Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heating, Ventilation and Air Conditioning Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

2

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

3

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

4

Heating, Ventilation, and Air Conditioning Projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Grenada, MS -- International Copper Association - New York, NY -- Wieland - Ulm, Germany -- Heat Transfer Technologies - Abington, PA Multi-Function Fuel-Fired Heat Pump...

5

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40 km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5 W and 8.4 W, respectively, for 1 kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 20–40 kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sébastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

6

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

7

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

8

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

9

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network [OSTI]

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

10

Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems  

Science Journals Connector (OSTI)

The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 °C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70 % and molds by > 80 %). However, during long periods of high relative humidity (> 80 % R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occured. These microorganisms were mainly smaller than 1.1 ?m therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80 % R. H. (mean of 3 days), e. g. by using preheaters in front of air filters in HVAC-systems.

Martin Möritz; Hans Peters; Bettina Nipko; Hennin Rüden

2001-01-01T23:59:59.000Z

11

An experimental system for advanced heating, ventilating and air conditioning (HVAC) control  

Science Journals Connector (OSTI)

While having the potential to significantly improve heating, ventilating and air conditioning (HVAC) system performance, advanced (e.g., optimal, robust and various forms of adaptive) controllers have yet to be incorporated into commercial systems. Controllers consisting of distributed proportional-integral (PI) control loops continue to dominate commercial HVAC systems. Investigation into advanced HVAC controllers has largely been limited to proposals and simulations, with few controllers being tested on physical systems. While simulation can be insightful, the only true means for verifying the performance provided by HVAC controllers is by actually using them to control an HVAC system. The construction and modeling of an experimental system for testing advanced HVAC controllers, is the focus of this article. A simple HVAC system, intended for controlling the temperature and flow rate of the discharge air, was built using standard components. While only a portion of an overall HVAC system, it is representative of a typical hot water to air heating system. In this article, a single integrated environment is created that is used for data acquisition, controller design, simulation, and closed loop controller implementation and testing. This environment provides the power and flexibility needed for rapid prototyping of various controllers and control design methodologies.

Michael Anderson; Michael Buehner; Peter Young; Douglas Hittle; Charles Anderson; Jilin Tu; David Hodgson

2007-01-01T23:59:59.000Z

12

Reducing Ventilation Energy Demand by Using Air-to-Earth Heat Exchangers  

Science Journals Connector (OSTI)

Air-to-Earth heat exchangers (earth tubes) utilize the fact that the temperature in the ground is relatively constant during the year. By letting the air travel through an air-to-earth heat exchanger before re...

Hans Havtun; Caroline Törnqvist

2013-01-01T23:59:59.000Z

13

Radon Mitigation in Schools Utilising Heating, Ventilating and Air Conditioning Systems  

Science Journals Connector (OSTI)

......and Air Conditioning Engineers (ASHRAE) standard Ventilation for Acceptable Indoor Air Quality...Two case studies are presented where HVAC technology was implemented for controlling...system in a two-storey building. The HVAC system's controls were restored and modified......

G. Fisher; B. Ligman; T. Brennan; R. Shaughnessy; B.H. Turk; B. Snead

1994-12-01T23:59:59.000Z

14

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

15

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus... costs, the small, modular nature of the system allows great flexibility for fitting into retrofit geometries and saves space in new construction. Moreover, a single chiller can serve multiple air-handling units-in stark contrast to packaged...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

16

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Broader source: Energy.gov [DOE]

This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

17

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00 h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

18

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network [OSTI]

conservation, and it is urgent. At the same time, the energy consumption about air-conditioning of buildings continues to increase and the new wind energy accounts for 4%~12% of the buildings total energy consumption [1]. A heat recovery system for air...

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

19

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect (OSTI)

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

20

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dehumidification and cooling loads from ventilation air  

SciTech Connect (OSTI)

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

22

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

23

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

24

Removal of submicron particles using a carbon fiber ionizer-assisted medium air filter in a heating, ventilation, and air-conditioning (HVAC) system  

Science Journals Connector (OSTI)

Laboratory tests of particle removal were performed with a pair of carbon fiber ionizers installed upstream of a glass fiber air filter. For air flow face velocities of 0.4, 0.6, and 0.8 m/s, the overall particle removal efficiencies of the filter for all submicron particles were 17%, 16%, and 14%, respectively, when the ionizers were not turned on. These values increased to 27%, 23%, and 19%, respectively, when the ionizers were used to generate ions of 6.0 × 109 ions/cm3 in concentration. The carbon fiber ionizers were then installed in front of a glass fiber air filter located in a heating, ventilation, and air-conditioning (HVAC) system. Field tests were performed in a test office room with a total indoor particle concentration of 2.2 × 104 particles/cm3. When the flow rate was 75 cubic meters per hour (CMH), the steady-state values of the total indoor particle concentrations using the glass fiber air filter with and without ionizers decreased to 0.87 × 104 particles/cm3 and 1.15 × 104 particles/cm3, respectively, resulting in a 25% decrease of the ionizer effect. When the operation flow rate was increased to 115 and 150 CMH, the effect of the ionizer decreased to 19% and 17%, respectively. These experimental data match the results calculated using a mass-balance model whose parameters were determined from laboratory tests.

Jae Hong Park; Ki Young Yoon; Jungho Hwang

2011-01-01T23:59:59.000Z

25

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [° C]lss. AirConditioning - a Modelica li- o brary for dynamic

Wetter, Michael

2010-01-01T23:59:59.000Z

26

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

27

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

28

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Broader source: Energy.gov (indexed) [DOE]

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

29

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy...

30

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

31

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

32

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

33

Multifamily Individual Heating and Ventilation Systems, Lawrence...  

Energy Savers [EERE]

each apartment were much higher than the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 62.2 rate; an extensive system of ductwork, smoke and...

34

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

35

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

36

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect (OSTI)

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

37

Capture and Use of Coal Mine Ventilation-Air Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

38

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

39

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

40

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network [OSTI]

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

42

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

43

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect (OSTI)

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

44

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared

45

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

46

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network [OSTI]

monoxide and nitrogen dioxide from gas appliances;health, indoor air quality, nitrogen dioxide, radon The workin residen- (CO), nitrogen dioxide (NOz), formaldehyde (

Hollowell, C.D.

2012-01-01T23:59:59.000Z

47

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

48

E-Print Network 3.0 - air quality ventilation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air quality ventilation Page: << < 1 2 3 4 5 > >> 1 Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH Summary: control strategy impacts on indoor air...

49

E-Print Network 3.0 - air treatment system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

50

E-Print Network 3.0 - air conditioning maintenance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... : Use of mechanical equipment...

51

E-Print Network 3.0 - air handling systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

52

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

53

Performance of unglazed solar ventilation air pre-heaters for broiler barns  

Science Journals Connector (OSTI)

Solar radiation is an interesting heat source for applications requiring a limited amount of energy, such as pre-heating cold fresh air used in venting livestock barns. The objective of this study was to evaluate the energy recovery efficiency of a solar air pre-heater consisting of an unglazed perforated black corrugated siding where the incoming fresh ventilation air picks up heat from its face and back. Installed on the southeast wall of two broiler barns located 40 km east of Montreal, Canada, the performance of solar air pre-heaters was monitored over 2 years. Sensors inside the barns monitored the temperature of the ambient air, that pre-heated by the solar collector and that exhausted by one of the three operating fans. An on-site weather station measured ambient air temperature, wind direction and velocity and radiation energy absorbed on a vertical plane parallel to the unglazed solar air pre-heaters. The measured vertical solar radiation value was used to evaluate the heat recovery efficiency of the unglazed solar air pre-heaters. Using data from the Varennes Environment Canada weather station located 30 km northwest, the solar sensors were found to measure the absorbed solar radiation with a maximum error of 7%, including differences in exterior air moisture. Unglazed, the efficiency of the solar air pre-heaters reached 65% for wind velocities under 2 m/s, but dropped below 25% for wind velocities exceeding 7 m/s. Nevertheless, the unglazed solar air pre-heaters were able to reduce the heating load especially in March of both years. Over a period starting in November and ending in March, the solar air heaters recovered an energy value equivalent to an annual return on investment of 4.7%.

Sébastien Cordeau; Suzelle Barrington

2011-01-01T23:59:59.000Z

54

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1  

E-Print Network [OSTI]

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality contamination levels in the arenas. Keywords: Air distribution, health, skating rink, indoor air quality, space

Chen, Qingyan "Yan"

55

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

56

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network [OSTI]

UC-95d INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATIONVentilation on Indoor Air Quality and Energy Use in Schoo s,EEB~Vent INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION

Young, Rodger A.

2013-01-01T23:59:59.000Z

57

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

58

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

59

Air temperature effect on thermal models for ventilated dry-type transformers  

Science Journals Connector (OSTI)

The temperature of the air surrounding the windings of ventilated dry-type transformers is an important factor in the cooling of the windings since they are cooled only by the air. In particular, inner windings are sensitive to the air temperature in vertical cooling ducts. This study presents air temperature effect on the temperatures in foil-type inner winding for the dry-type transformers. A transformer rated at 2000 kVA was selected for the research and temperature distribution was calculated under constant and varying air temperatures inside vertical ducts at three different loads. The 2-D transient heat diffusion equation was solved using the finite element method by coupling it with the vector potential equation due to non-uniformly generated heat caused by eddy currents in the foil winding. The calculated temperatures at constant and varying air temperatures are presented together with experimental values. The numerical and experimental results of this study showed that the air temperature affects the accuracy of temperatures in foil-type inner winding greatly.

Moonhee Lee; Hussein A. Abdullah; Jan C. Jofriet; Dhiru Patel; Murat Fahrioglu

2011-01-01T23:59:59.000Z

60

Federal Energy Management Program: New and Underutilized Heating,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heating, Ventilation, and Air Conditioning Technologies to Heating, Ventilation, and Air Conditioning Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Digg Find More places to share Federal Energy Management Program: New and

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

62

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

63

Effect of outside air ventilation rate on VOC concentrations and emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

64

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

65

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.  

E-Print Network [OSTI]

LBL-10475 EEB-Hosp 79-6 HOSPITAL VENTILATION STANDARDS ANDCHH1ICAL CONTAMINATION OF HOSPITAL AIR na 1 Report DavidMinnesota 55455 TWIN CITIES HOSPITAL VEtHILATION STANDARDS

Rainer, David

2012-01-01T23:59:59.000Z

66

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

E-Print Network [OSTI]

air conditioning  IAQ: Indoor air quality  LBNL: Lawrence Degrading Indoor Air Quality in California Classrooms? HDEGRADING INDOOR AIR QUALITY IN CALIFORNIA CLASSROOMS?

Fisk, Michael G. Apte and William J.

2009-01-01T23:59:59.000Z

67

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

68

Indoor air environment and night cooling energy efficiency of a southern German passive public school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently built school building has adopted a novel heat recovery air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification have been numerically investigated concerning the effects of the heat flow flux of passive cooling within the ceiling concrete in the classroom due to night ventilation in summer which could result in cooling energy storage. Numerical results indicate that the promotion of passive cooling can simultaneously decrease the volume averaged indoor temperatures and the non-uniformity of indoor thermal distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air-cooling unit decreases with the increasing temperatures of exhaust air and the heat flux value for passive cooling within the classroom ceiling concrete. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Xiao-Hong Li; Han-Qing Wang

2014-01-01T23:59:59.000Z

69

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014.

70

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network [OSTI]

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

71

AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION  

E-Print Network [OSTI]

Control Systems Based on Air Quality Detection Isaac Turiel,HVAC CONTROL SYSTEM BASED ON AIR QUALITY SENSING To Zl)(lecontrol systems based on air quality detection Isaac Turiel,

Turiel, Isaac

2011-01-01T23:59:59.000Z

72

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network [OSTI]

1) indoor pollutant source control, and 2) air cleaning.control is complicated by the large number and changing nature of indoor pollutant sources. Particle air

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

73

Building America Case Study: Selecting Ventilation Systems for...  

Energy Savers [EERE]

requirements must be met? * What is the scope of the renovation project? * What heating, air conditioning, and ventilation systems are currently in the home? * What type of...

74

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

75

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network [OSTI]

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

76

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

77

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect (OSTI)

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

78

H.N. Knudsen, P. Wargocki and J. Vondruskova (2006) "Effect of ventilation on perceived quality of air polluted  

E-Print Network [OSTI]

quality of air polluted by building materials ­ a summary of reported data", Proceedings of Healthy Buildings 2006, Vol. 1, 57-62. #12;#12;Effect of ventilation on perceived quality of air polluted

79

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network [OSTI]

of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity...

Kosar, D.

1998-01-01T23:59:59.000Z

80

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Broader source: Energy.gov (indexed) [DOE]

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

82

Outside Air Ventilation Controller - Building America Top Innovation...  

Energy Savers [EERE]

demand up to 50% in California's central valley climates and can eliminate the need for air conditioning altogether in the coastal climate. Variations of these systems are being...

83

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

84

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Broader source: Energy.gov (indexed) [DOE]

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

85

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED INTO A DWELLING  

E-Print Network [OSTI]

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED.peuportier@mines-paristech.fr, Tel.: +33 1 40 51 91 51 ABSTRACT An inverter-driven air-to-air heat pump model has been developped capacity air-to-air heat pump coupled with temperate air sources (crawlspace, attic, sunspace, heat

Paris-Sud XI, Université de

86

Conjugate heat transfer in enclosures with openings for ventilation  

Science Journals Connector (OSTI)

The direct and indirect solar chimney principle has been used for heating of...12...]). In heating applications, for example, the dwelling is simulated as an enclosure having a solar chimney located towards the s...

E. Bilgen; T. Yamane

2004-03-01T23:59:59.000Z

87

Solar Heating and Air Conditioning  

Science Journals Connector (OSTI)

...given of the status of solar fired air conditioning...to an approach to cool storage in solar air conditioning systems...an assessment of cool storage for reducing peak electrical...rolling cylinder thermal energy storage device for compact...

1980-01-01T23:59:59.000Z

88

Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions  

E-Print Network [OSTI]

channel wheel heat exchanger under different ambient conditions using the model developed. These include frost formation on the surface of the channel wheel heat exchanger, and impacts on the operational performance of the channel wheel fresh air...

Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

2006-01-01T23:59:59.000Z

89

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network [OSTI]

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

90

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Quality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical Ventilation

Logue, J.M.

2012-01-01T23:59:59.000Z

91

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network [OSTI]

quality will be achieved. Our study aims to simulate airflow in the ventilated room with this new type of air conditioning. Radiation is taken into account by the energy conservation in the system. The following section presents algorithm, thermal..., the governing equations to be solved are the conservation equations for continuity, momentum, and energy as well as the equations for turbulent kinetic energy and its dissipation rate. The buoyancy effect is accounted for by Boussinesq approximation...

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

92

About Nuccio Heating & Air Headquartered in Tampa, Florida, Nuccio Heating & Air serves  

E-Print Network [OSTI]

­ the majority being highly mobile ­ sell and service heating and air conditioning systems for the company customer service Industry Focus Heating and air conditioning services Size 52 employees Case Study Nuccio Fixing Problems Fast In Florida's competitive air conditioning industry, the differentiator is "speed

Fisher, Kathleen

93

Exergy–economic evaluation of heat recovery device in mechanical ventilation system  

Science Journals Connector (OSTI)

Abstract The paper presents new approach in evaluation of heat recovery devices in mechanical ventilation system. The evaluation is based on exergy balance equation and economic analysis, what requires application of one of multicriteria decision aid methods—weighted sum method. The proposed set of evaluation criteria consists of: driving exergy, simple payback time and investment cost. The proposed method is applied to compare the four variants of heat recovery device in inlet-exhaust mechanical ventilation system of the capacity of 10,000 m3/h installed in residential part of hotel. The analysis is performed for four preference models. The results of the multicriteria evaluation indicate that counter flow plate heat exchanger and the rotating heat/mass regenerator are better solutions comparing with water loop heat exchanger and heat pipe heat exchanger. Counter flow plate heat exchanger is the most compromise solution for the two preference models PREF_00 (based on statistic approach) and PREF_03 (investment cost priority preference model). Rotating heat/mass regenerator is the most compromise solution for the preference model 01 (driving exergy priority preference model). The proposed method can be helpful in the choice of the most compromise solution of the heat recovery device in pre-design phase.

Tomasz M. Mróz; Anna Dutka

2015-01-01T23:59:59.000Z

94

Air Conditioning Heating and Refrigeration Institute Comment  

Broader source: Energy.gov [DOE]

These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy’s (DOE) notice in the July 3, 2014 Federal Register...

95

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

96

Commercial Air Conditioners and Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air Conditioners and Heat Pumps Commercial Air Conditioners and Heat Pumps commercialcacandhpv1.0.xlsx More Documents & Publications Residential Clothes Washers (Appendix J2)...

97

Advanced Variable Speed Air-Source Integrated Heat Pump 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

98

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

99

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

100

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect (OSTI)

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

102

Smart School Symposium Heating Ventilation and Air Conditioning Session  

E-Print Network [OSTI]

used in Schools Efficiency Metrics for HVAC Equipment Historical Perspective on Efficiency · Weather data is not the same, and has a big impact on building loads as well as the performance of HVAC;School Load Data Metrics · Using the ASHRAE 90.1 benchmark buildings models I have developed

California at Davis, University of

103

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

104

Carbon-dioxide-controlled ventilation study  

SciTech Connect (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

105

The Coupling Performance of a Solar-Air Heat Pump  

Science Journals Connector (OSTI)

Based on the advantages and disadvantages of single air source heat pump, single solar energy heat pump and switch solar-air dual heat source heat pumps, a new type of solar-air composite heat source heat pump system has been proposed to realize the utilization and complementary advantages of two renewable energy: air and solar. It also provided a feasible method to improve the city's ecological environment, and plays a leading role in the villages and small towns’ construction. Design the composite heat exchanger with double heat sources. The heat exchanger had dual function of tube-fin and tube heat exchangers, break through the traditional model that heat exchanger in working can realize heat exchange only between the same gases or liquid heat sources, and realized the heat exchange between two heat sources. It laid the technological and equips mental foundation for realizing the synchronization and composite using of solar energy and air.

Yin Liu; Jing Ma; Guanghui Zhou

2011-01-01T23:59:59.000Z

106

Influence of air conditioning management on heat island in Paris air street temperatures  

E-Print Network [OSTI]

Influence of air conditioning management on heat island in Paris air street temperatures Brice 2012 Available online 13 March 2012 Keywords: Air conditioning Heat island mitigation Urban heat island killer'', is exacerbated in urban areas owing to the heat island effect. Air conditioning (A/C) is a key

Ribes, Aurélien

107

E-Print Network 3.0 - air-conditioning units part Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fans... : Use of mechanical equipment such as refrigeration, air conditioning, heating systems, ventilating fans... -handling units and mechanical, compressed air, and electric ......

108

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

109

Influences of ambient air speed and internal heat load on the performance of solar chimney in the tropics  

Science Journals Connector (OSTI)

Abstract Solar chimney is a combination of solar assisted stack and wind driven ventilation where air in the solar chimney expands under heating from solar irradiance and being relatively lighter, rises out from the chimney outlets, drawing the cooler air into the building through the fenestrations. This pull effect is complemented further by the push effect from the outdoor ambient wind. The study of solar chimney system within the zero energy building in tropical Singapore aims to determine the effects of ambient air speed and internal heat load on the thermal environment of the solar chimney ducts and classroom’s interior. Experimental and computational results show that high ambient air speed greater than 2.00 m/s improves the air speed within the solar chimney ducts; both low and high ambient air speeds are found to improve the classroom’s interior air speed. However, the significance of ambient air speed drops when solar irradiance is greater than 700 W/m2. Furthermore, under the tropical weather conditions of high solar irradiance and low ambient air speed, cross ventilation performs better compared to solar chimney; hence, solar chimney is recommended to be employed under zero ambient air speed. Lastly, results show that the influences of internal heat load on the air temperature and speed within solar chimney ducts as well as classroom’s interior are limited.

Alex Yong Kwang Tan; Nyuk Hien Wong

2014-01-01T23:59:59.000Z

110

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network [OSTI]

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

111

Air-Source Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air-Source Heat Pump Basics Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

112

Advanced Variable Speed Air-Source Integrated Heat Pump | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Heat Pump prototype system and field test site near Knoxville, TN Credit: Oak Ridge National Lab Advanced variable-speed Air Source Integrated Heat Pump prototype...

113

Improving Air Conditioner and Heat Pump Modeling  

Broader source: Energy.gov (indexed) [DOE]

Improving Air-Conditioner Improving Air-Conditioner and Heat Pump Modeling Building America Stakeholders Meeting Jon Winkler March 2, 2012 2 * How do you recommend the most cost-effective A/C? Simple Question 3 Solution Whole-House Simulation Tool A/C Information * SEER 13 * SEER 14 * SEER 15 * SEER 16 * SEER 17 * SEER 18 * SEER 21 Annualized Cooling Cost (Energy + Equipment) 4 Background * Power, capacity and SHR vary with: o Outdoor temperature o Entering wetbulb o Air mass flow rate o Part load ratio Power Sensible Capacity Latent Capacity * How to accurately and easily model A/C performance? 5 Background: Model Development * A/C modeling utilizes two types of input o Rated values (capacity, efficiency, etc.) o Performance curves Capacity 1 / Efficiency 6 Background: Manufacturer's Data

114

Analysis and feasibility study of residential integrated heat and energy recovery ventilator with built-in economizer using an excel spreadsheet program  

Science Journals Connector (OSTI)

Abstract Currently, heat recovery ventilator (HRV) and energy recovery ventilator (ERV) are commonly studied. Nevertheless, there is limited information regarding the dual-core approach energy recovery. This paper investigates the feasibility of an integrated HRV and ERV system, namely HERV, with a built-in economizer used in the residential sector to reduce dependency on furnace and air conditioning systems. In order to achieve this goal, an excel-based analysis tool was developed, providing a quick estimate of system performance and comparison with the HRV and ERV that are currently being used in research houses. The potential of integrated heat and energy recovery ventilator was evaluated based on its calculated operating cost ratio (OCR) and its payback period. Results collected for Vancouver and Toronto, corresponding to temperate and continental climate, indicated that the \\{OCRs\\} of the HERV were four times smaller than the ERV's, meaning that the proposed system was cost-efficient. It was also evidenced that the high demand on the economizer resulted in higher energy saving and shorter payback period of the system. In conclusion, the integrated HERV system with a built-in economizer could be a feasible option for both temperate and continental climates.

Junlong Zhang; Alan S. Fung; Sumeet Jhingan

2014-01-01T23:59:59.000Z

115

Building Technologies Office: Air-Source Integrated Heat Pump Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

116

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

117

E-Print Network 3.0 - air-to-air heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper... of operation 10, 197778, the Control House ......

118

The International Journal of Ventilation  

E-Print Network [OSTI]

in Buildings: Harrington C and Modera M 345 Estimates of Uncertainty in Multi-Zone Air Leakage Measurements. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy use flow rate. Over the past 15 years, the subject of duct leakage in buildings other than single-family

California at Davis, University of

119

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

Conference of the Society of Heat- ing, Air-Conditioning,permission. QC-06-053 Heat Transfer Pathways in Underfloorthis paper: Results of heat gain shown in this theoretical

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

120

Air-Source Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Source Heat Pump Basics Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recirculation of Factory Heat and Air to Reduce Energy Consumption  

E-Print Network [OSTI]

-makeup ventilation systems. First we must distinguish between gaseous and particulate contaminants in order to select appropriate types of air cleaning equipment. Next the physical (and chemical) char acteristics of those specific contaminants must be considered... particles. (Note that most gases and vapors are colorless and invisible ?...suspended particulates are almost the only visible air con taminants .) Because the chemical vapor pressure of the nuisance contaminants which create visibly polluted factory...

Thiel, G. R.

1983-01-01T23:59:59.000Z

122

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

123

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

124

FEMP-FS--Solar Ventilation Preheating  

Broader source: Energy.gov (indexed) [DOE]

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

125

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

U.S. Heating and Air-Conditioning System Manufacturer Shipments, by Type (Including Exports) 2005 Value of 2000 2005 2007 2009 2010 Shipments Equipment Type (1,000s) (1,000s) (1,000s) (1,000s) (1,000s) ($million) (7) Air-Conditioners (1) 5,346 6,472 4,508 3,516 3419 5,837 Heat Pumps 1,539 2,336 1,899 1,642 1,748 2,226 Air-to-Air Heat Pumps 1,339 2,114 1,899 1,642 1748 1,869 Water-Source Heat Pumps (2) 200 222 N.A. N.A. N.A. 357 Chillers 38 37 37 25 29 1,093 Reciprocating 25 24 30 20 24 462 Centrifugal/Screw 8 6 7 5 5 566 Absorption (3) 5 7 N.A. N.A. N.A. 64 Furnaces 3,681 3,624 2,866 2,231 2,509 2,144 Gas-Fired (4) 3,104 3,512 2,782 2,175 2453 2,081 Electric 455 N.A. N.A. N.A. N.A. N.A. Oil-Fired (5) 121 111 84 56 56 63 Boilers (6) 368 370 N.A. N.A. N.A. N.A. Note(s): Source(s): 1) Includes exports and gas air conditioners (gas units <10,000 units/yr) and rooftop equipment. Excludes heat pumps, packaged terminal air

126

Air-Source Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

127

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02)• formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

128

Review of Residential Ventilation Technologies.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

129

Covered Product Category: Residential Air-Source Heat Pumps  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

130

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Broader source: Energy.gov [DOE]

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

131

Investigation of a Novel Air Source Heat Pump Test Platform.  

E-Print Network [OSTI]

??A flexible air source heat pump testing platform is being developed at the National Renewable Energy Centre that will have the advantages of both a… (more)

Shi, Yuan

2013-01-01T23:59:59.000Z

132

Heat Transfer from an Air-Cooled Rotating Disk  

Science Journals Connector (OSTI)

19 February 1974 research-article Heat Transfer from an Air-Cooled Rotating Disk J. M. Owen C...theoretical and experimental investigation into the heat transfer from a disk rotating close to a stator with a radial...

1974-01-01T23:59:59.000Z

133

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Yocum, "A Study of Indoor Air Quality," ~_Air Pollut. Contr.discusses the Indoor Air Quality research supported by theAssociation, "Community Air Quality Guides, Aldehydes," Am.

Cairns, Elton J.

2011-01-01T23:59:59.000Z

134

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

135

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network [OSTI]

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

136

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

considerations, implementation plans, and an initial evaluation of solar energy systems' potential air quality in state implementation plans for air quality improvement. · Analyze the potential effects of largescaleAir Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH

137

E-Print Network 3.0 - air transport safety Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

teex.orgitsi Code Enforcement Disaster... Management Electric Power Environmental Heating, Ventilation, and Air Conditioning Heavy Equipment Highway Source: Texas A&M...

138

STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS  

E-Print Network [OSTI]

STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.3 Air Side Heat Transfer Rates . . . . . . . . . . . . . . . . . . 43 3.5.4 Fluid Side Heat

139

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

Energy and air quality implications of passive stackemployer. Energy and air quality implications of passivean acceptable indoor air quality. Historically, U.S.

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

140

Impact of a task-ambient ventilation system on perceived air quality  

E-Print Network [OSTI]

2008. Comfort, perceived air quality, and work performanceon the perception of indoor air quality during immediate andassessments of indoor air-quality in five European

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - air source heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: vcmfiles electricity) for heating and air conditioning purposes Heat pumps became popular in :www.bge.c Heat pumps......

