (OSTI)

The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.

Caballero, O L; McLaughlin, G C

2014-01-01T23:59:59.000Z

25

Neutrinos and the synthesis of heavy elements: the role of gravity  

E-Print Network (OSTI)

The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.

O. L. Caballero; R. Surman; G. C. McLaughlin

2014-10-28T23:59:59.000Z

26

Surveys of research in the Chemistry Division, Argonne National Laboratory  

SciTech Connect

Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

Grazis, B.M. (ed.)

1992-01-01T23:59:59.000Z

27

Surveys of research in the Chemistry Division, Argonne National Laboratory  

SciTech Connect

Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

Grazis, B.M. [ed.

1992-11-01T23:59:59.000Z

28

Data of heavy elements for light sources in EUV and XUV and for other applications  

SciTech Connect

Atomic ionic states and transition properties of elements with atomic numbers Z ranging from 50 to 80 are discussed as these are important to the understanding of plasmas containing such heavy elements. As such, data productions and the current status of theoretical calculations in this field are discussed. Further, recent spectroscopic measurements and respective theoretical analyses for W, Gd, and Nd are provided. The spectra of photoemissions elicited by the transitions between the sub-shell levels in N-sub-shell open atomic ions are of interest for the strong influence received from the interactions between the electronic state configurations with different constituent orbitals. Visible light emissions of W from M1 as well as E2 transitions are introduced and discussed.

Koike, F. [Phys. Lab. School of Med. Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0374 (Japan); Funaba, H.; Goto, M.; Kato, D.; Kato, T.; Morita, S.; Murakami, I.; Sakaue, H. A.; Sudo, S.; Suzuki, C.; Tanuma, N. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sasaki, A. [Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa-shi, Kyoto 619-0215 (Japan); Ding, X. B. [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)

2013-07-11T23:59:59.000Z

29

Uncertainties in nuclear transition matrix elements for neutrinoless ?? decay: The heavy Majorana neutrino mass mechanism  

Science Journals Connector (OSTI)

Employing four different parametrizations of the pairing plus the multipolar type of effective two-body interaction and three different parametrizations of the Jastrow type of short-range correlations, the uncertainties in the nuclear transition matrix elements MN0? due to the exchange of heavy Majorana neutrino for the 0+?0+ transition of neutrinoless double beta decay of 94Zr, 96Zr, 98Mo, 100Mo, 104Ru, 110Pd, 128,130Te, and 150Nd isotopes in the PHFB model are estimated to be around 35%. Excluding the nuclear transition matrix elements calculated with the Miller-Spencer parametrization of Jastrow short-range correlations, the uncertainties are found to be smaller than 20%.

P. K. Rath, R. Chandra, P. K. Raina, K. Chaturvedi, and J. G. Hirsch

2012-01-11T23:59:59.000Z

30

Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinide Chemistry Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to identify and quantify the chemical and isotopic composition of materials. Since the Manhattan Project, such work has supported the Laboratory's

31

The Entire Chemistry Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Archives Chemistry Archives Chemistry Archives, Since November 1991 Table of Contents: When entropy = 0, does atomic motion stop? When H2O and methanol mix Heavy element names Radon Bee's wax CFC's and ozone depletion Solar cells and Phosphorous vs Chlorophyll B Aromaticity Hypercolor t-shirt Bonds for tie dye Soda POP General chemistry questions Tyndall Effect Silicon chips Molecules and cancer Acetylene safety Picric acid Buckyballs Piezoelectric Weak pennies Extracting fats Anti-oxidants Batteries & chemicals Hydrogen, can it be an isotope? Can soda conduct electricity? pH What is the biggest molecule? Smallest molecule Metallic zinc as catalyst Bond order in carbon bonds Packing of crystal structure Advantages, disadvantages of chloroform Coloring oil Free-radicals Acid-Base reaction

32

STUDIES IN THE NUCLEAR CHEMISTRY OF PLUTONIUM, AMERICIUM, AND CURIUM AND MASSES OF THE HEAVIEST ELEMENTS  

E-Print Network (OSTI)

CHEMISTRY OF PLUTONIUM, AMERICIUM, AND CURIUM AND THE MASSESTO ION EXCHANGE SEPARATIONS OF AMERICIUM AND CURIUM A. B.5. Tartrate elutions of americium and curium from Dowex-50

Glass, Richard Alois

2011-01-01T23:59:59.000Z

33

Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex  

Science Journals Connector (OSTI)

Abstract The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions.

W.A. Abuhani; N. Dasgupta-Schubert; L.M. Villaseor; D. Garca Avila; L. Surez; C. Johnston; S.E. Borjas; S.A. Alexander; S. Landsberger; M.C. Surez

2015-01-01T23:59:59.000Z

34

Yb-based heavy fermion compounds and field tuned quantum chemistry  

SciTech Connect

The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in {rho}(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT{sub 2}Zn{sub 20} (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT{sub 2}Zn{sub 20} and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, T{sub K}, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum criticality in Yb-based systems.

Mun, Eundeok

2010-07-23T23:59:59.000Z

35

Structural analyses of the storage container for heavy element facility, building-251  

SciTech Connect

The Heavy Element Facility, Building 251, contains a series of underground storage vaults which are used for long term storage of nuclear materials. A storage rack with shelves is suspended from the top of each storage vault. The stainless steel containers enclosing the nuclear materials are stored on the shelves. A Hazard & Accident assessment analyzed the vulnerability of this storage system to assaults resulting from natural phenomena and accidents within the building. The assessment considered all racks and their containers to be stored underground and secured in their static, long-term configuration. Moving beyond the static, long-term hazard assessment, the structural analyses were performed to evaluate the storage container against a rare, short duration event. An accidental free drop of a container may occur in a combination of two events: a rare, short-duration earthquake concurrent with an operation of raising the storage rack to a maximum height that the crane is capable of. This hypothetical free drop may occur only to the container in the uppermost shelf of the storage rack. The analyses were the structural evaluation of the storage container to determine the material containment integrity of the storage container after the accident. The evaluation was performed simulating a free drop from the storage rack, with a maximum load in the container, striking/an unyielding surface in the worst orientation. The analyses revealed that, in the very unlikely event of a container drop, the integrity of the hermetic seal of the storage container could be compromised due to plastic deformation of the lid and mating flange. Simple engineering and administrative controls can prevent that from occurring.

Ng, D S

1999-01-01T23:59:59.000Z

36

Trace element chemistry of Apollo 14 lunar soil from Fra Mauro  

Science Journals Connector (OSTI)

Analytical data are presented for Apollo 14 fines ( Mauro Formation, possessed high concentrations (100200 chondrites) for many elements, prior to the excavation of the mare basins. A correlation may exist between Gd/Eu and Zr/Hf ratios in lunar materials.

S.R. Taylor; Patricia Muir; Maureen Kaye

1971-01-01T23:59:59.000Z

37

Electron-Impact Ionization Cross Sections of Molecules Containing Heavy Elements (Z > 10)  

Science Journals Connector (OSTI)

For example, low-temperature plasmas are important in semiconductor processing, in the destruction of volatile organic compounds, for modifying the mechanical properties of surfaces, and in wall-chemistry in nuclear fusion reactors. ... 4 This file serves as input to another Perl script, which computes energy-dependent cross sections. ...

Gregory E. Scott; Karl K. Irikura

2005-09-30T23:59:59.000Z

38

Adiabatic description of dissipative processes in heavy-ion reactions and fission. I. Microscopic theory: Statistics of matrix elements  

Science Journals Connector (OSTI)

The statistical properties of matrix elements which couple the collective (or shape) degrees of nuclear motion with the intrinsic degrees of freedom, are evaluated in the adiabatic representation. The results will be used in a future paper for the calculation of transport coefficients which describe the irreversible (dissipative) transfer of energy from the collective degrees of freedom to the intrinsic ones. As input we use a random-matrix model for the residual interaction, and salient properties of single-particle levels in nonspherical potentials.[NUCLEAR REACTIONS Random-matrix model applied to heavy-ion reaction and fission.

M. C. Nemes and Hans. A. Weidenmller

1981-08-01T23:59:59.000Z

39

Cetane Performance and Chemistry Comparing Conventional Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels...

40

U.S. Department of Energy Office of Science Heavy Elements Program. Final Report  

SciTech Connect

In our first funding cycle, much time was spent developing protocols for characterizing and working with samples containing transuranium isotopes and obtaining preliminary experimental data on non-f-element systems.

Clark. S. B.; Ewing, R.

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Glann Seaborg's Contributions to Heavy Element Science and the Periodic Table  

SciTech Connect

In celebrating the centennial anniversary of the birth of Glenn T. Seaborg it is fitting that we recount and pay tribute to his legacy. Many know of the scientific accomplishments of this man who became a legend and anyone who has attended his lectures can attest to how informative, educational, and entertaining he was. He had a beguiling and whimsical sense of humor and used this to drive home his points and share his passion and quest for discovery. The periodic table is a fundamental cornerstone of science and remains a central unifying principal. Seaborg was the architect of the actinide series of elements and their proper placement in the periodic table and co-discoverer of ten transuranium elements - one of which bears his name, element 106, seaborgium. The work and achievements of this Nobel laureate have touched the lives of many and his legacy will continue for generations to come.

Hobart, David E. [Los Alamos National Laboratory

2012-08-17T23:59:59.000Z

42

Spontaneous fission modes and lifetimes of super-heavy elements in the nuclear density functional theory  

E-Print Network (OSTI)

Lifetimes of super-heavy (SH) nuclei are primarily governed by alpha decay and spontaneous fission (SF). Here we study the competing decay modes of even-even SH isotopes with 108 density functional theory framework capable of describing the competition between nuclear attraction and electrostatic repulsion. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov approach. Along the path to fission, our calculations allow for the simultaneous breaking of axial and space inversion symmetries; this may result in lowering SF lifetimes by more than seven orders of magnitude in some cases. We predict two competing SF modes: reflection-symmetric and reflection-asymmetric.The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by $^{280}$Hs, $^{284}$Fl, and $^{284}_{118}$Uuo that separates the regions of SH nuclei synthesized in "cold fusion" and "hot fusion" reactions. The region of long-lived SH nuclei is expected to be centered on $^{294}$Ds with a total half-life of ?1.5 days.

A. Staszczak; A. Baran; W. Nazarewicz

2012-08-06T23:59:59.000Z

43

Iron Isotope and Rare Earth Element Patterns of the Neoproterozoic Fulu Formation, South China: Implications for Late Proterozoic Ocean Chemistry  

E-Print Network (OSTI)

13 3.5. Rare Earth Element Analysis. 15 4.21 b. 5.2. Rare Earth Element Patterns24 6.Piper, D. Z. (1974). Rare earth elements in the sedimentary

Goldbaum, Elizabeth

2014-01-01T23:59:59.000Z

44

Heavy Element Abundances in Presolar Silicon Carbide Grains from Low-Metallicity AGB Stars  

E-Print Network (OSTI)

Primitive meteorites contain small amounts of presolar minerals that formed in the winds of evolved stars or in the ejecta of stellar explosions. Silicon carbide is the best studied presolar mineral. Based on its isotopic compositions it was divided into distinct populations that have different origins: Most abundant are the mainstream grains which are believed to come from 1.5-3 Msun AGB stars of roughly solar metallicitiy. The rare Y and Z grains are likely to come from 1.5-3 Msun AGB stars as well, but with subsolar metallicities (0.3-0.5x solar). Here we report on C and Si isotope and trace element (Zr, Ba) studies of individual, submicrometer-sized SiC grains. The most striking results are: (1) Zr and Ba concentrations are higher in Y and Z grains than in mainstream grains, with enrichments relative to Si and solar of up to 70x (Zr) and 170x (Ba), respectively. (2) For the Y and Z grains there is a positive correlation between Ba concentrations and amount of s-process Si. This correlation is well explain...

Hoppe, P; Vollmer, C; Groener, E; Heck, P R; Gallino, R; Amari, S; 10.1071/AS08033

2009-01-01T23:59:59.000Z

45

PII S0016-7037(00)00379-3 Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal  

E-Print Network (OSTI)

, Nepal N. B. ENGLISH,* J. QUADE, P. G. DECELLES, and C. N. GARZIONE Department of Geology, University) Abstract--Our study of the Seti River in far western Nepal shows that the solute chemistry of the river

Garzione, Carmala N.

46

[Reaction mechanism studies of heavy ion induced nuclear reactions]. [Dept. of Chemistry and Biochemistry, Univ. of Maryland, College Park, Maryland  

SciTech Connect

Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

Mignerey, A.C.

1993-02-01T23:59:59.000Z

47

147Chemistry Chemistry (Chem)  

E-Print Network (OSTI)

147Chemistry Chemistry (Chem) Bayly Foundation PROFESSORS FRANCE, PLEVA ASSOCIATE PROFESSORS ALty A student may complete only one of the majors listed in the Department of Chemistry. The major in chemistry leading to a Bachelor of Arts degree requires completion of 44 credits as follows: 1. Chemistry 111, 112

Dresden, Gregory

48

Spallation-Fission Competition in Heavy-Element Reactions: Th232+He4 and U233+d  

Science Journals Connector (OSTI)

Cross sections and excitation functions have been determined for spallation and fission products from bombardments of Th232 with helium ions (15 to 46 Mev) and U233 with deuterons (9 to 24 Mev). This work extends a series of investigations of charged particle (?, d, and p) induced reactions in heavy elements (Z?88). Radiochemical methods were employed to isolate products corresponding to the following spallation reactions: neutron emission, (?,4n), (?,5n), (d,n), (d,2n), and (d,3n); emission of one proton and neutrons (?,p), (?,pn), (?,p2n), and (?,p3n); and emission of two protons and neutrons, (?,2p), (?,2pn), and (?,?n), and (d,?n). In addition, the following fission products were isolated from one or more bombardments: Zn72, Ge77, As77, Br82,83, Rb86, Sr89,91, Y93, Zr95,97, Nb96, Mo99, Ru103,105,106, Pd109,112, Ag111, Cd115,115m,117, I131,133, Cs136, Ba139,140, La140, Ce141,143,144, Nd147, Eu157, and Gd159.The results show that fission is the predominant reaction at all energies for Th232 and to an even greater extent for U233. The data for the surviving spallation products are consistent with several mechanisms of reaction, including compound-nucleus formation and evaporation, direct interactions between nucleons of the incoming helium ion or deuteron and nucleons of the nucleus, and a combination of these types of processes (direct interaction followed by evaporation). In general, the results confirm and extend previously established concepts.The neutron-emission spallation reactions as well as fission are best explained as proceeding through compound-nucleus formation. The shapes and magnitudes of (?,4n), (d,2n), and (d,3n) excitation functions correlate well with a compound-nucleus treatment modified to include fission competition. According to this treatment, ratios of neutron to total-reaction level width, ?n?i?i, are 0.49 for U236-233 [from Th232(?,4n)], 0.17 for Np235-234 [from U233(d,2n)], and 0.20 for Np235-233 [from U233(d,3n)]. In addition the total-reaction excitation functions (consisting mostly of the fission excitation functions) are consistent with theoretical cross sections for compound-nucleus formation calculated with a nuclear radius parameter r0=1.510-13A13.The fission mass-yield curves are similar to those found for other heavy target isotopes (for elements from thorium to plutonium). The minimum in the curves in the region of mass 120 tends to disappear as helium-ion or deuteron energy is increased.The (?,pxn), (?,2pxn), (?,?n), (d,n), and (d,?n) products are attributed to direct interactions, with complex particles emitted in preference to a series of protons and neutrons. Thus (?,d), (?,t), and (?,tn) mechanisms would account for most of the (?,pn), (?,p2n), and (?,p3n) products, respectively. In the case of the (?,t) and (?,tn) reactions, analysis of the ratio ?(?,tn)?(?,t) leads one to the conclusion that with 35-Mev helium ions only 9% of outgoing tritons leave the residual nucleus with sufficient energy to evaporate a neutron or undergo fission, and with 44-Mev helium ions only 20% do so. The (d,n) product probably results from the stripping reaction.

Bruce M. Foreman, Jr., Walter M. Gibson, Richard A. Glass, and Glenn T. Seaborg

1959-10-15T23:59:59.000Z

49

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science  

E-Print Network (OSTI)

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

Levine, Alex J.

50

Cetane Performance and Chemistry Comparing Conventional Fuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources Bruce Bunting, Sam Lewis, John Storey OAK RIDGE NATIONAL LABORATORY U. S....

51

(Perform quantum chemistry calculations on element 104 using existing computer programs): Foreign trip report, June 1, 1988--May 10, 1989  

SciTech Connect

Electron ionization energies and parameters for the atomic radii of elements 104 and 105 are discussed. Values for these properties have not been proposed before. The results are expected to provide part of the basis for the calculation of certain chemical properties of elements 104 and 105. Chemical properties of elements 104 and 105 are difficult to determine experimentally because of the short half-lives and low production rates of these elements. A fully numerical method for the solution of the Schrodinger equation of quantum mechanics is discussed. Fully numerical methods are capable of yielding more accurate results than the method that was used to obtain the ionization energies mentioned above. Compared to other fully numerical methods, the method discussed here requires less computation time and it does not have the mathematical singularities that occur in other such methods. Energy research and development projects at the Gesamthochschule Kassel, Federal Republic of Germany are summarized. These projects involve consultation, wind and solar energy production, storage and distribution, hydroelectricity production, the production of biogas, the design of fuel cells, technology transfer, and the political aspects of energy production and distribution. 12 refs.

Johnson, E.

1989-05-26T23:59:59.000Z

52

Growth and microstructure of MTG REBa2Cu3O7/RE?2BaCuO5 with heavy rare earth elements  

Science Journals Connector (OSTI)

New melt textured REBa2Cu3O7/RE?2BaCuO5 composites, have been obtained by top seeding melt-texturing growth. Two different starting mixtures of \\{REBa2Cu3O7\\} superconducting powders and insulating \\{Y2BaCuO5\\} phase were used. On one hand RE is a natural mixture of heavy rare earth elements (Y, Yb, Lu, Er, Dy, Tm, Ho) extracted from the Brazilian mineral Xenotime, and on the other hand, RE is thulium. In both cases melt textured REBa2Cu3O7/RE?2BaCuO5 composites have been obtained where RE and RE? are different mixtures of heavy rare earth/yttrium and Tm/yttrium. The composition analysis shows different areas within the RE?2BaCuO5 as a consequence of an inhomogeneous RE distribution, due to the differential solubility of each rare earth in the high temperature semisolid state. During the crystallization process a profound inversion of the rare earth composition between the superconducting matrix and the insulating precipitates occurs. Yttrium is selectively located in the 123 matrix and RE in the 211 particles. Heavy RE ions can substitute yttrium in MTG REBCO without degradation of the superconducting properties. A model for the crystallization process is proposed.

A.E. Carrillo; P. Rodr??guez Jr.; T. Puig; A. Palau; X. Obradors; H. Zheng; U. Welp; L. Chen; B.W. Veal; H. Claus; G.W. Crabtree

2002-01-01T23:59:59.000Z

53

Digital Control Computers In Analytical Chemistry  

Science Journals Connector (OSTI)

Digital Control Computers In Analytical Chemistry ... Time-Sharing Minicomputer Data Acquisition-Processing System ... Automation of organic elemental analysis ...

Jack W. Frazer

1968-07-01T23:59:59.000Z

54

Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinide Chemistry Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to...

55

Chemistry Division annual progress report for period ending January 31, 1984  

SciTech Connect

Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

Not Available

1984-05-01T23:59:59.000Z

56

148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry  

E-Print Network (OSTI)

148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry Prerequisite: Chemistry 242,syntheticmethodology,mod- ernsyntheticreactions,protectinggroups,naturalprod- uctssynthesis,andcombinatorialchemistry.France. Spring Chemistry 350 (3)--Advanced Inorganic Chemistry Prerequisites: Chemistry 250, 252, and 262. Anintro

Dresden, Gregory

57

Superheavy Elements - Achievements and Challenges  

SciTech Connect

The search for superheavy elements (SHE) has yielded exciting results for both the 'cold fusion' approach with reactions employing Pb and Bi targets and the ''hot fusion'' reactions with {sup 48}Ca beams on actinide targets. The most recent activities at GSI were the successful production of a more neutron rich isotope of element 112 in the reaction {sup 48}Ca+{sup 238}U confirming earlier result from FLNR, and the attempt to synthesize an isotope with Z 120 in the reaction {sup 64}Ni+{sup 238}U. Apart from the synthesis of new elements, advanced nuclear structure studies for heavy and super heavy elements promise a detailed insight in the properties of nuclear matter under the extreme conditions of high Z and A. The means are evaporation residue(ER)-{alpha}-{alpha} and -{alpha}-{gamma} coincidence techniques applied after separation of the reaction products from the beam. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the investigation of K-isomers observed for {sup 252,254}No and indicated for {sup 270}Ds. Fast chemistry and precision mass measurements deliver in addition valuable information on the fundamental properties of the SHE.

Ackermann, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2009-03-04T23:59:59.000Z

58

Organofluorine chemistry  

Science Journals Connector (OSTI)

...young scientists give their visions of the future III. Chemistry and biological physics compiled by J. M. T. Thompson Organofluorine chemistry Graham Sandford Department of Chemistry, University of Durham, , South Road, Durham DH1 3LE...

2000-01-01T23:59:59.000Z

59

CLUSTER CHEMISTRY  

E-Print Network (OSTI)

Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

60

SOURCE REGIONS OF THE INTERPLANETARY MAGNETIC FIELD AND VARIABILITY IN HEAVY-ION ELEMENTAL COMPOSITION IN GRADUAL SOLAR ENERGETIC PARTICLE EVENTS  

SciTech Connect

Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. However, an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the potential-field source-surface model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations and (2) then look for a correlation between SEP composition (as measured by Wind and Advanced Composition Explorer at ?2-30 MeV nucleon{sup 1}) and characteristics of the identified IMF source regions. The study is based on 24 SEP events, identified as a statistically significant increase in ?20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly emergent solar magnetic flux and CMEs was lower than in solar-maximum years, and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF source, with the largest enhancements occurring when the footpoint field is strong due to the nearby presence of an active region (AR). In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering (at least on average), similar to that found in impulsive events. Such results lead us to suggest that magnetic reconnection in footpoint regions near ARs bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

Ko, Yuan-Kuen; Wang, Yi-Ming [Space Science Division, Naval Research Laboratory, Code 7680, Washington, DC 20375 (United States); Tylka, Allan J. [NASA Goddard Space Flight Center, Code 672, Greenbelt, MD 20771 (United States); Ng, Chee K. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Dietrich, William F., E-mail: yko@ssd5.nrl.navy.mil [Praxis, Inc., Alexandria, VA 22303 (United States)

2013-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atmospheric Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

62

Interfacial Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Interfacial Chemistry The organization's research focus, among other things, is to develop new analytical methods that advance the science of surface chemistry and contribute to...

