Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...  

Broader source: Energy.gov (indexed) [DOE]

Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

2

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

Watson, Craig A.

3

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

4

Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate  

E-Print Network [OSTI]

ventilation to hospitality venues in hot, humid climates need not be complex. This paper proposes guidelines that can facilitate application of the technology by specifiers or other construction professionals. These guidelines address evaluation of typical...

Wellford, B. W.

2000-01-01T23:59:59.000Z

5

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development

6

A web based CBR system for heating ventilation and air conditioning systems sales support  

E-Print Network [OSTI]

A web based CBR system for heating ventilation and air conditioning systems sales support D describes the implementation of a case-based reasoning (CBR) system to support heating ventilation and air conditioning systems (HVAC) sales staff operating in remote locations. The system operates on the world wide

Watson, Ian

7

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

8

Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

Not Available

2014-04-01T23:59:59.000Z

9

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network [OSTI]

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

10

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

11

IEA HPP Annex 41 Cold Climate Heat  

E-Print Network [OSTI]

of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

Oak Ridge National Laboratory

12

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network [OSTI]

emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

2009-07-10T23:59:59.000Z

13

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network [OSTI]

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

14

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

. FPM will then work to identify a long range solution to heating the space to an appropriate level. New construction and renovation will incorporate daylight sensing technology, allowing overhead

Caughman, John

15

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

16

Smart School Symposium Heating Ventilation and Air Conditioning Session  

E-Print Network [OSTI]

Building Load · One of the key things we have learned in ASHRAE 90.1 is to model the typical buildings so equipment. · ASHRAE 90.1 has divided the US and the World into 17 climate zones as shown in the following be mapped to ASHRAE zones so that we can look at building modeling work that ASHRAE 90.1 has done 5 #12

California at Davis, University of

17

Heating Ventilation and Air Conditioning Efficiency | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearingsHeating OilHeating

18

Cold Climates Heat Pump Design Optimization  

SciTech Connect (OSTI)

Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

2012-01-01T23:59:59.000Z

19

RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES  

E-Print Network [OSTI]

-port exhaust ventilation fan, and that builders offer balanced heat- recovery ventilation to buyers

20

Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level, and trophic changes  

E-Print Network [OSTI]

Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level. [1] Sediments on the Namibian Margin in the SE Atlantic between water depths of $1000 and $3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2

Boyer, Edmond

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

22

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

23

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network [OSTI]

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

24

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

25

Ground-Source Heat Pumps in Cold Climates  

E-Print Network [OSTI]

Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

Wagner, Diane

26

High Efficiency Cold Climate Heat Pump  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency Cold Climate

27

Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis  

SciTech Connect (OSTI)

Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

Camejo, P.J.

1989-12-01T23:59:59.000Z

28

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

SciTech Connect (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

29

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network [OSTI]

Doctor Instructor Professor The key laboratory of clean coal power generation and combustion technology of the ministry of education, southeast university College of energy sources & environment, Inner Mongolia University of Science & Technology...ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-7-1 Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors Xuan Wu Jingfang Gao Wenfei Wu...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

30

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

31

Natural ventilation generates building form  

E-Print Network [OSTI]

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

32

The deep-ocean heat uptake in transient climate change  

E-Print Network [OSTI]

The deep-ocean heat uptake (DOHU) in transient climate changes is studied using an ocean general circulation model (OGCM) and its adjoint. The model configuration consists of idealized Pacific and Atlantic basins. The model ...

Huang, Boyin.; Stone, Peter H.; Sokolov, Andrei P.; Kamenkovich, Igor V.

33

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

34

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

35

The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study  

SciTech Connect (OSTI)

The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy cost in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.

Al-Sallal, K.A.

1999-07-01T23:59:59.000Z

36

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit  

E-Print Network [OSTI]

Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating...

Gong, Xiangyang

2009-05-15T23:59:59.000Z

37

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control  

SciTech Connect (OSTI)

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

38

Supercharger for Heat Pumps in Cold Climates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ceSupercharger for Heat

39

Sensor-based demand controlled ventilation  

SciTech Connect (OSTI)

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

40

Climate, extreme heat, and electricity demand in California  

SciTech Connect (OSTI)

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Preliminary Market Assessment for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP comprises homes in the mixed-humid region of the country that are using electric furnaces. Homes using gas furnaces across both the cold/very cold and mixed-humid regions represent another secondary market for the cold climate HP. The cold climate HP could also target as a secondary market homes across both the cold/very cold and mixed-humid regions that use propane and fuel oil as their primary heating fuel. The combined total of homes in these three secondary markets is 46 million, and we can also infer that about 2.2 million of these systems are replaced annually. When comparing heating equipment stock in 2001, 2005, and 2009 in the cold/very cold region of the country, it appears that gas furnaces are slowly losing market share and that electric furnaces and HPs are making gains. The fact that electricity-dependent heating equipment is rising in preference among homeowners in the colder regions of the country shows that future penetration of the cold climate HP holds promise. Accordingly, cold climate HP technology could achieve an attractive position, given certain favorable market conditions such as reaching a competitive cost point, strong federal incentives, a consistent level of reliable performance, and a product rollout by a credible market leader. The project team relied on payback analysis to estimate the potential market penetration for the cold climate HP in each of its primary and secondary markets. In this analysis, we assumed a $250 price premium for the cold climate HP over the baseline HP. Electricity and gas prices and emissions were based on the 2010 Buildings Energy Data Book. The average heating load was calculated as 25.2 MMBTU per year in the cold/very cold and mixed-humid regions of the United States. Typical installed costs were obtained from the technical document supporting the U.S. Department of Energy rulemaking. The analysis showed that the cold climate HP will have a 2.2 year payback period when replacing an existing electric HP in the colder regions of the nation. The cold climate HP will have a 6 year payback period when replacing gas furnaces in the same climate regions. Accordingly, we estimated that the cold climate HP will have a penetration ratio rangin

Sikes, Karen [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Abdelaziz, Omar [ORNL

2011-09-01T23:59:59.000Z

42

DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP  

SciTech Connect (OSTI)

The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

2014-06-01T23:59:59.000Z

43

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect (OSTI)

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

44

Natural Ventilation Applications in Hot-humid Climate: A Preliminary Design for the College of Design at NTUST  

E-Print Network [OSTI]

In Taiwans humid environment, the application of natural ventilation is an essential passive strategy for high performance buildings. However, conventional architectural design tools are rarely capable of analyzing the unpredictable air currents...

Lin, M. T.; Wei, H. Y.; Lin, Y. J.; Wu, H. F.; Liu, P. H.

45

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network [OSTI]

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

46

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect (OSTI)

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

47

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

48

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

49

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

50

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect (OSTI)

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

51

Measure Guideline: Ventilation Cooling  

SciTech Connect (OSTI)

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

52

Cold Climate Heat Pump Projects at Purdue University & the Living Lab  

E-Print Network [OSTI]

11/10/2011 6 #12;System Design · 19 kW (~65000 Btu/h) at -20 OC (-4 OF) · Install strip electric heat pump optimized for heating » Greatly reduce or eliminate need for auxiliary electric resistance heatingCold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs

Oak Ridge National Laboratory

53

Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars  

E-Print Network [OSTI]

stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. OurRole of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars Yongyun Hu1 and Jun Yang Laboratory for Climate and Atmosphere­Ocean Studies, Department of Atmospheric

Hu, Yongyun

54

Climate, extreme heat, and electricity demand in California  

E-Print Network [OSTI]

demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

Miller, N.L.

2008-01-01T23:59:59.000Z

55

In the Heat of the Moment: Climate Change Now and  

E-Print Network [OSTI]

& technology communication -- communication and energy/environmental policy Kinsella--Climate Change in Society · A communication and rhetoric perspective · Living in a risk society · Anthropogenic "nature" of climate change as a communication challenge · Closing thoughts · Discussion Kinsella--Climate Change in Society/Society in Climate

Parker, Matthew D. Brown

56

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

SciTech Connect (OSTI)

The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

Sherman, Max; Logue, Jennifer; Singer, Brett

2010-06-01T23:59:59.000Z

57

The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools  

E-Print Network [OSTI]

There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

AlRaees, N.; Nassif, N.

2013-01-01T23:59:59.000Z

58

Natural ventilation : design for suburban houses in Thailand  

E-Print Network [OSTI]

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

59

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

capacity. Optional Morning Warm-up If connected to a liquid condenser bundle, the icemaking chiller can serve as a heat recovery heat pump. The chiller can freeze ice in the early morning to provide heat for morning warm-up, and use the ice... the cooling coil or drain pan re-evaporates and is delivered to occupied space during compressor off-cycles. Although heat recovery between the exhaust air and ventilation air can reduce the impact on the HVAC system, many buildings do not have central...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

60

Using a Constant Volume Displacement Ventilation System to Create a Micro Climate in a Large Airport Terminal in Bangkok  

E-Print Network [OSTI]

In order to conserve energy and create a comfortable climate for both passengers and workers at a new large international airport in Thailand, a design concept was created where only the first 2m above the occupied zone is conditioned...

Simmonds, P.; Gaw, W.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

62

Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States  

E-Print Network [OSTI]

of the change in outdoor conditions [3, 4]. In 2010, building energy consumption accounted for 41% of the total activities in buildings. One area directly affected by climate change is the energy consumption for heating on future energy uses. There would be a net increase in source energy consumption by the 2080s for climate

Chen, Qingyan "Yan"

63

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

64

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect (OSTI)

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

65

Ventilation Model and Analysis Report  

SciTech Connect (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

66

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

67

A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates  

E-Print Network [OSTI]

between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

Gonzalez, Jose Antonio

1993-01-01T23:59:59.000Z

68

Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an  

E-Print Network [OSTI]

-scale solar energy heating applications in urban residential buildings. In this paper, Xi'an's geographical situation and climate conditions are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale...

Li, A.; Liu, Y.

2006-01-01T23:59:59.000Z

69

In both climate states the changing oceanic heat con-  

E-Print Network [OSTI]

is highly variable. For example, it could be raining at one location and dry a short distance away. Also, rain could fall one hour and not the next. Finally, precipitation rates can range from a light drizzle of the Center for Natural Hazards Research. Understanding how climate change might impact the probability

70

Development of a Residential Integrated Ventilation Controller  

SciTech Connect (OSTI)

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

71

E-Print Network 3.0 - air treatment heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

72

High-Efficiency Commercial Cold Climate Heat Pump  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCEDOEDepartment ofEngines

73

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network [OSTI]

has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

74

Floor-supply displacement ventilation system  

E-Print Network [OSTI]

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

75

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network [OSTI]

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

76

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.  

E-Print Network [OSTI]

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

77

Existing climate data sources and Their Use in Heat IslandResearch  

SciTech Connect (OSTI)

Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

1998-10-01T23:59:59.000Z

78

Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study  

SciTech Connect (OSTI)

Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2006-10-01T23:59:59.000Z

79

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network [OSTI]

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

80

Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41  

SciTech Connect (OSTI)

Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

Baxter, Van D [ORNL; Groll, Dr. Eckhard A. [Purdue University, Ray W. Herrick Laboratories; Shen, Bo [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network [OSTI]

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

82

Room air stratification in combined chilled ceiling and displacement ventilation systems.  