142

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

143

16 Heat Transfer and Air Flow in a Domestic Refrigerator  

E-Print Network [OSTI]

445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

Paris-Sud XI, Université de

144

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future, Vol.VIII-8-1 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-conditioning System Chunlei Zhang Suilin Wang Hongbing Chen...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

145

Corrosion of heat-recovery exchangers in swimming-pool-hall ventilation systems. Research report  

SciTech Connect (OSTI)

The report concludes an investigation of the corrosion resistance of heat-recovery exchangers operating in swimming-pool-hall atmospheres. An interim report was published in August 1981. The trends detected then have been confirmed and it is concluded that exchangers using copper for both tubes and fins have adequate corrosion resistance and can be expected to remain efficient and structurally sound for more than ten years. Aluminium is shown to be unsuitable as a fin material because of its susceptibility to localized dissimilar metal corrosion when in contact with the copper tubes. Some of the steel components in the heat recovery chamber are apt to corrode badly and need to be protected, or else made out of non-corrodible materials. It is also important to filter the incoming air to prevent the exchangers becoming contaminated by airborne detritus.

Bird, T.L.

1985-09-01T23:59:59.000Z

146

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

147

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect (OSTI)

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

148

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

149

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

150

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

to optimize indoor air quality and energy use. The resultsthe indoor air quality and energy use of passive stacks.of the improved air quality is energy consumption increases

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

151

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Indoor Air Quality Benefits and Energy Costs of MechanicalIndoor Air Quality Benefits and Energy Costs of MechanicalIndoor Air Quality Benefits and Energy Costs of Mechanical

Logue, J.M.

2012-01-01T23:59:59.000Z

152

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...  

Broader source: Energy.gov (indexed) [DOE]

of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. DOE EX Parte Memo.pdf More Documents & Publications 3rd Semi-Annual Report to...

153

Electrically Heated High Temperature Incineration of Air Toxics  

E-Print Network [OSTI]

In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

Agardy, F. J.; Wilcox, J. B.

154

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

Dao, K.

2013-01-01T23:59:59.000Z

155

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network [OSTI]

1) indoor pollutant source control, and 2) air cleaning.control is complicated by the large number and changing nature of indoor pollutant sources. Particle air

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

156

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Lurmann.2010. "Air pollution, health and economic benefits-health impact factors from the literature are used to quantify total harm attributable to indoor air pollution.

Logue, J.M.

2012-01-01T23:59:59.000Z

157

The impact of TXV heating on the performance of air-source heat pump in heating mode  

SciTech Connect (OSTI)

The paper discusses the strategy of TXV heating, which adds a limited amount of heat on the surface of TXV sensor, to achieve energy saving and low cost in air-source heat pumps. The TXV heating is able to retard the valve closing so as to boost energy saving in heating mode. The testing results demonstrate the appropriate TXV heating achieves a remarkable improvement in COP and thermal comfort. The required heating power is not more than 40w. The additional equipment cost of TXV heating is less than $20. Thus, the strategy of TXV heating is practical from the view of technology and economy.

Gao, Zhiming [ORNL

2010-01-01T23:59:59.000Z

158

Miniaturized Air to Refrigerant Heat Exchangers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Grenada, MS -- International Copper Association - New York, NY -- Wieland - Ulm, Germany -- Heat Transfer Technologies - Abington, PA DOE Funding: 1,500,000 Cost Share: NA...

159

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

160

Multifamily Ventilation - Best Practice?  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

162

DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS  

Broader source: Energy.gov [DOE]

The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in high-performance homes.  A critical aspect of...

163

Ventilating Existing Homes in the US Air Infiltration Review. 2010;31(2)  

E-Print Network [OSTI]

.energy.gov/buildings/building_america/)). In these new homes it was relatively simple to include air retarders in walls, floors or ceilings and to seal this in existing homes, however, presents a significantly tougher challenge. Air sealing has historically (e.g., in US DOE weatherization programs: http://apps1.eere.energy.gov/weatherization/wxtech_air_sealing

164

Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

Not Available

2011-02-11T23:59:59.000Z

165

E-Print Network 3.0 - air heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: air heat pumps...

166

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

167

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

heat rate estimated by the Edison Electric Institue for 1975). In addition, 9% electrical transmission-distribution losses

Cairns, Elton J.

2011-01-01T23:59:59.000Z

168

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia.  

E-Print Network [OSTI]

??Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house… (more)

Charoenvisal, Kongkun

2008-01-01T23:59:59.000Z

169

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump.  

E-Print Network [OSTI]

??The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump were investigated. The base case tests used a… (more)

Parker, Brandon DeWayne

2012-01-01T23:59:59.000Z

170

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

Critical Analysis of Nitrogen Dioxide Air Quality Standards.contaminants-. ;--- ---- nitrogen dioxide from gas stoves,buildings: nitrogen dioxide (N02), formaldehyde (HCHO), and

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

171

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Critical Analysis of Nitrogen Dioxide Air Quality Standards.22 Gaseous Emissions: Nitrogen Dioxide, Carbon Monoxide,3- 4 GASEOUS EMISSIONS: NITROGEN DIOXIDE, CARBON MONOXIDE,

Cairns, Elton J.

2011-01-01T23:59:59.000Z

172

Advanced Variable Speed Air-Source Integrated Heat Pump  

Broader source: Energy.gov (indexed) [DOE]

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

173

Advanced Variable Speed Air-Source Integrated Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

174

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

8 8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used elsewhere. 1) 2005 average stock age is for gas- and oil-fired steam and hot water boilers. Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels, January 2010, p. 10 for service and average lifetimes, and units to be replaced; ASHRAE, 1999 ASHRAE Handbook: HVAC Applications, Table 3, p. 35.3 for boilers service lifetimes; and

175

Indoor Air Is a Significant Source of Tri-decabrominated Diphenyl Ethers to Outdoor Air via Ventilation Systems  

Science Journals Connector (OSTI)

Four apartments in each building were selected randomly for air sampling and these contained household goods, electronic equipment, and furniture typical of Swedish households. ... The PBDE levels in Japan are comparable to those found in European countries. ...

Justina Awasum Björklund; Kaj Thuresson; Anna Palm Cousins; Ulla Sellström; Gunnel Emenius; Cynthia A. de Wit

2012-05-01T23:59:59.000Z

176

Why We Ventilate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

177

Ventilation of Electrical Substations  

Science Journals Connector (OSTI)

... THE type of construction used for substations is generally governed by requirements, for example, fire and air-raid precautions, which ... Electrical Engineers, F. Favell and E. W. Connon record their experiences in overcoming substation ventilation problems in particular cases. Adequate and suitably planned ventilation will maintain ...

1943-05-01T23:59:59.000Z

178

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

E-Print Network [OSTI]

predicted indoor air quality and energy consumption using aquality procedure (IAQP) that may result in lower VRs than the VRP, with associated energyquality procedure” (IAQP), with both objective and subjective components, intended to provide greater flexibility and potentially enable energy

Dutton, Spencer M.

2014-01-01T23:59:59.000Z

179

Air heating of passive houses in cold climates: Investigation using detailed dynamic simulations  

Science Journals Connector (OSTI)

Abstract The passive house (PH) standard was originally defined for Central Europe and has subsequently been applied to many cold climate countries. In these conditions, the relation between this standard and the air heating (AH) is not clear while both concepts are usually associated. Furthermore, the AH provides a way to simplify the space-heating distribution system. The present contribution investigates the feasibility of the AH concept in PH along with its challenges in terms of thermal dynamics: the magnitude of the AH temperature needed, the temperature difference between rooms, the impact of internal gains, the influence of thermal losses from ventilation ducts and the AH control. This is performed using detailed dynamic simulations (TRNSYS) on a typical detached house typology. Practically, four cold climate zones are considered as well as different insulation levels and construction materials. Results show limitations related to a centralized AH as well as provide guidelines for a consistent AH design in cold climates. In addition, a simple analytical method used for the design of German PH is tested and proved accurate enough to estimate the maximal AH temperature during the heating season.

Laurent Georges; Monica Berner; Hans Martin Mathisen

2014-01-01T23:59:59.000Z

180

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network [OSTI]

, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little...

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat and mass transfer of moist air in vertical channels  

SciTech Connect (OSTI)

Natural convection heat transfer in vertical open channel flows has been widely studied for various geometric configurations since it concerns a number of applications, ranging from the cooling of electronic equipment to the heating of buildings. This study examines energy transport associated with liquid film condensation or evaporation in natural convection flows driven by differences in density due to temperature and concentration gradients. The most common compositional gradient which is encountered in humid air is considered. A steady, laminar, Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical open plane channel. The influence of the species interdiffusion due to enthalpy difference between air and water vapor is considered first in the case of evaporation. It is shown that the species interdiffusion term is negligible even at moderate temperature differences. This study mainly investigates wall condensation of humid air and preliminary results are presented.

Desrayaud, G.; Garnier, V.; Lauriat, G.

1999-07-01T23:59:59.000Z

182

Residential Ventilation & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

183

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

184

E-Print Network 3.0 - air source heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air andor water is the source of thermal energy. Thermal energy is transferred from the heating... September 2000; accepted 19 December 2000 Abstract Hot air and hot water...

185

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump...

186

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus by the American Society of Heating, Refrigerating and Air- conditioning Engineers (ASHRAE). This standard does but about the environment in which they lived. Historically, people have ventilated buildings to provide

187

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

188

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

189

Register Closing Effects on Forced Air Heating System Performance  

SciTech Connect (OSTI)

Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

Walker, Iain S.

2003-11-01T23:59:59.000Z

190

E-Print Network 3.0 - air-source heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: air-source heat pumps...

191

Literature Review of Displacement Ventilation  

E-Print Network [OSTI]

) and Nielsen et al. (1988) showed the impact of supply diffusers whereby increasing the entrainment of room air can decrease the temperature gradient in the occupied zone. #0;? Two important parameters to evaluate the performance of displacement ventilation... of Ventilated Rooms, Oslo, Norway. Nielsen, P.V., Hoff, L., Pedersen, L.G. 1988. Displacement Ventilation by Different Types of Diffusers. Proceedings of the 9 th AIVC Conference, Warwick. Niu, J. 1994. Modeling of Cooled-Ceiling Air-Conditioning Systems Ph...

Cho, S.; Im, P.; Haberl, J. S.

192

Fetz Plumbing, Heating & Air Conditioning | Open Energy Information  

Open Energy Info (EERE)

Fetz Plumbing, Heating & Air Conditioning Fetz Plumbing, Heating & Air Conditioning Jump to: navigation, search Name Fetz Plumbing, Heating & Air Conditioning Address 115 Washington Street - P.O. Box 516 Place Urbana, Ohio Zip 43078 Sector Efficiency, Geothermal energy, Services, Solar Product Installation; Maintenance and repair Phone number 937-652-1136 Website http://fetzphc.com Coordinates 40.108862°, -83.757291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.108862,"lon":-83.757291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

194

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

195

A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools  

E-Print Network [OSTI]

of six air pollutants, Journal of the Air Pollution ControlAir Pollutants MAINTENANCE OR RENOVATION ACTIVITIES WITHOUT SUFFICIENT CONTROL

Daisey, Joan M.

2010-01-01T23:59:59.000Z

196

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon  

E-Print Network [OSTI]

1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 2 the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels. Unlike conventional air-source heat pumps, defrosting is carried out without stopping the heat production

Boyer, Edmond

197

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network [OSTI]

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

198

Whole Building Ventilation Systems  

Broader source: Energy.gov (indexed) [DOE]

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

199

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network [OSTI]

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

200

The impact of demand-controlled and economizer ventilation strategies on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

Brandemuehl, M.J.; Braun, J.E.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Broader source: Energy.gov (indexed) [DOE]

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Maximum of two rebates per household Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal System: $250 Air-Source Heat Pump: $150 Electric Water Heater: $75 - $125 Provider Kosciusko REMC Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters. For each purchase of an

202

Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Broader source: Energy.gov (indexed) [DOE]

Wabash County REMC - Residential Geothermal and Air-source Heat Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal: $750 Air Source Heat Pumps: $625 One rebate per house Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Air Source Heat Pumps: $125 - $625/ton Geothermal Heat Pumps: $150 - $750/ton Water Heater: $100 Provider Wabash County REMC Wabash Rural Electric Membership Cooperative (REMC) is a member-owned electric distribution organization that provides service to customers in north-central Indiana. To encourage energy efficiency, Wabash County REMC

203

University of Colorado Indoor Air Quality Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Image Courtesy of Ohio Image Courtesy of Ohio State University INDOOR AIR QUALITY Design Goals Design Goals Design Goals Design Goals Integrate technologically and economically innovative, low-energy strategies Minimize occupant distraction User-friendly controls Minimize pollutant sources Bio Bio Bio Bio- - - -S S S S ( ( ( (h h h h) ) ) ) ip ip ip ip indoor air quality features indoor air quality features indoor air quality features indoor air quality features Mechanical Systems Energy Recovery Ventilator Exhaust Fans Heating And Cooling Systems Passive Ventilation Low VOC materials Each of these features is described in more detail below. Mechanical Systems Energy Recovery Ventilator Knowing that our home has a tight envelope, due to our Bio-SIP construction, we needed to use mechanical ventilation to ensure suitable indoor air

204

Using EMCS Data to Document and Improve Air Handler Performance  

E-Print Network [OSTI]

Traditionally, energy monitoring and control systems (EMCS) have been used, as the name implies, to monitor and control heating, ventilating and air conditioning systems, however, this paper will identify other benefits of an EMCS. Recording EMCS...

Brightbill, E. L.; Rutt, J. P.

1998-01-01T23:59:59.000Z

205

NREL: Learning - Solar Process Heat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

206

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump  

E-Print Network [OSTI]

THE EFFECTS OF OUTDOOR HEAT EXCHANGER HYDROPHOBIC TREATMENT ON THE PERFORMANCE OF AN AIR SOURCE HEAT PUMP A Thesis by BRANDON DEWAYNE PARKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1995 Major Subject: Mechanical Engineering THE EFFECTS OF OUTDOOR HEAT EXCHANGER HYDROPHOBIC TREATMENT ON THE PERFORMANCE OF AN AIR SOURCE HEAT PUMP A Thesis by BRANDON DEWAYNE PARKER Submitted...

