Sample records for heating systems doe

  1. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  2. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  3. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ≠? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ≠? behaviour; setTemp : Room ≠? num; heatSwitchOn, heatSwitchOff, userReset : simple

  4. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  7. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  8. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  9. 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...

    Energy Savers [EERE]

    FCVT Merit Review: BSST Waste Heat Recovery Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program Presentation from the U.S. DOE Office of Vehicle Technologies...

  10. Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

  11. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  12. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  13. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-12-14T23:59:59.000Z

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  14. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  15. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  16. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  17. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  18. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  20. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  1. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  2. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  3. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  4. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  5. DOE/ANL/HTRI heat exchanger tube vibration data bank

    SciTech Connect (OSTI)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1981-01-01T23:59:59.000Z

    This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.

  6. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

  8. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage†

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  9. Decay heat removal by natural convection - the RVACS system.

    SciTech Connect (OSTI)

    Tzanos, C. P.

    1999-08-17T23:59:59.000Z

    In conclusion, this work shows that for sodium coolant the reactor vessel auxiliary cooling system (RVACS) is an effective passive heat removal system if the reactor power does not exceed about 1600 MW(th). Its effectiveness is limited by the effective radiative heat transfer coefficient in the inner gap. In a lead cooled system, economic considerations may impose a lower limit.

  10. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  11. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights ∑ First university owned district heating system using biomass heat ∑ Capacity: 15 MMBtu Main Campus District Heating Performance ∑ Avoided: 3500 tonnes of CO2 ∑ Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  12. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  13. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating SÝren ōstergaard Jensen

  14. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  15. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  16. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  17. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  18. NSTX Organization 2009 Heating Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Erik Perry Central I&C Paul Sichta Power Systems John Lacenere Auxiliary Systems Bill Blanchard Physics Analysis and Simulation Stan Kaye Advanced Scenarios and Control David Gates, Jon Menard Modeling1 NSTX Organization ≠ 2009 Heating Systems Tim Stevenson Device Operation Al von Halle Construction

  19. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  20. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  1. Foreign National Access to DOE Cyber Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-01T23:59:59.000Z

    DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. To ensure foreign national access to DOE cyber systems continues to advance DOE program objectives while enforcing information access restrictions.

  2. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with...

  3. Design of Heat Exchanger for Heat Recovery in CHP Systems

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller...

  4. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  5. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  6. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  7. DOE - Office of Legacy Management -- Tocco Induction Heating...

    Office of Legacy Management (LM)

    Tocco Induction Heating Div of Ohio Crankshaft Co - OH 42 FUSRAP Considered Sites Site: TOCCO INDUCTION HEATING, DIV. OF OHIO CRANKSHAFT CO. (OH.42 ) Eliminated from consideration...

  8. Optimization of the Heating System Operation†

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    A new regulation method of the heating system is presented, which is based on the variation of outdoor temperature, to improve the economical efficiency and the timing regulation of the heating system. A function is put forward between the energy...

  9. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10T23:59:59.000Z

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  10. Optimization of the Heating System Operation

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    on the basis of the variation of outdoor temperature, and in this way, the heating system can be optimized....

  11. DOE Electricity Transmission System Workshop

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE Cites Fluor FernaldCooperativeDOEinDOEELECTRICITY

  12. DOE Transmission System Integration Workshop

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOEHeatEnergy Takes Next StepsDOE

  13. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  14. Development of HVAC System Performance Criteria Using Factorial Design and DOE-2 Simulation

    E-Print Network [OSTI]

    Hou, D.; Jones, J. W.; Hunn, B. D.; Banks, J. A.

    1996-01-01T23:59:59.000Z

    A new approach is described for the development of Heating, Ventilating, and Air-conditioning (HVAC) System Performance Criteria for the Texas Building Energy Design Standard. This approach integrates a design of experimental methodology and DOE-2...

  15. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  16. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer†

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  17. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    Solar Energy Systems for Heating and Cooling. May, 1978. (Washington:Hemisphere heating, Publishing Corp. , 1978),INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS Mashuri L.

  18. DOE Webinar ? Residential Geothermal Heat Pump Retrofits (Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide...

  19. DOE Publishes Notice of Proposed Rulemaking for Direct Heating...

    Broader source: Energy.gov (indexed) [DOE]

    Register version of the notice. Find product information about current standards and test procedures for direct heating equipment and pool heaters; recent product updates;...

  20. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

    1998-01-01T23:59:59.000Z

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  1. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12T23:59:59.000Z

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  2. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  3. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  4. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Energy Savers [EERE]

    DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy...

  5. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Office of Environmental Management (EM)

    Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a...

  6. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL

    2011-11-01T23:59:59.000Z

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  7. Heating System Modernization, Management of Peripheral Scope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernization, Management of Peripheral Scope Lessons Learned Report, NNSA, Dec 2010 Heating System Modernization, Management of Peripheral Scope Lessons Learned Report, NNSA,...