E-Print Network [OSTI]

Environments. Proceedings of Indoor Air 2005: 10 thInternational Conference on Indoor Air Quality and Climate,displacement ventilation hybrid air conditioning system-

Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

2012-01-01T23:59:59.000Z

83

NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

Not Available

2012-01-01T23:59:59.000Z

84

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

85

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

86

Carbon-dioxide-controlled ventilation study  

SciTech Connect (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

87

Building Science- Ventilation  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

88

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network [OSTI]

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

89

Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation  

E-Print Network [OSTI]

save energy compared to mechanical ventilation systems. In building design the prediction save energy consumed by the heating, ventilating, and air- conditioning systems in a building. In a naturally ventilated building, air is driven in and out due to pressure differences produced by wind

Chen, Qingyan "Yan"

90

Multifamily Ventilation Retrofit Strategies  

SciTech Connect (OSTI)

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

91

Hysteresis effects in hybrid building ventilation  

E-Print Network [OSTI]

of substandard quality Poor IAQ is often due to external pollution e.g. industrial/automotive exhaust However chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) Exposure of poor IAQ In contrast to traditional HVAC systems, natural ventilation relies on freely

Flynn, Morris R.

92

A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps  

SciTech Connect (OSTI)

A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

93

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

94

Particle deposition in ventilation ducts  

SciTech Connect (OSTI)

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

95

Why We Ventilate  

SciTech Connect (OSTI)

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

96

Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Mallay, D.; Wiehagen, J.

2014-09-01T23:59:59.000Z

97

Can ASHRAE Standard 62-1989 Requirements be Satisfied while Maintaining Moisture Control using Stock HVAC Equipment in Hot, Humid Climates?  

E-Print Network [OSTI]

energy costs. Increased ventilation rates create real capital and operating costs for building owners and operators, with implications beyond energy costs relating to increased ventilation requirements. In hot, humid climates, increased ventilation rates...

Turner, S. C.

1996-01-01T23:59:59.000Z

98

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

Comparison of NBSLD, BLAST 2. and Effect of Selected Changessignificant effect on annual heating loads, BLAST 2 predictsComparison of NBSLD, BLAST 2, and DOE~2.1 Effect of Climate

Carroll, William L.

2011-01-01T23:59:59.000Z

99

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

100

Ventilation technologies scoping study  

SciTech Connect (OSTI)

This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

Walker, Iain S.; Sherman, Max H.

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect (OSTI)

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

102

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network [OSTI]

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

103

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

104

Meeting Residential Ventilation Standards  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark quality (IAQ), ventilation is a critical element for improving the energy efficiency of buildings. IAQ

105

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network [OSTI]

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

106

Design Considerations for Double-Skin Facades in Hot and Humid Climates  

E-Print Network [OSTI]

Guide of COMIS 3.1. [8] European Commission (1992). Energy in architecture : the European passive solar handbook, B.T. Batsford, London. [9] emsd. (2003). "Hong Kong Energy End-use data (1991-2001)." EMSD, Hong Kong. [10] Flamant, G., Heijmans, N... Building Research Institute (BBRI), Department Building Physics, Indoor Climate and Building Services. [11] Garcia-Hansen, V., Esteves, A., and Pattini, A. (2002). "Passive solar systems for heating, daylighting and ventilation for rooms without...

Haase, M.; Amato, A.

2006-01-01T23:59:59.000Z

107

Development of a Residential Integrated Ventilation Controller  

E-Print Network [OSTI]

house using the heating/cooling supply ducts. The outdoorfor continuous supply in CZ3 in cooling season R elative Ecooling climate zone 13. The economizer will be modeled as a large supply

Walker, Iain

2013-01-01T23:59:59.000Z

108

ASHRAE and residential ventilation  

SciTech Connect (OSTI)

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

109

A new method for the experimental heating of intact soil profiles for application to climate change experiments  

SciTech Connect (OSTI)

Advanced facilities are needed to evaluate the response of complex ecosystems to projected unique climate conditions not observable in the context of current natural variation or through the use of climate gradients. A next-generation, experimental system for simulating future belowground temperature increases was conceived, simulated, constructed and tested in a temperate deciduous forest in Oak Ridge, Tennessee, USA. The new system uses low-wattage, 3-m deep, circumferentially-installed heaters surrounding a defined soil volume to both add the necessary energy to support a set-point soil temperature differential within the treatment area and to add exterior energy inputs equal to that which might be lost from lateral heat conduction. This approach, which is designed to work in conjunction with aboveground heated chambers, requires only two control positions, (1) aboveground air temperatures at 1 m and (2) belowground temperatures at 0.8 m. The approach is capable of achieving in situ target temperature differentials in the tested range of +4.0 0.5 C for soils to a measured depth of -2 m located within the aboveground boundary for air heating. These differentials were sustained throughout 2009, and both diurnal and seasonal cycles at all soil depths were retained using this simple heating approach. Measured mean energy inputs required to sustain the target heating level of +4 C over the 7.1 m2 target area were substantial: 21.1 kW h d-1 m-2 for aboveground heating but 16 times lower for belowground heaters at 1.3 kW h d-1 m-2. Observations of soil CO2 efflux from the surface of the target soil volumes showed CO2 losses throughout 2009 that were elevated above the temperature response curve for control CO2 losses at levels greater than have been reported in previous soil warming studies. Stimulation of biological activity of previously undisturbed deep-soil carbon stocks is the expected source. Long-term research programs may be able to apply similar experimental systems to address uncertainties in process-level responses of microbial, plant, and animal communities in whole, intact ecosystems using this new heating method that capture expected future warming and temperature dynamics throughout the soil profile.

Hanson, Paul J [ORNL; Childs, Kenneth W [ORNL; Wullschleger, Stan D [ORNL; Riggs, Jeffery S [ORNL; Thomas, Warren Kyle [ORNL; Todd Jr, Donald E [ORNL; Warren, Jeffrey [ORNL

2011-01-01T23:59:59.000Z

110

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

111

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

112

Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control  

SciTech Connect (OSTI)

The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

Martin, E.

2014-01-01T23:59:59.000Z

113

Ventilation Requirements in Hot Humid Climates  

E-Print Network [OSTI]

. At the beginning of each air conditioner cycle, the system takes three minutes to ramp-up to full latent capacity. The following calculation method is based on work by Henderson (1998) and Henderson and Rengarahan (1996). The mass flux of moisture onto... cumulative distributions for Houston. In addition to the outdoor data we have plotted the results of our indoor simulations for three cases. The Henderson (2006)) that upper indoor...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

114

Natural Refrigerant High-Performance Heat Pump for Commercial...  

Broader source: Energy.gov (indexed) [DOE]

(DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

115

Ventilation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for

116

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

SciTech Connect (OSTI)

An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

2008-04-04T23:59:59.000Z

117

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Broader source: Energy.gov [DOE]

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

118

Residential Slab-On-Grade Heat Transfer in Hot Humid Climates  

E-Print Network [OSTI]

Heat transfer through an uninsulated slab on grade is calculated using a simple method developed by Kusuda. The seasonal and annual slab loads are graphed as a function of annual average soil temperature, Tm, for a variety of floor system...

Clark, E.; Ascolese, M.; Collins, W.

1989-01-01T23:59:59.000Z

119

Towards Occupancy-Driven Heating and Cooling  

E-Print Network [OSTI]

Towards Occupancy-Driven Heating and Cooling Kamin Whitehouse, Juhi Ranjan, Jiakang Lu, Tamim Burke Parabola Architects Galen Staengl Staengl Engineering h HEATING, VENTILATION, AND cooling (HVAC required for heating, ventilation, and cooling (HVAC) by 20%30% by tailoring the conditioning of buildings

Whitehouse, Kamin

120

Heating, Ventilation and Air Conditioning Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecember 29,

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Air exchange effectiveness of conventional and task ventilation for offices  

SciTech Connect (OSTI)

Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

Fisk, W.J.; Faulkner, D.; Prill, R.J.

1991-12-01T23:59:59.000Z

122

Air exchange effectiveness of conventional and task ventilation for offices  

SciTech Connect (OSTI)

Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

Fisk, W.J.; Faulkner, D.; Prill, R.J.

1991-12-01T23:59:59.000Z

123

Solar Ventilation Preheating Resources and Technologies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies Photo of a dark brown perforated metal wall is pictured on the side of an...

124

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to provide this ventilation service, either directly for moving the air or indirectly for conditioning continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute

125

Reverse ventilation--perfusion mismatch  

SciTech Connect (OSTI)

Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

1984-01-01T23:59:59.000Z

126

Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment  

SciTech Connect (OSTI)

This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

2006-03-01T23:59:59.000Z

127

Cardiac gated ventilation  

SciTech Connect (OSTI)

There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

Hanson, C.W. III [Hospital of the Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. Anesthesia; Hoffman, E.A. [Univ. of Iowa College of Medicine, Iowa City, IA (United States). Div. of Physiologic Imaging

1995-12-31T23:59:59.000Z

128

Performance of Variable Capacity Heat Pumps in a Mixed Humid Climate  

SciTech Connect (OSTI)

Variable capacity heat pumps represent the next wave of technology for heat pumps. In this report, the performance of two variable capacity heat pumps (HPs) is compared to that of a single or two stage baseline system. The units were installed in two existing research houses located in Knoxville, TN. These houses were instrumented to collect energy use and temperature data while both the baseline systems and variable capacity systems were installed. The homes had computer controlled simulated occupancy, which provided consistent schedules for hot water use and lighting. The temperature control and energy use of the systems were compared during both the heating and cooling seasons. Multiple linear regression models were used along with TMY3 data for Knoxville, TN in order to normalize the effect that the outdoor air temperature has on energy use. This enables a prediction of each system's energy use over a year with the same weather. The first system was a multi-split system consisting of 8 indoor units and a single outdoor unit. This system replaced a 16 SEER single stage HP with a zoning system, which served as the baseline. Data was collected on the baseline system from August 2009 to December 2010 and on the multi-split system from January 2011 to January 2012. Soon after the installation of the multi-split system, some of the smaller rooms began over-conditioning. This was determined to be caused by a small amount of continuous refrigerant flow to all of the indoor units when the outdoor unit was running regardless of whether they were calling for heat. This, coupled with the fact that the indoor fans run continuously, was providing enough heat in some rooms to exceed the set point. In order to address this, the indoor fans were disabled when not actively heating per the manufacturer's recommendation. Based on the measured data, the multi-split system was predicted to use 40% more energy in the heating season and 16% more energy in the cooling season than the baseline system, for the typical meteorological year weather data. The AHRI ratings indicated that the baseline system would perform slightly better than the multi-split system, but not by as large of a margin as seen in this study. The multi-split system was able to maintain more consistent temperature throughout the house than the baseline system, but it did allow relative humidity levels to increase above 60% in the summer. The second system was a split system with an inverter driven compressor and a single ducted air handler. This unit replaced a 16 SEER two stage HP with a zoning system. Data was collected on the baseline system from July 2009 to November 2010 and on the ducted inverter system from December 2010 to January 2012. The ducted inverter system did not offer a zone controller, so it functioned as a single zone system. Due to this fact, the registers had to be manually adjusted in order to better maintain consistent temperatures between the two levels of the house. The predicted heating season energy use for the ducted inverter system, based on the measured energy use, was 30% less than that of the baseline system for the typical meteorological year. However, the baseline system was unable to operate in its high stage due to a wiring issue with the zone controller. This resulted in additional resistance heat use during the winter and therefore higher energy use than would be expected in a properly performing unit. The AHRI ratings would indicate that the baseline system would use less energy than the ducted inverter system, which is opposite to the results of this study. During the cooling season, the ducted inverter system was predicted to use 23% more energy than the baseline system during the typical meteorological year. This is also opposite of the results expected by comparing the AHRI ratings. After a detailed comparison of the ducted inverter system's power use compared to that of a recently installed identical system at a retro-fit study house, there is concern that the unit is not operating as intended. The power use and cycles indicate t

Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

129

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate  

SciTech Connect (OSTI)

It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

Yong X. Tao; Yimin Zhu

2012-04-26T23:59:59.000Z

130

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

131

Literature Review of Displacement Ventilation  

E-Print Network [OSTI]

is dependent on the flow rate from the diffuser, the temperature difference, and the diffuser type. #0;? The thermal plumes and supply air from diffusers play an important role in the displacement ventilation. #0;? It is necessary to carefully control... systems, although there are differences depending on the control strategies and the type of HVAC systems. In the energy calculation by Niu (1994), it is shown that the annual energy consumption of displacement ventilation with a water- cooled ceiling...