Parker, Brandon DeWayne

2012-06-07T23:59:59.000Z

207

Dynamic modeling of an integrated air-to-air heat pump using Modelica  

Science Journals Connector (OSTI)

Heat pump systems have gained significant market shares in Europe recently. The control strategy is an asset for the efficient operation of these thermodynamic systems; especially with compact integrated components. The predictive control, which allows fast system stabilization, is based on the description of the system physical behavior. Thus, dynamic modeling is needed for the development of such control. The model has to represent the system response to usual external perturbations met during current operation such as the variation of air temperature and air mass flow rate. The aim of this paper is to present a dynamic model of a thermodynamic system developed in the Dymola environment, which is an object-oriented modeling environment. The heat-pump components are created separately as individual objects, and then connected to form the system. The model of each component is described and the responses to different perturbations are detailed. Simulation results are compared to test results in order to validate the model.

S. Mortada; A. Zoughaib; D. Clodic; C. Arzano-Daurelle

2012-01-01T23:59:59.000Z

208

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

209

#AskEnergySaver: Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on how ventilation and air leakage impact a home's energy use. 1. How can I recover my loss heat from my furnace exhaust? -- from @DezGardner007 on Twitter IW: The simplest way...

210

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

211

Weatherking Heating & Air conditioning | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Weatherking Heating & Air conditioning Jump to: navigation, search Name Weatherking Heating & Air conditioning Address 51 Meadow Lane Place Northfield, Ohio Zip 44067 Sector Buildings, Efficiency, Geothermal energy, Renewable Energy, Services Product Business and legal services; Energy audits/weatherization; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair; Retail product sales and distribution Phone number 330-908-0281 Website http://www.weatherking1.com Coordinates 41.3340869°, -81.530299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3340869,"lon":-81.530299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network [OSTI]

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

213

Short communication Optimization of hybrid ground coupled and air source heat pump systems  

E-Print Network [OSTI]

Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

Fernández de Córdoba, Pedro

214

Mean and Variability of Air-Sea Heat Fluxes in the Indian Ocean  

E-Print Network [OSTI]

-sea heat Fluxes) Project: blended product planned activity: daily, 1º-grid, mid 1950's ­ present currently available: daily, 1º-grid, 1988-2003 #12;OAFlux (Objectively Analyzed Air-sea Heat Fluxes) For the GlobalMean and Variability of Air-Sea Heat Fluxes in the Indian Ocean Lisan Yu Woods Hole Oceanographic

Yu, Lisan

215

Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in  

E-Print Network [OSTI]

upper respiratory symptoms, cough, eye symptoms, fatigue orof breath, or chest tightness); cough; upper respiratory (atrespiratory symptoms, cough, and eye symptoms. Calibration

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2007-01-01T23:59:59.000Z

216

Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in  

E-Print Network [OSTI]

cooling units (e.g. , fan coil units) in office buildingsinduction units, fan coil units, individual room packaged ACsystems, cooling tower, fan coil unit, and terminal units.

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2007-01-01T23:59:59.000Z

217

Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder  

SciTech Connect (OSTI)

BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

Kerrigan, P.

2014-03-01T23:59:59.000Z

218

Reducing Ventilation Energy Demand by Using Air-to-Earth Heat Exchangers  

Science Journals Connector (OSTI)

For the cases where the duct spacing was investigated, results showed that the outlet temperature of the earth ducts changed only marginally for the three cases simulated. The energy saving per duct showed a slig...

Hans Havtun; Caroline Törnqvist

2013-01-01T23:59:59.000Z

219

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

control should be the first priority instead of dilution of pollutants by ventilation or by cleaning the air.air quality, could better provide healthful indoor environments, and also reward designers and owners who control indoor pollutantsair quality, could better document healthful indoor environments, and also reward designers and owners who control indoor pollutants

Mendell, Mark

2014-01-01T23:59:59.000Z

220

Scale model studies of displacement ventilation  

E-Print Network [OSTI]

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

222

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

223

Energy analysis of a personalized ventilation system in a cold climate: influence of the supplied air temperature  

E-Print Network [OSTI]

Figure 2). The supply temperature and its control strategyAir supply Control strategy of temper. a temperature the aircontrol over the temperature of the supplied personalized air, the building manager has to define the air supply temperature (

Schiavon, Stefano; Melikov, Arsen

2008-01-01T23:59:59.000Z

224

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...  

Broader source: Energy.gov (indexed) [DOE]

Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis...

225

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network [OSTI]

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

226

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

227

Energy consumption and optimization of internally cooled/heated liquid desiccant air-conditioning system: A case study in Hong Kong  

Science Journals Connector (OSTI)

Abstract LDAC (liquid desiccant air-conditioning system) is promising for reducing the energy consumption, and improving the indoor air quality. In this paper, the operation performance of LDAC with internally cooled/heated dehumidifier/regenerator was simulated and optimized. The cooling tower and solar collectors were employed as the cooling/heating source. Four nested iteration loops were developed and solved for system modeling. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. Results show that with the increase of solar collector area, the electricity consumption of AC (air-conditioning systems) system reduced by 11–35% in original system, but only a part of dehumidification demand was handled with liquid desiccant ventilation, which led to a low chiller COP (coefficient of performance). By adding a cooling coil for the solution entering dehumidifier, the electricity saving effectively increased to 22–47%, while the heat demand for regeneration also increased by 17%. So, a heat exchanger between water leaving regenerator and solution leaving dehumidifier was introduced. With the lower thermal requirement (reduced by 20%) and higher solar fraction (increased from 30 to 40%), the saving further increased to 29–49%, and the required collector area obviously reduced by 50–60% for the similar energy saving purpose.

Ronghui Qi; Lin Lu

2014-01-01T23:59:59.000Z

228

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

229

Ventilation, temperature, and HVAC characteristics in small and medium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

230

Building ventilation and acoustics for people who don’t know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

231

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect (OSTI)

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

232

Development of Diagnostic Rules for a Dry Bulb Economizer Mixed Air Loop  

E-Print Network [OSTI]

Diagnostics of heating, ventilating, and air-conditioning (HVAC) systems is becoming increasingly important because of the rising cost of operation and maintenance of HVAC systems. At the same time, computer costs are tumbling allowing their use...

Underwood, D.

1990-01-01T23:59:59.000Z

233

Whole-House Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

234

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

improving control of supply air temperature. This benefitloss of control of the supply air temperature from thecontrols to a constant plenum inlet temperature, thereby producing a supply temperature

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

235

Why We Ventilate - Recent Advances  

Broader source: Energy.gov (indexed) [DOE]

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

236

Energy-efficient heat recovery systems for air conditioning of indoor swimming pools  

SciTech Connect (OSTI)

Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

Elsayed, M.M.; El-Refaee, M.M. [Kuwait Univ., Safat (Kuwait). Mechanical Engineering Dept.; Borhan, Y.A. [Gulf Engineering Co., Safat (Kuwait)

1997-12-31T23:59:59.000Z

237

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

238

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

239

Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations  

SciTech Connect (OSTI)

Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

2014-09-01T23:59:59.000Z

240

Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design  

E-Print Network [OSTI]

11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary air  

E-Print Network [OSTI]

Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary;1 A wall heat transfer correlation for the baffled- rotary kilns with secondary air flow and recycled industrial applications suggests examining the heat transfer phenomena in order to improve the multi

Boyer, Edmond

242

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,  

E-Print Network [OSTI]

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

Kandlikar, Satish

243

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network [OSTI]

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

244

A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools  

E-Print Network [OSTI]

from the California Healthy Building Study, Phase 1.ASHRAE IAQ 91 Healthy Buildings, Atlanta, GA, ASHRAE, 228-1 of the California Healthy Building Study. Indoor Air, 3:

Daisey, Joan M.

2010-01-01T23:59:59.000Z

245

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Enhancement of Heat Transfer in an Artificially Roughened Solar Air Heater  

E-Print Network [OSTI]

Abstract: solar air heater is one of the basic equipment through which solar energy is converted into thermal energy. Solar air heaters, because of their simple in design, are cheap and most widely used collection devices of solar energy. The thermal efficiency of a solar air heater is significantly low because of the low value of the convective heat transfer coefficient between the absorber plate and the air, leading to high absorber plate temperature and high heat losses to the surroundings. This paper presents the study of heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD). The effect of Reynolds number on Nusselt number is investigated. A commercial finite volume package ANSYS FLUENT 12.1 is used to analyze and visualize the nature of the flow across the duct of a solar air heater.

unknown authors

247

Exergy efficiency of a counterflow air/air heat exchanger with vapour condensation  

Science Journals Connector (OSTI)

The exergy efficiency of a counterflow hot moist air/...?1 for the temperature and humidity ratio of hot moist air respectively are considered. Constant ambient air conditions of 20°C and 0.01 kg·kg?1 were assume...

J. Jilek; J. H. Young

1993-01-01T23:59:59.000Z

248

Solar Space Heating with Air and Liquid Systems  

Science Journals Connector (OSTI)

...several thousand solar space heating systems...can be supplied by solar energy delivered from flat-plate...liquid collection and storage systems, demand...Annual costs of solar heating equipment...current values of energy savings, but fuel...

1980-01-01T23:59:59.000Z

249

Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings  

E-Print Network [OSTI]

units hot water and space heating from flue-gas, fireplaces industrial process heat recycle utility boiler preheater aircraft wing deicing solar energy collectors warming carburetors & intakes geothermal energy recovery Sterling engines...HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT...

Cooper, J. T.

1996-01-01T23:59:59.000Z

250

Fouling of HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and Van P. Carey  

E-Print Network [OSTI]

Fouling of heat exchangers used in heating, ventilating, and air conditioning (HVAC) systems is important contributor to overall energy use and peak electric demand. Furthermore, the location of heat exchangers in HVAC systems means that if bioaerosols containing bacteria, fungi, and viruses deposit on heat

251

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network [OSTI]

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

252

Swimming pools as heat sinks for air conditioners: California feasibility analysis  

Science Journals Connector (OSTI)

Earlier studies used field testing of swimming pool temperatures to validate a mathematical model for predicting the temperature of an unheated pool. Combining those results with manufacturers’ data on the performance of vapor-compression air conditioners as a function of heat rejection temperature, the analyses in the paper suggest that rejecting air conditioning heat to a swimming pool can save approximately 25–30% of single-family residential cooling electricity use and reduce cooling electricity demand during peak conditions by 30–35%, as compared to using the same compressor to reject the heat to ambient air. The savings is expected to vary depending on the severity of the climate, as well as the pool temperature experienced during the summer. The original model was refined so as to accommodate air-conditioner heat rejection to predict pool temperatures based on weather data, pool size, shading of the pool, and air-conditioner heat rejection to the pool. The results of an experimental validation of the augmented pool thermal model are presented here. In addition, the model of a pool-coupled air conditioning system was used to develop a design tool for determining the pool size needed to absorb realistic heat rejection from air conditioners in various California climate zones.

Curtis Harrington; Mark Modera

2013-01-01T23:59:59.000Z

253

Covered Product Category: Residential Air-Source Heat Pumps ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

excluded. Specify or select products that are ENERGY STAR-qualified. To find qualified products, go to the Consortium for Energy Efficiency (CEE) and Air Conditioning and...

254

A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools  

E-Print Network [OSTI]

after which the filters in the HVAC systems were sprayedPoor HVAC Condensation Drain Poor Access to Filters, etc.Low Filter Efficiency Poor Outdoor Air Intake Location HVAC

Daisey, Joan M.

2010-01-01T23:59:59.000Z

255

An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric-resistance water  

E-Print Network [OSTI]

- ter than that of the system using electric resistance water heating. An analytical tinclel predicts of a high-efficiency heat pump'/electric-resistance .waterheater (IIP/IZR) system. TEST FACILITIES#12;/ ABSTRACT An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric

Oak Ridge National Laboratory

256

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

257

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers to Halt Sales of Heat Pumps and Air Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

258

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Air-Source Heat Pumps Residential Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

259

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

260

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Broader source: Energy.gov (indexed) [DOE]

Air-Source Heat Pumps Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Co ntrol Systems for Energy Efficiency and Comfort, Vol. V-5-2 Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems Lianyou LI Zhihong ZHANG Yong...

Li, L.; Zhang, Z.; Sun, Y.; Li, D.; Xie, H.

2006-01-01T23:59:59.000Z

262

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI  

Broader source: Energy.gov [DOE]

These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy’s (DOE) notice in the August 8, 2012 Federal Register...

263

Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations  

SciTech Connect (OSTI)

This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

2013-01-01T23:59:59.000Z

264

E-Print Network 3.0 - air conditioning heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water. FIND... : Determine which condition feels colder. Contrast these results with a heat loss of 30 Wm2 under ormal room... in the case f air flow.o ANALYSIS: The hand will...

265

Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity  

Science Journals Connector (OSTI)

The effect of electric field on the performance of automobile radiator is investigated in this work. In this experiment, a louvered fin and flat tube automobile radiator was mounted in a wind tunnel and there was heat exchange between a hot water stream circulating inside the tube and a cold air stream flowing through the external surface. The electric field was supplied on the airside of the heat exchanger and its supply voltage was adjusted from 0 kV to 12 kV. From the experiment, it was found that the unit with electric field pronounced better heat transfer rate, especially at low frontal velocity of air. The correlations for predicting the air-side heat transfer coefficient of the automobile radiator, with and without electric field, at low frontal air velocity were also developed and the predicted results agreed very well with the experimental data.

S. Vithayasai; T. Kiatsiriroat; A. Nuntaphan

2006-01-01T23:59:59.000Z

266

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network [OSTI]

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

267

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

SciTech Connect (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

268

Breathing HRV by the Concept of AC Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

269

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems  

E-Print Network [OSTI]

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002 of a corresponding low-energy house have been per- formed for a full heating period. They reproduce measurements from, air quality, control of humidity) [1, 2]. In such houses, the ventilation and infiltration losses

Gieseler, Udo D. J.