  8. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    detailed heat-balance approach f or load calculations, DOE-Loads for Computerized Energy Calculations: Algorithms for Building Heat

  9. DOE Hydrogen Program Systems Analysis Workshop

    E-Print Network [OSTI]

    ) ∑ Define analysis scenarios NREL SYSTEMS INTEGRATION ∑ Accountable for analysis activities ∑ Provide inputs ∑ Coordinate and provide ideas/recommendations to SI on cross-cutting analysis ∑ Manage analysis tasks internal to DOE (Labs/FFRDCs only) ∑ Perform analysis of technoeconomic topics for TA and SI ∑ Perform subprogram

  10. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01T23:59:59.000Z

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  11. About convective heat transfer in geothermal systems

    SciTech Connect (OSTI)

    Pashkevich, R.I. [Kamchatsky Complex Department of NIPIgeotherm Institute, Petropavlovsk-Kamchatsky (Russian Federation)

    1996-12-31T23:59:59.000Z

    The interphase fluid-rock heat exchange in convective beat transfer in geothermal systems is investigated Nonlinear model of interphase heat exchange is suggested. Calculation for one dimension case and comparison with known Anzelius-Schumann solution is presented Generalized type block heat transfer model is formulated. The model is adequate for case of geothermal systems and reservoir when a rock block size is comparable with filtration path length. Criterion equations for nonstationary coefficients of interphase heat exchange we presented these equations were obtained in laboratory experiments with diorites.

  12. 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 BSST Technology Approach: BSST Technology Approach: Developing a System Architecture to Manage Wide Variations in Th Developing a System Architecture to Manage Wide...

  13. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerhead DOE Seeks Comment

  14. DOE Webinar ¬Ö Residential Geothermal Heat Pump Retrofits (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | Department ofEnergyDepartment ofDOE

  15. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, D.L.

    1987-04-28T23:59:59.000Z

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  16. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  17. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  18. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07T23:59:59.000Z

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  19. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12T23:59:59.000Z

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  20. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    1985-01-01T23:59:59.000Z

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  1. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  2. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    LBL buildings, with the solar collectors on the roof, theCBB 757-5496 Figure 3: Solar Collectors Mounted∑ on the RoofSolar Heating and Cooling Systems. The components include Collectors (

  3. Does Electricity (and Heat) Network Regulation have anything to learn from Fixed Line Telecoms?

    E-Print Network [OSTI]

    Pollitt, Michael G.

    †to†electricity,†between†2003†and†2008†the†percentage†of†households†in†Christchurch,† New†Zealand,†heating†via†heat†pumps†has†increased†from†8%†to†35%,†with†the†figure†projected†to†70%†by† 2015?18†(Orion,†2008,†p.6).† 4 The†UK†history†of†telecoms†reform... www.electricitypolicy.org.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y Does Electricity (and Heat) Network Regulation have anything to learn from Fixed Line Telecoms Regulation? EPRG Working Paper 0914...

  4. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

  5. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June...

  6. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  7. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

  8. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  9. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  10. Electronic DOE Information Security System (eDISS) PIA, Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

  11. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  12. GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

  13. Dynamics of heat transfer between nano systems

    E-Print Network [OSTI]

    Svend-Age Biehs; Girish S. Agarwal

    2012-10-18T23:59:59.000Z

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

  14. DOE-HDBK-1081-94; DOE Handbook Primer on Spontanious Heating and Pyrophoricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact for1-93 JANUARY DOE-HDBK-1081-94 December

  15. Carbon nanotube heat-exchange systems

    DOE Patents [OSTI]

    Hendricks, Terry Joseph (Arvada, CO); Heben, Michael J. (Denver, CO)

    2008-11-11T23:59:59.000Z

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  16. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01T23:59:59.000Z

    American Society of Heating, Refrigeration, and AirFOR PASSIVE DIRECT GAIN HEATING SYSTEMS Paul W. Sullivan,FOR PASSIVE DIRECT GAIN HEATING SYSTEMS* Paul W. Sullivan,t

  17. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  18. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  19. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling†

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  20. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  1. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

  2. NSTX Organization 2008 Heating Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Erik Perry Central I&C Paul Sichta Power Systems John Lacenere Auxiliary Systems Bill Blanchard PPPL # University of Washington ## LLNL Topical Science Groups Theory Support J. Manickam Integrated Modeling Engineer Charles Neumeyer Physics Analysis and Simulation Stan Kaye Advanced Scenarios and Control David

  3. DOE GC Joins Customs Service Trade Data System to Strengthen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GC Joins Customs Service Trade Data System to Strengthen Enforcement Effort DOE GC Joins Customs Service Trade Data System to Strengthen Enforcement Effort February 14, 2011 -...

  4. Sandia National Laboratories: DOE Energy Storage Systems program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

  5. DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

  6. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31T23:59:59.000Z

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  7. DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergyawards contract for sludgeDOE toDevelopment

  8. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  9. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  10. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground...