Cho, S.; Im, P.; Haberl, J. S.

132

OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM.  

E-Print Network [OSTI]

??Water Loop Heat Pump (WLHP) System has been widely utilized in the Heating, Ventilating and Air Conditioning (HVAC) industry for several decades. There is no (more)

Lian, Xu

2011-01-01T23:59:59.000Z

133

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network [OSTI]

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

134

Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden  

E-Print Network [OSTI]

Board. CARB (2008d). Climate change proposed scoping plan: aJ. (2009). "Cities, Climate Change and Urban Heat Islandet al. (2006). Climate change in California: health,

Shonkoff, Seth Berrin

2012-01-01T23:59:59.000Z

135

Residential ventilation standards scoping study  

SciTech Connect (OSTI)

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

136

TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS  

SciTech Connect (OSTI)

This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

BERGLIN, E J

2003-06-23T23:59:59.000Z

137

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

SciTech Connect (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

2008-10-01T23:59:59.000Z

138

STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION  

E-Print Network [OSTI]

for selection of the whole-building ventilation fan and for the duct design for the whole-building ventilation

139

Advanced Controls and Sustainable Systems for Residential Ventilation  

E-Print Network [OSTI]

..........................................................................................9 Passive and Hybrid Ventilation ....................................................................................................................................19 4. WHOLE-HOUSE VENTILATION STRATEGIES..........................................................................................................21 Strategy 1: Whole-House Exhaust

140

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

142

A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings  

E-Print Network [OSTI]

Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

Degelman, L. O.

2000-01-01T23:59:59.000Z

143

Field-Evaluation of Alternative HVAC Strategies to Meet Ventilation, Comfort and Humidity Control Criteria at Three Full-Serve Restaurants  

E-Print Network [OSTI]

Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

Yborra, S. C.; Spears, J. W.

2000-01-01T23:59:59.000Z

144

An Urban Parameterization for a Global Climate Model. Part II: Sensitivity to Input Parameters and the Simulated Urban Heat Island in Offline Simulations  

E-Print Network [OSTI]

tempera- tures of urban systems as impervious fraction increases. In general, these findings are in agreement with those observed for real urban ecosystems. Thus, the model appears to be a useful tool for examining the nature of the urban climate within... of the physical processes controlling energy and water fluxes and 2) the charac- terization of urban morphology and urban materials with respect to aerodynamic, radiative, and heat trans- fer properties (e.g., Terjung and ORourke 1980; Arn- field 2000; Masson...

Oleson, Keith W.; Bonan, Gordon B.; Feddema, Johannes J.; Vertenstein, M.

2008-01-01T23:59:59.000Z

145

advanced heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

146

A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific  

SciTech Connect (OSTI)

Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

Liu H.; Lin W.; Liu, X.; Zhang, M.

2011-08-26T23:59:59.000Z

147

Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITofDepartment

148

Climate ChangeClimate Change and Runoff Managementand Runoff Management  

E-Print Network [OSTI]

% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat Troposphere Lower Stratosphere (ozone · Result: a statistical range of probable climate change GCM grid Downscaled (8x8 km) grid D. Vimont, UW

Sheridan, Jennifer

149

The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?  

E-Print Network [OSTI]

The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

Khnl-Kinel, J

2000-01-01T23:59:59.000Z

150

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

151

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect (OSTI)

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

152

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect (OSTI)

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

153

Impact of subgrid-scale radiative heating variability on the stratocumulus-to-trade cumulus transition in climate models  

SciTech Connect (OSTI)

Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactions contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.

Xiao, Heng; Gustafson, William I.; Wang, Hailong

2014-04-29T23:59:59.000Z

154

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

and in new "energy-efficient design" hospitals. Developmentenergy-efficient ventilation standards and ventilation designs

Cairns, Elton J.

2011-01-01T23:59:59.000Z

155

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

156

Noninvasive Positive Pressure Ventilation in the Emergency  

E-Print Network [OSTI]

of ventilatory assis- tance to the respiratory system without an invasive artificial airway. Nonin- vasive of the tank ventilator or the ``iron lung'' was the most common form of mechanical ventilation outside showed that he could improve the survival of patients who had respiratory paralysis by using invasive

157

Ventilation Based on ASHRAE 62.2  

E-Print Network [OSTI]

July 2010 CEC-400-2010-006 Minimum Best Practices Guide #12;CALIFORNIA ENERGY COMMISSION Craig in this report. #12;1 2008 Building Energy Efficiency Standards Residential Indoor Air Quality and Mechanical Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California

158

Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case  

E-Print Network [OSTI]

- University of L'Aquila, L'Aquila, Italy. 3 Automatic Control Department, SUPELEC, Gif sur Yvette, France. 4 strategies for fluid systems (pumps, fans and compressors) represent approximately 20 % of the total % or more of the energy consumed by the mining process may go into the ventilation (including heating

Boyer, Edmond

159

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

160

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

162

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

163

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network [OSTI]

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

164

Development of a Residential Integrated Ventilation Controller  

E-Print Network [OSTI]

and Ventilation Center. Emmerich, S.J, Dols, W.S. , LoopDA:8 Int. IPBSA Conf. (2003) Emmerich S.J. Nabinger, S. J. 53484. Wallace, L. A. , Emmerich, S. J. , and Howard-Reed,

Walker, Iain

2013-01-01T23:59:59.000Z

165

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network [OSTI]

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

Tang, Brian Hong-An

166

Scale model studies of displacement ventilation  

E-Print Network [OSTI]

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

167

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network [OSTI]

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

168

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

detailed heat-balance approach f or load calculations, DOE-Loads for Computerized Energy Calculations: Algorithms for Building Heat

Carroll, William L.

2011-01-01T23:59:59.000Z

169

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

a light load office. The loads follow the schedules of theheat load generated by occupants and equipment follows the

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

170

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

were modelled. Four-pipe fan coil units were used to controlthat is extracted by the fan coil units from the room in oneis supplied by the fan coil units to the room in one year (

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

171

Moisture and Ventilation Solutions in Hot, Humid Climates: Florida...  

Energy Savers [EERE]

measures included mastic sealing ducts, installing properly sized high-efficiency HVAC, thoroughly air sealing the building envelope, using water-resistant exterior finishes,...

172

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

tropics, Proceedings of Healthy Buildings 2003, Singapore,Proceedings of Healthy Buildings 2000 Vol. 2, 2000, pp. 523-building. Proceeding of Healthy Building 2006. Vol. V, 2006,

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

173

Moisture and Ventilation Solutions in Hot, Humid Climates: Florida  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of Energy Modular CHP System forManufactured

174

Ventilated Facade Design for Hot and Humid Climates  

E-Print Network [OSTI]

of Low Energy." Conferencia Internacional de Energa Renovable y Educacin Energtica, Havanna, Kuba. Haase, M., and Amato, A. (2006). "Double-skin facades in Hong Kong." SABE, HKIS to be published in June 2006. Haase, M. and Amato, A., (2005c...

Haase, M.; Amato, A.

2006-01-01T23:59:59.000Z

175

EnergyPlus vs DOE-2: The Effect of Ground Coupling on Heating and Cooling Energy Consumption of a Slab-On-Grade Code House in a Cold Climate  

E-Print Network [OSTI]

ENERGYPLUS VS DOE-2: THE EFFECT OF GROUND COUPLING ON HEATING AND COOLING ENERGY CONSUMPTION OF A SLAB-ON-GRADE CODE HOUSE IN A COLD CLIMATE Simge Andolsun, Charles H. Culp, Jeff Haberl Texas A&M University, College Station, TX, USA...-on-grade constructions. This paper extends the previous comparative work by comparing EnergyPlus and DOE-2.1e results for GCHT based on a slab-on- grade code house in a cold climate. Three GCHT models were used in the study. These models were Winkelmann?s (2002...

Andolsun, S.; Culp, C.; Haberl, J.

176

Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation surface of  

E-Print Network [OSTI]

Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation del Vall`es, 08173 Barcelona, Spain arquiniampira@yahoo.com Proceedings of the Acoustics 2012 Nantes potentially improve buildings protection against noise pollution from outside. However, in this system the air

Boyer, Edmond

177

TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1  

SciTech Connect (OSTI)

The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User`s Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications.

Shadday, M.A. Jr.

1996-04-01T23:59:59.000Z

178

Economic analysis of wind-powered farmhouse and farm building heating systems. Final report  

SciTech Connect (OSTI)

The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

1981-01-01T23:59:59.000Z

179

Planning for Climate Impacts Wisconsin's Coastal Communities  

E-Print Network [OSTI]

Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat relevant to climate impacts in Wisconsin GCM grid Downscaled (8x8 km) grid D. Vimont, UW-Madison Result

Sheridan, Jennifer

180

Assessing the effects of ocean diffusivity and climate sensitivity on the rate of global climate change  

E-Print Network [OSTI]

sensitivity and ocean heat uptake on the rate of future climate change. We apply a range of values for climate a significant effect on the rate of transient climate change for high values of climate sensitivity, while values of climate sensitivity and low values of ocean diffusivity. Such high rates of change could

Schmittner, Andreas

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heating, Ventilation, and Air Conditioning Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisTheDecember 29,13-Energy

182

ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 5: HEATING, VENTILATION...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demand for reduced low cost of utilities operation Control to respond to demand response events Connectivity with smart meter Leverage smart meter system Thermostat design...

183

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect (OSTI)

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

184

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

185

Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes  

SciTech Connect (OSTI)

At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

Miller, J.D.; Conner, C.C.

1993-11-01T23:59:59.000Z

186

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network [OSTI]

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

187

Study of natural ventilation in buildings with large eddy simulation  

E-Print Network [OSTI]

With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and ...

Jiang, Yi, 1972-

2002-01-01T23:59:59.000Z

188

Application Study on Combined Ventilation System of Improving IAQ  

E-Print Network [OSTI]

A type of combined ventilating system is put forward in this paper. Through CFD simulation and testing of contaminant concentrations in a prototype residential room, the results demonstrate that the new ventilating system is advantageous...

Hu, S.; Li, G.; Zhang, C.; Ye, B.

2006-01-01T23:59:59.000Z

189

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network [OSTI]

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

190

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network [OSTI]

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

191

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems  

E-Print Network [OSTI]

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002 of a corresponding low-energy house have been per- formed for a full heating period. They reproduce measurements from, air quality, control of humidity) [1, 2]. In such houses, the ventilation and infiltration losses

Gieseler, Udo D. J.

192

Ocean Climate Change: Comparison of Acoustic  

E-Print Network [OSTI]

Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

Frandsen, Jannette B.

193

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect (OSTI)

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

194

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

LBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman of Residential Ventilation Norms in the United States Max Sherman and Iain Walker SUMMARY The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published

195

Experimental simulation of wind driven cross-ventilation in a naturally ventilated building  

E-Print Network [OSTI]

A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in ...

Hult, Erin L. (Erin Luelle), 1982-

2004-01-01T23:59:59.000Z

196

Air Distribution Effectiveness for Different Mechanical Ventilation  

E-Print Network [OSTI]

LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;1 Air Distribution depending on the effectiveness of their air distribution systems and the location of sources and occupants

197

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network [OSTI]

, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark for ventilation system design. These standards are increasingly used by reference in building energy and IAQ codes

198

Does Mixing Make Residential Ventilation More Effective?  