63

Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116keV) X-ray fluorescence analysis: 1. Case study of Kofu and Chiba region  

Science Journals Connector (OSTI)

We have started the construction of a nationwide forensic soil sediment database for Japan based on the heavy mineral and trace heavy element compositions of stream sediments collected at 3024 points all over Japan obtained by high-resolution synchrotron X-ray powder diffraction (SR-XRD) and high-energy synchrotron X-ray fluorescence analysis (HE-SR-XRF). In this study, the performance of both techniques was demonstrated by analyzing soil sediments from two different geological regions, the Kofu and Chiba regions in Kanto province, to construct database that can be applied in the future to provenance analysis of soil evidence from a crime scene. The sediments from the quaternary volcanic lithology of the Chiba region were found to be dominated by heavy minerals of volcanic origin orthopyroxene, clinopyroxene, and amphibole, and the \\{REEs\\} (rare earth elements) within the region showed similar geochemical behavior. On the other hand, four distinct heavy mineral groups were identified in the sediments of the Kofu region, where there is a great variety of underlying bedrock, and the geochemical behavior of the \\{REEs\\} in the sediments also varied accordingly to their geological origins. As such, our study shows that high-resolution SR-XRD data can provide information on the spatial distribution patterns of heavy minerals in stream sediments, playing an important role in determining their likely geographical origin. Meanwhile, the highly sensitive HE-SR-XRF data allow us to study the geochemical behavior of trace heavy elements, especially the \\{REEs\\} in the sediments, providing additional support to further constrain the likely geographical origin of the sediments determined by heavy minerals.

Willy Shun Kai Bong; Izumi Nakai; Shunsuke Furuya; Hiroko Suzuki; Yoshinari Abe; Keiichi Osaka; Takuya Matsumoto; Masayoshi Itou; Noboru Imai; Toshio Ninomiya

2012-01-01T23:59:59.000Z

64

Chemistry Division annual progress report for period ending July 31, 1981  

SciTech Connect

Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

Not Available

1982-01-01T23:59:59.000Z

65

CHEMISTRY COURSE OFFERINGS, SPRING, 2014 (Updated 12/05/2013)  

E-Print Network (OSTI)

CHEMISTRY COURSE OFFERINGS, SPRING, 2014 (Updated 12/05/2013) CHEM 0001-01 - CHEMICAL FUNDAMENTALS and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

66

CHEMISTRY COURSE OFFERINGS, SPRING, 2015 (updated Oct.28, 2014 )  

E-Print Network (OSTI)

CHEMISTRY COURSE OFFERINGS, SPRING, 2015 (updated Oct.28, 2014 ) CHEM 0001 - CHEMICAL FUNDAMENTALS and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

67

CHEMISTRY COURSE OFFERINGS, FALL, 2013 (Updated 8/1/13)  

E-Print Network (OSTI)

CHEMISTRY COURSE OFFERINGS, FALL, 2013 (Updated 8/1/13) CHEM 0001-01 & 0001-02 - CHEMICAL and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

68

3, 37453768, 2003 Heavy hydrogen in  

E-Print Network (OSTI)

ACPD 3, 3745­3768, 2003 Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract/3745/ © European Geosciences Union 2003 Atmospheric Chemistry and Physics Discussions Heavy hydrogen Heavy hydrogen in the stratosphere T. R¨ockmann et al. Title Page Abstract Introduction Conclusions

Paris-Sud XI, Université de

69

It's Elemental - The Element Bromine  

NLE Websites -- All DOE Office Websites (Extended Search)

Selenium Selenium Previous Element (Selenium) The Periodic Table of Elements Next Element (Krypton) Krypton The Element Bromine [Click for Isotope Data] 35 Br Bromine 79.904 Atomic Number: 35 Atomic Weight: 79.904 Melting Point: 265.95 K (-7.2°C or 19.0°F) Boiling Point: 331.95 K (58.8°C or 137.8°F) Density: 3.11 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Non-metal Period Number: 4 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for stench, bromos. Say what? Bromine is pronounced as BRO-meen. History and Uses: The only nonmetallic element that is a liquid at normal room temperatures, bromine was produced by Carl Löwig, a young chemistry student, the summer before starting his freshman year at Heidelberg. When he showed his

70

Nations Work Together to Discover New Element | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nations Work Together to Discover New Element Nations Work Together to Discover New Element Stories of Discovery & Innovation Nations Work Together to Discover New Element Enlarge Photo Photo courtesy of Oak Ridge National Laboratory Berkelium-249, contained in the greenish fluid in the tip of the vial, was crucial to the experiment that discovered element 117. It was made in the High Flux Isotope Reactor at DOE's Oak Ridge National Laboratory. When the californium-252 radioisotope was discovered, there were no known practical uses for it, but now it is widely used in industry and medicine. 03.28.11 Nations Work Together to Discover New Element The discovery of element 117 increases evidence for the "island of stability" in super-heavy nuclei, opening new frontiers of chemistry. A new element took its position on the Periodic Table in 2010 after a long research

71

CLUSTER CHEMISTRY  

SciTech Connect

Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

Muetterties, Earl L.

1980-05-01T23:59:59.000Z

72

It's Elemental - The Element Barium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cesium Cesium Previous Element (Cesium) The Periodic Table of Elements Next Element (Lanthanum) Lanthanum The Element Barium [Click for Isotope Data] 56 Ba Barium 137.327 Atomic Number: 56 Atomic Weight: 137.327 Melting Point: 1000 K (727°C or 1341°F) Boiling Point: 2170 K (1897°C or 3447°F) Density: 3.62 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? From the Greek word for heavy, barys. Say what? Barium is pronounced as BAR-ee-em. History and Uses: Barium was first isolated by Sir Humphry Davy, an English chemist, in 1808 through the electrolysis of molten baryta (BaO). Barium is never found free in nature since it reacts with oxygen in the air, forming barium oxide

73

Chemistry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Supercomputing and Computation | Research Areas | Chemistry SHARE Chemistry Computational Chemistry at ORNL uses principles of computer science...

74

Organophosphorus chemistry  

E-Print Network (OSTI)

2087 Organophosphorus chemistry Paul R. Hanson Editorial Open Access Address: Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA Email: Paul R. Hanson - phanson@ku.edu. Keywords: organophosphorus... Beilstein J. Org. Chem. 2014, 10, 20872088. doi:10.3762/bjoc.10.217 Received: 28 July 2014 Accepted: 06 August 2014 Published: 04 September 2014 This article is part of the Thematic Series "Organophosphorus chemistry" Guest Editor: P. R. Hanson 2014...

Hanson, Paul R.

2014-09-04T23:59:59.000Z

75

Element 103, Lawrencium  

Science Journals Connector (OSTI)

... formed on February 14 by bombarding 3 (Jigm. of californium (element 98) with boron-10 or boron-11 nuclei in a heavy-ion linear accelerator at the Lawrence Radiation Laboratory ...

1961-04-29T23:59:59.000Z

76

Reaction chemistry of cerium  

SciTech Connect

It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

NONE

1997-01-01T23:59:59.000Z

77

Radiotracer Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiotracer Chemistry Radiotracer Chemistry Radiotracer chemistry is focused on the short lived positron emitters. New radiotracer chemistry and molecular targeting strategies are being developed to increase the complexity and diversity of molecular probes (small molecules and plant hormones) for imaging applications. We emphasize C-11 chemistry because the substitution of stable carbon with carbon-11 provides the opportunity to measure and quantify the distribution and kinetics of physiologically relevant substrates and signaling molecules without altering the biological properties of the parent molecule. Recent accomplishments include the development of miniaturized automated systems for the production of C-11 precursor molecules, the synthesis of C-11 labeled azaleic acid and the radiolabeling of auxin for studies of their movement and metabolism in the whole plant in vivo.

78

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty  

E-Print Network (OSTI)

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty perform research in molecular machines, exotic CHEMISTRY FACULTY RESEARCH INTERESTS Anne M. Andrews, Professor-in-Residence: Understanding how areas of interest include cross- coupling reactions, green chemistry, heterocycle synthesis, and natural

Levine, Alex J.

79

Element_team_looks_for_magic_number.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

EWSLINE EWSLINE N A LOOK AT NTS BEFORE NUCLEAR TESTING WHAT'S INSIDE PAGE 3 - page 4 PAGE 6 HOME CAMPAIGN BUILDS MOMENTUM Published for the employees of Lawrence Livermore National Laboratory October 27, 2006 Vol. 31, No. 21 HANS BETHE AWARD FOR JIM WILSON PAGE 5 Getting to the bottom of the. . . periodic table Newsline 4 October 27, 2006 SCIENCE NEWS By Anne M. Stark Newsline staff writer It could be dubbed voyage to the bottom of the periodic table of elements. That's the journey that the Heavy Element Group in the Chemistry, Materials and Life Sciences Directorate is on. And they recently came one step closer as they joined with Russian scientists to discover the newest superheavy ele- ment, element 118. LLNL scientists collabo-

80

Br-rich tips of calcified crab claws are less hard but more fracture resistant: A comparison of mineralized and heavy-element biological materials  

E-Print Network (OSTI)

-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organismsBr-rich tips of calcified crab claws are less hard but more fracture resistant: A comparison

Scott, Robert A.

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Position: Assistant Professor of Chemistry, Physical Chemistry  

E-Print Network (OSTI)

John Grey Position: Assistant Professor of Chemistry, Physical Chemistry Email: jkgrey@unm.edu Phone: 505.277.1658; Fax: 505.277.2609 Office: Clark Hall B70 Homepage: http://chemistry.unm.edu/faculty_web/jgrey Education B.S. in Chemistry, 1999, Michigan Technological University, Houghton, MI Ph.D. in Chemistry

82

Green Chemistry and Workers  

E-Print Network (OSTI)

of green chemistry and green engineering and by consideringResearch, Green Chemistry and Green Engineering Center, YaleOF GREEN CHEMISTRY AND GREEN ENGINEERING Julie Zimmerman By

2009-01-01T23:59:59.000Z

83

UCLA CHEMISTRY & BIOCHEMISTRY  

E-Print Network (OSTI)

UCLA CHEMISTRY & BIOCHEMISTRY ORIENTATION HANDBOOK 2012-2013 #12;Table of Contents Introduction .............................................................................................................................................2 Chemistry & Biochemistry Undergraduate Office ..................................................................................................3 Majors in Chemistry

Levine, Alex J.

84

Green Chemistry and Workers  

E-Print Network (OSTI)

J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

2009-01-01T23:59:59.000Z

85

Nanoscience and chemistry Nanoscience, Nanotechnology, and Chemistry**  

E-Print Network (OSTI)

Nanoscience and chemistry Nanoscience, Nanotechnology, and Chemistry** George M. Whitesides* Keywords: · chemistry · devices · nanoscience · nanotechnology What is Nanoscience? "Nanoscience and electrical en- gineering, nanoscience is most often associated with quan- tum behavior, and the behavior

Prentiss, Mara

86

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

87

for Undergraduate CHEMISTRY MAJORS  

E-Print Network (OSTI)

and Marketing, Consulting, Environmental Chemistry, Chemical Education, Chemical Engineering, ChemicalHANDBOOK for Undergraduate CHEMISTRY MAJORS DEPARTMENT OF CHEMISTRY Fall 2010 #12;#12;TABLE OF CONTENTS A Career in Chemistry - What It Means ___________________________________________ 4 What do

Stuart, Steven J.

88

Clinical Chemistry  

Science Journals Connector (OSTI)

Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003 ... The use of europium chelates in a homogeneous fluorescence energy-transfer immunoassay was also examined (A210). ... Finally, the escalating costs have spurred health care reform and more specifically managed care and capitation environments within which laboratories are forced to operate. ...

David J. Anderson; Baochuan Guo; Yan Xu; Lily M. Ng; Larry J. Kricka; Kristen J. Skogerboe; David S. Hage; Larry Schoeff; Joseph Wang; Lori J. Sokoll; Daniel W. Chan; Kory M. Ward; Katherine A. Davis

1997-06-15T23:59:59.000Z

89

Definition Chemistry  

E-Print Network (OSTI)

to be ~3000BC in the Iberian Pyrite Belt ­ Effects included heavy metal pollution in rivers, increased erosion includes ARD, NMD and SD · A final term is metal leaching (ML) as these waters often have high levels of metals Occurrence · Can occur naturally · Weathering (oxidization) of pyrite · Mining accelerates

Boisvert, Jeff

90

CARNEGIE MELLON UNIVERSITY Department of Chemistry  

E-Print Network (OSTI)

, William Durham, Eds.; ACS: Washington DC, 1987. 5) The Heavy Metals: Chemistry, Environmental Impact. Graded Material Assignments 30% Midterm Examination 30% Final Examination 40% The grade substance based upon these assignments on the midterm and final. While the resulting workload for 09

Kurnikova, Maria

91

Chemistry 411/611 Inorganic Chemistry (2011)  

E-Print Network (OSTI)

1 Chemistry 411/611 Inorganic Chemistry (2011) Instructor: Assistant Professor Mathew M. Maye Chemistry", 5th Edition, Freeman Press. Available at SU bookstore. The solution manual is optional. (Suggested for CHE611 Students pursuing Inorganic) Huheey, "Inorganic Chemistry: Principles of Structure

Mather, Patrick T.

92

Chemistry 675 (CHE 675) Advanced Organic Chemistry  

E-Print Network (OSTI)

Chemistry 675 (CHE 675) Advanced Organic Chemistry Fall Semester 2011 Professor James Hougland675 is a graduate-level organic chemistry course that can be continued in the Spring semester as CHE685. These two courses focus on physical organic chemistry, which deals with the structure

Mather, Patrick T.

93

Chemistry 106X -Fall 2010 General Chemistry  

E-Print Network (OSTI)

Chemistry 106X - Fall 2010 General Chemistry Instructor: Christopher Iceman Class: MWF 9 bookstore or elsewhere: · Chemistry and Chemical Reactivity 7th Ed. by Kotz, Treichel, and Townsend-0-495-38703-9 Electronic Book - ISBN 978-0-495-68043-7 · OWL pin number for Chemistry and Chemical Reactivity 7th Ed. (1

Wagner, Diane

94

Chemistry 106X -Spring 2011 General Chemistry  

E-Print Network (OSTI)

Chemistry 106X - Spring 2011 General Chemistry Instructor: Christopher Iceman Class: MWF 1 and can be purchased in the UAF bookstore or elsewhere: · Chemistry and Chemical Reactivity 7th Ed for Chemistry and Chemical Reactivity 7th Ed. (1 or 2 semester) · TurningPoint Technologies ResponseCard RF

Wagner, Diane

95

BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description  

SciTech Connect

Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K{sub d} that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K{sub d} models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems.

MacKinnon, R.J.; Sullivan, T.M. [Brookhaven National Lab., Upton, NY (United States); Simonson, S.A. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Suen, C.J. [California State Univ., Fresno, CA (United States)

1995-08-01T23:59:59.000Z

96

School of Chemistry CHEM3100: Chemistry at a Molecular Level  

E-Print Network (OSTI)

School of Chemistry CHEM3100: Chemistry at a Molecular Level Tutorial Groups 2013/14 Name Programme Tutor Ahmed, Zacher Medicinal Chemistry Arif, Saboor Chemistry Bagnall, Samuel Chemistry Barbara, David Chemistry Beaumont, Nicholas Chemistry Quinn, Michael J Chemistry Bennett, Matthew Chemistry Booth, Natalie

Rzepa, Henry S.

97

Elements & Compounds Atoms (Elements)  

E-Print Network (OSTI)

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12;Nucleus Electrons Cloud of negative charge (2 electrons) Fig. 2.5: Simplified model of a Helium (He) Atom He 4.002602 2 Helium Mass Number (~atomic mass) = number of Neutrons + Protons = 4 for Helium Atomic

Frey, Terry

98

CHEMISTRY CURRICULUM SEMESTER I  

E-Print Network (OSTI)

CHEMISTRY CURRICULUM SEMESTER ­ I Chemistry-I: Physical principles (2:1) Atomic structure-state approximation, Arrhenius equation and collision theory and catalysis. SEMESTER ­ II Chemistry-II: Structure orbital theory: polyatomic molecules - Walsh diagram; Main group chemistry: periodic properties, chemistry

Srinivasan, N.

99

Nuclear chemistry at Harvard  

Science Journals Connector (OSTI)

Nuclear chemistry at Harvard ... This article points out the potential of the chemistry department at Harvard University for research in nuclear chemistry for students who wish to do work in the field for the Ph.D. degree. ... Nuclear / Radiochemistry ...

Geoffrey Wilkinson; Richard M. Diamond; Eugene G. Rochow

1954-01-01T23:59:59.000Z

100

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety for Users ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These...

102

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

103

Shock-induced Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock-induced Chemistry 1663 Los Alamos science and technology magazine Latest Issue:August 2014 All Issues submit Shock-induced Chemistry New paradigms in chemical reactivity...

104

Green Chemistry and Workers  

E-Print Network (OSTI)

19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

2009-01-01T23:59:59.000Z

105

Modern Organic Chemistry  

Science Journals Connector (OSTI)

... to organic chemistry, tautomerism, glutaconic acids, the constitution of urea, the menthone chemistry, carene, hydroxymethylenecamphor, squalene, insulin, the production of acetic acid from cellulose by anaerobic fermentation ...

J. R.

1928-06-02T23:59:59.000Z

106

Chemistry Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Applications Gaussian 09 Gaussian 09 is a connected series of programs for performing semi-empirical, density functional theory and ab initio molecular orbital...

107

Sustainable Process Chemistry  

Science Journals Connector (OSTI)

Sustainable Process Chemistry ... Increase energy efficiency ... Implementation of such processes is believed to reduce waste (first principle of Green Chemistry) and increase sustainability. ...

Robert Appell; Dinesh Gala; Yogesh S. Sanghvi

2011-06-06T23:59:59.000Z

108

Combustion chemistry  

SciTech Connect

This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

109

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry  

E-Print Network (OSTI)

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry Syracuse University The Department of Chemistry at Syracuse University invites applications for a tenure track faculty position at the Assistant Professor level in inorganic chemistry with specialization in materials chemistry (broadly defined

Doyle, Robert

110

Surface Electro Radiation and Photo Chemistry PARIS-SUD GENOVA PORTO POZNAN  

E-Print Network (OSTI)

economic sustainability and environmental safety, conservation and protection such as: development "no-energy of environmental studies, green chemistry, renewable energies, material sciences, nanosciences, nano medicine-Chemistry with elements of Management, Innovation and Valorisation, Communication and Patent law. www

111

Chemistry 320N Organic Chemistry II  

E-Print Network (OSTI)

Chemistry 320N Organic Chemistry II for Prehealth Professionals Unique number: 52365 Spring 2013 M students can access the information. #12;Required Text: Brown, Foote, Iverson, & Anslyn Organic Chemistry have the 6th Edition book, as many homework and exam questions will come directly from the 6th Edition

112

Department of Chemistry "Supramolecular Chemistry in Polymeric  

E-Print Network (OSTI)

Department of Chemistry "Supramolecular Chemistry in Polymeric Systems: From Nanoassemblies Colloquium Friday, May 15, 2009 3:00 p.m. 502 Rieveschl #12;Supramolecular Chemistry in Polymeric Systems and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, OH 44106-7202, USA stuart

Mark, James E.

113

Compound and Elemental Analysis At Akutan Fumaroles Area (Kolker...  

Open Energy Info (EERE)

and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir...

114

Managing Inventories of Heavy Actinides  

SciTech Connect

The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

Wham, Robert M [ORNL; Patton, Bradley D [ORNL

2011-01-01T23:59:59.000Z

115

Why chemistry? Chemistry is fundamental: it is the enabling  

E-Print Network (OSTI)

Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree gives you the understanding to contribute to our future in very topical areas) in Chemistry BSc (Hons) in Chemistry MChem (Hons) in Chemistry (with an industrial placement year) MChem (Hons

Sussex, University of

116

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

117

2-D discrete element modeling of unconsolidated sandstones.  

E-Print Network (OSTI)

??In this work unconsolidated sands saturated with heavy oil were modeled using a discrete element numerical model, (DEM). The DEM code was built in Mathematica (more)

Franquet Barbara, Javier Alejandro

2012-01-01T23:59:59.000Z

118

Chemistry on the inside: green chemistry in mesoporous materials  

Science Journals Connector (OSTI)

...millennium: young scientists give their visions of the future III. Chemistry and biological physics compiled by J. M. T. Thompson Chemistry on the inside: green chemistry in mesoporous materials Duncan J. Macquarrie Department of Chemistry...

2000-01-01T23:59:59.000Z

119

NUMERICAL VERIFICATION OF EQUILIBRIUM CHEMISTRY  

SciTech Connect

A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

Piro, Markus [Royal Military College of Canada; Lewis, Brent [Royal Military College of Canada; Thompson, Dr. William T. [Royal Military College of Canada; Simunovic, Srdjan [ORNL; Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

120

Computational Chemistry Robots  

E-Print Network (OSTI)

Computational Chemistry Robots ACS Sep 2005 Computational Chemistry Robots J. A. Townsend, P. Murray-Rust, S. M. Tyrrell, Y. Zhang jat45@cam.ac.uk Can high-throughput computation provide a reliable experimental resource for molecular...

Townsend, Joseph A; Murray-Rust, Peter; Tyrrell, Simon M; Zhang, Yong

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

surface chemistry | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

surface chemistry surface chemistry Leads No leads are available at this time. FeSSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIRMssbauer Spectroscopic Study....

122

Chemistry of Low Mass Substellar Objects  

E-Print Network (OSTI)

"Brown dwarfs" is the collective name for objects more massive than giant planets such as Jupiter but less massive than M dwarf stars. This review gives a brief description of the classification and chemistry of low mass dwarfs. The current spectral classification of stars includes L and T dwarfs that encompass the coolest known stars and substellar objects. The relatively low atmospheric temperatures and high total pressures in substellar dwarfs lead to molecular gas and condensate chemistry. The chemistry of elements such as C, N, O, Ti, V, Fe, Cr, and the alkali elements play a dominant role in shaping the optical and infrared spectra of the "failed" stars. Chemical diagnostics for the subclassifications are described.

Katharina Lodders; Bruce Fegley, Jr

2006-01-17T23:59:59.000Z

123

Why chemistry? Chemistry is fundamental: it is the enabling science  

E-Print Network (OSTI)

Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree allows you to understand and to contribute to our future. Chemistry is challenging: understanding the very fabric of matter is both stimulating and rewarding. Studying chemistry

Sussex, University of

124

Chemistry Division Department of Biological  

E-Print Network (OSTI)

1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

Heller, Barbara

125

Flame Chemistry and Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Details Photoionization Mass Spectrometer Flame Conditions Flame Chemistry Insights (n-butanol flame) Experiment vs. Model Fuel-Consumption Pathways...

126

Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences Engineering Computer Science Earth and Atmospheric Sciences...