  11. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade CHERYL TALLEY, PE Flathead Electric Cooperative Ground Source Heat Pumps Demonstration Projects May 19,...

  12. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    SciTech Connect (OSTI)

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01T23:59:59.000Z

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  13. Research for Advanced Heat Exchangers- The U.S. DOE Program

    E-Print Network [OSTI]

    Richlen, S. L.

    Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 CooIGu __ Ex_ Brush and Ilfg Finned Heal Transfer Tube Figure 6. Aerojet Shallow Bed FBWHR The Thermo-Electron FBWHRS is a moving bed system that circulates the particle... large fluidized bed waste heat boiler and another fluidized bed waste heat recuperator is being readied for field tests. As a result of technology "needs" areas being identified during the development phases of these large systems, a stronger...

  14. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  15. An Integrated Low Level Heat Recovery System

    E-Print Network [OSTI]

    Sierra, A. V., Jr.

    1981-01-01T23:59:59.000Z

    A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

  16. Hot Water Heating System Operation and Energy Conservation†

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    heating period, and temperature-flow adjustment with frequency control. The study shows the most energy efficient operating method is a variable flow heating system, which should be popularized to the heating field....

  17. Application Study of a Single House Horizontal Heating System

    E-Print Network [OSTI]

    Hang, Y.; Ying, D.

    2006-01-01T23:59:59.000Z

    It is imperative to get new heating systems into the market and implement rate structures with heat meters for the purpose of energy conservation and environmental protection. Based on analysis of current heating technology, this paper analyzes...

  18. Experimental Research of an Active Solar Heating System

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    : Solar is an abundant renewable energy, which is used more and more frequently with the emphasis on environment protection, especially in building heating. The different devised methods between an active solar heating system and normal heating...

  19. Heating and current drive systems for TPX

    SciTech Connect (OSTI)

    Swain, D.; Goranson, P. [Oak Ridge National Lab., TN (United States); Halle, A. von; Bernabei, S.; Greenough, N. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1994-05-24T23:59:59.000Z

    The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

  20. Passive shut-down heat removal system

    DOE Patents [OSTI]

    Hundal, Rolv (Greensburg, PA); Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1988-01-01T23:59:59.000Z

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  1. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

  2. Convective heat transport in geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01T23:59:59.000Z

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  3. 2008 DOE Annual Merit Review Hybrid and Electric Systems and...

    Energy Savers [EERE]

    Materials Technologies Plenary Session Overview 2008 DOE Annual Merit Review Hybrid and Electric Systems and Materials Technologies Plenary Session Overview Presentation from the...

  4. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National...

  5. Microwave Tokamak Experiment (MTX) ohmic heating system

    SciTech Connect (OSTI)

    Jackson, M.C. (Lawrence Livermore National Lab., CA (USA))

    1989-09-13T23:59:59.000Z

    The ohmic heating system for the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL) provides both the voltage for the initial breakdown phase and the energy to drive the plasma current to a value of 400 kA or greater. Providing this voltage and flux swing requires a one-turn loop voltage of about 25 volts (11 kV across the coil) and a magnetic flux swing of 2 volt- seconds. This voltage and flux swing are accomplished by charging the ohmic heating coils to 20 kA, at which point the current is commutated off into a resistor generating the 11 kV across the coil. When the current passes through zero, another power supply drives the current in the opposite polarity to 20 kA, thus completing the full 2 volt-second flux swing. This paper describes the design features and performance of the ohmic heating circuit, with emphasis on the commutation circuit. In addition, the paper describes the use of the ohmic heating system for discharge cleaning and the changeover procedure. 3 refs., 4 figs., 1 tab.

  6. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  7. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A. [Oak Ridge National Laboratory (United States); Baylor, L.R. [Oak Ridge National Laboratory (United States); Combs, S.K. [Oak Ridge National Laboratory (United States); Fredd, E. [Princeton Plasma Physics Laboratory (United States); Goulding, R.H. [Oak Ridge National Laboratory (United States); Hosea, J. [Princeton Plasma Physics Laboratory (United States); Swain, D.W. [Oak Ridge National Laboratory (United States)

    2005-04-15T23:59:59.000Z

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  8. Vehicle hydraulic system that provides heat for passenger compartment

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2001-01-01T23:59:59.000Z

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  9. Predictive control of supply temperature in district heating systems

    E-Print Network [OSTI]

    Predictive control of supply temperature in district heating systems Torben Skov Nielsen Henrik This report considers a new concept for controlling the supply temperature in district heating systems using stochastic modelling, prediction and control. A district heating systems is a di#30;cult system to control

  10. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  11. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10įC temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GMís shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  12. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  13. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Systems Featured on NBC Nightly News Geothermal Heating and Cooling Systems Featured on NBC Nightly News April 13, 2009 - 11:24am Addthis NBC Nightly News...

  14. Development of a Computer Heating Monitoring System and Its Applications†

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Shen, L.