SciTech Connect (OSTI)

Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

Sherman, Max; Walker, Iain

2010-08-16T23:59:59.000Z

199

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus patient's effort. On average, turbine-based ventilators performed better than conventional ventilators

Paris-Sud XI, Universit de

200

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Feasibility Study: Mining Daily Traces for Home Heating Control  

E-Print Network [OSTI]

A Feasibility Study: Mining Daily Traces for Home Heating Control Dezhi Hong and Kamin Whitehouse savings as well as 14.9%59.2% reduction in miss time. Keywords Energy, home heating, daily traces, prediction 1. INTRODUCTION Heating, ventilation and cooling (HVAC) contributes most to a home's energy bills

Whitehouse, Kamin

202

Commercial Building HVAC Energy Usage in Semi-Tropical Climates  

E-Print Network [OSTI]

The design of heating and cooling equipment in semi-tropical climates presents some design considerations and limitations not so prevalent in temperate climates. In some cases, the heating season may be non-existent for all practical purposes...

Worbs, H. E.

1987-01-01T23:59:59.000Z

203

Constraining Climate Model Parameters from Observed 20th Century Changes  

E-Print Network [OSTI]

We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change ...

Forest, Chris Eliot

204

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving heat from Earth's equator to the poles. At  

E-Print Network [OSTI]

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving get cold and salty enough to sink to great depths. This globally interconnected process of "overturning circulation" occurs in all ocean basins and helps to regulate Earth's climate. Aquarius

Waliser, Duane E.

205

Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates  

SciTech Connect (OSTI)

This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

Rudd, A.

2014-10-01T23:59:59.000Z

206

Climate Change and Runoff Management  

E-Print Network [OSTI]

UV radiation Solar radiation Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat Troposphere Lower Stratosphere (ozone layer) Greenhouse Effect-natural #12 range of probable climate change GCM grid Downscaled (8x8 km) grid D. Vimont, UW-Madison #12;Temperature

Sheridan, Jennifer

207

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Broader source: Energy.gov [DOE]

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

208

Ventilation Systems for Cooling | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for Cooling

209

Colorado Climate Spring 2000 Vol. 1, No. 2  

E-Print Network [OSTI]

Colorado Climate Spring 2000 Vol. 1, No. 2 Inside: · Growing Season Trends · Urban Heat Islands · Where Do Climate Data Come From · Climate Prediction in the 21st Century #12;22 ColoradoClimate Colorado Climate Center Atmospheric Science Department Colorado State University Fort Collins, CO 80523-1371 ISSN

210

Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier  

E-Print Network [OSTI]

Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

Zhao, X.; Li, Q.; Yun, C.

2006-01-01T23:59:59.000Z

211

Fouling of HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and Van P. Carey  

E-Print Network [OSTI]

Fouling of heat exchangers used in heating, ventilating, and air conditioning (HVAC) systems is important contributor to overall energy use and peak electric demand. Furthermore, the location of heat exchangers in HVAC systems means that if bioaerosols containing bacteria, fungi, and viruses deposit on heat

212

Full-scale study of a building equipped with phase change material wallboards and a multi-layer rack latent heat thermal energy store system  

E-Print Network [OSTI]

-layer rack latent heat thermal energy store system Julien Borderon1 , Joseph Virgone2 , Richard Cantin1 installed as wallboard and as latent heat thermal energy storage system coupled with the ventilation system for the ventilation air is efficient. INTRODUCTION Nowadays, thermal energy storage systems are one way for reducing

Paris-Sud XI, Université de

213

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

214

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network [OSTI]

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering... University of Dayton Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers...

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

215

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect (OSTI)

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

216

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

217

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect (OSTI)

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

218

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

E-Print Network [OSTI]

In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques, Air Infiltration and Ventilation

Sherman, Max H.

2008-01-01T23:59:59.000Z

219

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Broader source: Energy.gov (indexed) [DOE]

Hot-humid PERFORMANCE DATA Costs for reducing infiltration and incorporating mechanical ventilation in buildings will vary greatly depending on the condition and...

220

Ventilation System to Improve Savannah River Site's Liquid Waste...  

Broader source: Energy.gov (indexed) [DOE]

A process vessel ventilation system is being installed in a facility that houses two tanks that will process decontaminated salt solution at the Saltstone Production Facility. A...

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kitchen Ventilation Should be High Performance (Not Optional...  

Broader source: Energy.gov (indexed) [DOE]

Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture and pollutants SOLUTION: * Install and use extra exhaust ventilation in kitchen OPTIMAL SOLUTION: *...

222

Energy Efficiency Retrofits for U.S. Housing: Removing the Bottlenecks  

E-Print Network [OSTI]

three different home systems: (1) heating, ventilation, andfor climate), home structure (size, insulation, heating andappliances, home age, and primary heating fuel. The site

Bardhan, Ashok; Jaffee, Dwight; Kroll, Cynthia; Wallace, Nancy

2013-01-01T23:59:59.000Z

223

Adapting to Climate Change in Wisconsin Strategies for Conservation Professionals  

E-Print Network [OSTI]

by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat Troposphere Lower range of probable climate change GCM grid Downscaled (8x8 km) gr

Sheridan, Jennifer

224

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network [OSTI]

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

225

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network [OSTI]

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

226

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect (OSTI)

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

227

C-106 tank process ventilation test  

SciTech Connect (OSTI)

Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

Bailey, J.W.

1998-07-20T23:59:59.000Z

228

Whole-House Ventilation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome to Energy.gov/DataEnergyVentilation

229

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network [OSTI]

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

230

Multifamily Ventilation - Best Practice? | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving Away fromMultifamily Ventilation - Best

231

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate  

Broader source: Energy.gov [DOE]

Project objectives: Gather and analyze independently the available technical, cost, financial incentive data on installed GSHP/HGSHP applications in residential, commercial and schools in hot and humid climate regions, and develop a calibrated baseline and performance period model of new construction and retrofitted buildings in conjunction with the energy simulation program.

232

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

Carroll, William L.

2011-01-01T23:59:59.000Z

233

E-Print Network 3.0 - air ventilation rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of ventilation rates and CO2-concentrations... : ventilation rates, carbon dioxide, health effects, SBS-symptoms, air exchange rate, relative risks. 12;LBNL... not indicate...

234

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

SciTech Connect (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

235

E-Print Network 3.0 - ards mechanical ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mechanical ventilation Search Powered by Explorit Topic List Advanced Search Sample search results for: ards mechanical ventilation Page: << < 1 2 3 4 5 > >> 1 Round table March...

236

ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...  

Energy Savers [EERE]

Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings More Documents & Publications Low-Cost Ventilation in Production Housing -...

237

E-Print Network 3.0 - adaptive support ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of the material on ventilation system design and maintenance is adapted from A Guide to Energy Efficient... Energy-Efficient Ventilation for Apartment Buildings 12......

238

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

239

E-Print Network 3.0 - airway pressure ventilation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Summary: and airway occlusion pressure during assist-mode mechanical...

240

CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and  

E-Print Network [OSTI]

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

TOP DOWN VENTILATION AND COOLING Stephen A. Gage  

E-Print Network [OSTI]

the problems inherent in passively ventilating and cooling low and medium rise urban buildings. We focus Gage entered a competition to design a passively ventilated and cooled building in Athens on overcoming numerous key issues, such as those of pollutant ingress associated with locating low-level intake

Linden, Paul F.

242

Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia  

E-Print Network [OSTI]

This paper explores the potential of using natural ventilation as a passive cooling system for new house windows in suburban houses can be opened. Passive cooling design elements are mostly ignored in modern1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb

Chen, Qingyan "Yan"

243

`Climate Realism' Brian Zaharatos March 11, 2012  

E-Print Network [OSTI]

`Climate Realism' Brian Zaharatos March 11, 2012 Last week, the Oredigger (Colorado School of Mines, that was the title of the online version; the print version was titled, "The Climate Change Debate Heats Up"). This article gave an account of a recent talk by hosted by CSM's Geophysics department on `climate realism

244

COLORADO CLIMATE Basic Climatology  

E-Print Network [OSTI]

or cold, wetness or dryness, calm or storm, clearness or cloudiness Climate - the statistical collection;The Earth's Energy Balance Incoming energy from the sun (solar radiation) heats the Earth Some by the Earth and re-emitted Incoming solar radiation is shorter wavelengths (higher energy) than what

245

METEOROLOGY 5503 CLIMATE DYNAMICS  

E-Print Network [OSTI]

­ Present Average Climate System Behavior (14 lectures) History; Vision of Victor Starr; Global Budgets of Angular Momentum, Energy, Water Vapor; Regional Water Budget; Meridional Ocean Heat Transport 3 and Indices: Diagnostic Tools (wind stress curl, velocity potential, outgoing LW radiation); ENSO cycles

Droegemeier, Kelvin K.

246

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

247

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect (OSTI)

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

Cadwallader, Lee Charles

1999-12-01T23:59:59.000Z

248

The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise as the climate changes and average temperatures increase.  

E-Print Network [OSTI]

The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise University and Barnard College. Known as the Columbia Green Roof Consortium, it is led by a team of two Earth solutions in a responsible and scientific way--and Columbia had plenty of roof space to work with. "They

249

Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,  

E-Print Network [OSTI]

(NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climateGlobal patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived

Chen, Jiquan

250

MODELING PARTICLE DEPOSITION ON HVAC HEAT JA Siegel1,3*  

E-Print Network [OSTI]

. Of Mechanical Engineering, University of California, Berkeley, CA, USA 2 Dept. Of Civil and Environmental degradation for heating, ventilating, and air conditioning (HVAC) systems. Particulate fouling of indoor fin: JASiegel@lbl.gov Proceedings: Indoor Air 2002 521 #12;HEAT EXCHANGER DESCRIPTION The HVAC heat exchangers

Siegel, Jeffrey

251

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect (OSTI)

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

252

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect (OSTI)

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

253

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

254

PMEL Ocean Climate Station Program Meghan Cronin, Chris Sabine, Chris Meinig  

E-Print Network [OSTI]

. Papa HOT MBARI Cold dry air blowing over warm Kuroshio Extension causes large sensible and latent heat for climate reference) Net Surface Heat Flux = TurbPMEL Ocean Climate Station Program Meghan Cronin, Chris Sabine, Chris Meinig NOAA Pacific Marine

255

Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

256

Experimental and numerical VOC concentration field analysis from flooring material in a ventilated room  

E-Print Network [OSTI]

in "7th International Conference, Healthy Buildings 2003, Singapore : Singapore (2003)" #12;Ventilation

Paris-Sud XI, Université de

257

Ventilating Existing Homes in the US Air Infiltration Review. 2010;31(2)  

E-Print Network [OSTI]

mechanical ventilation fan leads to reductions in other measures, such as adding insulation. This has led

258

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

259

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

260

The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics  

E-Print Network [OSTI]

France of the Building Technologies Program. The IrBCP project team members are Andre? Desjarlais, William Miller, Tom Petrie, Jan Kosny and Achilles Karagiozis, all of ORNLs Buildings Envelope Program. The Metal Construction Association and its affiliate members.... Beal, D., and S. Chandra. 1995. The Measured Summer Performance of Tile Roof Systems and Attic Ventilation Strategies in Hot Humid Climates. In Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VI. U.S. DOE/ORNL...

Miller, W.; Karagiozis, A.; Wilson, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessment and Prediction of the Thermal Performance of a Centralized Latent Heat Thermal Energy Storage Utilizing Artificial Neural Network  

E-Print Network [OSTI]

A simulation tool is developed to analyze the thermal performance of a centralized latent heat thermal energy storage system (LHTES) using computational fluid dynamics (CFD). The LHTES system is integrated with a mechanical ventilation system...

El-Sawi, A.; Haghighat, F.; Akbari, H.

2013-01-01T23:59:59.000Z

262

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network [OSTI]

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

263

Study of airflow and thermal stratification in naturally ventilated rooms  

E-Print Network [OSTI]

Natural ventilation (NV) can considerably contribute to reducing the cooling energy consumption of a building and increase occupant productivity, if correctly implemented. Such energy savings depend on the number of hours ...