127

Bringing chemistry to Cambridge  

Science Journals Connector (OSTI)

...2006 book-review Book Review Bringing chemistry to Cambridge J.S Rowlinson * * Author...ac.uk ) Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford...C.D Haley, eds, The 1702 chair of chemistry at Cambridge: transformation and change...

2006-01-01T23:59:59.000Z

128

Chemistry and Biochemistry Scholarships  

E-Print Network (OSTI)

Chemistry and Biochemistry Scholarships Complete Scholarship Name Application Deadline Date Contact to Chemistry and Biochemistry entering graduate students who have asked for consideration to serve as research@chem.sc.edu Hiram and Lawanda Allen Scholarship for Excellence in Chemistry This award is given to a graduating

Almor, Amit

129

Chemistry and Biochemistry Scholarships  

E-Print Network (OSTI)

Chemistry and Biochemistry Scholarships Complete Scholarship Name Application Deadline Date Contact Endowment Fund To provide support for undergraduate biomedical research in the Department of Chemistry/or the purchase of supplies. Yes w/recommendation s from faculty Call goes out in February to all chemistry

Almor, Amit

130

CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS  

E-Print Network (OSTI)

CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS Millersville University Millersville, Pennsylvania in the ChemistryDepartment. It brings together material not collected in other places and is not meant Resources 2 Programs in Chemistry and The General Education Curriculum Record Form 3 The Major Requirements

Hardy, Christopher R.

131

Adam Benoit Medicinal Chemistry  

E-Print Network (OSTI)

#12;Adam Benoit Medicinal Chemistry Ph.D. Thesis Title: Synthesis and Evaluation of Acridine Country: United States #12;Amit Gangar Medicinal Chemistry Ph.D. Thesis Title: Design and Development Wagner Home Country: India #12;Dan Wang Medicinal Chemistry M.S. Thesis Title: Synthesis and Evaluation

Thomas, David D.

132

Computational Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry...

133

Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment  

SciTech Connect

The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

Neu, M.P. [Lawrence Berkeley Lab., CA (United States)

1993-11-01T23:59:59.000Z

134

Organic Chemistry 51B -Winter 2013 Organic Chemistry Peer Tutoring Program Chemistry 51B Reactions List  

E-Print Network (OSTI)

Organic Chemistry 51B - Winter 2013 Organic Chemistry Peer Tutoring Program Chemistry 51B Reactions(s). Chapter 7: Nucleophilic Substitution + + NaOH CH3O- #12;Organic Chemistry 51B - Winter 2013 Organic Chemistry Peer Tutoring Program Chapter 8: Elimination Reactions #12;Organic Chemistry 51B - Winter 2013

Rose, Michael R.

135

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

136

B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (CHEMISTRY TRACK)  

E-Print Network (OSTI)

B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (CHEMISTRY TRACK) Requirements include 36 credits in chemistry core courses, 32 of which are taken in specific courses. Each student's course of study includes the following: 1.) Required Chemistry Core Courses CHE 106: General Chemistry Lecture I (3) CHE 116: General

Doyle, Robert

137

EMSL - surface chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

surface-chemistry en FeSSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIRMssbauer Spectroscopic Study. http:www.emsl.pnl.govemslwebpublications...

138

Advances in Physical Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

139

Analytical Chemistry Applied Mathematics  

E-Print Network (OSTI)

Analytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture Management

Heller, Barbara

140

World Wide Chemistry  

Science Journals Connector (OSTI)

World Wide Chemistry ... Plutonium has been produced for the first time at Britain's Atomic Energy Research Establishment at Harwell. ... Indian Ore Reserves ...

G. ABRAHAMSON; RAFFAELE SANSONE

1949-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Trace elements and alkaliTrace elements and alkali  

E-Print Network (OSTI)

elements in fossil - and waste-derived fuelsTrace elements in fossil - and waste-derived fuels Coal Peat Heavy fuel oil Pet coke MSW RDF Wood Waste wood Waste paper Scrap tyres Sew. sludge Hg 0.02-3 ~0.07 .153 Behaviour of trace elements in coalBehaviour of trace elements in coal combustion flue gasescombustion flue

Zevenhoven, Ron

142

Chemistry @ Imperial College 2007 Introduction  

E-Print Network (OSTI)

Chemistry @ Imperial College 2007 #12;2 Introduction Imperial College is a world leading University. As the central science Chemistry has been a major contributor to this success. The Chemistry Department is at the forefront of modern Chemistry research, both in our core discipline and at the interfaces of Chemistry

143

Heavy metal biosensor  

DOE Patents (OSTI)

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

144

TU KAISERSLAUTERN DEPARTMENT OF CHEMISTRY  

E-Print Network (OSTI)

TU KAISERSLAUTERN DEPARTMENT OF CHEMISTRY - STUDY GUIDE - H Rb Sr K Ca ...Mn Fe... ONC He P S Br Kr .................................................................................................22 FOOD CHEMISTRY AND TOXICOLOGY: JUN.-Prof. Dr. M. Esselen...............................................................................24 FOOD CHEMISTRY AND TOXICOLOGY: Prof. Dr. E. Richling

Madlener, Klaus

145

NWChem and Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTINIDE CHEMISTRY MEETS COMPUTATION ACTINIDE CHEMISTRY MEETS COMPUTATION Capturing how contaminants migrate across groundwater-surface water inter- faces is a challenge that researchers at the Department of Energy's EMSL-the Environmental Molecular Sciences Laboratory-are rising to. This challenge, a top priority for waste cleanup efforts at the Hanford Site in Richland, Washington, and other parts of the DOE weapons complex, is being addressed using NWChem, a computational chemistry package developed at EMSL that is designed to run on high-performance parallel supercomputers, such as EMSL's Chinook. NWChem is enabling breakthrough discoveries in actinide behavior and chemistry, in part because it allows researchers to accurately model the dynamical formation, speciation, and redox chemistry of actinide complexes in realistic complex mo-

146

Detecting bioterrorism: Is chemistry enough?  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting bioterrorism: Is chemistry enough? Detecting bioterrorism: Is chemistry enough? In an online webinar, Kristin Omberg will offer discussion on the possibilities and...

147

Determination of metals in heavy oil residues by inductively coupled plasma atomic emission spectroscopy  

Science Journals Connector (OSTI)

A method is proposed for the sample preparation of heavy oil residues characterized by viscosity of more than 700 mm2/sec at 100C to study their elemental composition. It is shown that a wide range of elements c...

T. A. Maryutina; N. S. Musina

2012-10-01T23:59:59.000Z

148

I. Required core Chemistry Courses (1905 & 1925) Chemistry  

E-Print Network (OSTI)

Advisor: Advisee: I. Required core Chemistry Courses (1905 & 1925) Chemistry CH 111 PY 211 _____ PY 212 _____ (or PY 242 _____ or PY 252 ______) II. Chemistry Options (one required) 1905 (Concentration in Chemistry) Option A (2 advanced CH courses, 401 or higher, only one may

149

National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry"  

E-Print Network (OSTI)

National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry" Super Science Saturday Saturday-on chemistry and science demonstrations! All students & families are welcome! Fun & educational for all ages! Sponsored by: American Chemical Society LSU Department of Chemistry LSU Athletic Department Free admission

Stephens, Jacqueline

150

Chemistry in Bioinformatics  

E-Print Network (OSTI)

F R O N T M A T T E R Chemistry in Bioinformatics Peter Murray?Rust,1 John B. O. Mitchell,1 and Henry S. Rzepa2 1 Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge. CB2... 1EW, UK. 2 Department of Chemistry, Imperial College London, SW7 2AY, UK. Abstract Chemical information is now seen as critical for most areas of life sciences. But unlike Bioinformatics, where data is Openly available and freely re...

Murray-Rust, Peter; Mitchell, John B O; Rzepa, Henry S

2005-05-19T23:59:59.000Z

151

It's Elemental - The Element Europium  

NLE Websites -- All DOE Office Websites (Extended Search)

Samarium Samarium Previous Element (Samarium) The Periodic Table of Elements Next Element (Gadolinium) Gadolinium The Element Europium [Click for Isotope Data] 63 Eu Europium 151.964 Atomic Number: 63 Atomic Weight: 151.964 Melting Point: 1095 K (822°C or 1512°F) Boiling Point: 1802 K (1529°C or 2784°F) Density: 5.24 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named after the continent of Europe. Say what? Europium is pronounced as yoo-RO-pee-em. History and Uses: Europium was discovered by Eugène-Antole Demarçay, a French chemist, in 1896. Demarçay suspected that samples of a recently discovered element, samarium, were contaminated with an unknown element. He was able to produce

152

It's Elemental - The Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium The Element Potassium [Click for Isotope Data] 19 K Potassium 39.0983 Atomic Number: 19 Atomic Weight: 39.0983 Melting Point: 336.53 K (63.38°C or 146.08°F) Boiling Point: 1032 K (759°C or 1398°F) Density: 0.89 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word potash. Potassium's chemical symbol comes from the Latin word for alkali, kalium. Say what? Potassium is pronounced as poh-TASS-ee-em. History and Uses: Although potassium is the eighth most abundant element on earth and comprises about 2.1% of the earth's crust, it is a very reactive element

153

It's Elemental - The Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

154

It's Elemental - The Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum The Element Magnesium [Click for Isotope Data] 12 Mg Magnesium 24.3050 Atomic Number: 12 Atomic Weight: 24.3050 Melting Point: 923 K (650°C or 1202°F) Boiling Point: 1363 K (1090°C or 1994°F) Density: 1.74 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? For Magnesia, a district in the region of Thessaly, Greece. Say what? Magnesium is pronounced as mag-NEE-zhi-em. History and Uses: Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust, magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an

155

Chemistry Division annual progress report for period ending April 30, 1993  

SciTech Connect

The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

1993-08-01T23:59:59.000Z

156

Superheavy Elements  

Science Journals Connector (OSTI)

...SUPER-HEAVY REGION, ARKIV FOR FYSIK 36 : 613 ( 1967 ). HORWITZ...VALIDITY OF STRUTINSKYS THEORY OF RENORMALIZATION...well to understand the basic reason for the limited...It may be that the theory overestimates half-lives...always the case with basic research, although in...

S. G. Thompson; C. F. Tsang

1972-12-08T23:59:59.000Z

157

Chemistry, Reservoir, and Integrated Models  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models.

158

WESTERN UNIVERSITY DEPARTMENT OF CHEMISTRY  

E-Print Network (OSTI)

WESTERN UNIVERSITY DEPARTMENT OF CHEMISTRY The Department of Chemistry invites applications for a probationary (tenure-track) faculty position at the rank of Assistant Professor in Inorganic Chemistry, externally funded research program, and to develop and teach innovative courses in chemistry

Sinnamon, Gordon J.

159

Chemistry Department Seminar Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive of Chemistry Department Seminars Archive of Chemistry Department Seminars See also: recent Department seminars Friday, July 27, 2012 "Precise Design of Donor-Acceptor Interface based on Microphase Segregated Nanostructure" Sadayuki Asaoka, Kyoto Institute of Technology Hosted by Dr. John Miller 11:00 AM, Room 300, Chemistry Bldg. 555 Thursday, April 26, 2012 ""NOx Catalysis from the Bottom Up"" Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame Hosted by Ping Liu 11:00 AM, Hamilton Seminar Room, Bldg. 555 Friday, April 13, 2012 "High-energy resolution x-ray emission spectroscopy for catalysis and materials chemistry" Olga Safonova, Swiss Light Source & Energy Dept. at Paul Scherrer Institute Hosted by Dario Stacchiola

160

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chemistry 455 Chemical Nanotechnology  

E-Print Network (OSTI)

Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00�12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

Rohs, Remo

162

Agricultural Chemistry and Bioenergy  

Science Journals Connector (OSTI)

Agricultural Chemistry and Bioenergy ... Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. ...

William J. Orts; Kevin M. Holtman; James N. Seiber

2008-05-13T23:59:59.000Z

163

Physical chemistry - Thermodynamics  

Science Journals Connector (OSTI)

Physical chemistry - Thermodynamics ... A style of question that allows the instructor of thermodynamics to cover a wide range of material at varying levels of achievement in a reasonable period of time. ... Thermodynamics ...

Jack Richlin

1982-01-01T23:59:59.000Z

164

Green Chemistry COMMUNICATION  

E-Print Network (OSTI)

Green Chemistry COMMUNICATION Cite this: Green Chem., 2013, 15, 2060 Received 8th April 2013 5042, Australia. E-mail: colin.raston@flinders.edu.au; Tel: +08 8021 7958 2060 | Green Chem., 2013, 15

165

United abominations: Density functional studies of heavy metal chemistry  

SciTech Connect

Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.

Schoendorff, George

2012-04-02T23:59:59.000Z

166

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network (OSTI)

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

Fox, J.P.

2011-01-01T23:59:59.000Z

167

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

168

Exploiting heavy oil reserves  

E-Print Network (OSTI)

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

169

It's Elemental - The Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

170

It's Elemental - The Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium The Element Sodium [Click for Isotope Data] 11 Na Sodium 22.98976928 Atomic Number: 11 Atomic Weight: 22.98976928 Melting Point: 370.95 K (97.80°C or 208.04°F) Boiling Point: 1156 K (883°C or 1621°F) Density: 0.97 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word soda and from the Medieval Latin word sodanum, which means "headache remedy." Sodium's chemical symbol comes from the Latin word for sodium carbonate, natrium. Say what? Sodium is pronounced as SO-dee-em. History and Uses: Although sodium is the sixth most abundant element on earth and comprises

171

It's Elemental - The Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium The Element Francium [Click for Isotope Data] 87 Fr Francium 223 Atomic Number: 87 Atomic Weight: 223 Melting Point: 300 K (27°C or 81°F) Boiling Point: Unknown Density: Unknown Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: 1 Group Name: Alkali Metal Radioactive What's in a name? Named for the country of France. Say what? Francium is pronounced as FRAN-see-em. History and Uses: Francium was discovered by Marguerite Catherine Perey, a French chemist, in 1939 while analyzing actinium's decay sequence. Although considered a natural element, scientists estimate that there is no more than one ounce of francium in the earth's crust at one time. Since there is so little

172

It's Elemental - The Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur The Element Phosphorus [Click for Isotope Data] 15 P Phosphorus 30.973762 Atomic Number: 15 Atomic Weight: 30.973762 Melting Point: 317.30 K (44.15°C or 111.47°F) Boiling Point: 553.65 K (280.5°C or 536.9°F) Density: 1.82 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek word for light bearing, phosphoros. Say what? Phosphorus is pronounced as FOS-fer-es. History and Uses: In what is perhaps the most disgusting method of discovering an element, phosphorus was first isolated in 1669 by Hennig Brand, a German physician and alchemist, by boiling, filtering and otherwise processing as many as 60

173

It's Elemental - The Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lanthanum Lanthanum Previous Element (Lanthanum) The Periodic Table of Elements Next Element (Praseodymium) Praseodymium The Element Cerium [Click for Isotope Data] 58 Ce Cerium 140.116 Atomic Number: 58 Atomic Weight: 140.116 Melting Point: 1071 K (798°C or 1468°F) Boiling Point: 3697 K (3424°C or 6195°F) Density: 6.770 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the asteroid Ceres. Say what? Cerium is pronounced as SER-ee-em. History and Uses: Cerium was discovered by Jöns Jacob Berzelius and Wilhelm von Hisinger, Swedish chemists, and independently by Martin Heinrich Klaproth, a German chemist, in 1803. Cerium is the most abundant of the rare earth elements

174

It's Elemental - The Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cadmium Cadmium Previous Element (Cadmium) The Periodic Table of Elements Next Element (Tin) Tin The Element Indium [Click for Isotope Data] 49 In Indium 114.818 Atomic Number: 49 Atomic Weight: 114.818 Melting Point: 429.75 K (156.60°C or 313.88°F) Boiling Point: 2345 K (2072°C or 3762°F) Density: 7.31 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 13 Group Name: none What's in a name? Named after the bright indigo line in its spectrum. Say what? Indium is pronounced as IN-dee-em. History and Uses: Indium was discovered by the German chemists Ferdinand Reich and Hieronymus Theodor Richter in 1863. Reich and Richter had been looking for traces of the element thallium in samples of zinc ores. A brilliant indigo line in

175

It's Elemental - The Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium The Element Neon [Click for Isotope Data] 10 Ne Neon 20.1797 Atomic Number: 10 Atomic Weight: 20.1797 Melting Point: 24.56 K (-248.59°C or -415.46°F) Boiling Point: 27.07 K (-246.08°C or -410.94°F) Density: 0.0008999 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 18 Group Name: Noble Gas What's in a name? From the Greek word for new, neos. Say what? Neon is pronounced as NEE-on. History and Uses: Neon was discovered by Sir William Ramsay, a Scottish chemist, and Morris M. Travers, an English chemist, shortly after their discovery of the element krypton in 1898. Like krypton, neon was discovered through the

176

It's Elemental - The Element Technetium  

NLE Websites -- All DOE Office Websites (Extended Search)

Molybdenum Molybdenum Previous Element (Molybdenum) The Periodic Table of Elements Next Element (Ruthenium) Ruthenium The Element Technetium [Click for Isotope Data] 43 Tc Technetium 98 Atomic Number: 43 Atomic Weight: 98 Melting Point: 2430 K (2157°C or 3915°F) Boiling Point: 4538 K (4265°C or 7709°F) Density: 11 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 7 Group Name: none Radioactive and Artificially Produced What's in a name? From the Greek word for artificial, technetos. Say what? Technetium is pronounced as tek-NEE-she-em. History and Uses: Technetium was the first artificially produced element. It was isolated by Carlo Perrier and Emilio Segrè in 1937. Technetium was created by bombarding molybdenum atoms with deuterons that had been accelerated by a

177

It's Elemental - The Element Cobalt  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Iron Previous Element (Iron) The Periodic Table of Elements Next Element (Nickel) Nickel The Element Cobalt [Click for Isotope Data] 27 Co Cobalt 58.933195 Atomic Number: 27 Atomic Weight: 58.933195 Melting Point: 1768 K (1495°C or 2723°F) Boiling Point: 3200 K (2927°C or 5301°F) Density: 8.86 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 9 Group Name: none What's in a name? From the German word for goblin or evil spirit, kobald and the Greek word for mine, cobalos. Say what? Cobalt is pronounced as KO-bolt. History and Uses: Cobalt was discovered by Georg Brandt, a Swedish chemist, in 1739. Brandt was attempting to prove that the ability of certain minerals to color glass blue was due to an unknown element and not to bismuth, as was commonly

178

It's Elemental - The Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

179

It's Elemental - The Element Manganese  

NLE Websites -- All DOE Office Websites (Extended Search)

Chromium Chromium Previous Element (Chromium) The Periodic Table of Elements Next Element (Iron) Iron The Element Manganese [Click for Isotope Data] 25 Mn Manganese 54.938045 Atomic Number: 25 Atomic Weight: 54.938045 Melting Point: 1519 K (1246°C or 2275°F) Boiling Point: 2334 K (2061°C or 3742°F) Density: 7.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 7 Group Name: none What's in a name? From the Latin word for magnet, magnes. Say what? Manganese is pronounced as MAN-ge-nees. History and Uses: Proposed to be an element by Carl Wilhelm Scheele in 1774, manganese was discovered by Johan Gottlieb Gahn, a Swedish chemist, by heating the mineral pyrolusite (MnO2) in the presence of charcoal later that year.

180

It's Elemental - The Element Titanium  

NLE Websites -- All DOE Office Websites (Extended Search)

Scandium Scandium Previous Element (Scandium) The Periodic Table of Elements Next Element (Vanadium) Vanadium The Element Titanium [Click for Isotope Data] 22 Ti Titanium 47.867 Atomic Number: 22 Atomic Weight: 47.867 Melting Point: 1941 K (1668°C or 3034°F) Boiling Point: 3560 K (3287°C or 5949°F) Density: 4.5 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 4 Group Name: none What's in a name? From the Greek word Titans, the mythological "first sons of the Earth." Say what? Titanium is pronounced as tie-TAY-nee-em. History and Uses: Titanium was discovered in 1791 by the Reverend William Gregor, an English pastor. Pure titanium was first produced by Matthew A. Hunter, an American metallurgist, in 1910. Titanium is the ninth most abundant element in the

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Spin-orbit effects, VSEPR theory, and the electronic structures of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides. A partial role reversal for elements 114 and 118  

SciTech Connect

Relativistic effective core potentials and spin-orbit operators are used in relativistic configuration interaction calculations to explore the effects of spin-orbit coupling on the electronic structures of atoms and molecules of elements 114 and 118. The monohydrides of group IVA and the tetrafluorides of group VIIIA are examined in order to provide examples of trends within families among the various periods. The spin-orbit effect is found to play a dominant role in the determination of atomic and molecular properties. Several nonintuitive consequences of spin-orbit coupling are presented, including the depiction of element 114 as a closed-shell noble atom and the suggestion that the VSEPR theory in inadequate to describe the geometry of the rare gas tetrafluoride, (118)F{sub 4}.

Nash, C.S. [Lawrence Livermore National Lab., CA (United States). Glenn T. Seaborg Inst. for Transactinium Science] [Lawrence Livermore National Lab., CA (United States). Glenn T. Seaborg Inst. for Transactinium Science; Bursten, B.E. [Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry] [Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry

1999-01-21T23:59:59.000Z

182

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

183

Element 74, the Wolfram Versus Tungsten Controversy  

SciTech Connect

Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

Holden,N.E.