270

HEAT exchanger design for hot air Ericsson-Brayton piston engine  

Science Journals Connector (OSTI)

One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization the small machines have to be used. The article deals with the principle of hot-air engines their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

Peter ?ur?anský; Richard Lenhard; Jozef Janda?ka

2013-01-01T23:59:59.000Z

271

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of Mixing on Acceptable Indoor Air Quality in Homes Impacts of Mixing on Acceptable Indoor Air Quality in Homes Title Impacts of Mixing on Acceptable Indoor Air Quality in Homes Publication Type Journal Article LBNL Report Number LBNL-3048E Year of Publication 2010 Authors Sherman, Max H., and Iain S. Walker Journal HVAC & Research Journal Keywords air distribution, indoor air quality, mechanical ventilation, mixing, other, resave, residential ventilation, ventilation effectiveness Abstract Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall

272

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

273

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification  

E-Print Network [OSTI]

manufacturer. The operation of the high pressure control system, the transitions between heating, cooling, heating and cooling energies using the same electric energy input at the compressor. Chua et al. [31 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1

Boyer, Edmond

274

Design of industrial ventilation systems  

SciTech Connect (OSTI)

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

275

Total analysis of cooling effects of cross-ventilation affected by microclimate around a building  

Science Journals Connector (OSTI)

This study aims to develop a simulation system for evaluating the passive cooling effects, such as cross-ventilation, solar shading by trees, etc. Since the passive cooling effects are strongly affected by the spatial distributions of airflow, air temperature and radiative heat transports around a building, the microclimate around a building should be accurately predicted for this type of simulations. In this study, convective and radiative heat transports around buildings are analyzed by CFD (computational fluid dynamics) and radiation computations. Furthermore, the heat load calculation with the program “TRNSYS” was carried out, using the values of the cross-ventilation rates predicted by CFD computation and incoming solar radiation onto the building walls under the shade of trees obtained by the radiation computation as boundary conditions. Indoor velocity and indoor air temperature obtained by the simulation system developed here showed generally good agreement with measured data.

Akashi Mochida; Hiroshi Yoshino; Satoshi Miyauchi; Teruaki Mitamura

2006-01-01T23:59:59.000Z

276

Development of a Residential Integrated Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

277

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness  

E-Print Network [OSTI]

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U Laboratory, 1 Cyclotron Road, Berkeley 94720, CA, USA. (phone:+1 510 486 4022, fax: +1 510 486 6658, email on analysis methods for hybrid ventilation system is limited. #12;2 A. Buonomano, M. Sherman, USA: Analysis

278

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network [OSTI]

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

279

A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure  

E-Print Network [OSTI]

exchanger to verify the return air ratio. In this comparison, the recovered energy from the return air was equalized with the heat transfer of the heat exchanger model. An example of this methodology was used to simulate the HVAC system with a heat... to be measured for further investigation to verify the AirModel simulation. This method can be applied in Energy Plus and other simulation tools/software to simulate the building exhaust energy recovery. Acknowledgements The work of this paper...

Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

2005-01-01T23:59:59.000Z

280

Improved heat tolerance in air drives the recurrent evolution of air-breathing  

Science Journals Connector (OSTI)

...current geographical distribution of the 300 genera...high environmental temperatures in the tropics. We...while extreme air temperatures or sun exposure would still...degrees below ambient temperature by means of transpiration...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method and apparatus for operating a self-starting air heating system  

DOE Patents [OSTI]

A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

Heinrich, Charles E. (Mentor, OH)

1983-12-06T23:59:59.000Z

282

Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program  

Broader source: Energy.gov [DOE]

This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

283

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect (OSTI)

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

284

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

285

Combustion air preheating for refinery heaters using plate-type heat exchangers  

SciTech Connect (OSTI)

Combustion air preheating by recovering heat from combustion gases is a cost effective method of increasing the overall thermal efficiency of the refining and petrochemical processes. This paper presents the advantages of the plate-type air preheaters made of smooth plates without extended surfaces. These exchangers provide a relatively high heat transfer coefficient at a relatively low pressure drop, resulting in a flexible and compact design. The air preheater design can easily be integrated into the heater design. Top mounting with natural draft becomes possible for many applications, eliminating the need for I.D. fan and expensive ductwork. The economical extent of heat recovery function of the fuel fired is presented based on practical experience. The use of porcelain enameled (glass coated) plates and of stainless steel materials allows the operation of the air preheater below the acidic and water dew point. Finally the paper presents the experience of the Canadian refineries and petrochemical plants with plate-type heat exchangers used for combustion air preheating.

Dinulescu, M.

1987-01-01T23:59:59.000Z

286

Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method  

E-Print Network [OSTI]

to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

Wen, Y.; Zhao, F.

2006-01-01T23:59:59.000Z

287

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network [OSTI]

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

288

Heat transfer and pressure drop for air flow through enhanced passages  

SciTech Connect (OSTI)

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

289

Heat transfer and pressure drop for air flow through enhanced passages. Final report  

SciTech Connect (OSTI)

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

290

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Energy Savers [EERE]

to provide needed ventilation under drier summer and winter conditions and reduce the air introduced during periods of peak space conditioning. For more information, see the...

291

Assessment of a Solar Assisted Air Source and a Solar Assisted Water Source Heat Pump System in a Canadian Household  

Science Journals Connector (OSTI)

This paper presents an assessment of two solar assisted heat pump systems integrated into an air distribution system in three different 210 m2 single detached residential houses in Montreal, Canada. The housing types considered are a 1980's house, an energy efficient house and a “net zero ready” house. The advanced heat pump systems considered in the analysis focused on coupling solar energy on the evaporator side of an air source and water source heat pumps to improve performance compared to a standard air source heat pump and provide an alternative to a costly ground source heat pump system. The annual energy consumption and utility cost of the solar assisted heat pump systems were compared to a market available air source heat pump, a ground source heat pump system as well as the typical reference housing heating and cooling system. The results predicted that a solar assisted air source heat pump has a comparable capital cost to a ground source heat pump system in all housing types and the highest energy savings for a “net zero ready” house of 34% compared to the base case. The solar assisted water source heat pump did not yield interesting results, as the solar assisted air source heat pump demonstrated improved energy savings and lower capital costs in all housing types considered. Comparing the 20 year life cycle costs of the solar assisted heat pump systems to the base case, only in the 1980's housing archetype did the solar assisted air source heat pump system demonstrate a lower life cycle cost than the base case. A standard air source heat pump yielded the lowest life cycle cost in the 1980's and energy efficient house considered and the reference base case system had the lowest life cycle cost in the net zero ready house considered.

Martin Kegel; Justin Tamasauskas; Roberto Sunye; Antoine Langlois

2012-01-01T23:59:59.000Z

292

Hot gas defrosting method for air-source transcritical CO2 heat pump systems  

Science Journals Connector (OSTI)

Abstract When the air-source heat pump systems operate at low ambient temperatures in winter, frost forms on the coil surface of the outdoor evaporators. The frost substantially affects the operating performance and energy efficiency of heat pump systems, and hence periodic defrosting is essential. In this study, several defrost methods are presented to look for a candidate for air-source transcritical CO2 heat pump systems. The hot gas method proves to be more suitable among other defrosting methods for transcritical CO2 heat pump systems. To validate its reliability and rationality, an air-source transcritical CO2 heat pump water heater was built in a climatic laboratory. Through the experiments, the dynamic process of temperature and pressure were obtained to demonstrate the hot gas defrosting characteristics and system cycle. The hot gas defrosting cycle in the p–h diagram was also validated by experiment results. Meanwhile, instant defrosting images were captured to record the dynamic defrosting process. The defrosting process lasted 10 min and defrosting efficiency was 34.8% for hot gas defrosting method. The effectiveness and applicability of hot gas defrosting method for CO2 heat pump water heater is validated by experiments.

Bin Hu; Dongfang Yang; Feng Cao; Ziwen Xing; Jiyou Fei

2015-01-01T23:59:59.000Z

293

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

294

Heat transfer characteristics of laminar methane/air flame impinging normal to a cylindrical surface  

SciTech Connect (OSTI)

An experimental study has been conducted to determine the heat transfer characteristics of methane/air laminar flames impinging normal to a cylindrical surface. Effects of variations in the values of Reynolds number (Re = 600-1300), equivalence ratio ({phi} = 0.8-1.3), dimensionless separation distance (H/d = 1-5), and burner diameter to cylinder diameter ratio (d/D = 0.0538-0.1076) have been investigated. Three important configurations, viz., flame inner reaction zone far away, just touching and intercepted by the impingement surface, were examined in detail. High stagnation point heat fluxes were obtained when tip of the flame inner reaction zone just touched the target surface. Stagnation point heat fluxes were either zero or negative when the inner reaction zone was intercepted by the impingement surface. An off-stagnation peak in heat flux was obtained at moderate separation distances above the flame tip. Both stagnation point and peak heat fluxes increased with Re when the inner reaction zone length was less than the separation distance. Heat fluxes in the wall-jet region were high at high Re. Maximum heat fluxes were obtained for initially fuel-rich mixture conditions due to entrainment of the surrounding air. Smaller burner diameters produced high heat flux at the stagnation region for fixed Reynolds number and opposite trends were seen in the wall-jet region. A secondary rise in stagnation point heat flux was obtained at larger separation distances. This secondary rise in heat flux was quite significant for larger burner diameters and at low flow rates. Correlations were developed for stagnation point heat flux. Results were also compared with flat plate under identical operating conditions. (author)

Chander, Subhash; Ray, Anjan [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110 016 (India)

2007-11-15T23:59:59.000Z

295

Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation  

E-Print Network [OSTI]

Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation of surface flux adjustments made to the initial NCEP re-analysis-1 products. During the state estimation the boundary current regions, they are consistent with known large-scale deficiencies in the NCEP products

296

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

297

Office Building Uses Ice Storage, Heat Recovery, and Cold-Air Distribution  

E-Print Network [OSTI]

Ice storage offers many opportunities to use other tcchnologies, such as heat recovery and cold-air distribution. In fact, by using them, the designer can improve the efficiency and lower the construction cost of an ice system. This paper presents a...

Tackett, R. K.

1989-01-01T23:59:59.000Z

298

Development of a High Performance Air Source Heat Pump for the US Market  

SciTech Connect (OSTI)

Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

2011-01-01T23:59:59.000Z

299

Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions  

E-Print Network [OSTI]

strategy is designed to track a desired demand curve and to ensure a stable and smooth response. I for a large fraction of electric demand. HVAC (Heating, Ventilation and air conditioning) systems and water heaters are examples of TCLs. They use local hysteresis control to maintain either air or water

Zhang, Wei

300

Extremum seeking control for efficient and reliable operation of air-side economizers  

Science Journals Connector (OSTI)

Economizers have been recognized as a class of energy-saving devices for heating, ventilating and air conditioning (HVAC) systems that may increase the energy efficiency by taking advantage of outdoor air during cool or cold weather. There has been a ...

Pengfei Li; Yaoyu Li; John E. Seem

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - air monitoring adjacent Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ventilation rate on perceived quality of air polluted by different materials, small - scale and full - scale... the ventilation required for acceptable indoor air...

302

Alabama Power - Residential Heat Pump and Weatherization Loan Programs |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Power - Residential Heat Pump and Weatherization Loan Alabama Power - Residential Heat Pump and Weatherization Loan Programs Alabama Power - Residential Heat Pump and Weatherization Loan Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Windows: $350 Program Info State Alabama Program Type Utility Loan Program Rebate Amount Not specified Provider Alabama Power Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to finance an air

303

Advanced Controls and Sustainable Systems for Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

304

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

305

ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

306

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

307

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

308

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

309

13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)  

Reports and Publications (EIA)

In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

2005-01-01T23:59:59.000Z

310

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network [OSTI]

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort... & Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

311

2014-10-30 Issuance: Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information  

Broader source: Energy.gov [DOE]

Energy Conservation Program: Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information

312

Numerical Analysis of Heat and Moisture Transfer in Underground Air-conditioning Systems  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-6-3 Numerical Analysis of Heat and Moisture Transfer in Underground Air-conditioning Systems Qin Wang, Xiaoping Miao, Baoyi Cheng, Liangkai Fan EIEC, PLA...]. Youming Chen, Shengwei Wang, Ling Zhang. Application of System Identification of Hygrothermal Process in Buildings [M]. Construction and Industry Publishing Company in China, Beijing, 2004. [7]. J.R. Philip, D.A. de Vries. Moisture Movement in Porous...

Wang, Q.; Miao, X.; Cheng, B.; Fan, L.

2006-01-01T23:59:59.000Z

313

2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 28, 2014.

314

Optimal supply air temperature with respect to energy use in a variable air volume system  

Science Journals Connector (OSTI)

In a variable air volume (VAV) system with 100% outdoor air, the cooling need in the building is satisfied with a certain air flow at a certain supply air temperature. To minimize the system energy use, an optimal supply air temperature can be set dependent on the load, specific fan power (SFP), chiller coefficient of performance, outdoor temperature and the outdoor relative humidity. The theory for an optimal supply air temperature is presented and the heating, ventilation and air-conditioning (HVAC) energy use is calculated depending on supply air temperature control strategy, average U-value of the building envelope and two outdoor climates. The analyses show that controlling the supply air temperature optimally results in a significantly lower HVAC energy use than with a constant supply air temperature. The optimal average U-value of the building envelope is in practise mostly zero.

Fredrik Engdahl; Dennis Johansson

2004-01-01T23:59:59.000Z

315

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

316

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

317

An experimental investigation of an inclined passive wall solar chimney for natural ventilation  

Science Journals Connector (OSTI)

Abstract Ongoing investigations into solar chimney development have resulted in constantly evolving new designs. In this study, experiments are carried out with an inclined passive wall solar chimney (IPWSC) model with a uniform heat flux on the active (absorptive) wall. The effectiveness of this design has been examined for the heat flux range of 100 W/m2–500 W/m2 with a fixed base air gap width of 0.1 m and inclination angles of the passive wall in the range of 0–6 degrees. The experimental results show that the inclination angle of the passive wall has no significant effect on the temperature distribution across the air gap width and along the chimney height. On the other hand, the averaged air flow velocity across the air gap width is strongly affected by the inclination angle. The experimental results also show that the IPWSC with 0.7 m absorber height and 0.1 m air gap width at an inclination angle of 6° and input heat flux of 500 W/m2 can produce sufficient ventilation for a 27 m3 room based on ASHREA standards. Further, the present experimental results show that the IPWSC design can significantly improve the ventilation performance of a solar chimney in comparison to the conventional chimney design with vertical passive wall configuration. The experimental results are supported by flow visualization experiments and are consistent with scaling predictions.