Menchaca Brandan, Mara Alejandra

2012-01-01T23:59:59.000Z

264

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

265

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network [OSTI]

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

266

Commissioning Trial for Mechanical Ventilation System Installed in Houses  

E-Print Network [OSTI]

, commissioning process should be introduced more often. REFERENCES (1) Roger Anneling, The P-mark system for prefabricated houses in Sweden, 1998, CADDET (2) Hirai et al, Comparison between results from ventilation network model calculation...

Ohta, I.; Fukushima, A.

2004-01-01T23:59:59.000Z

267

Outside Air Ventilation Controller - Building America Top Innovation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. This automated night-cooling ventilation...

268

Natural ventilation possibilities for buildings in the United States  

E-Print Network [OSTI]

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

269

Design Alternative Evaluation No. 3: Post-Closure Ventilation  

SciTech Connect (OSTI)

The objective of this study is to provide input to the Enhanced Design Alternatives (EDA) for License Application Design Selection (LADS). Its purpose is to develop and evaluate conceptual designs for post-closure ventilation alternatives that enhance repository performance. Post-closure ventilation is expected to enhance repository performance by limiting the amount of water contacting the waste packages. Limiting the amount of water contacting the waste packages will reduce corrosion.

Logan, R.C.

1999-06-22T23:59:59.000Z

270

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

271

Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia  

E-Print Network [OSTI]

EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Submitted to the Graduate College of Texas A8M University in Partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1976 Major Subject: Veterinary Medicine and Surgery EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Approved as to style and content by; Chairman o Committee Head...

McDonald, Don Reed

1976-01-01T23:59:59.000Z

272

Natural ventilation - A new method based on the Walton model applied to cross-ventilated buildings having two large external openings  

E-Print Network [OSTI]

In order to provide comfort in a low energy consumption building, it is preferable to use natural ventilation rather than HVAC systems. To achieve this, engineers need tools that predict the heat and mass transfers between the building's interior and exterior. This article presents a method implemented in some building software, and the results are compared to CFD. The results show that the knowledge model is not sufficiently well-described to identify all the physical phenomena and the relationships between them. A model is developed which introduces a new building-dependent coefficient allowing the use of Walton's model, as extended by Roldan to large external openings, and which better represents the turbulent phenomena near large external openings. The formulation of the mass flow rates is inversed to identify modeling problems. It appears that the discharge coefficient is not the only or best parameter to obtain an indoor static pressure compatible with CFD results, or to calculate more realistic mass fl...

Bastide, Alain; Boyer, Harry

2012-01-01T23:59:59.000Z

273

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect (OSTI)

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

274

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network [OSTI]

the supply and the demand side · An eye-opener for the Danish politicians · Could be a model for otherHeat Plan DenmarkHeat Plan Denmark Anders Dyrelundy Market Manager for Energy and Climate Rambøll Möller · The first study in Denmark, really to integrate the energy and building sectors ­ to combine

275

Monitored energy use of homes with geothermal heat pumps: A compilation and analysis of performance. Final report  

SciTech Connect (OSTI)

The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

Stein, J.R.; Meier, A.

1997-12-01T23:59:59.000Z

276

An Analysis of Design Strategies for Climate-Controlled Residences in Selected Climates  

E-Print Network [OSTI]

-MILNE BIOCLIMATIC CHART (HEATING PERIODS) 100% 80% 60% 40% 20% 12.5 13.0 13.5 14.0 Specific Volum e 14.5 quft/lbda Design Strategies Boundaries ASHRAE Comfort Zone Conventional Heating = 0 Active Solar = 1 Passive Solar = 2,3,4 Internal Gains = 5.../lbda Design Strategies Boundaries ASHRAE Comfort Zone Conventional Heating = 0 Active Solar = 1 Passive Solar = 2,3,4 Internal Gains = 5 Humidification = 6A,6B Comfort Zone = 7 Dehumidification = 8 Ventilation = 9,10,11 Evap.CLG. = 6B,11,13,14A,14B...

Visitsak, S.; Haberl, J. S.

277

Passive solar heating and analysis  

SciTech Connect (OSTI)

Passive solar heating experience and analysis techniques are reviewed with emphasis on annual auxiliary heat requirement. The role of analysis in the design of passive solar buildings is discussed. Selected results for existing systems are presented for locations in Saudi Arabia and climatically similar locations in the US. Advanced systems in the research stage are described.

Jones, R.W.

1984-01-01T23:59:59.000Z

278

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect (OSTI)

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

279

Recovering Energy From Ventilation and Process Airstreams  

E-Print Network [OSTI]

. In this paper I will touch on condensa tion and electrostatic precipitation as methods that can be used to collect and reuse in some form, hydrocarbons from process stacks. HEAT EXCHANGERS Plate-~ype, air-to-air heat exchangers move hot, dirty exhaust... in this situation can be less than 6 months. Where payback is based on . solvent recovery alone, it is normally in the 12 to 24 month range. Another method of energy savings occurs when a two-stage electrostatic precipitator is added in process stacks. If thes...

Cheney, W. A.

280

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues  

SciTech Connect (OSTI)

Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

Fisk, W.J.

1994-11-01T23:59:59.000Z

282

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2008-01-01T23:59:59.000Z

283

Climate Change 2007: Mitigation of Climate Change.  

E-Print Network [OSTI]

2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change. Il Rapporto

Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

284

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

285

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network [OSTI]

technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton...

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

286

Energy Piles in Cooling Dominated Climates  

E-Print Network [OSTI]

this be true in hot, cooling dominated climates? To achieve the ultimate goal and answer the above question, this study considered the different elements of a full SGES, namely: soil, climate, energy pile, and ground source heat pump. First, The need for a new...

Akrouch, Ghassan

2014-04-10T23:59:59.000Z

287

Perspective Climate change and the tropical Pacific  

E-Print Network [OSTI]

in climate model predictions. Several energy flows that powerfully affect our climate come to a confluence the cycle works. In thinking about oceanic heat trans- ports, 1 PW (1015 W) is a convenient number to keep in mind. The Atlantic THC accounts for roughly 1 PW of trans- port into the North Atlantic and domi- nates

Pierrehumbert, Raymond

288

Novel Controls for Economic Dispatch of Combined Cooling, Heating...  

Energy Savers [EERE]

Applications in California, September 2008 CX-010234: Categorical Exclusion Determination Purdue prototype system Residential Cold Climate Heat Pump with Variable-Speed Technology...

289

Climate Change Science and Impacts in Northeast Wisconsin  

E-Print Network [OSTI]

Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat claims paid Source: FEMA, WEM DNR #12;Heat Mortality Average temperatures projected to increase 4-9°F grid Downscaled (8x8 km) grid D. Vimont, UW-Madison Result: a statistical range of probable climate

Sheridan, Jennifer

290

Results from evaporation tests to support the MWTF heat removal system design  

SciTech Connect (OSTI)

An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

Crea, B.A.

1994-12-22T23:59:59.000Z

291

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network [OSTI]

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

292

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network [OSTI]

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

293

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network [OSTI]

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

294

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

295

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network [OSTI]

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

296

A sweating model for the internal ventilation of a motorcycle Claudio Canutoa  

E-Print Network [OSTI]

A sweating model for the internal ventilation of a motorcycle helmet Claudio Canutoa , Flavio and optimization of the internal ventilation of a motorcycle hel- met, with the purpose of enhancing the comfort

Ceragioli, Francesca

297

Water spray ventilator system for continuous mining machines  

DOE Patents [OSTI]

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

298

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell  

Broader source: Energy.gov [DOE]

This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

299

Climate Change and National Security  

SciTech Connect (OSTI)

Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

Malone, Elizabeth L.

2013-02-01T23:59:59.000Z

300

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network [OSTI]

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sunnyvale Marine Climate Deep Retrofit  

SciTech Connect (OSTI)

The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

German, A.; Siddiqui, A.; Dakin, B.

2014-11-01T23:59:59.000Z

302

Climate Analysis, Monitoring, and Modeling  

E-Print Network [OSTI]

facing California, with projected impacts reaching every sector of the state's economy and public health. The energy sector will not be spared. The potential repercussions of climate change include frequent heat waves, increased energy consumption, reduced hydropower generation in the summer season

303

Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073  

SciTech Connect (OSTI)

Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

2013-07-01T23:59:59.000Z

304

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network [OSTI]

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy and Community Programs under U.S. Department of Energy Contract No. DE-AC03- 76SF00098. #12;LBNL 53776 Table......................................................................................................12 2 #12;LBNL 53776 Introduction As HVAC&R professionals, our major concern is the engineering

305

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network [OSTI]

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

306

Measuring Residential Ventilation System Airflows: Part 1 Laboratory  

E-Print Network [OSTI]

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise airflows? Homes need ventilation to maintain acceptable indoor air quality (IAQ). In older homes

307

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

SciTech Connect (OSTI)

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max; Sherman, Max H.; Walker, Iain S.

2008-05-01T23:59:59.000Z

308

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network [OSTI]

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

309

Optimal decision making in ventilation control Andrew Kusiak*, Mingyang Li  

E-Print Network [OSTI]

based on the maximum occupancy of a facility. To provide air quality guidelines, ASHRAE Standard 90.1 [2] specifies the minimum ventilation rate of 2.5 l/s per person, while ASHRAE Standard 62-2004 [3] has been

Kusiak, Andrew

310

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect (OSTI)

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

311

AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION  

E-Print Network [OSTI]

consumption and increase of electricity prices in a context of worldwide competition also mo- tivate system control and energy consumption op- timization. Two different levels of complexity are pro- posed]. This short historical overview also illustrates the parallel evolution of magnetic ventilation modeling

Paris-Sud XI, Université de

312

Application of industrial heat pumps Proven applications in 2012 for Megawatt+  

E-Print Network [OSTI]

Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

Oak Ridge National Laboratory

313

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network [OSTI]

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair conditioning is required, water is pumped from the cold water well to the heat pump.

Pelka, Walter

2010-01-01T23:59:59.000Z

314

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network [OSTI]

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair source equipment is much less. The source for this kind of heat pump

Pelka, Walter

2010-01-01T23:59:59.000Z

315

Earth's Heat Source - The Sun  

E-Print Network [OSTI]

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

316

Earth's Heat Source - The Sun  

E-Print Network [OSTI]

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

317

Climate Systems and Climate Change Is Climate Change Real?  

E-Print Network [OSTI]

Chapter 10 Climate Systems and Climate Change #12;Is Climate Change Real? 1980 1898 2005 2003 #12;Arctic Sea Ice Changes #12;Observed Global Surface Air Temperature #12;! Current climate: weather station data, remote sensing data, numerical modeling using General Circulation Models (GCM) ! Past climate

Pan, Feifei

318

Intensive Care Med . Author manuscript A bench study of intensive-care-unit ventilators: new versus old and  

E-Print Network [OSTI]

: new versus old and turbine-based versus compressed gas-based ventilators Arnaud W. Thille 1 2 turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator

Paris-Sud XI, Université de

319

Increasing Climate Extremes and the New Climate Dice 10 August 2012  

E-Print Network [OSTI]

1 Increasing Climate Extremes and the New Climate Dice 10 August 2012 James Hansen, Makiko Sato-July data) exceeds any that occurred in the 1930s. We reconfirm our conclusion that the increasing extremity of heat waves and the area covered by extreme events is caused by global warming. The location and timing

Hansen, James E.

320

Residential Cold Climate Heat Pump (CCHP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL|Dryer (AppendixResidential

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

322

www.heatpumpcentre.or IEA HEAT PUMP PROGRAMME  

E-Print Network [OSTI]

) #12;www.heatpumpcentre.or g Annex 41 ­ Cold climate heat pumps (Improving low ambient temperature to efficient and reliable systems and equipment for buildings in cold climates Annex 40 Heat pump concepts technologies, such as pellet boilers and gas boilers Annex 38 Systems using solar thermal energy

Oak Ridge National Laboratory

323

Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html.