2008-08-11T23:59:59.000Z

184

Chemistry Student Handbook College of Science  

E-Print Network (OSTI)

Chemistry Student Handbook College of Science React. Science #12;Contents 2 Welcome to the Department of Chemistry 2 Course Advice 3 What is Chemistry? 4 Career Profiles in Chemistry 5 An Undergraduate Degree in Chemistry 6 Chemistry Streams 13 Chemistry Honours Programme 14 Research

Hickman, Mark

185

It's Elemental - The Element Astatine  

NLE Websites -- All DOE Office Websites (Extended Search)

Polonium Polonium Previous Element (Polonium) The Periodic Table of Elements Next Element (Radon) Radon The Element Astatine [Click for Isotope Data] 85 At Astatine 210 Atomic Number: 85 Atomic Weight: 210 Melting Point: 575 K (302°C or 576°F) Boiling Point: Unknown Density: about 7 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 6 Group Number: 17 Group Name: Halogen Radioactive What's in a name? From the Greek word for unstable, astatos. Say what? Astatine is pronounced as AS-teh-teen or as AS-teh-ten. History and Uses: Astatine was produced by Dale R. Carson, K.R. MacKenzie and Emilio Segrè by bombarding an isotope of bismuth, bismuth-209, with alpha particles that had been accelerated in a device called a cyclotron. This created

186

It's Elemental - The Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc The Element Copper [Click for Isotope Data] 29 Cu Copper 63.546 Atomic Number: 29 Atomic Weight: 63.546 Melting Point: 1357.77 K (1084.62°C or 1984.32°F) Boiling Point: 2835 K (2562°C or 4644°F) Density: 8.933 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 11 Group Name: none What's in a name? From the Latin word cuprum, which means "from the island of Cyprus." Say what? Copper is pronounced as KOP-er. History and Uses: Archaeological evidence suggests that people have been using copper for at least 11,000 years. Relatively easy to mine and refine, people discovered methods for extracting copper from its ores at least 7,000 years ago. The

187

It's Elemental - The Element Gadolinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Europium Europium Previous Element (Europium) The Periodic Table of Elements Next Element (Terbium) Terbium The Element Gadolinium [Click for Isotope Data] 64 Gd Gadolinium 157.25 Atomic Number: 64 Atomic Weight: 157.25 Melting Point: 1586 K (1313°C or 2395°F) Boiling Point: 3546 K (3273°C or 5923°F) Density: 7.90 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the mineral gadolinite which was named after Johan Gadolin, a Finnish chemist. Say what? Gadolinium is pronounced as GAD-oh-LIN-ee-em. History and Uses: Spectroscopic evidence for the existence of gadolinium was first observed by the Swiss chemist Jean Charles Galissard de Marignac in the minerals

188

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

189

It's Elemental - The Element Hafnium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lutetium Lutetium Previous Element (Lutetium) The Periodic Table of Elements Next Element (Tantalum) Tantalum The Element Hafnium [Click for Isotope Data] 72 Hf Hafnium 178.49 Atomic Number: 72 Atomic Weight: 178.49 Melting Point: 2506 K (2233°C or 4051°F) Boiling Point: 4876 K (4603°C or 8317°F) Density: 13.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 4 Group Name: none What's in a name? From the Latin word for the city of Copenhagen, Hafnia. Say what? Hafnium is pronounced as HAF-neeem. History and Uses: Hafnium was discovered by Dirk Coster, a Danish chemist, and Charles de Hevesy, a Hungarian chemist, in 1923. They used a method known as X-ray spectroscopy to study the arrangement of the outer electrons of atoms in

190

It's Elemental - The Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon The Element Boron [Click for Isotope Data] 5 B Boron 10.811 Atomic Number: 5 Atomic Weight: 10.811 Melting Point: 2348 K (2075°C or 3767°F) Boiling Point: 4273 K (4000°C or 7232°F) Density: 2.37 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 2 Group Number: 13 Group Name: none What's in a name? From the Arabic word Buraq and the Persian word Burah, which are both words for the material "borax." Say what? Boron is pronounced as BO-ron. History and Uses: Boron was discovered by Joseph-Louis Gay-Lussac and Louis-Jaques Thénard, French chemists, and independently by Sir Humphry Davy, an English chemist,

191

It's Elemental - The Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinium Actinium Previous Element (Actinium) The Periodic Table of Elements Next Element (Protactinium) Protactinium The Element Thorium [Click for Isotope Data] 90 Th Thorium 232.03806 Atomic Number: 90 Atomic Weight: 232.03806 Melting Point: 2023 K (1750°C or 3182°F) Boiling Point: 5061 K (4788°C or 8650°F) Density: 11.72 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: none Group Name: Actinide Radioactive What's in a name? Named for the Scandinavian god of war, Thor. Say what? Thorium is pronounced as THOR-ee-em or as THO-ree-em. History and Uses: Thorium was discovered by Jöns Jacob Berzelius, a Swedish chemist, in 1828. He discovered it in a sample of a mineral that was given to him by the Reverend Has Morten Thrane Esmark, who suspected that it contained an

192

It's Elemental - The Element Chromium  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium Vanadium Previous Element (Vanadium) The Periodic Table of Elements Next Element (Manganese) Manganese The Element Chromium [Click for Isotope Data] 24 Cr Chromium 51.9961 Atomic Number: 24 Atomic Weight: 51.9961 Melting Point: 2180 K (1907°C or 3465°F) Boiling Point: 2944 K (2671°C or 4840°F) Density: 7.15 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 6 Group Name: none What's in a name? From the Greek word for color, chroma. Say what? Chromium is pronounced as KROH-mee-em. History and Uses: Chromium was discovered by Louis-Nicholas Vauquelin while experimenting with a material known as Siberian red lead, also known as the mineral crocoite (PbCrO4), in 1797. He produced chromium oxide (CrO3) by mixing

193

It's Elemental - The Element Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

Manganese Manganese Previous Element (Manganese) The Periodic Table of Elements Next Element (Cobalt) Cobalt The Element Iron [Click for Isotope Data] 26 Fe Iron 55.845 Atomic Number: 26 Atomic Weight: 55.845 Melting Point: 1811 K (1538°C or 2800°F) Boiling Point: 3134 K (2861°C or 5182°F) Density: 7.874 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 8 Group Name: none What's in a name? From the Anglo-Saxon word iron. Iron's chemical symbol comes from the Latin word for iron, ferrum. Say what? Iron is pronounced as EYE-ern. History and Uses: Archaeological evidence suggests that people have been using iron for at least 5000 years. Iron is the cheapest and one of the most abundant of all metals, comprising nearly 5.6% of the earth's crust and nearly all of the

194

It's Elemental - The Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium The Element Molybdenum [Click for Isotope Data] 42 Mo Molybdenum 95.96 Atomic Number: 42 Atomic Weight: 95.96 Melting Point: 2896 K (2623°C or 4753°F) Boiling Point: 4912 K (4639°C or 8382°F) Density: 10.2 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 6 Group Name: none What's in a name? From the Greek word for lead, molybdos. Say what? Molybdenum is pronounced as meh-LIB-deh-nem. History and Uses: Molybdenum was discovered by Carl Welhelm Scheele, a Swedish chemist, in 1778 in a mineral known as molybdenite (MoS2) which had been confused as a lead compound. Molybdenum was isolated by Peter Jacob Hjelm in 1781. Today,

195

It's Elemental - The Element Cesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Xenon Xenon Previous Element (Xenon) The Periodic Table of Elements Next Element (Barium) Barium The Element Cesium [Click for Isotope Data] 55 Cs Cesium 132.9054519 Atomic Number: 55 Atomic Weight: 132.9054519 Melting Point: 301.59 K (28.44°C or 83.19°F) Boiling Point: 944 K (671°C or 1240°F) Density: 1.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 1 Group Name: Alkali Metal What's in a name? From the Latin word for sky blue, caesius. Say what? Cesium is pronounced as SEE-zee-em. History and Uses: Cesium was discovered by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, German chemists, in 1860 through the spectroscopic analysis of Durkheim mineral water. They named cesium after the blue lines they observed in its

196

It's Elemental - The Element Iridium  

NLE Websites -- All DOE Office Websites (Extended Search)

Osmium Osmium Previous Element (Osmium) The Periodic Table of Elements Next Element (Platinum) Platinum The Element Iridium [Click for Isotope Data] 77 Ir Iridium 192.217 Atomic Number: 77 Atomic Weight: 192.217 Melting Point: 2719 K (2446°C or 4435°F) Boiling Point: 4701 K (4428°C or 8002°F) Density: 22.42 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 9 Group Name: none What's in a name? From the Latin word for rainbow, iris. Say what? Iridium is pronounced as i-RID-ee-em. History and Uses: Iridium and osmium were discovered at the same time by the British chemist Smithson Tennant in 1803. Iridium and osmium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

197

It's Elemental - The Element Platinum  

NLE Websites -- All DOE Office Websites (Extended Search)

Iridium Iridium Previous Element (Iridium) The Periodic Table of Elements Next Element (Gold) Gold The Element Platinum [Click for Isotope Data] 78 Pt Platinum 195.084 Atomic Number: 78 Atomic Weight: 195.084 Melting Point: 2041.55 K (1768.4°C or 3215.1°F) Boiling Point: 4098 K (3825°C or 6917°F) Density: 21.46 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 10 Group Name: none What's in a name? From the Spainsh word for silver, platina. Say what? Platinum is pronounced as PLAT-en-em. History and Uses: Used by the pre-Columbian Indians of South America, platinum wasn't noticed by western scientists until 1735. Platinum can occur free in nature and is sometimes found in deposits of gold-bearing sands, primarily those found in

198

It's Elemental - The Element Arsenic  

NLE Websites -- All DOE Office Websites (Extended Search)

Germanium Germanium Previous Element (Germanium) The Periodic Table of Elements Next Element (Selenium) Selenium The Element Arsenic [Click for Isotope Data] 33 As Arsenic 74.92160 Atomic Number: 33 Atomic Weight: 74.92160 Melting Point: 1090 K (817°C or 1503°F) Boiling Point: 887 K (614°C or 1137°F) Density: 5.776 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 4 Group Number: 15 Group Name: Pnictogen What's in a name? From the Latin word arsenicum, the Greek word arsenikon and the Arabic word Az-zernikh. Say what? Arsenic is pronounced as AR-s'n-ik. History and Uses: Although arsenic compounds were mined by the early Chinese, Greek and Egyptian civilizations, it is believed that arsenic itself was first identified by Albertus Magnus, a German alchemist, in 1250. Arsenic occurs

199

It's Elemental - The Element Gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Platinum Previous Element (Platinum) The Periodic Table of Elements Next Element (Mercury) Mercury The Element Gold [Click for Isotope Data] 79 Au Gold 196.966569 Atomic Number: 79 Atomic Weight: 196.966569 Melting Point: 1337.33 K (1064.18°C or 1947.52°F) Boiling Point: 3129 K (2856°C or 5173°F) Density: 19.282 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 11 Group Name: none What's in a name? From the Sanskrit word Jval and the Anglo-Saxon word gold. Gold's chemical symbol comes from the the latin word for gold, aurum. Say what? Gold is pronounced as GOLD. History and Uses: An attractive and highly valued metal, gold has been known for at least 5500 years. Gold is sometimes found free in nature but it is usually found

200

It's Elemental - The Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium The Element Rhenium [Click for Isotope Data] 75 Re Rhenium 186.207 Atomic Number: 75 Atomic Weight: 186.207 Melting Point: 3459 K (3186°C or 5767°F) Boiling Point: 5869 K (5596°C or 10105°F) Density: 20.8 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 7 Group Name: none What's in a name? From the Latin word for the Rhine River, Rhenus. Say what? Rhenium is pronounced as REE-nee-em. History and Uses: Rhenium was discovered by the German chemists Ida Tacke-Noddack, Walter Noddack and Otto Carl Berg in 1925. They detected rhenium spectroscopically in platinum ores and in the minerals columbite ((Fe, Mn, Mg)(Nb, Ta)2O6),

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

It's Elemental - The Element Osmium  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhenium Rhenium Previous Element (Rhenium) The Periodic Table of Elements Next Element (Iridium) Iridium The Element Osmium [Click for Isotope Data] 76 Os Osmium 190.23 Atomic Number: 76 Atomic Weight: 190.23 Melting Point: 3306 K (3033°C or 5491°F) Boiling Point: 5285 K (5012°C or 9054°F) Density: 22.57 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 8 Group Name: none What's in a name? From the Greek word for a smell, osme. Say what? Osmium is pronounced as OZ-mee-em. History and Uses: Osmium and iridium were discovered at the same time by the British chemist Smithson Tennant in 1803. Osmium and iridium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

202

It's Elemental - The Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Tin Tin Previous Element (Tin) The Periodic Table of Elements Next Element (Tellurium) Tellurium The Element Antimony [Click for Isotope Data] 51 Sb Antimony 121.760 Atomic Number: 51 Atomic Weight: 121.760 Melting Point: 903.78 K (630.63°C or 1167.13°F) Boiling Point: 1860 K (1587°C or 2889°F) Density: 6.685 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 5 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words anti and monos, which together mean "not alone." Antimony's chemical symbol comes from its historic name, Stibium. Say what? Antimony is pronounced as AN-the-MOH-nee. History and Uses: Antimony has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores stibnite (Sb2S3) and

203

Observing chemistry of atmospheric particles | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Observing chemistry of atmospheric particles Observing chemistry of atmospheric particles Review article reached the International Reviews in Physical Chemistry most read list NULL...

204

Chemistry at the Dirac Point of Graphene  

E-Print Network (OSTI)

Haddon, R. C. Covalent Chemistry for Graphene Electronics.P. K. ; Yang, J. X. The Chemistry of Graphene. J. Mater.R. C. Organometallic Chemistry of Extended Periodic ?-

Sarkar, Santanu

2013-01-01T23:59:59.000Z

205

Chemistry and Transport - Combustion Energy Frontier Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high...

206

Greening Up Cross-Coupling Chemistry  

E-Print Network (OSTI)

today. Insofar as green chemistry is concerned, however,Handbook of organopalladium chemistry for organic synthesis.Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH,

Lipshutz, Bruce H.; Abela, Alexander R.; Bokovi?, arko V.; Nishikata, Takashi; Duplais, Christophe; Krasovskiy, Arkady

2010-01-01T23:59:59.000Z

207

CMR: Chemistry and Metallurgy Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

208

Guide to Chemistry Dept  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to the Chemistry Building Guide to the Chemistry Building The main Chemistry building (Building 555) has been designed to make adequate facilities available for research and to provide an informal atmosphere for free exchange among Department members. There are public areas, shared laboratories, shared office space, and privately assigned places. A newcomer to the building should become familiar with locations of the key areas. Stairs and Elevators - Building 555 The central main staircase and a passenger elevator are for personnel traffic only. Each wing has a staircase. There is a rear staircase for traffic directly to service areas. The building has a freight elevator at the rear core. Flammable material, chemicals, solvents, gas cylinders, etc. can be transported in the freight elevator but not in the passenger elevator. Do not ride with gas cylinders or dewars charged with cryogens as the presence of these in a confined space introduces a suffocation hazard.

209

Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition  

E-Print Network (OSTI)

JOURNALS Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition See Also: Angewandte Chemie Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim View all previous titles

Jo, Moon-Ho

210

E-Print Network 3.0 - alkaline-earth elements studied Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: alkaline-earth elements studied Page: << < 1 2 3 4 5 > >> 1 Heavy Alkaline-earth Elements: Barium and Radium...

211

2-D discrete element modeling of unconsolidated sandstones  

E-Print Network (OSTI)

developed in this thesis is compared to the results of triaxial tests performed in cylindrical core samples of unconsolidated sandstones saturated with heavy oil. The discrete element model treats the sand as a two dimensional assembly of particles...

Franquet Barbara, Javier Alejandro

2012-06-07T23:59:59.000Z

212

It's Elemental - The Element Zinc  

NLE Websites -- All DOE Office Websites (Extended Search)

Copper Copper Previous Element (Copper) The Periodic Table of Elements Next Element (Gallium) Gallium The Element Zinc [Click for Isotope Data] 30 Zn Zinc 65.38 Atomic Number: 30 Atomic Weight: 65.38 Melting Point: 692.68 K (419.53°C or 787.15°F) Boiling Point: 1180 K (907°C or 1665°F) Density: 7.134 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 12 Group Name: none What's in a name? From the German word zink. Say what? Zinc is pronounced as ZINK. History and Uses: Although zinc compounds have been used for at least 2,500 years in the production of brass, zinc wasn't recognized as a distinct element until much later. Metallic zinc was first produced in India sometime in the 1400s by heating the mineral calamine (ZnCO3) with wool. Zinc was rediscovered by

213

It's Elemental - The Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon The Element Chlorine [Click for Isotope Data] 17 Cl Chlorine 35.453 Atomic Number: 17 Atomic Weight: 35.453 Melting Point: 171.65 K (-101.5°C or -150.7°F) Boiling Point: 239.11 K (-34.04°C or -29.27°F) Density: 0.003214 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 3 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for greenish yellow, chloros. Say what? Chlorine is pronounced as KLOR-een or as KLOR-in. History and Uses: Since it combines directly with nearly every element, chlorine is never found free in nature. Chlorine was first produced by Carl Wilhelm Scheele, a Swedish chemist, when he combined the mineral pyrolusite (MnO2) with

214

It's Elemental - The Element Fluorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Oxygen Previous Element (Oxygen) The Periodic Table of Elements Next Element (Neon) Neon The Element Fluorine [Click for Isotope Data] 9 F Fluorine 18.9984032 Atomic Number: 9 Atomic Weight: 18.9984032 Melting Point: 53.53 K (-219.62°C or -363.32°F) Boiling Point: 85.03 K (-188.12°C or -306.62°F) Density: 0.001696 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 17 Group Name: Halogen What's in a name? From the Latin and French words for flow, fluere. Say what? Fluorine is pronounced as FLU-eh-reen or as FLU-eh-rin. History and Uses: Fluorine is the most reactive of all elements and no chemical substance is capable of freeing fluorine from any of its compounds. For this reason, fluorine does not occur free in nature and was extremely difficult for

215

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES  

E-Print Network (OSTI)

HEAVY-DUTYDIEGRINDERS EXTRAROBUSTERECTIFIEUSESPOURMATRICES HEAVYDUTYRECTIFICADORDEMATRICES OPERATOR tool. Keep cord away from heat, oil, sharp edges, or moving parts. Damaged or entangled cords increase

Kleinfeld, David

216

Bioconversion of Heavy oil.  

E-Print Network (OSTI)

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

217

Recovery Boiler Corrosion Chemistry  

E-Print Network (OSTI)

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

218

Green Chemistry TUTORIAL REVIEW  

E-Print Network (OSTI)

Green Chemistry TUTORIAL REVIEW Cite this: Green Chem., 2014, 16, 1740 Received 16th October 2013: Deep eutectic solvents, new media for lipase catalyzed reactions? Through his research he has pub- lished several journal papers to assess and develop the potential of this new "green" reaction medium

Boyer, Edmond

219

Conference on phosphorus chemistry  

Science Journals Connector (OSTI)

The International Conference on Phosphorus Chemistry will be held on June 1-5,1981, in Durham, N.C. It is a continuation of the series of international conferences which last assembled in Halle, West Germany, in 1979. The conference will be held at Duke ...

1980-12-01T23:59:59.000Z

220

Frontiers in Chemistry  

Science Journals Connector (OSTI)

...can mediate such solar energy-promoted...compressibility, specific heat, interfacial tension-all...symmetry-based analyses have assisted experimen-talists...by tuning the HF pump laser to different...polarization of the pump laser output to select...thereby causing laser-assisted chemistry to occur...

Robert M Joyce

1980-07-04T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

How dangerous is chemistry?  

Science Journals Connector (OSTI)

... Is chemistry really so dangerous? Those responsible for the safety of research labs say such stories may perpetuate out- ... says Alan Kendall, safety officer at the University of Oxford, UK. Swathes of occupational-health legislation in the 1970s, which established, for example, the US government's Occupational ...

2006-05-31T23:59:59.000Z

222

Curriculum Vitae Department of Chemistry  

E-Print Network (OSTI)

Curriculum Vitae Yi Lu Department of Chemistry University of Illinois at Urbana-Champaign Urbana ___________________________________________________________________________________________________________________________________________________________ Yi Lu Department of Chemistry University of Illinois at Urbana-Champaign Urbana, Illinois 61801 EDUCATION University of California Los Angeles, CA Ph.D. in Chemistry 1987 - 1992 Peking University Peking

Braun, Paul

223

Curriculum Vitae Department of Chemistry  

E-Print Network (OSTI)

Curriculum Vitae Yi Lu Department of Chemistry University of Illinois at Urbana-Champaign Urbana ___________________________________________________________________________________________________________________________________________________________ Yi Lu Depfartment of Chemistry University of Illinois at Urbana-Champaign Urbana, Illinois 61801 EDUCATION University of California Los Angeles, CA Ph.D. in Chemistry 1987 - 1992 Peking University Peking

Braun, Paul

224

Chemistry Department Colloquium: Spring, 2012  

E-Print Network (OSTI)

Chemistry Department Colloquium: Spring, 2012 Friday, March 16; 3:30 Seminar Hall (room 1315 Chemistry) Lost in Translation: How Regulators Use Science and How Scientists Can Help Bridge Gaps Stephanie to combine her Chemistry background with a legal education to improve the use of science in environmental

Sheridan, Jennifer

225

THE COORDINATION CHEMISTRY OF METAL SURFACES  

E-Print Network (OSTI)

result 7 ' 30 u 31 in metal carbide cluster chemistry willin metal chemistry. Oxidation of the iron carbide cluster

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

226

Screen Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode...

227

Thermodynamics in the physical chemistry course  

Science Journals Connector (OSTI)

Thermodynamics in the physical chemistry course ... Provides suggestions for effectively integrating thermodynamics in the physical chemistry course. ... Thermodynamics ...

James L. Dye

1965-01-01T23:59:59.000Z

228

Chemistry and Materials Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

229

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Overview: Chemistry Department Overview: While the subjects of chemical research in the Chemistry Department are diverse, several predominant themes span traditional research fields and research groups. These themes include: artificial photosynthesis, charge transfer for energy conversion, chemistry with ionizing radiation, catalysis and surface science, nanoscience, combustion, and nuclear chemistry. Artificial Photosynthesis This program addresses major issues hindering progress in photoinduced catalytic reduction of carbon dioxide, water splitting, and small molecule activation using an integrated experimental and theoretical approach that offers fundamental insights into the underlying photochemical processes. One thrust investigates factors controlling reductive half-reactions. Among these are: (1) searching for visible-light absorbers to couple with electron transfer and/or catalytic processes; (2) avoiding high-energy intermediates through multi-electron, multi-proton processes; (3) using earth-abundant metals, or metal complexes that have bio-inspired or non-innocent ligands to achieve low-energy pathways via second-coordination sphere interactions or redox leveling; (4) adopting water as the target solvent and the source of protons and electrons; and (5) immobilizing catalysts on electrode or semiconductor surfaces for better turnover rates and frequencies. Another thrust investigates water oxidation, focusing on photoelectrolysis processes occurring in band-gap-narrowed semiconductor and catalyst components by: (i) tuning semiconductors to control their light-harvesting and charge-separation abilities; (ii) developing viable catalysts for the four-electron water oxidation process; (iii) immobilizing the homogenous catalysts and metal oxide catalysts on electrodes and/or metal-oxide nanoparticles; and (iv) exploring the interfacial water-decomposition reactions using carriers generated by visible-light irradiation with the goal of understanding semiconductorccatalystcwater charge transport.