    2006-01-01T23:59:59.000Z

    This paper develops a computer heating monitoring system, introduces the components and principles of the monitoring system, and provides a study on its application to residential building heating including analysis of indoor and outdoor air...

  15. Improving Heating System Operations Using Water Re-Circulation

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01T23:59:59.000Z

    In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

  16. Heat Pump Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPump Systems Heat Pump Systems

  17. DOE Awards Research and Systems Engineering Task Order | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order March 28, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564...

  18. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

  19. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis and Risk Communication Crisis

  20. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  1. A stock water solar heating system

    SciTech Connect (OSTI)

    Nydahl, J.; Carlson, B.

    1999-07-01T23:59:59.000Z

    This paper reports on the progress in the development of an inexpensive but rugged solar system to heat stock water. Insulation encased in fiber reinforced concrete is the main structural component for the collector and the partition between the unheated stock tank and the heated section. A fully wetted, drain-back collector was designed to produce a high optical efficiency and to permit its water passage to be opened for cleaning. A unique double-glazed design is used in which the inner glazing is a film with a large thermal expansion coefficient. This causes a significant drop in the stagnation temperatures since a single glazed configuration is approached at high temperatures. The collector and the partially covered insulated tank prevented freezing, and held the average water temperature at 6.4 C (44 F) during the day while the mean daily ambient temperature was {minus}5.4 C (22 F) over a nine day test.

  2. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  3. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15T23:59:59.000Z

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  4. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  5. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  6. Desiccant-based, heat actuated cooling assessment for DHC systems

    SciTech Connect (OSTI)

    DiBella, F.; Patch, K.; Becker, F.

    1989-10-01T23:59:59.000Z

    The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant-based, heat actuated cooling system in a District Heating System. The results of this study will encourage the deployment of cooler transport temperatures in District Heating Systems. The proposed concept includes a liquid or solid desiccant-based air cooling and drying system that can be integrated with an existing HVAC system. 3 refs., 6 figs.

  7. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    and Hybrid Heating Cooling Systems Michael]. Holtz, WayneHYBRID HEATING AND COOLING SYSTEMS Michael J. Holtz Solarspace heating and cooling systems. It is based upon the mode

  8. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01T23:59:59.000Z

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  9. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  10. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  11. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well a previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--1992 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space hearing systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report. 6 figs., 2 tabs.

  12. DOE Technical Standards Archived Collection | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and control systems. 01241996 DOE-HDBK-10123-92 DOE Fundamentals Handbook, Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3 of 3 This module describes the...

  13. A new cascade-type heat conversion system

    SciTech Connect (OSTI)

    Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

    1996-12-31T23:59:59.000Z

    Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

  14. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23T23:59:59.000Z

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  15. Application Study of a Single House Horizontal Heating System

    E-Print Network [OSTI]

    Hang, Y.; Ying, D.

    2006-01-01T23:59:59.000Z

    the different forms of heating systems suited for single household metering. We introduce especially the single house horizontal spanning system and show how to select the heat flow rate of the radiator. We also study the distribution rule of the heat...

  16. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    ©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells the well through the heat pump in an open-loop pipe circuit. Standing column wells have been in use in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more

  17. Thermoeconomic Analysis of a Solar Heat-Pump System

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  18. STATE OF CALIFORNIA POOL AND SPA HEATING SYSTEMS

    E-Print Network [OSTI]

    that at least 60 % of the annual heating energy is from site solar energy or recovered energy. 5. Heating system ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-03 Pool And Spa Heating Systems (Page 1 of 3) Site that complies with the Appliance Efficiency Regulations. 2. Has a readily accessible on-off switch mounted

  19. Thermoeconomic Analysis of a Solar Heat-Pump System

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  20. CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS

    E-Print Network [OSTI]

    CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS T.S. Nielsen, H. Madsen Informatics the supply temperature in district heating systems using stochastic modelling, prediction and control at Roskilde Varmeforsyning. The results obtained for the Roskilde district heating utility are evaluated

  1. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01T23:59:59.000Z

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  2. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research†

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01T23:59:59.000Z

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  3. Heat transfer analysis capabilities of the scale computational system

    SciTech Connect (OSTI)

    Parks, C.V.; Giles, G.E.; Childs, K.W.; Bryan, C.B.

    1986-01-01T23:59:59.000Z

    The heat transfer capabilities within the modular SCALE computational system are centered about the HEATING6 functional module. This paper reviews the features and modeling capabilities of HEATING6, discusses the supportive plotting capabilities of REGPLOT6 and HEATPLOT-S, and finally provides a general description of the Heat Transfer Analysis Sequence No.1 (HTASI) available in SCALE for performing thermal analyses of transport casks via HEATING6. The HTASI control module is an easy-to-use tool that allows an inexperienced HEATING6 user to obtain reliable thermal analysis results. A summary of the recent verification efforts undertaken for HEATING6 is also provided. 16 refs., 14 figs.