Farrington, R.B., Anderson, R., Blake, D.M., Burch, S.D.; Cuddy, M.R., Keyser, M.A., Rugh, J.P.

1999-01-01T23:59:59.000Z

324

Climate Change Science and Impacts In the Western Lake Superior Region  

E-Print Network [OSTI]

Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat Downscaling: Focus global projections to a scale relevant to climate impacts in Wisconsin GCM grid Downscaled (8x8 km) grid D. Vimont, UW-Madison Result: a statistical range of probable climate change* #12

Sheridan, Jennifer

325

Review: Global Climate Change  

E-Print Network [OSTI]

introduction to global climate change, the greenhouseReview: Global Climate Change: A Primer By Orrin H PilkeyPilkey, Keith C. Global Climate Change: a primer. Durham,

Smith, Jennifer

2013-01-01T23:59:59.000Z

326

Apportioning Climate Change Costs  

E-Print Network [OSTI]

Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention

Farber, Daniel A.

2008-01-01T23:59:59.000Z

327

Climate Engineering Responses to Climate Emergencies  

E-Print Network [OSTI]

Novim Climate Engineering Responses to Climate Emergencies Jason J. Blackstock David S. Battisti Santa Barbara, California #12;Climate Engineering Responses to Climate Emergencies This report should, A. A. N. Patrinos, D. P. Schrag, R. H. Socolow and S. E. Koonin, Climate Engineering Responses

Battisti, David

328

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

329

Ventilation Behavior and Household Characteristics in New California Houses  

E-Print Network [OSTI]

across the year as home heating and cooling needs change.air conditioning and all homes have heating, its not clearair in the home without any heating or cooling going on? (

Price, Phillip N.; Sherman, Max H.

2006-01-01T23:59:59.000Z

330

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

SciTech Connect (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

331

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E #12;LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model

332

Further descrip-on of the solar radia-on balance of the climate system  

E-Print Network [OSTI]

Further descrip-on of the solar radia-on balance of the climate system....cycles of cold and warm climate. Averaged over the globe: HAS222d Solar radia-on, the greenhouse, global heat engine h

333

Climate Change Impacts on Extreme Events in the United States: An Uncertainty Analysis  

E-Print Network [OSTI]

Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in ...

Monier, Erwan

334

Availability Analysis of the Ventilation Stack CAM Interlock System  

E-Print Network [OSTI]

Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

Young, J

2000-01-01T23:59:59.000Z

335

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

336

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

337

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

338

Changing Climates  

E-Print Network [OSTI]

these data with predictions from the IPCC. Professor of geography at Texas State University, Dr. David Butler, does climate change research mainly in the Rocky Moun- tains with U.S. Geological Survey funding. He has also done research on how climate...://wiid.twdb.state.tx.us Detailed information about individual water wells. This system uses a geographic information system-based tool to show locations of water wells and download data on water levels and water quality. Reports that were developed about on-site conditions...

Wythe, Kathy

2008-01-01T23:59:59.000Z

339

Climate Dynamics manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

-atmosphere coupling through surface heat fluxes, and is very easy to interpret. Exemples of studies in realistic)). As the temperature of a slab ocean is forced only by local surface heat fluxes, it will be very different fromClimate Dynamics manuscript No. (will be inserted by the editor) Ekman Heat Transport for Slab

Codron, Francis

340

Climate Change and Extinctions  

E-Print Network [OSTI]

Lectures presents: Climate Change and Extinctions Happening2013. He will present a climate change extinction model that

Sinervo, Barry

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network [OSTI]

. Both houses were equipped with identical Fan Coil Units (FCU), digital thermostats and water pumps. A chilled water circuit was designed to supply both houses with a cold water/glycol solution (60/40) at approximately 40 of. The solution was kept...

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

342

Building America Top Innovations 2013 Profile ? High-Efficiency...  

Energy Savers [EERE]

climates and conditions at NREL's Advanced Heating, Ventilation, and Air-Conditioning (HVAC) Systems Laboratory. The testing provided unique performance data that allowed separate...

343

Heat Management Strategy Trade Study  

SciTech Connect (OSTI)

This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

2009-09-01T23:59:59.000Z

344

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek  

Broader source: Energy.gov [DOE]

This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

345

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

346

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

1998-12-29T23:59:59.000Z

347

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02) formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

348

Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems  

SciTech Connect (OSTI)

Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

2008-08-01T23:59:59.000Z

349

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

350

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Climate Impacts of Intermittent Upper Ocean1  

E-Print Network [OSTI]

heat content locally. Recent studies5 suggest that TC-induced ocean mixing can have global climate climate impacts by contributing to oceanic poleward heat transport [Emanuel,32 2001; Sriver and HuberJOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Climate Impacts of Intermittent

351

Journal of Climate EARLY ONLINE RELEASE  

E-Print Network [OSTI]

Nezio_etal_2xCO2_ENSO_revised.doc #12;2 29 Abstract30 Climate model experiments are analyzed to elucidate if and how the changes in31 mean climate in response to doubling of atmospheric CO2 (2xCO2) influence ENSO.32 a multi-model heat budget analysis. The simulated changes in34 ENSO amplitude in response to 2xCO2

352

Best Practice Upgrades for New Energy Efficient Homes in Hot and Humid Climates  

E-Print Network [OSTI]

climate region as defmed by EIA (see Exhibit 1 .) To ensure that the resulting worst case combination achieves a minimum HERS 86 in the entire climate region, it is modeled in three cities that represent the range of climate experienced in that region...,000 Heating Degree Days U.S. Climate Zone Map from Energy Informdion Administration's Commercial Buildings Energy Consumption and Expenditures 1992. Appendix F. Graphic enhancements by Guaranteed Watt Savers Systems, Inc. Exhibit 1. EIA U.S. Climate Zone...

Meisegeier, D.; Hall, J.

2000-01-01T23:59:59.000Z

353

Uncertainty in climate science and climate policy  

E-Print Network [OSTI]

Uncertainty in climate science and climate policy Jonathan Rougier University of Bristol, UK Michel1.tex. 1 Introduction This essay, written by a statistician and a climate scientist, describes our view of the gap that exists between current practice in mainstream climate science, and the practical

354

CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

2010-03-17T23:59:59.000Z

355

Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.  

SciTech Connect (OSTI)

This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

Washington State Energy Code Program

1992-05-01T23:59:59.000Z

356

Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings  

SciTech Connect (OSTI)

This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

Sippola, Mark R.; Nazaroff, William W.

2002-06-01T23:59:59.000Z

357

Modeling particle deposition on HVAC heat exchangers  

SciTech Connect (OSTI)

Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

Siegel, J.A.; Nazaroff, W.W.

2002-01-01T23:59:59.000Z

358

Summary of Workshop: Barriers to Energy Efficient Residential Ventilation  

SciTech Connect (OSTI)

The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

Sherman, Max; Sherman, Max

2008-01-10T23:59:59.000Z

359

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

360

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

362

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

363

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

364

Climate Change, Adaptation, and Development  

E-Print Network [OSTI]

Climate Change, Adaptation, and Development Daniel H. Cole*THE COSTS OF CLIMATE CHANGE . ADAPTATIONCONVENTION ON CLIMATE CHANGE . IV. A.

Cole, Daniel H.

2008-01-01T23:59:59.000Z

365

Water Heating Products and Services | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilationWater Heating Products

366

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network [OSTI]

method, Termination generation T is 300, and the parameter D is 2.0 which could be selected after repeated software operation testing. 4.2 Optimization Results ICEBO2006, Shenzhen, China HVAC Technologies for Energy...

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

367

Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in  

E-Print Network [OSTI]

cooling units (e.g. , fan coil units) in office buildingsinduction units, fan coil units, individual room packaged ACsystems, cooling tower, fan coil unit, and terminal units.

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2007-01-01T23:59:59.000Z

368

Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder  

SciTech Connect (OSTI)

BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

Kerrigan, P.

2014-03-01T23:59:59.000Z

369

R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment  

SciTech Connect (OSTI)

The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

Chiu, S.A.; Zaloudek, F.R.

1987-03-01T23:59:59.000Z

370

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [ C]lss. AirConditioning - a Modelica li- o brary for dynamic

Wetter, Michael

2010-01-01T23:59:59.000Z

371

Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in  

E-Print Network [OSTI]

upper respiratory symptoms, cough, eye symptoms, fatigue orof breath, or chest tightness); cough; upper respiratory (atrespiratory symptoms, cough, and eye symptoms. Calibration

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2007-01-01T23:59:59.000Z

372

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical

373

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical0

374

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical01

375

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical012

376

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478

377

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784

378

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845

379

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456

380

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623

382

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456234

383

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562345

384

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623456

385

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456234567

386

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562345678

387

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623456789

388

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME  

E-Print Network [OSTI]

for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

Oak Ridge National Laboratory

389

arid climate conditions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale... Li, A.; Liu, Y. 2006-01-01 56 Climate change...

390

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

391

Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate  

SciTech Connect (OSTI)

Winchester/Camberley Homes with the Building America program and its NAHB Research Center Industry Partnership collaborated to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone four and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisture characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, this report demonstrates through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the heating, cooling, air distribution, and ventilation systems intended to optimize the equipment size and configuration to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.

Mallay, D.; Wiehagen, J.

2014-07-01T23:59:59.000Z

392

10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study  

E-Print Network [OSTI]

10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study T-01 Lawrence Berkeley National Laboratory Report Number: LBNL-53800 OVERVIEW This document presents contract no. DE-AC03-76SF00098. #12;VENTILATIONS STANDARDS SCOPING STUDY PAGE LBNL-53800 2 TABLE

393

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network [OSTI]

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS Marcello Caciolo, Dominique Marchio, Pascal Stabat Ecole des Mines de Paris- Center for Energy their attention to natural ventilation, due to the potential benefits in terms of energy consumption related

Boyer, Edmond

394

A case study of boundary layer ventilation by convection and coastal processes  

E-Print Network [OSTI]

of the pollution in the atmosphere originates from emissions in the atmospheric boundary layer, the region; published 12 September 2007. [1] It is often assumed that ventilation of the atmospheric boundary layer responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May

Dacre, Helen

395

Usability Heuristics and Qualitative Indicators for the Usability Evaluation of Touch Screen Ventilator Systems  

E-Print Network [OSTI]

system provides respiratory support to critically ill patients in the Intensive Care Unit. Increasing, multi-parameter monitoring system, defibrillator, ECG analyzer, etc. Mechanical age medical equipments evaluation. A ventilator system gives respiratory support to critically ill patients [5]. Ventilators can

Boyer, Edmond

396

Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation  

E-Print Network [OSTI]

Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 ...................................................................................3-5 #12;Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-2 A without compromising safety or system integrity. The following should be included unless alternate design

Queitsch, Christine

397

E-Print Network 3.0 - auxiliary heated regimes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de Pesquisas Espaciais, Laboratrio Associado de Plasma Collection: Plasma Physics and Fusion 56 Cold Climate Heat Pump Projects at Purdue University & the Living Lab Summary:...