230

It's Elemental - The Element Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

Thallium Thallium Previous Element (Thallium) The Periodic Table of Elements Next Element (Bismuth) Bismuth The Element Lead [Click for Isotope Data] 82 Pb Lead 207.2 Atomic Number: 82 Atomic Weight: 207.2 Melting Point: 600.61 K (327.46°C or 621.43°F) Boiling Point: 2022 K (1749°C or 3180°F) Density: 11.342 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 14 Group Name: none What's in a name? From the Anglo-Saxon word lead. Lead's chemical symbol comes from the Latin word for waterworks, plumbum. Say what? Lead is pronounced as LED. History and Uses: Lead has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores galena (PbS), anglesite (PbSO4), cerussite (PbCO3) and minum (Pb3O4). Although lead makes up only

231

It's Elemental - The Element Iodine  

NLE Websites -- All DOE Office Websites (Extended Search)

Tellurium Tellurium Previous Element (Tellurium) The Periodic Table of Elements Next Element (Xenon) Xenon The Element Iodine [Click for Isotope Data] 53 I Iodine 126.90447 Atomic Number: 53 Atomic Weight: 126.90447 Melting Point: 386.85 K (113.7°C or 236.7°F) Boiling Point: 457.55 K (184.4°C or 364.0°F) Density: 4.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 5 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for violet, iodes. Say what? Iodine is pronounced as EYE-eh-dine or as EYE-eh-din. History and Uses: Iodine was discovered by the French chemist Barnard Courtois in 1811. Courtois was extracting sodium and potassium compounds from seaweed ash. Once these compounds were removed, he added sulfuric acid (H2SO4) to

232

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

SciTech Connect

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

233

Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures  

E-Print Network (OSTI)

as the heavy rare earth elements (HREE) prefer to enter baddeleyite rather than carbonate melts (D>1), whereas the light rare earth elements (LREE) and other trace elements behave incompatibly (D in carbonatite melts. Baddeleyite is known to accumulate the high field strength elements (HFSE) and some rare

234

Chemistry Department Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Staff Directory Chemistry Staff Directory Last Name, First Phone E-mail Note: All listed phone extensions are in the format of (631) 344-xxxx. Adzic, Radoslav 4522 adzic@bnl.gov Akimov, Alexey No Entry akimov@bnl.gov An, Wei 4317 weian@bnl.gov Anselmini, James 4399 anselmini@bnl.gov Baber, Ashleigh 4317 ababer@bnl.gov Badiei, Yosra 4360 ybadiei@bnl.gov Bak, Seong Min BAK 3663 smbak@bnl.gov Bakalis, Jin No Entry jbakalis@bnl.gov Bird, Matthew 4331 mbird@bnl.gov Cabelli, Diane 4361 cabelli@bnl.gov Camillone III, Nicholas 4412 nicholas@bnl.gov Chen, Jingguang 2655 jgchen@bnl.gov Chen, Wei-Fu 4360 wfchen@bnl.gov Concepcion, Javier 4369 jconcepc@bnl.gov Cook, Andrew 4782 acook@bnl.gov Cumming, James 4338 cumming@bnl.gov Duan, Lele 4357 lduan@bnl.gov Ertem, Mehmed No Entry mzertem@bnl.gov

235

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

236

Advanced Chemistry Basins Model  

SciTech Connect

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

237

Quarkonia and heavy flavors at the LHC  

E-Print Network (OSTI)

Perspectives for quarkonia and heavy flavors measurements in heavy ion collisions at LHC are reviewed

P. Crochet

2005-03-14T23:59:59.000Z

238

Neutrino induced light element synthesis  

SciTech Connect

As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos, especially the higher energy {mu}- and {tau}-neutrinos, excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: {nu}-nucleosynthesis. The process was first studied by Domogatsky et al. and Woosley. Recent work by Epstein, Colgate, and Haxton and Woosley and Haxton suggested that a large number of elements could owe their existence in nature to {nu}-induced reactions in supernovae. A parametrized study of this process including shock wave propagation was carried out by Woosley et al. for selected zones of a 20 M{sub {circle dot}} star. Here we give preliminary results for a 25 M{sub {circle dot}} star, including all {nu}-reactions in all stellar zones.

Hartmann, D.H.; Mathews, G.; Weaver, T.A. (Lawrence Livermore National Lab., CA (USA)); Haxton, W.C. (Washington Univ., Seattle, WA (USA). Dept. of Physics); Woosley, S.E. (Lawrence Livermore National Lab., CA (USA) California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics)

1990-01-01T23:59:59.000Z

239

Programmatic Elements  

Directives, Delegations, and Requirements

The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Cancels DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

2007-07-11T23:59:59.000Z

240

Synthesis and investigation of superheavy elements: perspectives with radioactive beams  

Science Journals Connector (OSTI)

...direct mass measurements and laser spectroscopy to investigate...communication) obtained from an HF-Bogoliubov calculation. Though...those populated directly in the fusion process, as observed for element...and superheavy elements (a) Fusion of heavy systems Figure 12 displays...

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Henry Taube and Coordination Chemistry  

Office of Scientific and Technical Information (OSTI)

Henry Taube and Coordination Chemistry Henry Taube and Coordination Chemistry Resources with Additional Information Henry Taube Chuck Painter/Stanford News Service Henry Taube, a Marguerite Blake Wilbur Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry "for his work on the mechanisms of electron transfer reactions, especially in metal complexes" Taube 'received a doctorate from the University of California-Berkeley in 1940 and was an instructor there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley," Taube recalled. ... He joined the Cornell University faculty in 1941, becoming a naturalized United States citizen in 1942, and then moved in 1946 to the University of Chicago where he remained until 1961. A year later he joined the Stanford faculty as professor of chemistry, a position he held until 1986, when he became professor emeritus. ...

242

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

243

Heavy Hybrid mesons Masses  

E-Print Network (OSTI)

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

244

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

245

The role of chemistry in the utilization of nuclear energy  

Science Journals Connector (OSTI)

The role of chemistry in the utilization of nuclear energy ... Considers the topics of tracer chemistry, nuclear chemistry, radiation chemistry, and the development of nuclear power. ...

Herbert M. Clark

1958-01-01T23:59:59.000Z

246

Atmospheric Chemistry of Dichlorvos  

Science Journals Connector (OSTI)

Atmospheric Chemistry of Dichlorvos ... In the positive ion mode, protonated water hydrates (H3O+(H2O)n) generated by the corona discharge in the chamber diluent air were responsible for the protonation of analytes, and the ions that were mass analyzed were mainly protonated molecules ([M + H]+) and their protonated homo- and heterodimers. ... Methyl nitrite, 2-propyl nitrite and N2O5 were prepared and stored as described previously,(8, 10) and O3 in O2 diluent was generated using a Welsbach T-408 ozone generator. ...

Sara M. Aschmann; Ernesto C. Tuazon; William D. Long; Roger Atkinson

2011-03-15T23:59:59.000Z

247

Black Hole Chemistry  

E-Print Network (OSTI)

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

248

Chemistry Major and Minor At A Glance  

E-Print Network (OSTI)

Chemistry Major and Minor At A Glance Major I ­ Pre-professional (Medicine, Dentistry, Business, Law, Engineering) Major II ­ ACS Certified e.g. Graduate Study or Entry Level Chemistry Employment. Major III ­ Forensic Chemistry Major IV** ­ Biochemistry Option Chemistry Minor General Chemistry I & II

Schmitt, William R.

249

College of Science Department of Chemistry  

E-Print Network (OSTI)

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2015 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

250

College of Science Department of Chemistry  

E-Print Network (OSTI)

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2013 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

251

College of Science Department of Chemistry  

E-Print Network (OSTI)

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2014 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

252

Chemistry and Biochemistry Graduate Student Spring 2012  

E-Print Network (OSTI)

Chemistry and Biochemistry Graduate Student Tutors Spring 2012 (All arrangements are solely between.axelrod@mail.utexas.edu Organic Chemistry Chris Bates chrismbates@gmail.com General Chemistry Lecture/Lab Organic Chemistry Amy Bonaparte abonaparte@mail.utexas.edu General and Organic Chemistry Shelly Casciato slcasciato

253

Chemistry and Biochemistry Graduate Student Summer 2012  

E-Print Network (OSTI)

Chemistry and Biochemistry Graduate Student Tutors Summer 2012 (All arrangements are solely between.axelrod@mail.utexas.edu Organic Chemistry Chris Bates chrismbates@gmail.com General Chemistry Lecture/Lab Organic Chemistry Amy Bonaparte abonaparte@mail.utexas.edu General and Organic Chemistry Shelly Casciato slcasciato

254

Chemistry UMass Lowell Commonwealth Honors Track  

E-Print Network (OSTI)

Chemistry UMass Lowell Commonwealth Honors Track Scholarship Rises. Freshman Year/ Fall Semester Cr) Honors Chemistry I 3 84.136 (H) Honors Chemistry II 3 84.123 (H) Honors Chemistry I Lab 1 84.124 (H) Honors Chemistry II Lab 1 92.131 Calculus I 4 92.132 Honors Calculus II 4 Hon 110 Honors FYSH (AH) 3 Gen

Massachusetts at Lowell, University of

255

College of Science Department of Chemistry  

E-Print Network (OSTI)

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2012 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

256

Response Elements  

Directives, Delegations, and Requirements

The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Cancels DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

2007-07-11T23:59:59.000Z

257

ADVANCED INORGANIC LABORATORY FALL 2008 CHEMISTRY 410 (CRN 11299:), CHEMISTRY 510 (CRN 11315)  

E-Print Network (OSTI)

ADVANCED INORGANIC LABORATORY ­ FALL 2008 CHEMISTRY 410 (CRN 11299:), CHEMISTRY 510 (CRN 11315: 373C Klamath E-Mail: cpage@uoregon.edu Phone: 346-4693 Office Hours: M 11:00 am, U 11:00 am, coordination chemistry, main group chemistry, organometallic chemistry, and bioinorganic chemistry. Because

Richmond, Geraldine L.

258

BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry  

E-Print Network (OSTI)

BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry For students entering Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit to be taken for graduation. Complete the following: Chem 111* Honors Principles of Chemistry Chem 112 Principles of Chemistry

Seamons, Kent E.

259

http://chemistry.usc.edu/ Tel: (213) 7407036 UndergraduateProgramsDepartment of Chemistry  

E-Print Network (OSTI)

http://chemistry.usc.edu/ Tel: (213) 7407036 UndergraduateProgramsDepartment of Chemistry Chemistry NanoscienceChemical BiologyBiochemistryResearch Five Majors, One Vision #12;Department of Chemistry, Undergraduate Programs Information about the programs B.S. degree in Chemistry: The B.S. degree in Chemistry

Rohs, Remo

260

Chemistry -Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry - ACS Certified Major of the following courses Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4110 Pharmaceutical Chemistry: Drug Action 3 CH1151 University Chemistry Lab 1 AND 1 CH4120 Pharmaceutical Chemistry: Drug

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chemistry -Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4610 Intro to Polymer Science 3 CH1151 University Chemistry Lab 1 AND 1 CH4620 Polymer Chemistry 3 CH1153 University Chemistry

262

Molecular size characterization of heavy oil fractions in vacuum and solution by molecular dynamic simulation  

Science Journals Connector (OSTI)

Two kinds of heavy oils were fractionated into eight fractions by Liquid-Solid Adsorption Chromatography, respectively, and samples were collected to measure properties. According to the elemental analysis, mo...

Wenpo Ren; Honggang Chen; Chaohe Yang

2010-09-01T23:59:59.000Z

263

Chapter 1 - Refining Heavy Oil and Extra-heavy Oil  

Science Journals Connector (OSTI)

The definitions of heavy oil, extra-heavy oil, and tar sand bitumen are inadequate insofar as the definitions rely upon a single physical property to define a complex feedstock. This chapter presents viable options to the antiquated definitions of the heavy feedstocks (heavy oil, extra-heavy oil, and tar sand bitumen) as well as an introduction to the various aspects of heavy feedstock refining in order for the reader to place each feedstock in the correct context of properties, behavior, and refining needs.

James G. Speight

2013-01-01T23:59:59.000Z

264

Center for the history of chemistry resources  

Science Journals Connector (OSTI)

Center for the history of chemistry resources ... A note alerting those interested in the histories of chemistry, chemical engineering, and chemical process industries to the resources available from the Center for the History of Chemistry. ... Chemical Engineering ...

Bruce V. Lewenstein

1988-01-01T23:59:59.000Z

265

Coordination Chemistry in the Solid State  

Science Journals Connector (OSTI)

...February 1996 research-article Coordination Chemistry in the Solid State Peter G. Bruce Salts...form a vital bridge between coordination chemistry in solution and more classical solid-state chemistry. The solid coordination compounds are...

1996-01-01T23:59:59.000Z

266

Enzymes as Reagents in Clinical Chemistry  

Science Journals Connector (OSTI)

...research-article Enzymes as Reagents in Clinical Chemistry C. P. Price Clinical chemistry is concerned with the measurement of substances...Therefore analytical techniques in clinical chemistry must be sensitive, specific and rapid. Many...

1983-01-01T23:59:59.000Z

267

Microfluidics for High School Chemistry Students  

Science Journals Connector (OSTI)

Microfluidics for High School Chemistry Students ... We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acidbase chemistry. ... Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics ...

Melissa Hemling; John A. Crooks; Piercen M. Oliver; Katie Brenner; Jennifer Gilbertson; George C. Lisensky; Douglas B. Weibel

2013-12-09T23:59:59.000Z

268

Magic nuclei unlock the secrets of heavy elements  

ScienceCinema (OSTI)

Kate Jones, an assistant professor at the University of Tennessee, describes her inquiries into the behavior of the somewhat enigmatic isotope tin-132.

Jones, Kate

2014-08-13T23:59:59.000Z

269

The Solar Heavy Element Abundances: I. Constraints from Stellar Interiors  

E-Print Network (OSTI)

The latest solar atmosphere models include non-LTE corrections and 3D hydrodynamic convection simulations. These models predict a significant reduction in the solar metal abundance, which leads to a serious conflict between helioseismic data and the predictions of solar interiors models. We demonstrate that the helioseismic constraints on the surface convection zone depth and helium abundance combined with stellar interiors models can be used to define the goodness of fit for a given chemical composition. After a detailed examination of the errors in the theoretical models we conclude that models constructed with the older solar abundances are consistent (solar abundance scale are discussed.

Franck Delahaye; Marc Pinsonneault

2005-11-29T23:59:59.000Z

270

THE SOLAR HEAVY ELEMENT ABUNDANCES. II. CONSTRAINTS FROM STELLAR ATMOSPHERES  

SciTech Connect

Estimates of the bulk metal abundance of the Sun derived from the latest generation of model atmospheres are significantly lower than the earlier standard values. In Paper I, we demonstrated that helioseismic data combined with stellar interiors theory set strong bounds on the solar metal abundance. The seismically derived abundances are inconsistent with the low photospheric abundances if the quoted errors in the atmospheric models (of order 0.05 dex) are correct. In this paper, we undertake a critical analysis of the solar metallicity and its uncertainty from a model atmospheric perspective, focusing on CNO. We argue that the non-LTE (NLTE) corrections for abundances derived from atomic features are overestimated in the recent abundance studies, while systematic errors in the absolute abundances are underestimated. In general, abundances derived from molecular features are lower than those derived from atomic features for the three-dimensional hydro models, while a weaker trend in the opposite direction tends to hold for abundances derived from one-dimensional models. If we adopt the internal consistency between different indicators as a measure of goodness of fit, we obtain intermediate abundances [C/H] = 8.44 +- 0.06, [N/H] = 7.96 +- 0.10 and [O/H] = 8.75 +- 0.08. The errors reflect the fact that both the high and low scales are internally consistent within the errors, and they are too large to conclude that there is a solar abundance problem. However, the center-to-limb continuum flux variations predicted in the simulations appear to be inconsistent with solar data based on recently published work. This would favor the traditional thermal structure and lead to high CNO abundances of (8.52, 7.96, 8.80) close to the seismic scale. We argue that further empirical tests of NLTE corrections and the thermal structure are required for precise absolute abundances. The sensitivity of the simulations to spatial resolution and systematic errors in the underlying atmospheric physics should also be examined, and these effects may lead to an overestimate of the impact of convective overshooting on the thermal structure of the outer layers of the solar atmosphere. The uncertainties in the solar oxygen also imply that strong conclusions about the absence of solar beryllium depletion cannot be made.

Pinsonneault, M. H. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Delahaye, Franck [CEA, IRFU, Serv. Astrophys., F-91191 Gif-sur-Yvette (France)

2009-10-20T23:59:59.000Z

271

The Solar Heavy Element Abundances: II. Constraints from Stellar Atmospheres  

E-Print Network (OSTI)

Estimates of the bulk metal abundance of the Sun derived from the latest generation of model atmospheres are significantly lower than the earlier standard values. In Paper I we demonstrated that a low solar metallicity is inconsistent with helioseismology if the quoted errors in the atmospheres models (of order 0.05 dex) are correct. In this paper we undertake a critical analysis of the solar metallicity and its uncertainty from a model atmospheres perspective, focusing on CNO. We argue that the non-LTE corrections for abundances derived from atomic features are overestimated in the recent abundance studies, while systematic errors in the absolute abundances are underestimated. If we adopt the internal consistency between different indicators as a measure of goodness of fit, we obtain intermediate abundances [C/H] = 8.44 +/- 0.06, [N/H] = 7.96 +/- 0.10 and [O/H] = 8.75 +/- 0.08. The errors are too large to conclude that there is a solar abundance problem, and permit both the high and low scales. However, the center-to-limb continuum flux variations predicted in the simulations appear to be inconsistent with solar data, which would favor the traditional thermal structure and lead to high CNO abundances of (8.52, 7.96, 8.80) close to the seismic scale. We argue that further empirical tests of non-LTE corrections and the thermal structure are required for precise absolute abundances. The implications for beryllium depletion and possible sources of error in the numerical simulations are discussed.

M. H. Pinsonneault; Franck Delahaye

2006-06-04T23:59:59.000Z

272

ALPHA-DECAY STUDIES IN THE HEAVY-ELEMENT REGION  

E-Print Network (OSTI)

231, Curium-242, and Americium-241 (Thesis), AECU-2757 (rimental Results A. Alpha Decay of Americium-243 L Alpha-Particle Energy of Americium-243 New Alpha Groups of

Hummel, John Philip

2010-01-01T23:59:59.000Z

273

Binghamton University Department of Chemistry  

E-Print Network (OSTI)

Binghamton University Department of Chemistry Graduate Student Handbook 2009 -2010 #12;State Director. The GPC does the following: (a) administers the placement examinations, (b) makes recommendations, inorganic, organic and physical) and one graduate student chosen by the Graduate Chemistry Club. B

Suzuki, Masatsugu

274

2010 Environmental Bioinorganic Chemistry  

SciTech Connect

This interdisciplinary meeting will gather together scientists - structural biologists, chemists, geneticists, chemical and biological oceanographers, geochemists, and other specialist - who study the flows of essential and toxic elements through the environment and living systems, on timescales ranging from femptoseconds to eons. Of particular interest are the molecular mechanisms that govern element acquisition and use in organisms, and the tools and techniques used to study these phenomena. The aim of this community is to use these molecular-scale insights to understand the interconnected biotic and abiotic processes that shape the macroscopic environment and its development and change over a range of time scales.

Rachael Austin

2010-06-18T23:59:59.000Z

275

Synthetic and Mechanistic Chemistry publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Synthetic and Mechanistic publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Dave Thorn Chemistry Program Manager Email Josh Smith Chemistry Communications Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Harshini Mukundan, Hongzhi Xie, Aaron S. Anderson, W. Kevin Grace, John E. Shively, and Basil I. Swanson, "Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: Evaluating fluorescent labels and functional surfaces," Bioconjugate Chemistry 20(2), 222-230 (2009).

276

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

277

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

278

A chemistry tale of two carbons | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

A chemistry tale of two carbons A chemistry tale of two carbons Comprehensive field study of urban, natural emissions interacting to affect climate change Data from the CARES...

279

Chemistry for Measurement and Detection Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Research into alternative forms of energy, especially energy security, is one of the...

280

Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National...

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Exhaust Phosphorous Chemistry | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemistry Exhaust Phosphorous Chemistry 2003 DEER Conference Presentation: Oak Ridge National Laboratory deer2003bunting2.pdf More Documents & Publications Exhaust Phosphorous...

282

Coordination Chemistry in magnesium battery electrolytes: how...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

283

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

284

Chemistry: Mechanism and Experiment - Combustion Energy Frontier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry: Mechanism and Experiment Chemistry: Mechanism and Experiment The Mechanism and Experiment DWG uses an array of advanced experimental apparatus to probe the combustion...

285

Chemistry Department Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Administration A. Harris, Chair (631) 344-4301 alexh@bnl.gov G. Hall, Deputy Chair (631) 344-4376 gehall@bnl.gov S. McAlary, Deputy BES Manager (631) 344-4305 mcalary2@bnl.gov J. Petterson, Senior Administrative Assistant (631) 344-4302 jpetter@bnl.gov Administrative Support Includes budgeting, procurement activities, foreign/domestic travel, seminars and general administrative concerns. Guest Appointments and Personnel matters should be referred to the Department's Senior Administrative Assistant. L. Sallustio (631) 344-4303 lsallust@bnl.gov Building and Stockroom Maintain the Chemistry Department stockroom and provide technical and building support to the staff. Information on the BNL Chemical Management Inventory system is available through the stockroom. Click here to view

286

Sandia National Labs: PCNSC: Heavy Ion Backscattering Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Backscattering Spectrometry (HIBS) Heavy Ion Backscattering Spectrometry (HIBS) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) Description of Technique: HIBS is used to detect ultra-trace levels of heavy impurities on the surface of a Si wafer. HIBS has advantages over TXRF, including: Improved sensitivity for most elements Quantifying composition without standards Measurement on rough surfaces. HIBS is accomplished by focusing a 120 keV beam of C+ions onto a small spot at the wafer's surface. The backscattered ions are collected by a time-of-flight (TOF) detector array with a large solid angle. The flight time of the backscattered C identifies the near-surface impurities and the

287

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

288

Nanomaterials Chemistry Group - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

289

Research program to investigate the fundamental chemistry of technetium  

SciTech Connect

The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms.

Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

2003-12-19T23:59:59.000Z

290

Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)  

SciTech Connect

The Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) is engaged by the DOE to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU; primarily neptunium, plutonium, and americium; Np, Pu, Am) and technetium {Tc} in alkaline media. This work is being supported by the DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and {Tc}, are alkaline, and the chemistries of TRU and {Tc} are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. Work continuing in FY 1996 will focus more on the applied chemistry of the TRU and {Tc} in alkaline media and continue effort on the coprecipitation task.

Delegard, C.H.

1995-12-01T23:59:59.000Z

291

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network (OSTI)

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

292

Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.  

SciTech Connect

This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.

Kent, James A. (ed.)

2007-07-01T23:59:59.000Z

293

Frontiers of Chemistry for Americium and Curium  

DOE R&D Accomplishments (OSTI)

The discoveries of americium and curium were made only after Seaborg had formulated his actinide concept in order to design the chemistry needed to separate them from irradiated /sup 239/Pu targets. Their discoveries thus furnished the first clear-cut evidence that the series exists and justified Seaborg`s bold assumption that even though Th and Pa appeared to presage a following 6d series, the pattern established by the periodic table after Cs and Ba would be repeated exactly after Fr and Ra. That is to say, a new 5f element rare earth series (the actinides) would follow Ac in the same way the 4f rare earth series (the lanthanides) follows La. The consequences of the resulting half-filled 5f/sup 7/ shell at Cm were originally presented by Seaborg as a test of his hypothesis. Recent research is outlined that substantiates Seaborg`s predictions in new and definitive ways.