Rakesh Khanal; Chengwang Lei

2014-01-01T23:59:59.000Z

318

Frequency domain and finite difference modeling of ventilated concrete slabs and comparison with field measurements: Part 1, modeling methodology  

Science Journals Connector (OSTI)

Abstract This paper is the first of two papers that focus on the thermal modeling of building-integrated thermal energy storage (BITES) systems using frequency response (FR) and lumped-parameter finite difference (LPFD) techniques. Structural/non-structural building fabric components, such as ventilated concrete slabs (VCS) can actively store and release thermal energy effectively by passing air through their embedded air channels. These building components can be described as ventilated BITES systems. To assist the thermal analysis and control of BITES systems, modeling techniques and guidelines for FR and LPFD models of VCS are presented in this two-part paper. In this first part, modeling techniques for FR and LPFD approaches based on network theory are presented. A method for calculating the heat transfer between flowing air and ventilated components is developed for these two approaches. Discretization criteria for explicit LPFD models are discussed. For the FR approach, discrete Fourier series in complex frequency form are used to represent the boundary excitations. In the treatment of heat injection from the flowing air as internal source in the VCS, network techniques such as Thévenin theorem, heat flow division, and Y-diakoptic transform are employed. The techniques presented in this paper are applicable to other BITES with hydronic or electric charging/discharging systems. With the FR techniques, model-based control strategies based on transfer functions can be readily developed.

Yuxiang Chen; Andreas K. Athienitis; Khaled E. Galal

2013-01-01T23:59:59.000Z

319

Reduction in air emissions attainable through implementation of district heating and cooling  

SciTech Connect (OSTI)

District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

1996-12-31T23:59:59.000Z

320

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network [OSTI]

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

E-Print Network [OSTI]

columns indicate the energy and cost savings for demandand class size. (The energy costs of classroom ventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

322

Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant  

Science Journals Connector (OSTI)

Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and...

Xiufeng Gao; Chengwei Zhang; Jinjia Wei; Bo Yu

2009-09-01T23:59:59.000Z

323

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

E-Print Network [OSTI]

Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-01-01T23:59:59.000Z

324

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network [OSTI]

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

325

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Sherman, Max H.

2014-01-01T23:59:59.000Z

326

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

327

Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration  

E-Print Network [OSTI]

Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning Finned tube adsorber bed Specific cooling power Adsorber bed to adsorbent mass ratio a b s t r a c t Adsorber bed design strongly affects the performance of waste-heat driven adsorption cooling systems (ACS

Bahrami, Majid

328

Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41  

SciTech Connect (OSTI)

Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

Baxter, Van D [ORNL; Groll, Dr. Eckhard A. [Purdue University, Ray W. Herrick Laboratories; Shen, Bo [ORNL

2014-01-01T23:59:59.000Z

329

An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry  

SciTech Connect (OSTI)

In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

2004-01-30T23:59:59.000Z

330

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

331

Building America Top Innovations Hall of Fame Profile … Attic Air Sealing Guidelines  

Broader source: Energy.gov (indexed) [DOE]

Terminology Terminology Air Barrier Material (ABM) --- A does not allow air to pass throu plywood/OSB, foam board, duc lumber. Backing --- Any material that s be sprayed so as to provide an glass batts. Baffle (B) --- Manufactured chu direct ventilation air flow up an foam board or cardboard. Thermal Blocking --- Any rigid heat sources like chimneys or metal and gypsum board. Fasteners --- Staples, screws o

332

Comparative performance evaluation of cascaded air-source hydronic heat pumps  

Science Journals Connector (OSTI)

Abstract The results are reported of an investigation of the effects of cascading air-source heat pumps on performance for hydronic residential systems. Three heat pump systems are modeled as single-stage, single-refrigerant cascaded, and two-refrigerant cascaded. Energy and exergy analyses are performed, and a comparative performance analysis is carried out, considering energy efficiency, refrigerant mass flow rates, evaporator pressure, exergy efficiency, and several other criteria. Three sets of source and supply temperatures, representing different climates and different water sink systems (low, medium and high temperature), are used to provide more comprehensive behavior assessments of the systems. Additionally, the optimum intermediate pressure of the cascaded systems for all working temperature pairs is found for the highest energetic COP and exergetic COP. Compared to a single stage heat pump, cascading improves the overall energy efficiency of the system for low-ambient temperatures, but not for high-ambient temperatures. Although this improvement is minor, the exergetic COP is increased by 67% for the single refrigerant cascaded system and 70% for a two-refrigerant cascaded system, at low ambient temperatures. Using refrigerant R404A in the low-pressure cycle marginally improves the energetic COP of the cascaded heat pump, but increases the evaporator working pressure, making it possible to use smaller compressors. However, the overall refrigerant mass flow rates increase with cascading. The two cascaded systems have higher exergy destructions (by almost four times) compared to the single stage system, mainly due to having more components, including an intermediate heat exchanger. Also, cascading shifts the major exergy destruction centers from the compressors and expansion valves to the evaporators. A comparison of cascaded and single-stage heat pumps shows that the exergy analysis results exhibit a different trend than energy analysis results with source and supply temperatures, highlighting the advantages of exergy methods in determining if cascading is appropriate for a given application.

R. Soltani; I. Dincer; M.A. Rosen

2015-01-01T23:59:59.000Z

333

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

2014-01-01T23:59:59.000Z

334

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

climates, annual electricity consumption of UFAD is alwaysso the cooling electricity consumption has become importantsummers, the electricity consumption for air conditioning

Yu, Jong Keun

2010-01-01T23:59:59.000Z

335

Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

Not Available

2014-04-01T23:59:59.000Z

336

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

337

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network [OSTI]

columns indicate the energy and cost savings for  demand class size.   (The energy costs  of classroom ventilation Total Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

338

Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe  

E-Print Network [OSTI]

We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

McCarthy, Matthew

339

Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool  

Science Journals Connector (OSTI)

Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1 °C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967.

Jonathan Woolley; Curtis Harrington; Mark Modera

2011-01-01T23:59:59.000Z

340

Indoor Air Quality Plan Page 1 of 5 Environmental Health and Safety Original: December 15, 2007  

E-Print Network [OSTI]

are in place for heating, ventilation and air conditioning systems (HVAC) systems in this workplace. Damaged) the following is completed on every unit: a) Filters are changed. b) System is checked for proper operation. c and cleaned as needed. Most campus HVAC equipment, other than individual residence hall rooms, is remotely

Rainforth, Emma C.

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE/EA-1673: Environmental Assessment for Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment (July 2009)  

Broader source: Energy.gov (indexed) [DOE]

3 3 Environmental Assessment for 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment July 2009 8-i CHAPTER 8. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 8.1 INTRODUCTION ............................................................................................................... 8-1 8.2 AIR QUALITY ANALYSIS ............................................................................................... 8-1 8.3 AIR POLLUTANT DESCRIPTIONS ................................................................................ 8-1 8.4 AIR QUALITY REGULATIONS ...................................................................................... 8-3

342

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

343

2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration  

Broader source: Energy.gov [DOE]

This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

344

Ventilation for an enclosure of a gas turbine and related method  

DOE Patents [OSTI]

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

345

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network [OSTI]

indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust

346

Hysteresis effects in hybrid building ventilation  

E-Print Network [OSTI]

Cross- breeze Kitchen Stove Ambient air Case study #3 #12;· Wind plays an integral role in low-energy remains a central challenge for the successful implementation of natural ventilation Case study - summary of population, urban energy consumption grows by 2.1% · Buildings consume 40% of world's energy

Flynn, Morris R.

347

The effect of alternate defrost strategies on the reverse-cycle defrost of an air-source heat pump  

E-Print Network [OSTI]

with and understanding of my questions and ideas. Thanks also to my family and friends for their support and help svhile I svorked on this project. Finally, I would like to acknowledge the American Society oi' Heating, Refrigerating, and Air-Conditioning Engineers... . . 21 Psychrometric Room Temperature Control Characteristics during a Frosting, 'Defrosting Test 3. 3 4. 3 4. 10 4. 11 Refrigerant Circuit Arrangement of the Outdoor Coil Heat Pump System Schematic Refrigerant Line Temperature Probe . Indoor...

Schliesing, John Steven

2012-06-07T23:59:59.000Z

348

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARp?) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution Benjamin Brant Sabine Brueske Donald Erickson Riyaz Papar Planetec Planetec Energy Concepts Company Energy... in Denver, Colorado. The Waste Heat Ammo nia Absorption Refrigeration Plant (WHAARP?) is based on a patented process and cycle design developed by Energy Concepts Co. (ECC) to cost effectively re cover 73,000 barrels a year of salable LPGs and gasoline...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

349

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

SciTech Connect (OSTI)

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

350

Determination of the Transient Response Characteristics of the Air-Source Heat Pump During the Reverse Cycle Defrost  

E-Print Network [OSTI]

Laboratory Department of Mechanical Engineering Texas A&M University ESL-TR-88/06-04 GLOSSARY OF TERMS AMCA Air Movement and Control Association ARI Air Conditioning and Refrigeration Institute ASHRAE American Society of Heating, Refrigerating and Air... expansion valve wg Water gauge 11 TABLE OF CONTENTS CHAPTER PAGE GLOSSARY OF TERMS ii 1 INTRODUCTION 1.1 2 LITERATURE REVIEW 2.1 Performance Measurement 2.1 Transient Performance 2.2 Cycling Losses 2.5 Frosting Losses 2.6 Defrosting Losses 2.8 Summary 2.15 3...

O'Neal, D. L.; Anand, N. K.; Peterson, K. T.; Schleising, S.

1988-01-01T23:59:59.000Z

351

Underground ventilation remote monitoring and control system  

SciTech Connect (OSTI)

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

352

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Broader source: Energy.gov [DOE]

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

353

A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps  

SciTech Connect (OSTI)

A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

354

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

355

Experimental study of free and mixed convective flow of air in a heated cavity  

SciTech Connect (OSTI)

Free and mixed convection in a strongly-heated rectangular open cavity have been investigated experimentally, to observe the effects of cavity shape and inclination, and of ambient wind, on the velocity and temperature distribution were observed. The long edges of the cavity were horizontal, and parallel to an axis around which the cavity could be rotated. The aperture plane was either vertical (..cap alpha.. = 0/sup 0/), or inclined downward at ..cap alpha.. - 20/sup 0/ or ..cap alpha.. = 45/sup 0/. The height of the aperture, b, was always 0.0947 m, while the depth of the cavity, a, was set so that a/b = 0.5, 1.0, or 1.46. The bottom and back walls were electrically heated - the top wall was indirectly heated by conduction, radiation and convection. The average wall temperature and the ambient temperature were used to define the dimensionless overheat and Grashof numbers. The Prandtl number was that of air. In the studies of mixed convection, the axis of rotation was horizontal and normal to the ambient wind. The Reynolds number was varied from Re = 120 - 1100 to Re = 2000 - 8740. For both free and mixed convection, wall and gas temperature were measured with thermocouples, and shadowgraph pictures were taken. For pure free convection, three time-averaged velocity components, the corresponding normal Reynolds stress components, and one off-diagonal Reynolds stress component were measured with a two-color laser-Doppler velocimeter. A PDP-11/34 minicomputer controlled the sequence of automatic data acquisition, the statistical data reduction and its storage. Statistical results are presented numerically and graphically for two averaging procedures. The principal quantitative result for free convection is that the rate of convective heat loss across the cavity aperture plane is reduced both by increasing a/b and by increasing ..cap alpha... Qualitative observations are recorded and discussed. The most striking observation was the appearance of a periodic oscillation of frequency 2 to 5.5 Hz.

Humphrey, J.A.C.; Sherman, F.S.

1985-04-01T23:59:59.000Z

356

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect (OSTI)

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

357

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect (OSTI)

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

358

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

SciTech Connect (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

359

Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns  

SciTech Connect (OSTI)

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

Tang, L.H.; Zeng, M.; Wang, Q.W. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2009-07-15T23:59:59.000Z

360

Effect of Ventilation Strategies on Residential Ozone Levels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hybrid intelligent control scheme for air heating system using fuzzy logic and genetic algorithm  

SciTech Connect (OSTI)

Fuzzy logic provides a means for converting a linguistic control strategy, based on expert knowledge, into an automatic control strategy. Its performance depends on membership function and rule sets. In the traditional Fuzzy Logic Control (FLC) approach, the optimal membership is formed by trial-and-error method. In this paper, Genetic Algorithm (GA) is applied to generate the optimal membership function of FLC. The membership function thus obtained is utilized in the design of the Hybrid Intelligent Control (HIC) scheme. The investigation is carried out for an Air Heat System (AHS), an important component of drying process. The knowledge of the optimum PID controller designed, is used to develop the traditional FLC scheme. The computational difficulties in finding optimal membership function of traditional FLC is alleviated using GA In the design of HIC scheme. The qualitative performance indices are evaluated for the three control strategies, namely, PID, FLC and HIC. The comparison reveals that the HIC scheme designed based on the hybridization of FLC with GA performs better. Moreover, GA is found to be an effective tool for designing the FLC, eliminating the human interface required to generate the membership functions.

Thyagarajan, T.; Shanmugam, J.; Ponnavaikko, M.; Panda, R.C.

2000-01-01T23:59:59.000Z

362

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Broader source: Energy.gov (indexed) [DOE]

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

363

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

364

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled “Recommendations for the Computation of Heat Requirements for Buildings” (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

365

Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)  

SciTech Connect (OSTI)

In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

Not Available

2014-10-01T23:59:59.000Z

366

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

367

Natural Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

368

Heat Transfer -2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature  

E-Print Network [OSTI]

Heat Transfer - 2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature T = 10o C. The heat transfer coefficient at the wire's surface h equation that includes all heat transfer mechanisms involved in this problem. Write this energy balance

Virginia Tech

369

E-Print Network 3.0 - air-side heat transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kanpur Collection: Engineering 5 PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS Summary: ......

370

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

371

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

SciTech Connect (OSTI)

There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

Thatcher, Tracy L.; Daisey, Joan M.

1999-09-01T23:59:59.000Z

372

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

373

Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION  

Broader source: Energy.gov (indexed) [DOE]

To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. The meeting took place on Thursday January 5 th , 2012 from 2pm to 3-pm. The following topics were discussed. 1.) Sell-Through. HARDI asked for clarification on the DOE's notation on the Framework Document

374

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

375

E-Print Network 3.0 - air cooled heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of California, Irvine Collection: Engineering 5 Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel...