398

Climate Change Scoping Plan  

E-Print Network [OSTI]

Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

399

Climate change action plan  

E-Print Network [OSTI]

Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

400

Climate Change Scoping Plan  

E-Print Network [OSTI]

Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Validation of Climate Models The CliMaTiC sysTeM is constituted by four inti-  

E-Print Network [OSTI]

of macroscopic driving and modulating agents, such as solar heating, Earth's rotation, and gravitation Panel on Climate Change (IPCC4AR) are unprecedented. The validation or auditing--overall evaluation

Lucarini, Valerio

402

Climate Past, Climate Present, Climate Future Douglas Nychka,  

E-Print Network [OSTI]

series and an energy balance model. 1000 1200 1400 1600 1800 2000 -1.5-1.0-0.50.00.5 Year Degree. Supported by US NSF 7th World Congress Prob. and Stat., Singapore July 2008 #12;What is climate? Climate will use statistics to talk about the "known un- knowns" for the Earth's climate Statistics uses

Nychka, Douglas

403

Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus tool equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification is needed to maintain space relative humidity (RH) below 60% in a hot-humid climate home. Researchers also concluded that while all the active dehumidification options included in the study successfully controlled space relative humidity excursions, the increase in whole-house energy consumption was much more sensitive to the humidity set point than the chosen technology option. In the high-performance home, supplemental dehumidification equipment results in a significant source energy consumption penalty at 50% RH set point (12.6%-22.4%) compared to the consumption at 60% RH set point (1.5%-2.7%). At 50% and 55% RH set points, A/C with desiccant wheel dehumidifier and A/C with ERV and high-efficiency DX dehumidifier stand out as the two cases resulting in the smallest increase of source energy consumption. At an RH set point of 60%, all explicit dehumidification technologies result in similar insignificant increases in source energy consumption and thus are equally competitive.

Not Available

2011-12-01T23:59:59.000Z

404

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

405

Visioning 2050 BNL's Contribution to the NYS Climate Action Plan  

E-Print Network [OSTI]

and Energy Climate change: motivations for NYS action Some energy facts New York State Climate Action Plan, and storage Energy Strategy Focus: Discovery to Deployment CFN/Nanoscience NSLS II New York Blue Core Programs improvements of heating systems, biofuels - Building controls, energy management , etc. #12;#12;The New York

Homes, Christopher C.

406

Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Not Available

2014-05-01T23:59:59.000Z

407

Mean Radiant Cooling in a Hot-Humid Climate  

E-Print Network [OSTI]

degree F the mean radiant temperam of surrounding interior wall surfaces is lowered, air temperature may be increased 1.4 degrees F and thermal comfort will still be maintained." For example at the same relative humidity an interior room with the MRT...-circulate internal air e 250 fpm- piaster r-8 insulatio- 8' conc. wall ---, fiashinq~' r 18 slab insul \\ .. S::ar rnduced ventilation d I I Tin = 82'F fig. 1. Thermal Grounding ivith u deep foundation beam Hot-humid climates usually have early morning...

Garrison, M.

1996-01-01T23:59:59.000Z

408

Future Climate Engineering Solutions  

E-Print Network [OSTI]

Future Climate Engineering Solutions Joint report 13 engineering participating engeneering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Engineering Solutions A Climate call from engineers. . . . . . . . . . . . . . . . . . . . .23 Summaries of National Reports . . . . . . . . . . . . . . . . . . . .25 Summary of The Climate Plan

409

Protecting climate with forests.  

E-Print Network [OSTI]

Changing feedbacks in the climatebiosphere system Front.31332 Bonan G B 2008 Forests and climate change: forcings,feedbacks, and the climate benefits of forests Science

2008-01-01T23:59:59.000Z

410

Climate Code Foundation  

E-Print Network [OSTI]

Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

Barnes, Nick; Jones, David

2011-07-05T23:59:59.000Z

411

On the meridional heat transport and its partition between the atmosphere and oceans  

E-Print Network [OSTI]

In this thesis I study the meridional heat transport of the climate system and its partition between the atmosphere and oceans using models and data. I focus on three primary questions: (1) What is the total heat transport ...

Enderton, Daniel

2009-01-01T23:59:59.000Z

412

Corporate Climate Change Adaptation.  

E-Print Network [OSTI]

?? On-going and future climate change is universally acknowledged. Climate changeincorporating global mean temperature rise, impacts on global hydrology and ecosystems willaffect human society and (more)

Herbertsson, Nicole

2010-01-01T23:59:59.000Z

413

Climate Change Response  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural...

414

Climate Action Plan (Kentucky)  

Broader source: Energy.gov [DOE]

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

415

Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings  

E-Print Network [OSTI]

HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT....WORTH, TEXAS ABSTRACT Heat pipe impact on our ability to dehumidify, protect, and improve our indoor air quality and save energy in our building systems is tremendous. Projects all over the world in hot and humid climates are using heat pipes in both...

Cooper, J. T.

1996-01-01T23:59:59.000Z

416

Evaluation of Existing Technologies for Meeting Residential Ventilation  

E-Print Network [OSTI]

....................................................................................................................... 5 Heating and Cooling Equipment) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust ........................................................................................................ 9 6. Continuous Supply

417

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

418

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

419

Developing Anthropogenic Heating Profiles for Urban Areas Across the United States  

E-Print Network [OSTI]

and approximate state-wide fuel efficiency. Heat added by buildings take into account electricity (e.g., AC systems, appliances) and heating fuel usage. The building component relies on both population and climate, as heating and cooling degree days are proportional to the amount of heating fuel and electricity used

Hall, Sharon J.

420

Variable temperature seat climate control system  

DOE Patents [OSTI]

A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

Karunasiri, Tissa R. (Van Nuys, CA); Gallup, David F. (Pasadena, CA); Noles, David R. (Glendale, CA); Gregory, Christian T. (Alhambra, CA)

1997-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

422

"Managing Department Climate Change"  

E-Print Network [OSTI]

"Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

Sheridan, Jennifer

423

programs in climate change  

E-Print Network [OSTI]

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change

424

Water vapor and the dynamics of climate changes  

E-Print Network [OSTI]

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

Schneider, Tapio; Levine, Xavier

2009-01-01T23:59:59.000Z

425

Recommendations for the analysis and design of naturally ventilated buildings in urban areas  

E-Print Network [OSTI]

The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

Truong, Phan Hue

2012-01-01T23:59:59.000Z

426

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

427

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network [OSTI]

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

428

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network [OSTI]

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

429

Control of the microclimate around the head with opposing jet local ventilation  

E-Print Network [OSTI]

ventilation application. Healthy Buildings 2003, Singapore.21 (1996) 427-436. Healthy Buildings 2009, September 13-17,distance is 1.20m. Healthy Buildings 2009, September 13-17,

Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

2009-01-01T23:59:59.000Z

430

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings  

E-Print Network [OSTI]

in the United States, with a significant part of this energy being used to cool buildings [1]. As green buildings are becoming a trend in building design, natural ventilation has been drawing much attention

Chen, Qingyan "Yan"

431

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

432

Formulating Climate Change Scenarios to Inform Climate - Resilient...  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

433

Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate EngineeringImplications for Climate Engineering  

E-Print Network [OSTI]

Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate Engineering Center Global Climate Change Impacts in the United States October 29, 2009 #12;2Global Climate Change Impacts in the United States 2 Response Strategies to ClimateResponse Strategies to Climate ChangeChange

Polz, Martin

434

Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring  

SciTech Connect (OSTI)

This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

SEDERBURG, J.P.

1999-09-30T23:59:59.000Z

435

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

436

Climate change risk and response  

E-Print Network [OSTI]

the Potential Consequences of Climate Variability and Changeand Kate Scow. 2006. Climate Change: Page 117 ChallengesLandscapes. California Climate Change Center White Paper.

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

437

Climate change risk and response  

E-Print Network [OSTI]

and Kate Scow. 2006. Climate Change: Page 117 ChallengesLandscapes. California Climate Change Center White Paper.Sea Level. California Climate Change Center White Paper.

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

438

Climate Change and National Security  

E-Print Network [OSTI]

CLIMATE CHANGE Multiplying Threats to National Securityfor the impacts of climate change on national security. Pagea warming world. Page 11 Climate change acts as a threat

Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

2015-01-01T23:59:59.000Z

439

Climate change risk and response  

E-Print Network [OSTI]

net impact of climate change on agriculture in California,of Climate Change on California Agriculture. PresentationEffects of Climate Change on California Agriculture Positive

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

440

Climate Change and Agriculture Reconsidered  

E-Print Network [OSTI]

2009 Paper 1080 Climate Change and Agriculture Reconsideredby author(s). Climate Change and Agriculture Reconsideredimpact of climate change on agriculture, there still exists

Fisher, Anthony

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Review: Preparing for Climate Change  

E-Print Network [OSTI]

Review: Preparing for Climate Change By Michael D.Stephen, Preparing for Climate Change. A Boston Review Book.alkaline paper. Climate change is inevitable, but disaster

Kunnas, Jan

2013-01-01T23:59:59.000Z

442

Urban Growth and Climate Change  

E-Print Network [OSTI]

2007a The Economic Impacts of Climate Change: Evidence fromGreenstone. 2007b. Climate Change, Mortality and Adaptation:and Ariel Dinar, 1999, Climate Change, Agriculture, and

Kahn, Matthew E.

2008-01-01T23:59:59.000Z

443

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

office. The equipment loads follow the schedules of theand the equipment heat load follow the profile shown inload was 10 W/m 2 and it follows the load shown in Table 1.

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

444

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

is extracted by the fan coil units from the room in 1 year (a two-pipe overhead fan coil unit, is used to keep the roomto the room through the fan coil unit. There is no heating

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

445

CLIMATE SCIENCE The Community Climate System Model results from a multi-agency collaboration  

E-Print Network [OSTI]

. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should- ter(NCDC),whicharchivesallweatherdataforthe nation, reports that global surface temperatures have, the DOEisdedicatedtoadvancingclimateresearchin order to elucidate the causes of climate change, includingtheroleofcarbonloadingfromfossilfuel use

Long, Nicholas

446

Developing Models for Predictive Climate Science  

SciTech Connect (OSTI)

The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strong tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.

Drake, John B [ORNL; Jones, Philip W [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

447

The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China  

SciTech Connect (OSTI)

A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different climate models.

Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

2013-08-01T23:59:59.000Z

448

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance AuditPerformance of a Heat

449

In: Lozn et al., Climate of the 21st century: Changes and risks. GEO, Hamburg/Germany, pp. 206-211, The response of polar sea ice to climate variability and change  

E-Print Network [OSTI]

reductions in ice coverage with important consequences for the global heat budget. With global climate models and anthropogenic climate change. While satellite remote sensing can now provide sea-ice data sets of sufficient, reductions in ice extent due to, e.g., perturbations in atmospheric heat transfer into the polar regions

Eicken, Hajo

450

Climate WorkshopsClimate Workshops for Department Chairsp  

E-Print Network [OSTI]

Climate WorkshopsClimate Workshops for Department Chairsp University of Wisconsin ADVANCE-IT Slides) #12;Why focus on departmental climate? Individuals experience climate in their immediate workplace negative climate than male faculty Improving department climate is critical for retention and advancement

Tilbury, Dawn

451

The Climate Policy Dilemma  

E-Print Network [OSTI]

Climate policy poses a dilemma for environmental economists. The economic argument for stringent greenhouse gas (GHG) abatement is far from clear. There is disagreement among both climate scientists and economists concerning ...

Pindyck, Robert S.

452

The Climate Policy Dilemma  

E-Print Network [OSTI]

Climate policy poses a dilemma for environmental economists. The economic argument for stringent GHG abatement is far from clear. There is disagreement among both climate scientists and economists over the likelihood of ...

Pindyck, Robert S.

453

Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Dentz, J.; Podorson, D.; Varshney, K.