Keller, O. L. Jr.

1984-01-00T23:59:59.000Z

294

Laser ablation in analytical chemistry - A review  

SciTech Connect

Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

2001-10-10T23:59:59.000Z

295

Transverse Collective Flow and Emission Order of Mid-Rapidity Fragments in Fermi Energy Heavy Ion Collisions  

E-Print Network (OSTI)

TRANSVERSE COLLECTIVE FLOW AND EMISSION ORDER OF MID-RAPIDITY FRAGMENTS IN FERMI ENERGY HEAVY ION COLLISIONS A Dissertation by ZACHARY WAYNE KOHLEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Chemistry TRANSVERSE COLLECTIVE FLOW AND EMISSION ORDER OF MID-RAPIDITY FRAGMENTS IN FERMI ENERGY HEAVY ION COLLISIONS A Dissertation by ZACHARY WAYNE KOHLEY Submitted...

Kohley, Zachary Wayne

2011-10-21T23:59:59.000Z

296

Environmental Chemistry at Vapor/Water Interfaces  

E-Print Network (OSTI)

Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy Aaron M. Jubb, Wei Hua, and Heather C. Allen Department of Chemistry, The Ohio State/0505-0107$20.00 Keywords salts, lipids, atmospheric chemistry, ion binding, oxidation Abstract The chemistry that occurs

297

Supramolecular chemistry and crystal engineering ASHWINI NANGIA  

E-Print Network (OSTI)

Supramolecular chemistry and crystal engineering ASHWINI NANGIA School of Chemistry, University. This article traces the evolution of supramolecular chemistry and crystal engineering starting from the early of Hyderabad, Hyderabad 500 046, India. e-mail: ashwini.nangia@gmail.com Advances in supramolecular chemistry

Joshi, Yogesh Moreshwar

298

Thermodynamics and Chemistry (DeVoe, Howard)  

Science Journals Connector (OSTI)

Thermodynamics and Chemistry (DeVoe, Howard) ... Covers all important topics in chemical thermodynamics. ... Thermodynamics ...

Eric A. Gislason

2001-09-01T23:59:59.000Z

299

Environmental Chemistry 2.1 INTRODUCTION  

E-Print Network (OSTI)

I CHAPTER 2 Environmental Chemistry 2.1 INTRODUCTION 2.2 STOICHIOMETRY 2.3 ENTHALPY IN CHEMICAL SYSTEMS 2.4 CHEMICAL EQUILIBRIA 2.S ORGANIC CHEMISTRY 2.6 NUCLEAR CHEMISTRY PROBLEMS REFERENCES It often #12;40 Chapter 2 Environmental Chemistry TABLE 2.1 Atomic Numbers andAtomic Weights Atomic Atomic

Kammen, Daniel M.

300

AVIRIS Canopy Chemistry Data (ACCP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Canopy Chemistry Data Canopy Chemistry Data The ORNL DAAC has added a data set to its holdings from the Accelerated Canopy Chemistry Program (ACCP). The new data set is entitled "Site AVIRIS Images, 1992 (ACCP)." ACCP was an investigation to determine the theoretical and empirical basis for remote sensing of nitrogen and lignin concentrations in vegetation canopies of various ecosystems in the United States. Ten AVIRIS image scenes over selected ACCP sites were acquired in 1992. Pixels that coincided with ACCP field sites were extracted, and surface reflectance values were calculated. The purpose of the data set was to measure spectra of naturally occurring canopies where the chemical constituents were measured. The ORNL DAAC also holds ACCP data related to leaf chemistry, seedling

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

National Nuclear Chemistry Summer School  

Energy.gov (U.S. Department of Energy (DOE))

The Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding is provided by the US Department of Energy.

302

Handbook of Physics and Chemistry  

Science Journals Connector (OSTI)

... many authoritative sources the requisite information necessary for students preparing for the First Examination in physics and chemistry of the Conjoint Board of the Royal Colleges of Physicians and Surgeons. ...

1899-01-04T23:59:59.000Z

303

Chemistry, Life, and Earth Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences August 9, 2011 - 2 - LOS ALAMOS, New Mexico, August 9, 2011- Nancy ("Nan") Sauer is the new associate...

304

Journal of Inclusion Phenomena and Macrocyclic Chemistry 41: 155162, 2001. 2001 Kluwer Academic Publishers. Printed in the Netherlands.  

E-Print Network (OSTI)

into metal clusters, catalysts, and nanoparticles. Encapsulation of toxic heavy metal ions in porous(II) macrocycle, open framework, self-assembly, supramolecular chemistry Abstract Inclusion studies for metal. It binds PhOH in toluene, showing a sigmoid curve. It also binds transition metal complexes such as [Cu(NH3

Paik Suh, Myunghyun

305

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

306

Chemistry of Personalized Solar Energy  

Science Journals Connector (OSTI)

Chemistry of Personalized Solar Energy ... Daniel G. Nocera is the Henry Dreyfus Professor of Energy and Professor of Chemistry, Director of the Solar Revolutions Project, and Director of the Eni Solar Frontiers Center at MIT. ... By providing solar energy to the individual, an energy supply becomes secure and available to people of both legacy and nonlegacy worlds and minimally contributes to an increase in the anthropogenic level of carbon dioxide. ...

Daniel G. Nocera

2009-09-23T23:59:59.000Z

307

Virginia Tech Department of Chemistry Faculty Position in Theoretical/Computational Chemistry  

E-Print Network (OSTI)

Virginia Tech Department of Chemistry Faculty Position in Theoretical/Computational Chemistry The Department of Chemistry announces a tenure-track opening in the area of Theoretical/Computational Chemistry have a Ph.D. in chemistry or a related field by time of appointment and 1 year of postdoctoral

Beex, A. A. "Louis"

308

Air Pollution Physics and Chemistry EAS 6790 Home Work Assignment Ozone Chemistry 2  

E-Print Network (OSTI)

1 Air Pollution Physics and Chemistry EAS 6790 Fall 2010 Home Work Assignment Ozone Chemistry 2 and Chemistry EAS 6790 Fall 2006 Home Work Assignment No. 4, Ozone Chemistry Problems 11.8 and 11.9 (sub-part 1 and 2 only). Daniel Jacob, Atmospheric Chemistry #12;2 Problem 2: 2 2. Consider an air parcel ventilated

Weber, Rodney

309

Courses: Chemistry (CHEM) Page 271Sonoma State University 2011-2012 Catalog Chemistry (CHEM)  

E-Print Network (OSTI)

Courses: Chemistry (CHEM) Page 271Sonoma State University 2011-2012 Catalog Chemistry (CHEM) CheM 102 CheMiStry And SOCiety (3) Lecture, 2 hours; laboratory, 3 hours. An introductory course in chemistry for non- majors. Covers the basics of chemistry in an effort to better understand current

Ravikumar, B.

310

Chemistry -Bachelor of Science (SCH2UG) Total Credits Required: 128 Chemistry/Biochemistry -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCH2UG) Total Credits Required: 128 Chemistry/Biochemistry - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 BL1040 Principles of Biology 4 CH1151 University Chemistry Lab 1 AND 1 BL4820 Biochem Techniques I 2 CH1153 University Chemistry

311

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular Interactions  

E-Print Network (OSTI)

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular and physical chemistry Course description and rationale CHE685 is a graduate-level organic chemistry course. These two courses focus on physical organic chemistry, which deals with the structure and reactivity

Mather, Patrick T.

312

CHEMISTRY 2011 Academic regulations for the Bachelor's degree in Chemistry 2011  

E-Print Network (OSTI)

CHEMISTRY 2011 Academic regulations for the Bachelor's degree in Chemistry 2011 1. Framework) in Chemistry. Academic line and main subject areas of the degree The Bachelor's degree in Chemistry students a basic introduction to the Chemistry disciplines. In addition, the Bachelor's degree programme

313

Research in actinide chemistry  

SciTech Connect

This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

Choppin, G.R.

1993-01-01T23:59:59.000Z

314

PHENIX recent heavy flavor results  

E-Print Network (OSTI)

Cold nuclear matter (CNM) effects provide an important baseline for the interpretation of data in heavy ion collisions. Such effects include nuclear shadowing, Cronin effect, and initial patron energy loss, and it is interesting to study the dependence on impact parameter and kinematic region. Heavy quark production is a good measurement to probe the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has experiment has ability to study the CNM effects by measuring heavy quark production in $d$$+$Au collisions at variety of kinematic ranges. Comparisons of heavy quark production at different rapidities allow us to study modification of gluon density function in the Au nucleus depending on momentum fraction. Furthermore, comparisons to the results from heavy ion collisions (Au$+$Au and Cu$+$Cu) measured by PHENIX provide insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed.

Sanghoon Lim for the PHENIX collaboration

2014-02-28T23:59:59.000Z

315

Characterizing Heavy Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

316

Detecting heavy quarks  

SciTech Connect

In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

1983-01-01T23:59:59.000Z

317

INTRODUCTION Metals comprise about 75% of the known elements and can  

E-Print Network (OSTI)

quality. Metals have traditionally been classified into categories such as light, heavy, semimetal (i of less than 0.1%. In biochemical and bio- medical research, trace element concentrations in plant

Sparks, Donald L.

318

E-Print Network 3.0 - actinide elements volume Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

no 5-6, Tome 33, Mai-Juin 1972,page C3-57 RELATIVISTIC ELECTRONIC BAND STRUCTURE OF THE HEAVY METALS Summary: and properties of the actinide elements before discussing the band...

319

Heavy Ions - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

320

Utah Heavy Oil Program  

SciTech Connect

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sediment chemistries and chironomid deformities in the Buffalo River (NY)  

SciTech Connect

The authors examined the surficial sediment chemistry (heavy metals) and the frequency of chironomid (Diptera) larvae mouthpart deformities from multiple PONAR grabs samples at each of 20 sites along the Buffalo River (NY) area of concern (AOC). Because of the potential for patchy invertebrate distribution and high variance in sediment chemistry, repeated spatial and temporal sampling is important to obtain a better integrated picture of contamination in rivers. The findings suggest that the Buffalo River has one of the highest percentages of deformed chironomids in AOC`s of the Great Lakes basin. One river site that was traditionally thought to be a chemical hot spot was less contaminated than another downstream section. At another site, sediment concentrations for V., Mn and AS appeared to be strongly associated with the proximity of combined sewer overflows from a region which is primarily residential. Interestingly, a demonstration project of the US Army Corps of Engineers, during which three types of dredges were used to carefully remove upper sediments from two different short reaches along the river, seemed to have no significant impact on proximate sediment chemistries or biota.

Stewart, K.M.; Diggins, T.P. [State Univ. of New York, Buffalo, NY (United States). Dept. of Biological Science

1994-12-31T23:59:59.000Z

322

International team discovers element 117 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International team discovers element 117 International team discovers element 117 International team discovers element 117 April 6, 2010 - 12:14pm Addthis An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas. "The discovery of element 117 is the culmination of a decade-long journey to expand the periodic table and write the next chapter in heavy element research," said Academician Yuri Oganessian, scientific leader of the

323

International team discovers element 117 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

team discovers element 117 team discovers element 117 International team discovers element 117 April 6, 2010 - 12:14pm Addthis An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas. "The discovery of element 117 is the culmination of a decade-long journey to expand the periodic table and write the next chapter in heavy element research," said Academician Yuri Oganessian, scientific leader of the

324

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

325

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron Imaging Archaeopteryx specimens are important but extremely rare fossils. Due to their possession of both reptilian (jaws with teeth, long bony tail) and avian (feathered wings) characters, Archaeopteryx has been crucial in the development of Darwinian evolution. Despite their importance, no Archaeopteryx specimen has ever been chemically analyzed. This in large part may be explained by the analytical obstacles which preclude applying standard methods to such valuable specimens; destructive sampling is not an option and most non-destructive methods cannot handle large specimens. Furthermore, mapping using conventional methods is far too slow to enable chemical zonation to be reasonably determined. Mapping of trace element chemistry is of tremendous interest, however, because it opens a window into understanding several critical questions about Archaeopteryx in particular, and about fossil specimens in general. Preserved trace chemistry in bones and soft tissue may be remnants of the living organism, and therefore may give insight into life processes of extinct organisms. When mapping includes the embedding rock matrix, mass transfer between the fossil and the matrix can be constrained, hence giving information about mode of preservation. Chemical analysis can also resolve artefacts of the curation process. Finally, accurate chemical maps can also be useful for directing future work by highlighting regions that may be promising for other types of analysis including structural methods (CT, diffraction) or techniques that use other parts of the electromagnetic spectrum (infra-red).

326

Experimenting with the Sweet Side of Chemistry: Connecting Students and Science through Food Chemistry  

Science Journals Connector (OSTI)

Experimenting with the Sweet Side of Chemistry: Connecting Students and Science through Food Chemistry ... Food science is the greenest of all sciences. ...

Sally B. Mitchell

2014-10-14T23:59:59.000Z

327

Phosphorous chemistry in the shocked region L1157 B1  

E-Print Network (OSTI)

We study the evolution of phosphorous-bearing species in one-dimensional C-shock models. We find that the abundances of P-bearing species depend sensitively on the elemental abundance of P in the gas phase and on the abundance of N atoms in the pre-shock gas. The observed abundance of PN and the non-detection of PO towards L1157 B1 are reproduced in C-shock models with shock velocity v=20km s-1 and pre-shock density n(H2) =10^4 - 10^5, if the elemental abundance of P in the gas phase is 10^-9 and the N-atom abundance is n(N)/nH - 10^-5 in the pre-shock gas. We also find that P-chemistry is sensitive to O- and N-chemistry, because N atoms are destroyed mainly by OH and NO. We identify the reactions of O-bearing and N-bearing species that significantly affect P chemistry.

Aota, Takuhiro

2012-01-01T23:59:59.000Z

328

1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists  

SciTech Connect

DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

Paul H. Wine

1998-11-23T23:59:59.000Z

329

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

330

Chemistry & Biology Directed Evolution of the Nonribosomal Peptide  

E-Print Network (OSTI)

Chemistry & Biology Article Directed Evolution of the Nonribosomal Peptide Synthetase Adm University of Illinois, Urbana, IL 61801, USA 3Department of Chemistry 4The Chemistry of Life Processes

Zhao, Huimin

331

Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation M.C. Ridgway1  

E-Print Network (OSTI)

Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation M.C. Ridgway1 and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO2 by ion

Paris-Sud XI, Université de

332

Characterization of electrodeposited elemental boron  

SciTech Connect

Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Anthonysamy, S. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)], E-mail: sas@igcar.gov.in; Ananthasivan, K.; Ranganathan, R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Mittal, Vinit; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC (F), Kalpakkam, 603102 (India); Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)

2008-07-15T23:59:59.000Z

333

INL '@work' heavy equipment mechanic  

ScienceCinema (OSTI)

INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

Christensen, Cad

2013-05-28T23:59:59.000Z

334

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

breakthrough accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create "snapshots" of the force binding all visible matter. Accelerator...

335

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

336

OXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE"  

E-Print Network (OSTI)

cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution often contain information about heavyOXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE" By Nishanta Rajakaruna and Robert S. Boyd

Rajakaruna, Nishanta

337

Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997  

SciTech Connect

The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy.

Delegard, C.H.; Elovich, R.J.

1997-09-01T23:59:59.000Z

338

Rheological properties of heavy oils and heavy oil emulsions  

SciTech Connect

In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

Khan, M.R. [Texaco, Inc., Beacon, NY (United States). Fuels and Lubricants Technology Dept.

1996-06-01T23:59:59.000Z

339

Lifetimes and time scales in atmospheric chemistry  

Science Journals Connector (OSTI)

...such as for years with extensive forest fires. Moving beyond atmospheric chemistry, extension of this approach to Earth system models could yield surprises. The coupling across different components of the chemistry-climate system, such as atmospheric...

2007-01-01T23:59:59.000Z

340

University of Connecticut Department of Chemistry  

E-Print Network (OSTI)

University of Connecticut Department of Chemistry NSF Research Experience for Undergraduates (REUREU@uconn.edu Fax: (860) 486-2981 Mail: REU Site Coordinator Department of Chemistry, University of Connecticut

Michel, Robert G.

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal chemistry and photochemistry of hexafluoroacetone on...  

NLE Websites -- All DOE Office Websites (Extended Search)

chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110) . Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110) . Abstract: The ultraviolet...

342

Capturing Chemistry in XML/CML  

E-Print Network (OSTI)

Chemical Markup Language (CML) is an XML-conformant Schema that describes molecules, spectra, reactions, and computational chemistry. It is capable of capturing the chemistry in a variety of current publications and is becoming adopted by many...

Townsend, Joseph A; Adams, Sam; Goodman, Jonathan M; Murray-Rust, Peter; Waudby, Chris A

343

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Chemistry of Cobalt-Platinum Nanocatalysts Print Monday, 25 February 2013 15:59 Bimetallic cobalt-platinum (CoPt) nanoparticles are...

344

Chemistry / Biochemistry B.S. Curriculum  

E-Print Network (OSTI)

Chemistry / Biochemistry B.S. Curriculum Freshman Chemistry CHE 133/133L, 134/134L; ENG 131, 132, BIO elective Sophomore Chemistry CHE 231/231L, 241/241L, 331/331L, 332/332L; MTH 233, 234; PHY 241 elective Junior Chemistry CHE 337/337L, 338/338L, 452/452L; CSC 101 or 201, ENG 273, Eng. Lit; Core

Long, Nicholas

345

Cryogenic Ion Chemistry and Spectroscopy  

Science Journals Connector (OSTI)

Cryogenic Ion Chemistry and Spectroscopy ... His research focuses on developing and applying cryogenic ion processing for the characterization of hydrogen bonding motifs in macromolecules and activated organometallic catalysts. ... In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. ...

Arron B. Wolk; Christopher M. Leavitt; Etienne Garand; Mark A. Johnson

2013-08-23T23:59:59.000Z

346

CHEMISTRY AND THE SOLID EARTH  

Science Journals Connector (OSTI)

CHEMISTRY AND THE SOLID EARTH ... By now, he has almost completely filled the blackboard, as he keeps up a steady drumfire of excited talk of the latest findings in geochemistry and geophysicstouching on everything from the origin of the solar system to the chemical nature of the earth's core to the enigmatic structure of the Mohorovi?i? discontinuity. ...

HOWARD J. SANDERS

1967-10-02T23:59:59.000Z

347

A Cubic Fe4Mo4 Oxo Framework and Its Reversible Four-Electron Redox Chemistry  

Science Journals Connector (OSTI)

Max Planck Institute for Chemical Energy Conversion (formerly Bioinorganic Chemistry), Stiftstrae 34?36, 45470 Mlheim, Germany ... Indeed, a salt with a FeII2FeIII2MoVI4 constellation, [Fe4Mo4](TCNQ)2 (2), could be isolated after treatment with TCNQ. ... data indicate that the binding energies of all the elements in the title compds. ...

Jan P. Falkenhagen; Beatrice Braun; Eckhard Bill; Dominik Sattler; Christian Limberg

2014-07-01T23:59:59.000Z

348

Chemistry 109 (3 credit hours) Honors General Chemistry Lecture, Part I; Fall 2014  

E-Print Network (OSTI)

of the book are available at the University Bookstore. Corequisite: CHE 129 ­ Honors General Chemistry introduce you to all areas of chemistry: physical, organic, inorganic, quantum, biophysical, and analyticalChemistry 109 (3 credit hours) Honors General Chemistry Lecture, Part I; Fall 2014 Instructor

Doyle, Robert

349

Onderwerpscodes Chemie -Farmacie / Subject headings Chemistry -Pharmacy, 2009, April1 Rubrieken Chemie -Farmacie: Subject headings Chemistry -  

E-Print Network (OSTI)

chemie 07 Inorganic chemistry 11.14 - 08 Organische chemie 08 Organic chemistry 12.11 - 10 Didactics and priciples of chemistry 14.03 - 16 Vervolgwerken - Annuals 16 Book series and annuals 14Onderwerpscodes Chemie - Farmacie / Subject headings Chemistry - Pharmacy, 2009, April1 Rubrieken

Galis, Frietson

350

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-Print Network (OSTI)

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

351

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

352

BS in CHEMISTRY EDUCATION (692828) MAP Sheet Department of Chemistry and Biochemistry  

E-Print Network (OSTI)

BS in CHEMISTRY EDUCATION (692828) MAP Sheet Department of Chemistry and Biochemistry For students a cumulative 2.85 GPA in teaching major/minor courses to qualify for student teaching. --The Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit must be taken in residence

Olsen Jr., Dan R.

353

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

354

BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry  

E-Print Network (OSTI)

BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry For students entering in major courses. --The Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit to be taken in residence at BYU for this degree program. These hours may also go toward BYU

Seamons, Kent E.

355

Why Study Chemistry at ESF A Rigorous Education: Chemistry faculty bring their  

E-Print Network (OSTI)

Why Study Chemistry at ESF A Rigorous Education: Chemistry faculty bring their expertise in cutting and real-world examples. Also, in addition to the usual chemistry courses, undergraduates take three our students receive: 95% of our students are employed in chemistry or accepted into graduate

Chatterjee, Avik P.

356

Minor in Chemistry Handout1.doc (04/30/08) Department of Chemistry  

E-Print Network (OSTI)

Minor in Chemistry Handout1.doc (04/30/08) Department of Chemistry Undergraduate Student Academic.fleming@ucr.edu Minor in Chemistry Procedure: It is assumed that you have completed the requirements listed in section to Declare a Minor to Chemistry. Include the following: full name, student identification number, and email

Reed, Christopher A.

357

Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

Sheridan, Scott

358

CHEMISTRY AND TECHNOLOGY 2011 Academic regulations for the Bachelor's degree in Chemistry and Technology  

E-Print Network (OSTI)

CHEMISTRY AND TECHNOLOGY 2011 Academic regulations for the Bachelor's degree in Chemistry Bachelor's degree programme provides graduates with the title Bachelor of Science (BSc) in Chemistry and Technology. Academic line and main subject areas of the degree The Bachelor's degree in Chemistry

359

Chemistry -Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 BL1040 Principles of Biology 4 CH1151 University Chemistry Lab 1 AND 1 BL3310 Environmental Microbiology 3 CH1153 University

360

BS in CHEMISTRY EDUCATION (692828) MAP Sheet Department of Chemistry and Biochemistry  

E-Print Network (OSTI)

BS in CHEMISTRY EDUCATION (692828) MAP Sheet Department of Chemistry and Biochemistry For students is allowed in major courses. --The Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit must be taken in residence at BYU for this degree program. These hours may also

Seamons, Kent E.