376

E-Print Network 3.0 - air treatment heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISORDER CAUSE SIGNS & SYMPTOMS TREATMENT Heat Cramps Heavy sweating Loss of salt -Painful spasms of arms... outdoors or in ......

377

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

378

Why We Ventilate  

E-Print Network [OSTI]

air flow is needed to control concentrations of pollutantscontrol is feasable for reducing chlorine exposure. CONCLUSION The main air pollutants

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

379

Energy savings and cost-effectiveness of heat exchanger use as an indoor air quality mitigation measure in the BPA weatherization program  

Science Journals Connector (OSTI)

The Bonneville Power Administration (BPA) has proposed a ten year program to encourage the weatherization of electrically heated homes in the Pacific Northwest. The purpose of this program is to reduce residential electrical energy demand for space heating. If air infiltration rates are reduced by employing house tightening measures, indoor air quality mitigation measures may be required in residences with significant sources of indoor air contaminants. The use of residential air-to-air heat exchangers has been proposed as a possible strategy to assure that indoor air quality is not substantially degraded by house tightening. We examine the energy impact and cost effectiveness of heat exchanger utilization in tightened homes in the BPA region. Significant energy savings are predicted if homes are tightened and heat exchangers are utilized. From the homeowner's perspective, the results of our economic analysis indicate that, at the relatively low residential electric rates in the BPA region, the use of heat exchangers in existing homes that are tightened is not economically viable. On the other hand, from the utility perspective, it may be cost effective to use heat exchangers in the weatherization program if the marginal cost to the utility is compared with the cost of conserved energy.

Isaac Turiel; William J. Fisk; Mark Seedall

1983-01-01T23:59:59.000Z

380

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect (OSTI)

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design of double skin (envelope) as a solar chimney: adapting natural ventilation in double envelope for mild or warm climates.  

E-Print Network [OSTI]

??In United States, space heating, space cooling and ventilation of buildings consume 33% of the annual building energy consumption and 15% of the total annual… (more)

Wang, Lutao

2010-01-01T23:59:59.000Z

382

Natural ventilation generates building form  

E-Print Network [OSTI]

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

383

An investigation of the heat and mass transfer by free convection from humid air to a horizontal metal plate under frosting conditions  

E-Print Network [OSTI]

AN INVESTIOATION OF THE NEAT AND MASS TRANSFER BY FREE CONVECTION FROM HUMID AIR TO A HDRIZOHTAL METAL PLATE UNDER FROSTINO COND1TIONS A Thesis By BOBBY BELL~ JR. Submitted to the Graduate College of Texas A%M University in partial... ~ ~ ~. . . 60 - 61 17 Total Heat Transferred, to Plate vs. Time ~ 18 19 20 Thermal Conductivity Coefficient of Frost vso Time. . . . . . . . . . ~ ~ . . ~ ~ Heat Transfer Convective Coefficient vs. Time ~ 0 4 ~ 0 ~ ~ 4 ~ ~ ~ Resistivity of' Air...

Bell, Bobby

2012-06-07T23:59:59.000Z

384

Measuring Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

385

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network [OSTI]

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

386

Design optimization of residential-sized air-source heat pumps  

E-Print Network [OSTI]

Methodology Heat Exchanger Performance Expansion Device Compressor Models Refrigerant Charge Inventory Conclusions of Model Comparison Comparison of the ORNL Model to Manufacturer's Data 14 15 18 19 21 21 23 IV DESIGN OPTIONS 27 Increased Heat... cycle. There are two public domain heat pump models that have received some degree of acceptance in the engi- neering community: the National Bureau of Standards (NBS) model (3) and the Oak Ridge National Laboratories (ORNL) model (4) . Each allows...

Boecker, Curtis Layne

1987-01-01T23:59:59.000Z

387

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

388

Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II  

SciTech Connect (OSTI)

This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

389

Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model  

SciTech Connect (OSTI)

In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

2010-01-15T23:59:59.000Z

390

Recovering Energy From Ventilation and Process Airstreams  

E-Print Network [OSTI]

. Heat is transferred from the hot to the cold airstreams as the two move through the plate-type device. Heat can be recovered from exhaust air by using one of these three systems: process to-process, process-to-comfort, and comfort to... between surfaces. One excellent application for a high latent heat recovery device is used in the textile industry. Slide 5 shows air-to liquid plate-type heat exchangers used in a carpet mill to recover energy from hot, .moist exhaust air...

Cheney, W. A.

391

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network [OSTI]

. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

392

Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program  

Broader source: Energy.gov (indexed) [DOE]

AHRI Comments - DOE Verification Testing in Support of Energy Star AHRI Comments - DOE Verification Testing in Support of Energy Star May 9, 2011 P a g e | 1 May 9, 2010 Ms. Ashley Armstrong U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 RE: DOE Verification Testing in Support of Energy Star Dear Ms. Armstrong: I am writing on behalf of the Air Conditioning, Heating and Refrigeration Institute (AHRI) to address the proposed DOE requirements for verification testing in support of the Energy Star program. AHRI is the trade association representing manufacturers of heating, cooling, and commercial refrigeration equipment. More than 300 members strong, AHRI is an internationally recognized advocate for the industry, and develops standards for and certifies the performance of many of the

393

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

394

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

395

AIR SEALING Seal air leaks and save energy!  

E-Print Network [OSTI]

AIR SEALING Seal air leaks and save energy! W H A T I S A I R L E A K A G E ? Ventilation is fresh at stopping air leakage. It is critical to seal all holes and seams between these sheet goods with durable air that enters a house in a controlled manner to exhaust excess moisture and reduce odors

Oak Ridge National Laboratory

396

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Broader source: Energy.gov (indexed) [DOE]

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

397

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network [OSTI]

urea-formaldehyde foam insulation, and radon from buildinginsulation materials, textiles, adhesives, etc. , used in large quantities by Although particleboard and urea formaldehyde foam

Hollowell, C.D.

2012-01-01T23:59:59.000Z

398

Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

Shahabeddin K. Mohammadian; Yuwen Zhang

2015-01-01T23:59:59.000Z

399

Heat transfer effects on the performance of an air-standard irreversible dual cycle  

Science Journals Connector (OSTI)

The objective of this study is to analyse the effects of heat transfer loss and internal irreversibilites, resulting from adiabatic processes, on an irreversible diesel heat engine. Thermodynamic optimisation has been carried out based on the Maximum Power (MP), Maximum Thermal Efficiency (MEF) and Maximum mean Effective Pressure (MEP) criteria for the dual cycle. Power output, thermal efficiency and mean effective pressure are obtained by introducing variable compression ratio, inlet temperature, combustion and heat transfer constants, and compression and expansion efficiencies. Optimal performance and design parameters of the dual cycle are obtained numerically for the MP, MEF and MEP conditions. The optimal compression ratio and pressure ratio at MEP conditions are compared with those results obtained by using the MP and MEF criteria for different constants of heat transfer and combustion in the characteristic grid curves. The results obtained in this paper may provide a guide to the performance and improvement of practical diesel engines.

Yasin Ust; Bahri Sahin; Hasan Kayhan Kayadelen; Guven Gonca

2013-01-01T23:59:59.000Z

400

Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap  

SciTech Connect (OSTI)

During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

Bopche, Santosh B.; Sridharan, Arunkumar [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of an Incremental Ventilation Energy Model for Estimating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

402

Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment  

E-Print Network [OSTI]

-Insulated and Air-Tightened Residential House in Kansai District, Japan, Proceedings of Healthy Buildings 2000, Espoo, Finland, Vol.2, PP.587-592, 2000.8. 4. T. Shimizu and N. Nakahara, Design and Measurements of an Aged-oriented House Aiming at Healthy...

Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

2004-01-01T23:59:59.000Z

403

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

404

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

5 III. Current ASHRAE 62.1 Indoor Air Quality Procedure (satisfied with indoor air quality in office buildings inthe U.S. in taking indoor air quality seriously, in the same

Mendell, Mark

2014-01-01T23:59:59.000Z

405

Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units  

E-Print Network [OSTI]

The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

Guan, W.; Liu, M.; Wang, J.

1998-01-01T23:59:59.000Z

406

Comparison of environmental impact for air source heat pump when using symmetric and  

E-Print Network [OSTI]

­ Driving to reduce refrigerant charge and GWP values · EPBD Directive ­ Lower heating demand per m2 on subcooling and NoP · The "Pinch point" between Refrigerant and Water will allow for "free" subcooling · SSP GCOP Subcooling #12;Distribution system for reversed evaporator duty · Refrigerant distribution ­ Reduce need

Oak Ridge National Laboratory

407

The impact of demand-controlled ventilation on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

Braun, J.E.; Brandemuehl, M.J.

1999-07-01T23:59:59.000Z

408

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

409

Indoor air pollution: a public health perspective  

Science Journals Connector (OSTI)

...control tobacco smoke or gas adsorbers, air filters, and electrostatic tion by-products...ventilation air; formaldehyde sorbant filters Behavioral adjustment: Reduction in human...monitoring equipment, and performance of HVAC systems Table 4. Components of comprehensive...

JD Spengler; K Sexton

1983-07-01T23:59:59.000Z

410

Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps  

SciTech Connect (OSTI)

This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

2014-03-10T23:59:59.000Z

411

Greenhouse Ventilation1 Dennis E . Buffington, Ray A. Bucklin, Richard W. Henley and Dennis B. McConnell2  

E-Print Network [OSTI]

high temperatures during the summer caused by the influx of solar radiation, to maintain relative VENTILATION A heating system with adequate capacity is needed in the winter to maintain environmental of the winter, when the heating system is running at full capacity, some ventilation is still required

Watson, Craig A.

412

Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)  

SciTech Connect (OSTI)

Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

Not Available

2014-02-01T23:59:59.000Z

413

Control of airborne infectious diseases in ventilated spaces  

Science Journals Connector (OSTI)

...Refrigerating and Air-Conditioning Engineers. Badeau, A. , A. Afshari, T. Goldsmith...control of SARS virus aerosols in indoor environment-transmission routes and ward ventilation...transmission of infectious agents in the built environment-a multidisciplinary systematic review...

2009-01-01T23:59:59.000Z

414

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners  

E-Print Network [OSTI]

LABORATORY NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT OEM ORIGINAL EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO... of variable speed units is discussed. The methodology includes: (1) making multiple runs of the Oak Ridge National Laboratory (ORNL) steady-state heat pump model, (2) making reasonable assumptions on the degradation factors, and (3) using a draft version...

O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

1986-01-01T23:59:59.000Z

415

NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research determines optimal HVAC system design for research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evalu- ated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air tempera-

416

Finding of No Significant Impact for Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps (01/01)  

Broader source: Energy.gov (indexed) [DOE]

01 01 Federal Register / Vol. 66, No. 14 / Monday, January 22, 2001 / Notices DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Finding of No Significant Impact Energy Conservation Program for Consumer Products AGENCY: Department of Energy. ACTION: Finding of No Significant Impact (FONSI) for Energy Conservation Standard for Residential Central Air Conditioners and Heat Pumps. SUMMARY: The Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Conservation Act, and the National Appliance Energy Conservation Amendments, prescribes energy conservation standards for certain major household appliances, and requires the Department of Energy (DOE) to administer an energy conservation program for these products. Based on an

417

DOE/EA-1352: Environmental Assessment for Proposed Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps (12/00)  

Broader source: Energy.gov (indexed) [DOE]

52 52 ENVIRONMENTAL ASSESSMENT FOR PROPOSED ENERGY CONSERVATION STANDARDS FOR RESIDENTIAL CENTRAL AIR CONDITIONERS AND HEAT PUMPS December 2000 U.S. Department of Energy Assistant Secretary, Energy Efficiency & Renewable Energy Office of Building Research and Standards Washington, DC 20585 EA-i ENVIRONMENTAL ASSESSMENT FOR RESIDENTIAL CENTRAL AIR CONDITIONERS AND HEAT PUMPS TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-1 2.0 PURPOSE AND NEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-1 3.0 ALTERNATIVES INCLUDING THE PROPOSED ACTION . . . . . . . . . . . . . . . . . EA-2 3.1 No Action Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-2 3.2 Proposed Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA-3 3.3 Alternative Standards

418

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

419

Assessment of Indoor Air Quality Benefits and Energy Costs of  

E-Print Network [OSTI]

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation J.M.Logue1,P.H. Sherman, B.C. Singer, Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation; LBNL-4945E #12;Logue et al., Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical

420

Experimental analysis and model validation of an opaque ventilated facade  

Science Journals Connector (OSTI)

Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was created and validated against the experimental data. The experimental results showed that the flow rates induced in the façade cavity were due to mixed driving forces: wind and buoyancy. Depending on the weather conditions one of them was the main driving force, or both were of the same order. When the wind force was the main driving force, higher flow rates were found. In these cases buoyancy acted as supporting driving force. When the wind speed was low and buoyancy prevailed lower flow rates were found. Air and surface temperatures were predicted by the numerical model with a better accuracy than flow and energy rates. The model predicts correctly the influence of the wind and buoyancy driving forces. The experimental OVF module showed potential for free ventilation and air preheating, although it depends on weather and geometrical variables. The use of the numerical model using the right parameters was found viable for analyzing the performance of an OVF.

F. Peci López; R.L. Jensen; P. Heiselberg; M. Ruiz de Adana Santiago

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Broader source: Energy.gov (indexed) [DOE]

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

422

Laser sheet light flow visualization for evaluating room air flowsfrom Registers  

SciTech Connect (OSTI)

Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

Walker, Iain S.; Claret, Valerie; Smith, Brian

2006-04-01T23:59:59.000Z

423

Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet)  

Broader source: Energy.gov [DOE]

Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation.