  4. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  5. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  6. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, ZŁrich, Switzerland,Performance of ground source heat pump system in a near-zero

  7. Heat exchanger bypass system for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  8. PIA - DOE PIV System | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForums OutreachAMWTP2009DOE OCIO,PIV

  9. CCHP System with Interconnecting Cooling and Heating Network†

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  10. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  11. Development of an Advanced Combined Heat and Power (CHP) System...

    Broader source: Energy.gov (indexed) [DOE]

    calcination in a fluidized bed with an advanced CHP system using the off-gases and the waste heat from the calcined coke. The total amount of recycled heat from the newly...

  12. Thermodynamic Analysis of Combined Cycle District Heating System

    E-Print Network [OSTI]

    Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

    2011-01-01T23:59:59.000Z

    This paper presents a thermodynamic analysis of the University of Massachusetts' Combined Heat and Power (CHP) District Heating System. Energy and exergy analyses are performed based on the first and second laws of thermodynamics for power...

  13. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11T23:59:59.000Z

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  14. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  15. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  16. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Common Passive and Hybrid Heating Cooling Systems Michael].THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

  17. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemcombined heat and power systems . . . . . . . Verificationmyth eight Ė worldwide power systems are economically and

  18. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

  19. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150įF or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  20. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heat

  1. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEast WingHeat

  2. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  3. Power systems utilizing the heat of produced formation fluid

    DOE Patents [OSTI]

    Lambirth, Gene Richard (Houston, TX)

    2011-01-11T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  4. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  5. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    SciTech Connect (OSTI)

    NATHAN HANCOCK

    2013-01-13T23:59:59.000Z

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

  6. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  7. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Energy Savers [EERE]

    Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer...

  8. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov (indexed) [DOE]

    Ground-Source Heat Pump System Design May 19, 2010 Geothermal Technologies Program 2010 Peer Review ENVIRON International PI : Metin Ozbek Track : GSHP Demonstration Projects This...

  9. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01T23:59:59.000Z

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  10. The proposed combustion standards and DOE thermal treatment systems

    SciTech Connect (OSTI)

    McFee, J. [IT Corp. (United States); Hinman, M.B. [Carter and Hinman, P.A. (United States); Eaton, D.; NcNeel, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1997-08-01T23:59:59.000Z

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems.

  11. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

  12. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67Hybrid and Vehicle Systems

  13. systems-studies | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U C L E A R E N ERamgenSystems and

  14. An Unexpected Heat Wave | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    means that the transport of heat becomes incoherent and difficult to predict or control. In this study, heat transport through superlattices (SL) made up of periodic stacks...

  15. Subcontract Report: Modular Combined Heat & Power System for Utica College: Design Specification

    SciTech Connect (OSTI)

    Rouse, Greg [Gas Technology Institute

    2007-09-01T23:59:59.000Z

    Utica College, located in Utica New York, intends to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre- assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. External connections will be limited to fuel supply, electrical output, potable makeup water as required and cooling and heat recovery systems. The proposed facility will consist of 4 self-contained, modular Cummins 330kW engine generators with heat recovery systems and the only external connections will be fuel supply, electrical outputs and cooling and heat recovery systems. This project was eventually cancelled due to changing DOE budget priorities, but the project engineers produced this system design specification in hopes that it may be useful in future endeavors.

  16. DOE-RL Integrated Safety Management System Description

    SciTech Connect (OSTI)

    SHOOP, D.S.

    2000-09-01T23:59:59.000Z

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  17. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01T23:59:59.000Z

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1C.

  18. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  19. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  20. SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    AUG 1979 SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. Richards W of the subsystem compo- nents, especially between the free piston Stirling engine and the free piston linear to measure the feasibility and viability of the concept as a product. As a result of this effort, a Stirling

  1. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANELocalDepartmentSystems

  2. BSU GHP District Heating and Cooling System (Phase I)

    Broader source: Energy.gov [DOE]

    Project objectives: Create a campus geothermal heating and cooling system; Validate the cost savings associated with a geothermal system; Reduce emissions of CO2, CO, PM, SO2, NOx.

  3. Combined permeable pavement and ground source heat pump systems

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  4. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  5. Introduction of Heat Recovery Chiller Control and Water System Design†

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  6. Special Property Assessment for Renewable Heating and Cooling Systems

    Broader source: Energy.gov [DOE]

    Title 8 of Marylandís property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

  7. Keywordscondensation tube, surface modification, waste heat and condensation water recovery system

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Keywordscondensation tube, surface modification, waste heat and condensation water recovery techniques is waste heat and condensation water recovery system. Waste heat and condensation water recovery system is one of the most important facilities in power plants. High efficiency waste heat

  8. A web based CBR system for heating ventilation and air conditioning systems sales support

    E-Print Network [OSTI]

    Watson, Ian

    A web based CBR system for heating ventilation and air conditioning systems sales support D describes the implementation of a case-based reasoning (CBR) system to support heating ventilation and air. Introduction Western Air is a distributor of heating ventilation and air conditioning (HVAC) systems