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 17-May-12/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

Sheridan, Scott

362

Neutron-capture elements in the very metal-poor star HD88609: another st ar with excesses of light neutron-capture elements  

E-Print Network (OSTI)

We obtained a high resolution, high signal-to-noise UV-blue spectrum of the extremely metal-poor red giant HD88609 to determine the abundances of heavy elements. Nineteen neutron-capture elements are detected in the spectrum. Our analysis revealed that this object has large excesses of light neutron-capture elements while heavy neutron-capture elements are deficient. The abundance pattern shows a continuously decreasing trend, as a function of atomic number, from Sr to Yb, which is quite different from those in stars with excesses of r-process elements. Such an abundance pattern is very similar to that of HD122563 that was studied by our previous work. The results indicate that the abundance pattern found in the two stars could represent the pattern produced by the nucleosynthesis process that provided light neutron-capture elements in the very early Galaxy.

Satoshi Honda; Wako Aoki; Yuhri Ishimaru; Shinya Wanajo

2007-05-27T23:59:59.000Z

363

Prebiotic chemistry: a new modus operandi  

Science Journals Connector (OSTI)

...Lilley and John D. Sutherland Prebiotic chemistry: a new modus operandi Matthew W. Powner...mrc-lmb.cam.ac.uk ). School of Chemistry, The University of Manchester, , Oxford...implausibility of multi-component reaction chemistry producing such a mixture. The concept...

2011-01-01T23:59:59.000Z

364

Safety Statement Virginia Tech Chemistry Department  

E-Print Network (OSTI)

Safety Statement Virginia Tech Chemistry Department This safety statement was prepared by the Chemistry Department Safety Committee and approved by the Department Chairperson on October 24, 2006. 1. Laboratory safety, chemical hygiene, and environmental responsibility are central objectives of the Chemistry

Crawford, T. Daniel

365

The School of Chemistry Handbook for Postgraduate  

E-Print Network (OSTI)

The School of Chemistry Handbook for Postgraduate Research Students 2013/14 School of Chemistry FACULTY OF MATHS AND PHYSICAL SCIENCES #12;2 Welcome The School of Chemistry welcomes new postgraduate students to Leeds and welcomes back returning students. This handbook is intended to give you information

Rzepa, Henry S.

366

GENERAL CHEMISTRY TEXTBOOK LIST ISBN Number  

E-Print Network (OSTI)

FALL 2013 GENERAL CHEMISTRY TEXTBOOK LIST Course Number ISBN Number Title of Text and/or Material Edition Author Publishers 11100 978-1-2591-9687-4 Introduction to Chemistry, 3rd ed. (packaged w 978-1-2591-6192-6 Chemistry, The Molecular Nature of Matter and Change, 6e (packaged w

Jiang, Wen

367

ATS621, Fall 2013 Atmospheric Chemistry  

E-Print Network (OSTI)

ATS621, Fall 2013 Atmospheric Chemistry Tuesdays and Thursdays, 10 ­ 10:50, 212B ACRC) 491-8587 Teaching Assistant: Lauren Potter Atmospheric Chemistry Bldg., Room 11 Lepotter, transport, chemistry and deposition impact atmospheric chemical composition; 2) Explain the chemical

368

4, 419470, 2004 HOx chemistry in  

E-Print Network (OSTI)

ACPD 4, 419­470, 2004 HOx chemistry in clean marine air R. Sommariva et al. Title Page Abstract-ID: 1680-7375/acpd/2004-4-419 © European Geosciences Union 2004 Atmospheric Chemistry and Physics Discussions OH and HO2 chemistry in clean marine air during SOAPEX-2 R. Sommariva 1 , A.-L. Haggerstone 2 , L

Paris-Sud XI, Université de

369

ATS621, Fall 2014 Atmospheric Chemistry  

E-Print Network (OSTI)

ATS621, Fall 2014 Atmospheric Chemistry Monday and Wednesday, 9 ­ 9:50, 212B ACRC Instructor: Prof) Understand quantitatively how emissions, transport, chemistry and deposition impact atmospheric chemical to Atmospheric Chemistry, D.J. Jacob Princeton University Press, 1999 PDF versions of the chapters can

Collett Jr., Jeffrey L.

370

Chemistry Department Assessment Table of Contents  

E-Print Network (OSTI)

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

371

College of Arts and Sciences CHE Chemistry  

E-Print Network (OSTI)

College of Arts and Sciences CHE Chemistry KEY: # = new course * = course changed = course dropped will be discussed in terms of their properties and impact on our everyday real world experience. CHE 103 CHEMISTRY, or completion of MA 108R. CHE 104 INTRODUCTORY GENERAL CHEMISTRY. (3

MacAdam, Keith

372

Chemistry in Sustainable Development and Global Environment  

Science Journals Connector (OSTI)

Chemistry in Sustainable Development and Global Environment ... Surely, a subject as all-encompassing as chemistry can play a role in sustainability. ... SolEn for a Sustainable Future: Developing and Teaching a Multidisciplinary Course on Solar Energy To Further Sustainable Education in Chemistry ...

Peter Abeta Iyere

2008-12-01T23:59:59.000Z

373

Ames Lab Plays Elemental Role in New PBS Special | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Plays Elemental Role in New PBS Special Lab Plays Elemental Role in New PBS Special Ames Lab Plays Elemental Role in New PBS Special April 4, 2012 - 2:34pm Addthis New York Times technology correspondent David Pogue -- host of NOVA’s popular “Making Stuff” series -- takes viewers on a quest to understand chemistry and all of the materials of life: the 118 unique elements that make up the amazing periodic table, including the 90 naturally-occurring elements and those created by scientists. | Photo courtesy of PBS. New York Times technology correspondent David Pogue -- host of NOVA's popular "Making Stuff" series -- takes viewers on a quest to understand chemistry and all of the materials of life: the 118 unique elements that make up the amazing periodic table, including the 90 naturally-occurring

374

Heavy oil transportation by pipeline  

SciTech Connect

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

375

Revised 4/18/12 Department of Chemistry  

E-Print Network (OSTI)

Revised 4/18/12 Department of Chemistry Undergraduate Handbook #12;2 #12;3 Table of Contents THE CHAIRMAN'S WELCOME 7 CAREER PATHS IN CHEMISTRY AND MEDICINAL CHEMISTRY 8 CHEMISTRY PROGRAMS AT UB 11 ADMISSION TO THE PROGRAM 14 CHANGING YOUR MAJOR TO CHEMISTRY/ MEDICINAL CHEMISTRY 14 ADVISEMENT 15 UB HUB

Colón, Luis A.

376

Revised 8/01/12 Department of Chemistry  

E-Print Network (OSTI)

Revised 8/01/12 Department of Chemistry Undergraduate Handbook #12;2 #12;3 Table of Contents THE CHAIRMAN'S WELCOME 7 CAREER PATHS IN CHEMISTRY AND MEDICINAL CHEMISTRY 7 CHEMISTRY PROGRAMS AT UB 11 ADMISSION TO THE PROGRAM 14 CHANGING YOUR MAJOR TO CHEMISTRY/ MEDICINAL CHEMISTRY 14 ADVISEMENT 15 UB HUB

Colón, Luis A.

377

Courses: Chemistry (CHEM) Page 277Sonoma State University 2013-2014 Catalog Chemistry (CHEM)  

E-Print Network (OSTI)

Courses: Chemistry (CHEM) Page 277Sonoma State University 2013-2014 Catalog Chemistry (CHEM) CHeM nC SeLeCted topiCS (0) CHeM 102 CHeMiStry And SoCiety (3) Lecture, 2 hours; laboratory, 3 hours. An introductory course in chemistry for non-majors. Covers the basics of chemistry related to everyday life

Ravikumar, B.

378

heavy_oil | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Oil Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Heavy oil is a vast U.S. oil resource that is...

379

BNL Photo- and Radiation Chemistry Group Members  

NLE Websites -- All DOE Office Websites (Extended Search)

and Radiation Chemistry Group and Radiation Chemistry Group Chemistry Department, Brookhaven National Laboratory Staff Diane E. Cabelli Redox chemistry of high oxidation state transition-metal complexes, particularly CuIII, MnIII/MnIV; Superoxide chemistry in aqueous solutions: dismutation of superoxide radical; copper-zinc superoxide dismutase and model compounds. Andrew R. Cook Excited state structure, dynamics and electron transfer reactions of a variety of organic radicals in both low temperature matrices and room temperature solutions using radiation chemistry techniques. Robert A. Crowell Ultrafast reaction phenomena. Etsuko Fujita Photochemistry of transition-metal complexes, small molecule activation by high- and low-oxidation state metal complexes; and biomimetic chemistry of porphyrins and enzymes.

380

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

382

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

383

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

384

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

385

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

386

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

387

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

388

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

389

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

390

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

391

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

392

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

393

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

394

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

395

UCLA PHYSICAL CHEMISTRY CONCENTRATION 2012-2013 CHEMISTRY MAJOR (B.S.), PHYSICAL CHEMISTRY CONCENTRATION: This concentration is designed primarily for  

E-Print Network (OSTI)

UCLA PHYSICAL CHEMISTRY CONCENTRATION 2012-2013 CHEMISTRY MAJOR (B.S.), PHYSICAL CHEMISTRY CONCENTRATION: This concentration is designed primarily for Chemistry majors who are interested in attending graduate school in Physical Chemistry/Physics or related areas. It may also satisfy some of the needs

Levine, Alex J.

396

Heavy metals in wild rice from northern Wisconsin  

Science Journals Connector (OSTI)

Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

James P. Bennett; Esteban Chiriboga; John Coleman; Donald M. Waller

2000-01-01T23:59:59.000Z

397

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

398

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

399

Heavy Ion Collisions at RHIC  

NLE Websites -- All DOE Office Websites (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

400

Are There Any Stars Lacking Neutron-Capture Elements? Evidence from Strontium and Barium  

E-Print Network (OSTI)

The cosmic dispersion in the abundances of the heavy elements strontium and barium in halo stars is well known. Strontium and barium are detected in most cool, metal-poor giants, but are these elements always detectable? To identify stars that could be considered probable candidates for lacking these elements, I examine the stellar abundance data available in the literature for 1148 field stars and 226 stars in dwarf galaxies, 776 of which have metallicities lower than [Fe/H]Strontium or barium have been detected in all field, globular cluster, and dwarf galaxy environments studied. All upper limits are consistent with the lowest detected ratios of [Sr/H] and [Ba/H]. The frequent appearance of these elements raises the intriguing prospect that at least one kind of neutron-capture reaction operates as often as the nucleosynthesis mechanisms that produce lighter elements, like magnesium, calcium, or iron, although the yields of heavy elements may be more variable.

Roederer, Ian U

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NWChem: scalable parallel computational chemistry  

SciTech Connect

NWChem is a general purpose computational chemistry code specifically designed to run on distributed memory parallel computers. The core functionality of the code focuses on molecular dynamics, Hartree-Fock and density functional theory methods for both plane-wave basis sets as well as Gaussian basis sets, tensor contraction engine based coupled cluster capabilities and combined quantum mechanics/molecular mechanics descriptions. It was realized from the beginning that scalable implementations of these methods required a programming paradigm inherently different from what message passing approaches could offer. In response a global address space library, the Global Array Toolkit, was developed. The programming model it offers is based on using predominantly one-sided communication. This model underpins most of the functionality in NWChem and the power of it is exemplified by the fact that the code scales to tens of thousands of processors. In this paper the core capabilities of NWChem are described as well as their implementation to achieve an efficient computational chemistry code with high parallel scalability. NWChem is a modern, open source, computational chemistry code1 specifically designed for large scale parallel applications2. To meet the challenges of developing efficient, scalable and portable programs of this nature a particular code design was adopted. This code design involved two main features. First of all, the code is build up in a modular fashion so that a large variety of functionality can be integrated easily. Secondly, to facilitate writing complex parallel algorithms the Global Array toolkit was developed. This toolkit allows one to write parallel applications in a shared memory like approach, but offers additional mechanisms to exploit data locality to lower communication overheads. This framework has proven to be very successful in computational chemistry but is applicable to any engineering domain. Within the context created by the features above NWChem has grown into a general purpose computational chemistry code that supports a wide variety of energy expressions and capabilities to calculate properties based there upon. The main energy expressions are classical mechanics force fields, Hartree-Fock and DFT both for finite systems and condensed phase systems, coupled cluster, as well as QM/MM. For most energy expressions single point calculations, geometry optimizations, excited states, and other properties are available. Below we briefly discuss each of the main energy expressions and the critical points involved in scalable implementations thereof.

van Dam, Hubertus JJ; De Jong, Wibe A.; Bylaska, Eric J.; Govind, Niranjan; Kowalski, Karol; Straatsma, TP; Valiev, Marat

2011-11-01T23:59:59.000Z

402

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

403

Rare Earth Elements:  

Science Journals Connector (OSTI)

...aegirine, magnetite and hematite; and (3) a massive central iron oxide facies containing 3 wt% REE2O3 (Chao et al. 1992...for several bivalent metal ions and cerium(III) with the acetylacetonate ion. Journal of Physical Chemistry 59: 235-237 Lehmann...

Anthony E. Williams-Jones; Artashes A. Migdisov; Iain M. Samson

404

LCLS Heavy Met Outgassing Tests  

SciTech Connect

A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

Kishiyama, K. I.

2010-12-01T23:59:59.000Z

405

Analytical Chemistry Laboratory Progress Report for FY 1994  

SciTech Connect

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

406

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

407

Assessment of the validity of conductivity as an estimate of total dissolved solids in heavy-duty coolants  

SciTech Connect

Conductivity is widely used in the analysis of heavy-duty coolants to estimate total dissolved solids. TDS is of concern in heavy-duty coolants because the practice of adding supplemental coolant additives (SCAs) to the coolant can lead to overloading and to subsequent water pump seal weepage and failure. Conductivity has the advantage of being quick and easy to measure and the equipment is inexpensive. However, questions are continually raised as to whether conductivity truly is a valid method of estimating TDS and, if so, over what concentration range. The introduction of new chemistries in heavy-duty coolants and new extended service interval (ESI) technologies prompts a critical assessment. Conductivity and TDS measurements for all of the coolants and SCAs used in heavy-duty engines in North America will be presented. The effects of glycol concentration on conductivity will also be examined.

Carr, R.P. [Penray Companies, Inc., Wheeling, IL (United States)

1999-08-01T23:59:59.000Z

408

Last updated 6/13/2011 Chemistry Major III: FORENSIC CHEMISTRY  

E-Print Network (OSTI)

Last updated 6/13/2011 Chemistry Major III: FORENSIC CHEMISTRY Suggested Program of Study FIRST and 3 of the arts. ***Three additional Forensic Sciences courses must be taken: FORS 6238-6239 plus FORS

Vertes, Akos

409

Review of Chemistry of Sustainable Energy  

Science Journals Connector (OSTI)

Review of Chemistry of Sustainable Energy ... Green synthesis methods are being researched, so this sustainability problem may not always remain an issue. ...

Cherie Turner

2014-11-20T23:59:59.000Z

410

Nanostructured photocatalysts for green chemistry and sustainable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured photocatalysts for green chemistry and sustainable catalysis Nanoscale materials with precise structure and composition offer unique opportunities in the development...

411

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

Not Available

1989-10-01T23:59:59.000Z

412

Phase-Transfer Catalysis in Analytical Chemistry  

Science Journals Connector (OSTI)

In analytical chemistry, analytes must sometimes be reacted with derivatizing reagents to facilitate analysis. Derivatization is needed when the analytes, without modification, cannot be easily separated using...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

413

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Print Bimetallic cobalt-platinum (CoPt) nanoparticles are drawing attention in many areas of catalysis as scientists attempt to reduce...

414

Characteristics and Effects of Lubricant Additive Chemistry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel Economy A Consortium to Optimize...

415

Chemistry: Theory - Combustion Energy Frontier Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Chemistry: Theory Presentations from 2010 CEFRC First Annual Conference MultireferenceCorrelated WavefunctionCalculations and Reaction Flux Analyses of Methyl Ester...

416

Energy & Sustainable Chemistry: Light Harvesting & Biocatalysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Sustainable Chemistry: Light Harvesting & Biocatalysis November 30, 1999 at http:www.rle.mit.eduexcitonicswp-contentuploads201408Olsen-efrc-video-highlight-artf.chloro..m...

417

Appendix C Analytical Chemistry Data  

Office of Legacy Management (LM)

Analytical Chemistry Data This page intentionally left blank Contents Section Analytical Data for Deleted Contaminants of Concern ............................................................. C1.O Mol~tezuma Creek Hardness Dat Surface Water Copper Data Summa ................ CI-9 Surface Water Radium-228 Dat Surface Water Radon-222 Data Summary ....................... ....................................... . . . . . . . . . . . C l - I 2 Alluvial Ground Water Aln~noniuu~ as Nitrogen Data Summary ....................... . . . ................................ Cl-15 Alluvial Ground Water Cobalt Data Summary ........... Alluvial Ground Water Copper Data Sumrl Alluvial Ground Water Lead Data Su~nmary ................................. C1-19 Alluvial Ground Water Lead-210 Data Sutl~rnary

418

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

419

Radioactivity, Radiation, and the Chemistry of Nuclear Waste  

Science Journals Connector (OSTI)

Radioactivity, Radiation, and the Chemistry of Nuclear Waste ... A chemistry course for nonmajors, which centers on the chemistry of nuclear waste, has as a prerequisite at least two semesters of general chemistry. ... The final section of the course is devoted to the treatment of nuclear waste by vitrification and applications based on nuclear or radiation chemistry. ...

Nick Zevos

2002-06-01T23:59:59.000Z

420

Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper  

E-Print Network (OSTI)

Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper 3 June 2014 http://quantum.chem.olemiss.edu Introduction to Computational Quantum Chemistry I #12;Chemistry and Biochemistry University of Mississippi chemistry § Convergent quantum chemistry · Basis sets · Methods ?Part II § A case

Tchumper, Gregory S.

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper  

E-Print Network (OSTI)

Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper 4 June 2014 http://quantum.chem.olemiss.edu Introduction to Computational Quantum Chemistry II #12;Chemistry and Biochemistry University of Mississippi chemistry § Convergent quantum chemistry · Basis sets · Methods ?Part II § A case

Tchumper, Gregory S.

422

Rev. 3/1/10 NEW.........Minor in Chemistry  

E-Print Network (OSTI)

Rev. 3/1/10 NEW.........Minor in Chemistry The Department of Chemistry offers a minor in chemistry to students who wish to enhance their degrees with a strong concentration in this area. The Chemistry minor and enhances the records of students. The Chemistry minor provides a broad and general exposure

Chatterjee, Avik P.

423

CHEMISTRY 1 Faculty of Natural Sciences, Department of  

E-Print Network (OSTI)

CHEMISTRY 1 Faculty of Natural Sciences, Department of --Chemistry This publication refers.imperial.ac.uk/pgprospectus. Chemistry Interests in chemistry at Imperial College cover physical, organic, inorganic, analytical, polymer and biological chemistry and chemical crystallography, as well as intersectional and medical topics

424

Owen, R.B., Sandhu, N., 2000. Heavy metal accumulation and anthro-pogenic impacts on Tolo Harbour, Hong Kong. Mar. Pollut. Bull. 40,  

E-Print Network (OSTI)

.-M., 2003. Pollution history of the Masan Bay, southeast Korea, from heavy metals and foraminiferaOwen, R.B., Sandhu, N., 2000. Heavy metal accumulation and anthro- pogenic impacts on Tolo Harbour and tracer elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar. Pollut

Yu, K.N.

425

Berkeley Center for Green Chemistry Newsletter First mobile app for green chemistry fosters sustainable manufacturing of  

E-Print Network (OSTI)

Berkeley Center for Green Chemistry Newsletter First mobile app for green chemistry fosters of the environmentally friendly and sustainable principles of green chemistry -- is the topic of a report in the American on doing so for solvents, key ingredients in processes for making medicines. Some traditional processes

Silver, Whendee

426

Livermore Scientists Team with Russia to Discover Element 118  

NLE Websites -- All DOE Office Websites (Extended Search)

"Synthesis of the isotopes of elements 118 and 116" (Abstract) "Synthesis of the isotopes of elements 118 and 116" (Abstract) Physical Review C, October 9, 2006 Livermore Scientists Team With Russia To Discover Elements 113 and 115 LLNL News Release, February. 2, 2004 "Present at the Creation" Science & Technology Review, January/February 2002 Island of Stability NOVA Science Now, September 2006 Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter Follow LLNL on Flickr Contact: Anne M. Stark Phone: (925) 422-9799 E-mail: stark8l@llnl.gov FOR IMMEDIATE RELEASE October 16, 2006 NR-06-10-03 Livermore scientists team with Russia to discover element 118 LIVERMORE, Calif. - Scientists from the Chemistry, Materials and Life Sciences Directorate at Lawrence Livermore National Laboratory, in

427

Automation of organic elemental analysis  

Science Journals Connector (OSTI)

Automation of organic elemental analysis ... Describes the development and design of an apparatus for automated organic elemental analysis. ...

Velmer B. Fish

1969-01-01T23:59:59.000Z

428

Quantum Chemistry at Finite Temperature  

E-Print Network (OSTI)

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

Liqiang Wei

2006-05-23T23:59:59.000Z

429

Page 1 | B.A. in Chemistry | Academic Plan of Study Updated April 2014 B.A. in Chemistry  

E-Print Network (OSTI)

Page 1 | B.A. in Chemistry | Academic Plan of Study Updated April 2014 B.A. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM to declare the major. · Advising (For the Major): completed by your chemistry faculty advisor (please refer

Raja, Anita

430

User:Smallman12q/articles/Chemistry 1 User:Smallman12q/articles/Chemistry  

E-Print Network (OSTI)

User:Smallman12q/articles/Chemistry 1 User:Smallman12q/articles/Chemistry Chemistry is the science during chemical reactions. Chemistry is the study of interactions of chemical substances with one another and energy. Chemistry (from Egyptian kme (chem), meaning "earth" [1] ) is the science concerned

Ferreira, Márcia M. C.

431

Minor in Chemistry 1. A Chemistry Minor is achieved by taking courses with a "CHEM" label. Biochemistry ("BCHM")  

E-Print Network (OSTI)

Minor in Chemistry 1. A Chemistry Minor is achieved by taking courses with a "CHEM" label. Biochemistry ("BCHM") courses do not count toward a Chemistry Minor. The following CHEM courses in Chemistry unless you have completed Physical Chemistry 1 (Chem 683) and the accompanying laboratory course

New Hampshire, University of

432

Chemistry -Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education - 40 credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH3020 Laboratory Teaching Internship 2 CH1151 University Chemistry Lab 1 AND 1 CH4810 Design/Oper of High School Chemistry

433

Page 1 | B.S. in Chemistry | Academic Plan of Study Updated April 2014 B.S. in Chemistry  

E-Print Network (OSTI)

Page 1 | B.S. in Chemistry | Academic Plan of Study Updated April 2014 B.S. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM to declare the major. · Advising (For the Major): completed by your chemistry faculty advisor (please refer

Raja, Anita

434

Chemistry -Bachelor of Science (SCH4UG) Total Credits Required: 128 Chemistry/Chemical Physics -ACS Certified  

E-Print Network (OSTI)

Chemistry - Bachelor of Science (SCH4UG) Total Credits Required: 128 Chemistry/Chemical Physics - 49 credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4560 Computational Chemistry 3 CH1151 University Chemistry Lab 1 AND 1 PH2300 Univ Physics III - Fluids & Thermo 2 CH1153

435

Josephson junction element  

SciTech Connect

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

436

Proceedings of transuranium elements  

SciTech Connect

The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium.