2014-05-01T23:59:59.000Z

454

METEOROLOGICAL Journal of Climate  

E-Print Network [OSTI]

AMERICAN METEOROLOGICAL SOCIETY Journal of Climate EARLY ONLINE RELEASE This is a preliminary PDF it is available. 201 American Meteorological Society1 #12;Sun et al. climate downscaling of the Australian currents 1 Marine downscaling of a future climate scenario for Australian boundary currents Chaojiao Sun

Feng, Ming

455

Campus Climate Camden Campus  

E-Print Network [OSTI]

Campus Climate Report Camden Campus New Brunswick/Piscataway Campus Newark Campus Student Survey #12;I. INTRODUCTION Executive Summary The Rutgers Campus Climate Survey was designed to determine how University, the campus climate surveys revealed strong areas of satisfaction with the Rutgers University

Hanson, Stephen Jos

456

Forest Research: Climate Change  

E-Print Network [OSTI]

Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

457

Climate Change Workshop 2007  

E-Print Network [OSTI]

1 Climate Change Workshop 2007 Adaptive Management and Resilience Relevant for the Platte River, UNL Climate Change Workshop 2007 · Resilience ·Why it matters · Adaptive Management ·How it helps ·Adaptive Capacity · What it is Overview Climate Change Workshop 2007 "A public Domain, once a velvet carpet

Nebraska-Lincoln, University of

458

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

459

Environment and Climate Change  

E-Print Network [OSTI]

Migration, Environment and Climate Change: ASSESSING THE EVIDENCE #12;The opinions expressed;Migration, Environment and Climate Change: ASSESSING THE EVIDENCE Edited by Frank Laczko and Christine with with the financial support of #12;3 Migration, Environment and Climate Change: Assessing the Evidence Contents

Galles, David

460

Climate Change Economics and Policy  

E-Print Network [OSTI]

AFRICA COLLEGE Centre for Climate Change Economics and Policy Adapting to Climate Change 3 CLIMATE...Furthermore, there is strong scientific evidence that climate change will disrupt the global economy, environment and society a growing population in a changing climate is, therefore, a major global challenge. Changes in climate

Romano, Daniela

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluation of Vegetative Roofs' Performance on Energy Consumption in Hot and Humid Climates  

E-Print Network [OSTI]

with Building (6) is that it is located in (Florida), whereas the other buildings are located in cold climates (Maryland, New York, and south Texas). In hot climates most of the energy consumption is used for the air-conditioning of the buildings..., whereas in cold climates most of the energy is used for heating the buildings. However, it could be argued that it is more energy consuming to cool a space than to heat it. This is attributed to the fact that there is heat dissipation from light...

Anderson, J.; Azarbayjani, M.

462

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

463

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect (OSTI)

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

464

Worker performance and ventilation in a call center: Analyses of work performance data for registered nurses  

SciTech Connect (OSTI)

We investigated the relationship between ventilation rates and individual work performance in a call center, and controlled for other factors of the indoor environment. We randomized the position of the outdoor air control dampers, and measured ventilation rate, differential (indoor minus outdoor) carbon dioxide ({Delta}CO{sub 2}) concentration, supply air velocity, temperature, humidity, occupant density, degree of under-staffing, shift length, time of day, and time required to complete two different work performance tasks (talking with clients and post-talk wrap-up to process information). {Delta}CO{sub 2} concentrations ranged from 13 to 611 ppm. We used multi-variable regression to model the association between the predictors and the responses. We found that agents performed talk tasks fastest when the ventilation rate was highest, but that the relationship between talk performance and ventilation was not strong or monotonic. We did not find a statistically significant association between wrap-up performance and ventilation rate. Agents were slower at the wrap-up task when the temperature was high (>25.4 C). Agents were slower at wrap-up during long shifts and when the call center was under-staffed.

Federspiel, C.C.; Fisk, W.J.; Price, P.N.; Liu, G.; Faulkner, D.; Dibartolomeo, D.L.; Sullivan, D.P.; Lahiff, M.

2004-05-01T23:59:59.000Z

465

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

466

Climate Variability and Climate Change: The New Climate Dice 10 November 2011  

E-Print Network [OSTI]

1 Climate Variability and Climate Change: The New Climate Dice 10 November 2011 J. Hansen, M. Sato, coincident with increased global warming. The most dramatic and important change of the climate dice change is the natural variability of climate. How can a person discern long-term climate change, given

Hansen, James E.

467

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

468

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

469

Sustainability in a Subtropical Climate  

E-Print Network [OSTI]

, lasted for the next 4 years. Some of the major considerations for human comfort were shading, ventilation, and thermal grounding along with concerns for infiltration, insulation and solar radiation. Sustainability considerations were energy efficient...

Cazayoux, E. J.

2000-01-01T23:59:59.000Z

470

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

471

Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling  

E-Print Network [OSTI]

The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

Koffi, Juslin; Akoua, Jean-Jacques

2010-01-01T23:59:59.000Z

472

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect (OSTI)

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

473

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

474

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

475

Vertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing  

E-Print Network [OSTI]

suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation the earth's climate, with the upper 2.5 m of the ocean able to store as much heat as the entire atmosphereVertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing JAN D

England, Matthew

476

Isentropic Slopes, Downgradient Eddy Fluxes, and the Extratropical Atmospheric Circulation Response to Tropical Tropospheric Heating  

E-Print Network [OSTI]

to Tropical Tropospheric Heating AMY H. BUTLER NOAA/NWS/NCEP/Climate Prediction Center, Camp Springs, Maryland of the midlatitude jets and their associated eddy fluxes of heat and potential vorticity (PV). Experiments run latent heating and thus locally enhanced warming in the tropical troposphere. Here the authors provide

477

The role of tilted heating in the evolution of the MJO Cara-Lyn Lappen1  

E-Print Network [OSTI]

The role of tilted heating in the evolution of the MJO Cara-Lyn Lappen1 and Courtney Schumacher2 1 the role of tilted heating in the evolution of the MJO. It is believed that the inability of many general heating distributions. Given the MJO's importance in tropical climate, we need to better understand what

478

Contribution of land-atmosphere coupling to recent European summer heat waves  

E-Print Network [OSTI]

Contribution of land-atmosphere coupling to recent European summer heat waves E. M. Fischer,1 S. I February 2007; published 24 March 2007. [1] Most of the recent European summer heat waves have been climate simulations with and without land-atmosphere coupling for four selected major summer heat waves

Fischlin, Andreas

479

Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux  

E-Print Network [OSTI]

Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux David Pollard a sheet to geothermal heat flux is investigated, using a coupled climate­ice sheet model with various prescribed values and patterns of geothermal heat flux. The sudden growth of major ice across the Eocene

480

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers  

SciTech Connect (OSTI)

In previous studies, increased ventilation rates and reduced indoor carbon dioxide concentrations have been associated with improvements in health at work and increased performance in work-related tasks. Very few studies have assessed whether ventilation rates influence performance of real work. This paper describes part one of a two-part analysis from a productivity study performed in a call center operated by a health maintenance organization. Outside air ventilation rates were manipulated, indoor air temperatures, humidities, and carbon dioxide concentrations were monitored, and worker performance data for advice nurses, with 30-minute resolution, were analyzed via multivariate linear regression to look for an association of performance with building ventilation rate, or with indoor carbon dioxide concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate experienced during the study (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence suggesting performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO{sub 2} concentrations exceeding outdoor concentrations by less than 75 ppm.

Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis; Federspiel, Cliff; Liu, Gang; Lahiff, Maureen

2002-01-01T23:59:59.000Z

482

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network [OSTI]

Engineers, Inc. Laboratory Consultant: Research Facilities Design Energy Modeling: SOLARC ArchitectureFor natural ventilation to work, solar gains through the facade needed to be reduced--largely due to the enormous ventilation demands and the energy associated with moving and conditioning

Hochberg, Michael

483

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network [OSTI]

energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

Diamond, Richard

484

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

485

Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Design Phase  

E-Print Network [OSTI]

design simulation software DeST(8): combined simulation of natural and mechanical Ventilation??Journal of HVAC. 35(2) (In Chinese) Kato, S. 1997,1998. ?Application to indoor atmosphere of CFD (1?7)?, SHASE. 71(6?11),72(1) (In Japanese) Li, Y. 2002... coupled simulation method using this tool in conjunction with CFD (Computational Fluid Dynamics) to simultaneously calculate indoor air flow/temperature distribution and natural ventilation airflow rate. In this paper, at the design phase of an actual...

Yoshida, H.; Pan, S.; Zheng, M.

2007-01-01T23:59:59.000Z

486

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network [OSTI]

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

487

Climate history and paleoclimate -HS 2011 Climate proxies  

E-Print Network [OSTI]

Climate history and paleoclimate - HS 2011 Climate proxies 18O Climate History & Paleoclimate September 30, 2011 #12;How do we know about the past? Instrumental Historical Through proxies Climate proxies Climate history and paleoclimate - HS 2011 #12;What is a `proxy'? "Proxy, as used here

Gilli, Adrian

488

Ensemble climate predictions using climate models and observational constraints  

E-Print Network [OSTI]

REVIEW Ensemble climate predictions using climate models and observational constraints BY PETER A. STOTT 1,* AND CHRIS E. FOREST 2 1 Hadley Centre for Climate Change (Reading Unit), Meteorology Building for constraining climate predictions based on observations of past climate change. The first uses large ensembles

489

Climate history and paleoclimate -HS 2011 Future climate  

E-Print Network [OSTI]

Climate history and paleoclimate - HS 2011 Future climate Climate History & Paleoclimate - December 9, 2011 1 #12;Climate history and paleoclimate - HS 2011 IPCC 2007 4th Assessment report (AR4) More information can be found: http://www.ipcc.ch/ Remark: 5th assessment report is due in 2013/2014 2 #12;Climate

Gilli, Adrian

490

Climate Change: Conflict, Security and Vulnerability Professor of Climate Change  

E-Print Network [OSTI]

Climate Change: Conflict, Security and Vulnerability Mike Hulme Professor of Climate Change Science, Society and Sustainability Group School of Environmental Sciences Rethinking Climate Change, Conflict security" "increase risk of conflicts among and within nations" #12;· from `climatic change' to `climate-change

Hulme, Mike

491

Is this climate porn? How does climate change communication  

E-Print Network [OSTI]

Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

Watson, Andrew

492

Climate Change Review of Muller's chapter on Climate Change from  

E-Print Network [OSTI]

Climate Change · Review of Muller's chapter on Climate Change from Physics for Future Society) controversy on climate change (e.g. resignation of Hal Lewis, Ivar Giaever and other notable. #12;Some climate changes basics · IPCC = Intergovernmental Panel on Climate Change · The IPCC

Browder, Tom

493

Fourier analysis of conductive heat transfer for glazed roofing materials  

SciTech Connect (OSTI)

For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

2014-07-10T23:59:59.000Z

494

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

495

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

496

s a signatory to the United Nations Framework Convention on Climate  

E-Print Network [OSTI]

's policy on climate change harnesses the power of markets and technological innovation, maintains eco, wind, geothermal, bioenergy, and combined heat and power. The president has proposed more than $4

497

The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models  

E-Print Network [OSTI]

Although atmospheric tides driven by solar heating are readily detectable at the earths surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This ...

Covey, Curt

498

Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor  

SciTech Connect (OSTI)

This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

Donna P. Guillen

2012-07-01T23:59:59.000Z

499

The Climate Impacts LINK Project  

E-Print Network [OSTI]

The Climate Impacts LINK Project The Climatic Research Unit, University of East Anglia Funded by the UK Department of the Environment, Transport and the Regions, Contract Ref EPG 1/1/68 The Climate Impacts LINK Project: Applying Results from the Hadley Centre's Climate Change Experiments for Climate

Feigon, Brooke

500

Abrupt Climate Change Inevitable Surprises  

E-Print Network [OSTI]

Abrupt Climate Change Inevitable Surprises Committee on Abrupt Climate Change Ocean Studies Board of Congress Cataloging-in-Publication Data Abrupt climate change : inevitable surprises / Committee on Abrupt Climate Change, Ocean Studies Board, Polar Research Board, Board on Atmospheric Sciences and Climate