424

The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review  

Science Journals Connector (OSTI)

Abstract Heat pumps for space heating and cooling are a mature and highly efficient technology that can take advantage of renewable energies. They can also provide energy savings by load shifting when they operate together with thermal energy storage (TES). This paper presents a literature review of TES systems using phase change materials (PCM) potentially applicable to domestic heat pumps used in residential and administrative buildings. The paper describes the systems proposed by the different authors and presents the main conclusions of the studies. The TES systems presented are not only used as energy storage to shift the load demand but also for other applications such as heat recovery or defrosting in air-conditioners. The PCM have the suitable melting temperature to work together with standard heat pumps in each application. Moreover, some systems where the heat pump is coupled to latent heat thermal energy storage (LHTES) units and other energy sources or where the TES system is incorporated in a radiant floor or air distribution system have also been included.

Pere Moreno; Cristian Solé; Albert Castell; Luisa F. Cabeza

2014-01-01T23:59:59.000Z

425

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

426

Modeling particle deposition on HVAC heat exchangers  

SciTech Connect (OSTI)

Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

Siegel, J.A.; Nazaroff, W.W.

2002-01-01T23:59:59.000Z

427

Preoperational test report, primary ventilation condenser cooling system  

SciTech Connect (OSTI)

This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-10-29T23:59:59.000Z

428

OPTIMAL EFFICIENCY-POWER TRADEOFF FOR AN AIR MOTOR/COMPRESSOR WITH VOLUME VARYING HEAT TRANSFER CAPABILITY  

E-Print Network [OSTI]

of air. These results could ben- efit applications such as compressed air energy storage where both high and expansion is both energy efficient and power-dense. An ex- ample would be compressed air energy storage. One density of compressed air storage (about 20 times greater than hydraulic accumulators), and the high power

Li, Perry Y.

429

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps.  

E-Print Network [OSTI]

??An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation… (more)

Rodriguez, Angel Gerardo

2012-01-01T23:59:59.000Z

430

Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine  

SciTech Connect (OSTI)

A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

Makhkamov, K.K.; Ingham, D.B.

1999-11-01T23:59:59.000Z

431

Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units  

SciTech Connect (OSTI)

This report documents the self-correction algorithms developed in the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls project funded jointly by the Bonneville Power Administration and the Building Technologies Program of the U.S. Department of Energy. The algorithms address faults for temperature sensors, humidity sensors, and dampers in air-handling units and correction of persistent manual overrides of automated control systems. All faults considered create energy waste when left uncorrected as is frequently the case in actual systems.

Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas

2009-12-31T23:59:59.000Z

432

2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

433

2014-09-18 Issuance: Energy Conservation Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register Notice of Proposed Rulemaking and Public Meeting regarding Energy Conservation Standards for Small, large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

434

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

435

Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region  

SciTech Connect (OSTI)

During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

Goldman, Charles

2007-03-01T23:59:59.000Z

436

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

SciTech Connect (OSTI)

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

437

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL] [ORNL

2011-01-01T23:59:59.000Z

438

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL] [ORNL

2011-01-01T23:59:59.000Z

439

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

440

Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes  

Science Journals Connector (OSTI)

Abstract This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.

Jinqing Peng; Lin Lu; Hongxing Yang; Tao Ma

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Eco Design and the Optimization of Passive Cooling Ventilation for Energy Saving in the Buildings: A Framework for Prediction of Wind Environment and Natural Ventilation in Different Neighborhood Patterns  

Science Journals Connector (OSTI)

The idea of utilizing natural ventilation for passive cooling and hence reducing the energy for air conditioning systems of buildings has increasingly attracted the attention of researchers. In urban areas how...

Mohammad Reza Masnavi; Hasan-Ali Laghai…

2012-01-01T23:59:59.000Z

442

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

443

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

SciTech Connect (OSTI)

This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-06-01T23:59:59.000Z

444

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

445

CHAMPS-Multizone?A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis  

E-Print Network [OSTI]

supply air temperature HVAC filter (only in filter case) OAof HVAC air handler as supply and return “zones” Filters canfilter efficiency for extensive property E Two different types of HVAC

Feng, Wei

2014-01-01T23:59:59.000Z

446

Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged  

U.S. Energy Information Administration (EIA) Indexed Site

5. Cooling Equipment, Floorspace, 1999" 5. Cooling Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All Buildings ................",67338,58474,8329,9147,14276,2750,12909,36527,2219,1312 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4879,890,700,962,"Q","Q",2613,253,"Q" "5,001 to 10,000 ..............",8238,6212,1606,707,1396,"Q","Q",3197,181,"Q"

447

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network [OSTI]

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

448

Application of the VRV Air-Conditioning System Heat Recovery Series in Interior Zone and Analysis of its Energy Saving  

E-Print Network [OSTI]

To reduce the energy consumption of air conditioning systems, we can use the VRV air conditioning system to supply cold loads in the winter for rooms in the construction inner zone where cold loads need to be supplied. The VRV air-conditioning...

Zhang, Q.; Li, D.; Zhang, J.

2006-01-01T23:59:59.000Z

449

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network [OSTI]

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced...

Rodriguez, Angel Gerardo

2012-06-07T23:59:59.000Z

450

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

451

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

SciTech Connect (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

452

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

453

A climatology of cold air outbreaks and their impact on air-sea heat fluxes in the high-latitude South Pacific  

Science Journals Connector (OSTI)

A climatology of cold air outbreaks (CAOs) in the high-latitudes of the South Pacific and an analysis of the dynamical mechanisms leading to their formation are presented. Two major and distinct regions with frequent CAOs from autumn to spring are ...

Lukas Papritz; Stephan Pfahl; Harald Sodemann; Heini Wernli

454

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

Hong, Tainzhen

2010-01-01T23:59:59.000Z

455

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect (OSTI)

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

456

Ventilation Requirements in Hot Humid Climates  

E-Print Network [OSTI]

the Building America program, LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels. In order to capture moisture related HVAC system operation..., LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels for houses that meet current (2005) International Energy Conservation Code requirements...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

457

16 P R O G R E S S R E S E a R c h & D i S c O v E R y Nu-Air Ventilation Systems began nearly three  

E-Print Network [OSTI]

of Canada's first LEED platinum buildings. Nu-Air thrives on innovation. In-house engi- neers design all systems to energy efficient buildings across Canada and into the U.S. market Partners: Dalhousie Council of Canada `s Industrial Research Assistance Program (NRC- IRAP), a federal government program

Brownstone, Rob

458

E-Print Network 3.0 - air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goodrich, B. Prezant , and D. Leonard 2nd... International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Montreal, May... periods each, to...

459

E-Print Network 3.0 - air izmerenie ehffektivnosti Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goodrich, B. Prezant , and D. Leonard 2nd... International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Montreal, May... periods each, to...

460

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to account for 1/3 to 1/2 of the space conditioning energy. There is not a great deal of measurement data opportunities, the United States Department of Energy and others need to put into perspective the energy based on energy conservation and ventilation strategies. Because of the lack of direct measurements, we

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Air Leakage and Air Transfer Between Garage and Living Space  

SciTech Connect (OSTI)

This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

Rudd, A.

2014-09-01T23:59:59.000Z

462

In the OSTI Collections: Heat Pumps | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Heat Pumps Heat Pumps Heat-Pump Water Heaters Heat Pumps in Heating, Ventilation, and Air Conditioning Systems References Research Organizations Reports Available through OSTI's Information Bridge The particles of any physical system above absolute zero temperature are always moving. The higher the temperature-that is, the hotter the system-the more energetic the particles' motion. As the particles interact with each other, their random motions tend to redistribute the energy more and more equally among themselves all the time, since there are more ways to distribute energy more evenly than there are to distribute it less evenly. This means that the system's temperature becomes more and more uniform throughout-warmer regions tend to cool, and cooler regions tend to warm, as their particles' random motion flows from where the

463

Compliance testing of Grissom Air Force Base Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom Air Force Base, Indiana. Final technical report, 3-21 Feb 92  

SciTech Connect (OSTI)

A source emission testing for particulate matter and visible emissions was conducted on coal-fired boilers at the Grissom AFB Central Heating Plant during 3-21 February 1992 by the Air Quality Function of Armstrong Laboratory. The survey was conducted to determine compliance with regard to Indiana Administration Code, Title 325 Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. All boilers were tested through the bypass stack. Results indicated that boilers 3 and 4 met applicable, visible, and particulate matter emissions standards. Boiler 5 exceeded the particulate standard.

Cintron-Ocasio, R.A.

1992-06-01T23:59:59.000Z

464

Building Energy Software Tools Directory: VentAir 62  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VentAir 62 VentAir 62 VentAir 62 logo. A ventilation airflow calculator that allows easy, accurate compliance with ASHRAE Standard 62-89. The program automates the cumbersome calculations presented by the Standard's Equation 6-1. The Windows-based program helps building designers design multiple-space ventilation systems that meet the requirements of the Standard. This tool analyzes space and system information from the VAV terminal and air handler unit schedules, calculates ventilation airflow requirements (space minimums and system-level required minimum), and provides additional or revised information for the VAV and AHU schedules. Keywords ventilation design, ASHRAE Standard 62 Validation/Testing N/A Expertise Required Knowledge of ASHRAE Standard 62 requirements and ventilation design.

465

Association of Classroom Ventilation with Reduced Illness Absence: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

466

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

467

Mixed convection in the thermal entrance region of symmetrically and asymmetrically heated vertical flat duct with upward or downward air-flow  

SciTech Connect (OSTI)

A numerical investigation has been conducted on the effect of body force on pure forced convection of the upward or downward air-flow in the thermal entrance region between vertical parallel plates with uniform wall temperature. The governing equations based on the usual Boussinesq approximation are solved for the symmetrically and asymmetrically heated parallel plates. Numerically predicted friction factors C{sub f} and local Nusselt numbers Nu{sub x} are compared with their counterparts, C*{sub f} and Nu*{sub x}, for pure forced convection.

Naito, Etsuro; Nagano, Yasutaka

1999-07-01T23:59:59.000Z

468

2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

469

2014-08-28 Issuance: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking and Public Meeting  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding energy conservation standards for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on August 28, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

470

Optimising the Fresh Air Economiser  

E-Print Network [OSTI]

Optimising the Fresh Air Economiser Rob Bishop Technical Director Energy Solutions Ltd. Wellington New Zealand ABSTRACT This paper proposes using measurements of CO2 to infer the amount of Outside Air (OA) ventilation delivered to a... and the number of occupants only, but since 2004 has also included a value based on the floor area of the space. In New Zealand, the ventilation code is based on ASHRAE Standard 62:1989 (with local amendments), and has not been updated to include the area...

Biship, R.

2013-01-01T23:59:59.000Z

471

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network [OSTI]

conductance of a passive heat sink buried in soil. Introduction Solid state thermoelectric generators offer a battery cell at low power. Sensors and communication devices would use the charged battery to operate

472

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

473

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

474

Air Leaks in Unexpected Places  

Broader source: Energy.gov [DOE]

Sealing air leaks will help to decrease heating and cooling costs and make your home more comfortable.

475

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

476

Effects of oxidation on the impact energy of Hastelloy S and Hastelloy C-4 Charpy V-notch specimens heated in air at 600 to 800  

SciTech Connect (OSTI)

The /sup 90/SrF/sub 2/ heat source being developed at PNL utilizes a Hastelloy S or Hastelloy C-4 outer capsule having a 0.5-in.-thick wall to contain the Hastelloy C-276 inner capsule. The primary objective of the study was to demonstrate that the air oxidation of the outer capsule that could occur during heat-source service would not degrade the ductility and Charpy impact strength of the capsule below the licensing requirements given in Section 1.1. The /sup 90/SrF/sub 2/ heat source under development is intended for general-purpose use. Compatibility considerations limit the interface temperature between the /sup 90/SrF/sub 2/ and Hastelloy C-276 inner capsule to a maximum of 800/sup 0/C. The outer capsule surface temperature will be somewhat less than 800/sup 0/C, and depending on the service, may be substantially lower. The oxidation tests were therefore carried out at 600/sup 0/ to 800/sup 0/C for exposures up to 10,000h to cover the range of temperature the outer capsule might expect to encounter in service. The results showed that the oxidation of Hastelloy S and Hastelloy C-4 in air at 600/sup 0/ to 800/sup 0/C is very slow, and both alloys form adherent oxide layers that serve to protect the underlying metal. Subsurface attack of Hastelloy S and Hastelloy C-4 due to oxidation was greater than expected, considering the slow oxidation rates of the two alloys at 600/sup 0/ to 800/sup 0/C. Estimates of subsurface attack, determined from micrographs of the oxidized specimens, showed erratic results and it was impossible to assign any type of rate equation to the subsurface attack. A conservative estimate of long-term effects can be made using a linear extrapolation of the test results. There were no significant differences between the room-temperature Charpy impact energy of Hastelloy S and Hastelloy C-4 specimens oxidized in air at 600/sup 0/ to 800/sup 0/C and control specimens heated in vacuum.

Fullam, H.T.

1981-01-01T23:59:59.000Z

477

Healthy Zero Energy Buildings (HZEB) Program Interim Report on Cross Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores  

E-Print Network [OSTI]

levels within a commercial retail building. Indoor Air, 18,and Ventilation Rates in Retail Stores  Wanyu R.  Chan, exchange rates of the nine retail stores estimated from the

Chan, Wanyu R.

2014-01-01T23:59:59.000Z

478

Building America Technology Solutions for New and Existing Homes: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate  

Broader source: Energy.gov [DOE]

This project investigates the impact of air infiltration and ventilation on space cooling and moisture in residential buildings; research was conducted in two identical laboratory homes in the hot-humid climate over the cooling season.

479

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

480

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

Note: This page contains sample records for the topic "heating ventilation air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Comparative Study for the Air Distribution System of a Cleanroom with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparative Study for the Air Distribution System of a Cleanroom with A Comparative Study for the Air Distribution System of a Cleanroom with High Cooling Load and Airborne Molecular Sources Speaker(s): Shih-Cheng Hu Date: June 20, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Tim Xu With rapid change of production line in Taiwan IT Industries; increased productivity/flexibility in the same cleanroom space is required urgently. We have systematically compared two cleanroom ventilation systems i.e. conventional and ceiling return system. The wall return system has fixed location of Fan filter unit (FFU), return air shaft/wall and dry coiling coil. The ceiling return system with a specially designed Fan Filter Dry Coil Unit (FFDCU) installed just above a production tool with high heat/particle sources. For a wall return system, reduced flexibility and

482