Not Available

1992-01-01T23:59:59.000Z

437

A Better Method for Evaluating Heavy Metal Water Pollution  

E-Print Network (OSTI)

efforts to control heavy metal pollution have focused oncomponent of heavy metal pollution, Dr. Hering found thatthat makes measuring heavy metal pollution a moving target.

Hering, Janet

2002-01-01T23:59:59.000Z

438

Chemistry and biology of the polyene macrolide antibiotics.  

Science Journals Connector (OSTI)

...research-article Research Article Chemistry and biology of the polyene macrolide...antibiotics. J M Hamilton-Miller Chemistry and biology of the polyene macrolide...use toxicity Chemical Phenomena Chemistry Drug Resistance, Microbial Models...

J M Hamilton-Miller

1973-06-01T23:59:59.000Z

439

Chemistry and biology of the polyene macrolide antibiotics.  

Science Journals Connector (OSTI)

...research-article Research Article Chemistry and biology of the polyene macrolide...antibiotics. J M Hamilton-Miller Chemistry and biology of the polyene macrolide...drug effects Chemical Phenomena Chemistry Drug Resistance, Microbial Glycosides...

J M Hamilton-Miller

1973-09-01T23:59:59.000Z

440

Chemistry courses as the turning point for premedical students  

E-Print Network (OSTI)

009-9165-3 ORIGINAL PAPER Chemistry courses as the turningnegative experiences in chemistry courses are a major factorTo determine if chemistry courses have a similar effect at a

Barr, Donald A.; Matsui, John; Wanat, Stanley F.; Gonzalez, Maria Elena

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Chemistry of Cold Interstellar Cloud Cores Eric Herbst  

E-Print Network (OSTI)

Chapter 1 The Chemistry of Cold Interstellar Cloud Cores Eric Herbst Department of Physics and Their Chemistry . . . . . . . . . . . . . 4 1.2 Gas-Phase Chemical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4 Organic Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.5 Negative

Millar, Tom

442

ONE FACULTY POSITIONS IN ANALYTICAL, FORENSIC CHEMISTRY OR TOXICOLOGY  

E-Print Network (OSTI)

ONE FACULTY POSITIONS IN ANALYTICAL, FORENSIC CHEMISTRY OR TOXICOLOGY The Department of Chemistry, we seek one outstanding individual to join our recently established Forensic Technology Institute and our FEPAC- accredited Forensics Chemistry Program. A primary focus on forensics research should

Linsley, Braddock K.

443

CH353 Physical Chemistry I Summer 2012  

E-Print Network (OSTI)

CH353 Physical Chemistry I Summer 2012 OUTLINE AND SCHEDULE This course will be team taught by Prof. Robert Wyatt and Lauren Webb Text: P. Atkins and J. de Paula, Physical Chemistry, 9th edition This course-T phase diagrams 2. Sublimation curve, vaporization curve, melting curve, triple point, critical point 3

444

New trends in cometary chemistry Jacques Crovisier  

E-Print Network (OSTI)

New trends in cometary chemistry Jacques Crovisier Received 29th November 2005, Accepted 19th some of the implications of new comet observations for cometary chemistry: recent observations in the coma by the sublimation of nucleus ices. This technique has been in use since the beginnings

Demoulin, Pascal

445

Center for History of Chemistry Inaugurated  

Science Journals Connector (OSTI)

Center for History of Chemistry Inaugurated ... The center already is laying out an active and varied set of programs to discover and disseminate information about chemical historical resources and to encourage research, scholarship, and popular writing about the history of chemistry, chemical engineering, and chemical process industries. ...

RICHARD J. SELTZER

1983-04-04T23:59:59.000Z

446

PHILOSOPHY OF CHEMISTRY Bernadette Bensaude-Vincent  

E-Print Network (OSTI)

PHILOSOPHY OF CHEMISTRY Bernadette Bensaude-Vincent in A. Brenner, J. Gayon eds, French Studies in the Philosophy of Science, Boston Studies in the Philosophy of Science, Springer, 2009, 165-185. The notion of "philosophy of chemistry" challenges the singular in the phrase "philosophy of science", which is the standard

Paris-Sud XI, Université de

447

WoodChemistry Wood Degradation & Preservation  

E-Print Network (OSTI)

31 WoodChemistry Wood Degradation & Preservation Chemical Utilization of Wood Pulp & Paper and carbohydrates is of considerable interest in connection with a number of issues in wood chemistry, such as the reactions taking place during the formation of wood, the natural molecular weight distribution of lignin

Geldenhuys, Jaco

448

CHEMISTRY 324W Fall 2010 ORGANIC LABORATORY  

E-Print Network (OSTI)

1 CHEMISTRY 324W Fall 2010 ORGANIC LABORATORY Lecture: ...................Monday and Friday 2 book for over 10,000 important organic substances. It has a handy cross index and molecular formula.) Advanced Organic Chemistry: Reactions, Mechanisms, and Structure by March (McGraw-Hill) is particularly

Wagner, Diane

449

Summer 2009 Chemistry Olympiad in Cambridge  

E-Print Network (OSTI)

, then head of organic chemistry at the University of Cape Town, but it was at the time of the first electionsSummer 2009 Chemistry Olympiad in Cambridge Protein folding ­ and misfolding about the academic staff in the department, but I looked through the book- let they sent me and I

Keeler, James

450

A Handbook of Physics and Chemistry  

Science Journals Connector (OSTI)

... THE requirements of the new syllabus for the First Examination in physics and chemistry of the Conjoint Board of the Royal Colleges of Physicians and Surgeons have ... view of making the book more useful to students preparing for other elementary examinations in physics and chemistry. ...

1920-08-23T23:59:59.000Z

451

General Chemistry Introduction: Definitions and Measurements  

E-Print Network (OSTI)

Measurements SI Fundamental Units of Measurement Physical Quantity (Dimension) Unit Name Abbreviation MassGeneral Chemistry Introduction: Definitions and Measurements CHM1050_3 *Aspartame ­ NutraSweetTM. 5 transformations and energy associated with those transformations. CHM1050_3 Chemistry: A Definition #12;CHM1050

Zakarian, Armen

452

Chemistry Add-In for Word  

E-Print Network (OSTI)

The Chemistry Add-In for Word is an Open Source program that allows chemists to create, edit and manipulate chemistry (labels and 2D structures) in the Word environment. the on-screen representation is backed by semantic data in Chemical Markup...

Townsend, Joseph A

2011-07-05T23:59:59.000Z

453

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

454

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

455

Elliptic flow of heavy flavors  

E-Print Network (OSTI)

The propagation of charm and bottom quarks through a ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Das, Santosh K

2010-01-01T23:59:59.000Z

456

Elliptic flow of heavy flavors  

E-Print Network (OSTI)

The propagation of charm and bottom quarks through an ellipsoidal domain of quark gluon plasma has been studied within the ambit of non-equilibrium statistical mechanics. Energy dissipation of heavy quarks by both radiative and collisional processes are taken in to account. The experimental data on the elliptic flow of the non-photonic electrons resulting from the semi-leptonic decays of hadrons containing heavy flavours has been reproduced with the same formalism that has been used earlier to reproduce the nuclear suppression factors. The elliptic flow of the non-photonic electron from heavy meson decays produced in nuclear collisions at LHC and low energy RHIC run have also been predicted.

Santosh K Das; Jan-e Alam

2010-08-16T23:59:59.000Z

457

Heavy Metal Tolerance in Stenotrophomonas maltophilia Delphine Pages1,2,3  

E-Print Network (OSTI)

Heavy Metal Tolerance in Stenotrophomonas maltophilia Delphine Pages1,2,3 , Jerome Rose4 , Sandrine, this bacterium tolerates high levels (0.1 to 50 mM) of various toxic metals, such as Cd, Pb, Co, Zn, Hg, Ag mechanisms to overcome metal toxicity, reduction of oxyanions to non-toxic elemental ions and detoxification

Paris-Sud XI, Université de

458

Identification of Heavy and Superheavy Nuclides Using Chemical Separator Systems  

SciTech Connect

With the recent synthesis of superheavy nuclides produced in the reactions {sup 48}Ca+{sup 238}U and {sup 48}Ca+{sup 242,244}Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, axn) reaction products. In the following, a study of (HI, axn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

Turler, Andreas

1999-12-31T23:59:59.000Z

459

George A. Olah, Carbocation and Hydrocarbon Chemistry  

Office of Scientific and Technical Information (OSTI)

George A. Olah, Carbocation and Hydrocarbon Chemistry George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information · Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations are stable and their physical properties ... can be observed, thus allowing details of their structures to be determined. Besides trivalent ions ... Olah demonstrated the existence of higher coordinate carbocations ... . These species do not violate the octet rule, but involve 2-electron 3-center bonding. '1

460

Pionic Fusion of Heavy Ions  

Science Journals Connector (OSTI)

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)?0 and 12C(12C,24Na)?+ cross sections have been measured to be 20838 and 18284 pb, respectively, at Ecm=137MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Spontaneous emission of heavy clusters  

Science Journals Connector (OSTI)

The lifetimes of some heavy nuclei relative to the spontaneous emission of various clusters heavier than the alpha particle are estimated with a model extended from the fission theory of alpha decay, showing that this phenomenon is a new manifestation of the nuclear shell structure. A greater probability is obtained for parent-heavy-cluster combinations leading to a magic or almost magic daughter nucleus. The analytical formula obtained allows one to handle a large number of cases to search for new kinds of radioactivities.

D N Poenaru; M Ivascu; A Sandulescu; W Greiner

1984-01-01T23:59:59.000Z

462

Central collisions of heavy ions  

SciTech Connect

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals.

Fung, Sun-yiu.

1991-10-01T23:59:59.000Z

463

Synthesis of a new element with atomic number Z=117  

SciTech Connect

The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z111, validating the concept of the long sought island of enhanced stability for super-heavy nuclei.

Oganessian, Yuri Ts. [FLNR-JINR, Russia; Abdullin, F. Sh. [Joint Institute for Nuclear Research, Dubna, Russia; Bailey, P. D. [Oak Ridge National Laboratory (ORNL); Benker, D. E. [Oak Ridge National Laboratory (ORNL); Bennett, M. E. [University of Nevada, Las Vegas; Dmitriev, S. [FLNR-JINR, Russia; Ezold, Julie G. [Oak Ridge National Laboratory (ORNL); Hamilton, J. H. [Vanderbilt University; Henderson, R. [Lawrence Livermore National Laboratory (LLNL); Itkis, M. G. [FLNR-JINR, Russia; Lobanov, Yu. V. [Joint Institute for Nuclear Research, Dubna, Russia; Mezentsev, A. N. [Joint Institute for Nuclear Research, Dubna, Russia; Moody, K. [Lawrence Livermore National Laboratory (LLNL); Nelson, S. L. [Lawrence Livermore National Laboratory (LLNL); Polyakov, A. N. [Joint Institute for Nuclear Research, Dubna, Russia; Porter, C. E. [Oak Ridge National Laboratory (ORNL); Ramayya, A. V. [Vanderbilt University; Riley, F. D. [Oak Ridge National Laboratory (ORNL); Roberto, James B [ORNL; Ryabinin, M. A. [Research Institute of Atomic Reactors, Dimitrovgrad, Russia; Rykaczewski, Krzysztof Piotr [ORNL; Sagaidak, R. N. [Joint Institute for Nuclear Research, Dubna, Russia; Shaughnessy, D. [Lawrence Livermore National Laboratory (LLNL); Shirokovsky, I. V. [Joint Institute for Nuclear Research, Dubna, Russia; Stoyer, M. [Lawrence Livermore National Laboratory (LLNL); Subbotin, V. G. [Joint Institute for Nuclear Research, Dubna, Russia; Sudowe, R. [University of Nevada, Las Vegas; Sukhov, A. M. [Joint Institute for Nuclear Research, Dubna, Russia; Tsyganov, Yu. S. [Joint Institute for Nuclear Research, Dubna, Russia; Utyonkov, V. [FLNR-JINR, Russia; Voinov, A. A. [Joint Institute for Nuclear Research, Dubna, Russia; Vostokin, G. K. [Joint Institute for Nuclear Research, Dubna, Russia; Wilk, P. A. [Lawrence Livermore National Laboratory (LLNL)

2010-01-01T23:59:59.000Z

464

Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

465

Enriched Stable Isotope Materials and Chemistry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Enriched Stable Isotope Materials and Chemistry SHARE Enriched Stable Isotope Materials and Chemistry Reductiondistillation of calcium-48 metal valued at over 900,000. An...

466

The Chemistry Magic Show Captivates Kids | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Magic Show Captivates Kids The Chemistry Magic Show Captivates Kids Vin Smentkowski 2012.11.16 My colleague, Christopher (Chris) Dosch, also known as Ignito the Magician,...

467

Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Coal-Derived Liquids to Enable HCCI Technology Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing...

468

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

469

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012...

470

Modeling the Regeneration Chemistry of Lean NOx Traps | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Regeneration Chemistry of Lean NOx Traps Modeling the Regeneration Chemistry of Lean NOx Traps Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored...

471

Bridging the Gap between Fundamental Physics and Chemistry and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

472

Organic Semiconductor Chemistry | MIT-Harvard Center for Excitonics  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Semiconductor Chemistry December 13, 2012 at 3pm36-428 Seth Marder Department of ChemistryBiochemistry, Director, Center for Organic Photonics and Electronics, Georgia...

473

Private Company Uses EERE-Supported Chemistry Model to Substantially...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software Private Company Uses EERE-Supported Chemistry Model to...

474

Redox Chemistry in Thin Layers of Organometallic Complexes Prepared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Redox Chemistry in Thin Layers of Organometallic Complexes Prepared Using Ion Soft Landing. Redox Chemistry in Thin Layers of Organometallic Complexes Prepared Using Ion Soft...

475

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste...

476

Physical Organic Chemistry of Reactive Intermediates | The Ames...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Organic Chemistry of Reactive Intermediates The Jenks group specializes in physical organic chemistry, the "how" of organic reactions. Much of the work has centered on...

477

Molecular Chemistry of Organic Aerosols Through the Application...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

478

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids Tropospheric Chemistry of Internally Mixed Sea Salt...

479

High Level Computational Chemistry Approaches to the Prediction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems High Level Computational Chemistry Approaches to the...

480

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications...

Note: This page contains sample records for the topic "heavy element chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High Level Computational Chemistry Approaches to the Prediction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Level Computational Chemistry Approaches to the Prediction of the Energetic Properties of Chemical Hydrogen Storage Systems David A. Dixon Chemistry, University of Alabama,...

482

An audio-tutorial program in allied health chemistry  

Science Journals Connector (OSTI)

An audio-tutorial program in allied health chemistry ... Describes the nature and use of an audio-tutorial program in allied health chemistry. ...

Ethelreda Laughlin; Norbert Kurnath

1975-01-01T23:59:59.000Z

483

Radiation Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

484

UCRL-11359 UC-4 Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

1359 1359 UC-4 Chemistry TID-45 (27th Ed ) UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California AEC Contract No. W-7405-eng-48 PROPOSED MOLECULAR BEAM DETERMINATION OF ENERGY PARTITION IN THE PHOTO DISSOCIATION OF POLYATOMIC MOLECULES Richard N. Zare and Dudley R. Herschba.ch January 29, 1.964 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

485

LA-2271 CHEMISTRY-GENERAL  

Office of Scientific and Technical Information (OSTI)

2271 2271 CHEMISTRY-GENERAL TID-4500, 14th Ed. LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO REPORT WRITTEN: August 1958 REPORT DISTRIBUTED: March 17, 1959 COMPRESSIBILITY FACTORS AND FUGACITY COEFFICIENTS CALCULATED FROM THE BEATTIE-BRIDGEMAN EQUATION OF STATE FOR HYDROGEN, NITROGEN, OXYGEN, CARBON DIOXIDE, AMMONIA, METHANE, AND HELIUM by C. E. Holley, J r . W. J. Worlton R. K. Zeigler » * This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory. Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

486

Orbital entanglement in quantum chemistry  

E-Print Network (OSTI)

The basic concepts of orbital entanglement and its application to chemistry are briefly reviewed. The calculation of orbital entanglement measures from correlated wavefunctions is discussed in terms of reduced $n$-particle density matrices. Possible simplifications in their evaluation are highlighted in case of seniority-zero wavefunctions. Specifically, orbital entanglement allows us to dissect electron correlation effects in its strong and weak contributions, to determine bond orders, to assess the quality and stability of active space calculations, to monitor chemical reactions, and to identify points along the reaction coordinate where electronic wavefunctions change drastically. Thus, orbital entanglement represents a useful and intuitive tool to interpret complex electronic wavefunctions and to facilitate a qualitative understanding of electronic structure and how it changes in chemical processes.

Boguslawski, Katharina

2014-01-01T23:59:59.000Z

487

Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence  

E-Print Network (OSTI)

, with late transition-metal elements. Early transition-metal carbides of the same composition do not exist Choices in Some Binary and Ternary Metal Carbides 83 Jing Li and Roald Hoffmann* Department of Chemistry The dimeric Czunit has been found in many binary and ternary metal carbide systems. The C-C bond length

Li, Jing

488

Thematic Questions about Chemical Elements Nature of the chemical elements  

E-Print Network (OSTI)

Be Atomic No. 1 2 3 4 Isotopes 1,2,3 3,4 6,7 9,10 Name Boron Carbon Nitrogen Oxygen Symbol B C N O Atomic No Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental Abundance and Isotopes · distribution of elements in the universe · factors that define elemental

Polly, David

489

Heavy quarks in effective field theories  

E-Print Network (OSTI)

Heavy quark physics serves as a probe to understand QCD, measure standard model parameters, and look for signs of new physics. We study several aspects of heavy quark systems in an effective field theory framework, including ...

Jain, Ambar

2009-01-01T23:59:59.000Z

490

Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare-metal  

E-Print Network (OSTI)

Behaviour of zirconium, niobium, yttrium and the rare earth elements in the Thor Lake rare and the heavy rare earth elements in the world. Much of the potentially economic mineralization was concentrated of Science Department of Earth and Planetary Sciences McGill University, Montreal, QC, Canada February 2010

491

Strangeness signals in heavy ion collisions  

SciTech Connect

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-11-01T23:59:59.000Z

492

Strangeness signals in heavy ion collisions  

SciTech Connect

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-01-01T23:59:59.000Z

493

Heavy oils (natural and refined)  

SciTech Connect

This section of the Petroleum and Coal review again contains discussions on the analysis of asphalts, bitumens, tars, and pitches as well as heavy natural and refined oils. The characterization of these heavy (high-boiling) materials impacts the way they are produced, their effect on the processing environment, and their suitability for various end products. The analysis of these heavy materials is becoming increasingly important as crude oil stocks get heavier and larger quantities of high-boiling materials are processed to derive clean lower boiling products. This review covers articles found in the literature in the last two years. This review will cover new or improved analytical procedures and applications to new sources of heavy oils. This review will be subdivided into individual separation or analytical techniques. Combined analytical techniques (e.g., GC-FT-IR) will be included under the technique most emphasized in the article. The review is categorized further by chromatographic techniques, spectroscopic techniques, thermal techniques, and miscellaneous. 71 refs.

Lintelmann, K.A. [Marathon Oil Co., Littleton, CO (United States)

1995-06-15T23:59:59.000Z

494

Fusion and Heavy Ion Reactions  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion and Heavy Ion Reactions David M. Brink...useful for understanding of sub-barrier fusion processes. The Christensen-Winther...potentials like the CW interaction give good fusion cross-sections near and for a few MeV......

David M. Brink

2004-02-01T23:59:59.000Z

495

Heavy quark physics from LEP  

SciTech Connect

A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

Dornan, P.J. [Imperial College of Science Technology and Medicine, London (United Kingdom)

1997-01-01T23:59:59.000Z

496

Proton Distribution in Heavy Nuclei  

DOE R&D Accomplishments (OSTI)

It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

Johnson, M. H; Teller, E.

1953-11-13T23:59:59.000Z

497

Optical model analyses of heavy ion fragmentation in hydrogen targets  

Science Journals Connector (OSTI)

Quantum-mechanical optical model methods for calculating cross sections for the fragmentation of high energy heavy ions by hydrogen targets are presented. The cross sections are calculated with a knockout-ablation collision formalism which has no arbitrary fitting parameters. Predictions of elemental production cross sections from the fragmentation of 1.2A MeV La139 nuclei and of isotope production cross sections from the fragmentation of 400A MeV S32 nuclei are in good agreement with recently reported experimental measurements.

Lawrence W. Townsend

1994-06-01T23:59:59.000Z

498

Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions  

E-Print Network (OSTI)

Heavy baryon/meson ratios Lambda(c)/D(0) and Lambda(b)/(B) over bar (0) in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks...

Oh, Yongseok; Ko, Che Ming; Lee, Su Houng; Yasui, Shigehiro.

2009-01-01T23:59:59.000Z

499

INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS  

SciTech Connect

Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

1998-10-27T23:59:59.000Z

500

Heavy wall casing in C110 grade for sour service  

SciTech Connect

The recent developments of high pressure and sour wells in the North Sea area have increased the need for high strength H{sub 2}S resistant carbon steels. Steel chemistry and heat treatment solutions have been available to provide products suitable for use in these environments within the constraints of classic well design since the early 90`s but operators are now demanding higher strength and heavier wall products for HPHT wells. Well completion design teams are now specifying from OCTG suppliers C110 grade products in increasingly heavy wall and the challenge facing suppliers is to guarantee product integrity not only of these heavy wall casing but also the associated coupling stocks. This paper was aimed at evaluating the performances of thick walled C110 tubulars (up to 2in) for sour environments. Metallurgical characteristics (microstructure, structure, microhardness), mechanical properties (hardness, tensile, toughness), Sulfide Stress Cracking resistance (smooth tensile, DCB) have been investigated throughout the wall thickness. The C110 proprietary grade proved to be an excellent material for use as Oil Country Tubular Goods (OCTG) in typical North Sea environments with improved assessment of H2S corrosion resistance properties according to both NACE and EFC (European Federation of Corrosion) philosophies.

Linne, C.P.; Blanchard, F.; Puissochet, F. [Vallourec Research Center, Aulnoye Aymeries (France). Corrosion and Metallurgical Dept.; Orlans-Joliet, B.J.; Hamilton, R.S.

1998-12-31T23:59:59.000Z