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    combined heat and power systems. ASME Conference Proceedingsfor combined heat and power applications. ASME ConferenceRankine combined heat and power technology. ASME Conference

  10. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  11. ITER have a need for ion cyclotron heating (ICH) as part of the plasma heating system mix to reach the

    E-Print Network [OSTI]

    frequency heating www.ccfe.ac.uk JG11.199-RFH Contact details Technology Services, Building K2/0/14 CulhamBackground ITER have a need for ion cyclotron heating (ICH) as part of the plasma heating system, maintainable and capable of being manufactured case study Radio frequency heating Engineering systems design

  12. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    all zones equally. Remote heating systems can be designed toremote from the building envelope proper. South wall heating

  13. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect (OSTI)

    Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

    2014-06-01T23:59:59.000Z

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  14. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  15. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  16. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01T23:59:59.000Z

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  17. Research for Advanced Heat Exchangers- The U.S. DOE Program†

    E-Print Network [OSTI]

    Richlen, S. L.

    1986-01-01T23:59:59.000Z

    Since its beginning, the Advanced Heat Exchangers Program of the U.S. Department of Energy - Office of Industrial Programs has made significant contributions to the development of advanced heat exchanger technology to save energy for U.S. industry...

  18. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  19. Thermal Solar Energy Systems for Space Heating of Buildings†

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  20. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  1. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  2. DOE-HDBK-1012/3-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 3 of 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact for Biomass1/4-922/2-923-92 JUNE 1992 DOE

  3. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16T23:59:59.000Z

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  4. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14T23:59:59.000Z

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  5. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19T23:59:59.000Z

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  6. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    SciTech Connect (OSTI)

    Vierow, Karen

    2005-08-29T23:59:59.000Z

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  7. Heating mechanism affects equipartition in a binary granular system

    E-Print Network [OSTI]

    Hong-Qiang Wang; Narayanan Menon

    2008-03-08T23:59:59.000Z

    Two species of particles in a binary granular system typically do not have the same mean kinetic energy, in contrast to the equipartition of energy required in equilibrium. We investigate the role of the heating mechanism in determining the extent of this non-equipartition of kinetic energy. In most experiments, different species of particle are unequally heated at the boundaries. We show by event-driven simulations that this differential heating at the boundary influences the level of non-equipartition even in the bulk of the system. This conclusion is fortified by studying a numerical model and a solvable stochastic model without spatial degrees of freedom. In both cases, even in the limit where heating events are rare compared to collisions, the effect of the heating mechanism persists.

  8. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Passive and Hybrid Heating Cooling Systems Michael]. Holtz,PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS Michael J.of passive and hybrid space heating and cooling systems are

  9. In situ conversion process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

    2009-08-18T23:59:59.000Z

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  10. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

  11. Parallel Condensing System As A Heat Sink For Power Plants

    E-Print Network [OSTI]

    Akhtar, S. Z.

    Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

  12. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  13. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  14. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    heat pump, and the energy consumption of the whole GSHP system given the accurate information of the building, GSHP system, weather data,

  15. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  16. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  17. Nuclear reactor heat transport system component low friction support system

    DOE Patents [OSTI]

    Wade, Elman E. (Ruffs Dale, PA)

    1980-01-01T23:59:59.000Z

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  18. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Rťunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  19. Combined Heat and Power for Federal Facilities and the DOE CHP...

    Office of Environmental Management (EM)

    and Power for Federal Facilities and the DOE CHP Technical Assistance Partnerships Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR May 7 - 8, 2014 Virginia Beach, VA...

  20. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  1. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01T23:59:59.000Z

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  2. Heat Pump System Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth, Safety,Heat Pump

  3. Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi

    SciTech Connect (OSTI)

    Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

    1991-12-01T23:59:59.000Z

    Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

  4. Heating System Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment Hazle Spindle, LLCHeat PumpHeather

  5. DOE-backed independent scrubber system is criticized by AEP

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    Among the five early contract signers from the second round of 16 clean-coal technologies selected by the Dept of Energy (DOE) for partial funding was Pure Air's flue-gas desulfurization (FGD) technology-and-service project for Northern Indiana Public Service Co (Nipsco). Pure Air is not only financing, designing, and building the $141-million Nipsco advanced wet-scrubber system at Units 7 (183 MW) and 8 (345 MW) of the utility's Bailly powerplant, it is also operating and maintaining the scrubber. It is the own-and-operate approach that caught DOE's eye, because it allows utilities who are inexperienced in running a complex chemical plant to remain focused on electricity production while avoiding a major capital expense. American Electric Power Service Co questions the service contract, but not the technology. AEP's assistant general counsel foresees a full array of possibilities associated with contract complexity when dealing with removal. The paper briefly describes these complexities.

  6. Integral collector storage system with heat exchange apparatus

    DOE Patents [OSTI]

    Rhodes, Richard O.

    2004-04-20T23:59:59.000Z

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  7. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  8. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  9. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  10. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Comparison of NBSLD, BLAST 2. and Effect of Selected Changessignificant effect on annual heating loads, BLAST 2 predictsComparison of NBSLD, BLAST 2, and DOE~2.1 Effect of Climate

  11. Heat storage system utilizing phase change materials government rights

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-09-12T23:59:59.000Z

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  12. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  13. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01T23:59:59.000Z

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  14. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  15. Enhanced heat transfer in partially-saturated hydrothermal systems

    SciTech Connect (OSTI)

    Bixler, N.E.; Carrigan, C.R.

    1986-01-01T23:59:59.000Z

    The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.

  16. Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System...

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Order 412.1a, Work Authorization System Administrative Change Policy Flash 2014-30 DOE Order 412.1a, Work Authorization System Administrative Change Questions concerning this...

  17. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Energy Savers [EERE]

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014...

  18. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  19. Thermodynamic Analysis of Combined Cycle District Heating System

    E-Print Network [OSTI]

    Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

    2011-01-01T23:59:59.000Z

    generation systems that include a 10 MW Solar combustion gas turbine, a 4-MW steam turbine, a 100,000 pph heat recovery steam generator (HRSG), three 125,000 pph package boilers, and auxiliary equipment. In the analysis, actual system data is used to assess...

  20. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29T23:59:59.000Z

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  1. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  2. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A. [Wright State University

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  3. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, August 1, 1989--October 31, 1989

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1989-01-01T23:59:59.000Z

    This is Second Quarterly Report for DOE Project {number_sign} FG01-89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of a application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from August 1, 1989 to October 31, 1989. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating ad cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 1 fig.

  4. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, November 1, 1989--January 31, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the Third Quarterly Report for DOE Project Number FG01- 89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from November 1, 1989 to January 31, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 36 figs.

  5. A performance data network for solar process heat systems

    SciTech Connect (OSTI)

    Barker, G.; Hale, M.J.

    1996-03-01T23:59:59.000Z

    A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

  6. Heat-pump-centered integrated community energy systems: system development summary

    SciTech Connect (OSTI)

    Calm, J.M.

    1980-02-01T23:59:59.000Z

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  7. Composite quantum systems and environment-induced heating

    E-Print Network [OSTI]

    Almut Beige; Andreas Kurcz; Adam Stokes

    2011-10-07T23:59:59.000Z

    In recent years, much attention has been paid to the development of techniques which transfer trapped particles to very low temperatures. Here we focus our attention on a heating mechanism which contributes to the finite temperature limit in laser sideband cooling experiments with trapped ions. It is emphasized that similar heating processes might be present in a variety of composite quantum systems whose components couple individually to different environments. For example, quantum optical heating effects might contribute significantly to the very high temperatures which occur during the collapse phase in sonoluminescence experiments. It might even be possible to design composite quantum systems, like atom-cavity systems, such that they continuously emit photons even in the absence of external driving.

  8. Research on a Heat-supply Network Dispatching System Based on Geographical Information System (GIS)†

    E-Print Network [OSTI]

    Zhou, Z.; Zou, P.; Tang, H.; Fang, X.; Wang, W.

    2006-01-01T23:59:59.000Z

    -supply Network Dispatching System (HNDS). The system, based on Oracle database and Mapgis 6.5, compiles with Visual C++ software. With computer and communication techniques, the system dynamic inspects parameters and information of a heat-supply network, achieves...

  9. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    SciTech Connect (OSTI)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17T23:59:59.000Z

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  10. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Based on the status quo that conventional energy sources are more and more reduced and environmental pollution is increasingly serious, this paper presents a new model system of conserving energy and environmental protection, namely, a Solar...

  11. The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System

    E-Print Network [OSTI]

    McCabe, J.; Olszewski, M.

    1980-01-01T23:59:59.000Z

    Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from...

  12. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01T23:59:59.000Z

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  13. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  14. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergyawards contract for sludgeDOE toDevelopmentDOE

  15. Heat Exchanger Fouling- Prediction, Measurement and Mitigation†

    E-Print Network [OSTI]

    Peterson, G. R.

    1989-01-01T23:59:59.000Z

    The U. S. Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes...

  16. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  17. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  18. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  19. Thermal analysis of directly buried conduit heat-distribution systems

    SciTech Connect (OSTI)

    Fang, J.B.

    1990-08-01T23:59:59.000Z

    The calculations of heat losses and temperature field for directly buried conduit heat distribution systems were performed using the finite element computer programs. The finite element analysis solved two-dimensional, steady-state heat transfer problems involving two insulated parallel pipes encased in the same conduit casing and in separate casings, and the surrounding earth. Descriptions of the theoretical basis, computational scheme, and the data input and outputs of the developed computer programs are presented. Numerical calculations were carried out for predicting the temperature distributions within the existing high temperature hot water distribution system and two insulated pipes covered in the same metallic conduit and the surrounding soil. The predicted results generally agree with the experimental data obtained at the test site.

  20. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01T23:59:59.000Z

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  1. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    1997-12-31T23:59:59.000Z

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  2. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the CarryingPeer Review GSHP System

  3. A capital cost comparison of commercial ground-source heat pump systems

    SciTech Connect (OSTI)

    Rafferty, K.

    1994-06-01T23:59:59.000Z

    The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

  4. Open-Cycle Vapor Compression Heat Pump System

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Becker, F. E.

    1983-01-01T23:59:59.000Z

    to the desired pressure level for process use. The compressor is driven by a gas turbine or gas engine prime mover. To enhance the system performance, the prime mover exhaust and/or cooling jacket heat is recovered to generate additional process steam or hot...

  5. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Watson, Craig A.

    when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

  6. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings†

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01T23:59:59.000Z

    simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

  7. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  8. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    SciTech Connect (OSTI)

    Schneider, A.R.

    1980-01-01T23:59:59.000Z

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  9. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  10. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Ferri, J. L.

    ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must...ChieVi able not only through design, but also I because the burner internals are all;: ceramic and can wi thstand high tempera~ tures, particularly at low inputs (higih turndown) where the flame front recedes into the burner. A burner test furnace...

  11. Rehabilitation of Secondary Heating and Cooling Systems - Case Study†

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Hugghins, J.; Brundidge, T.; Claridge, D.; Turner, W. D.; Bruner, H., Jr.

    2002-01-01T23:59:59.000Z

    VAV boxes use hot water reheat coils and supply air dampers, which are pneumatically controlled. A schematic diagram of the chilled water system in the building is shown in Figure 2. A schematic diagram of the heating water system... than the dynamic or modulating rating. The close-off pressure value is proportional to the size of actuator and inverse to valve size. The close-off pressure for electronic actuator is 3 ~ 5 times the values for pneumatic actuator. The pressure...

  12. Automatic Tube Cleaning Systems for Condensers & Heat Exchangers

    E-Print Network [OSTI]

    Someah, K.

    .0001 h'ft .0F/Btu in the condenser-tube fouling thermal resistance causes a corresponding increase of 1.1% in the compressor power requirement (2). A significant factor affecting the heat transfer capability of water-cooled condensers and heat... available space - that is, the length of piping The operation of rubber balt cleaning for the strainer section. The strainer spool with systems is based on the circulation of a single screen will occupy twice the pipe length. elastomeric, slightly...

  13. City of Allentown assessment of a district heating system

    SciTech Connect (OSTI)

    Oliker, I.; Tamayne, T.

    1982-09-01T23:59:59.000Z

    The energy sources selected to accommodate the heat load consist of five 10 MWt units at the high temperature hot water generating station, ten 10 MWt units at the high temperature hot water generating station, and two 25 MWe (37.5 MWt) cogenerating fluidized bed combustion units at the incinerator site. The service area selected consists of the downtown commercial district. Total peak heat load for the forty seven block commercial district and twenty two industrial customers is estimated to be 187 MWt. The following aspects are covered: transmission and distribution piping systems, development strategy, capital costs and construction schedule, operation, economics, environmental analysis, and community impact.

  14. Rapid heating and cooling in two-dimensional Yukawa systems

    E-Print Network [OSTI]

    Yan Feng; Bin Liu; J. Goree

    2011-04-19T23:59:59.000Z

    Simulations are reported to investigate solid superheating and liquid supercooling of two-dimensional (2D) systems with a Yukawa interparticle potential. Motivated by experiments where a dusty plasma is heated and then cooled suddenly, we track particle motion using a simulation with Langevin dynamics. Hysteresis is observed when the temperature is varied rapidly in a heating and cooling cycle. As in the experiment, transient solid superheating, but not liquid supercooling, is observed. Solid superheating, which is characterized by solid structure above the melting point, is found to be promoted by a higher rate of temperature increase.

  15. ITER HEAT REMOVAL SYSTEM SYSTEM & PROCESS CONTROL DESIGN

    E-Print Network [OSTI]

    Raffray, A. René

    normal pulse operation, the heat deposited in the in-vessel components is released into the environment. Ito 1 , P. Lorenzetto 4 , Y. Okawa 5 1 ITER Joint Central Team, 11025 North Torrey Pines Road, La Jolla, CA, 92037, USA; 2 ITER Joint Central Team, Naka, Japan; 3 ITER Joint Central Team, Garching

  16. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Cooling Heat and Power (CCHP) systems are being installed atand heating loads. These CCHP systems can also act as backupgenerators. In all cases the CCHP systems are rated at a

  17. Shutdown heat removal system reliability in thermal reactors

    SciTech Connect (OSTI)

    Sun, Y.H.; Bari, R.A.

    1980-01-01T23:59:59.000Z

    An analysis of the failure probability per year of the shutdown heat removal system (SHRS) at hot standby conditions for two thermal reactor designs is presented. The selected reactor designs are the Pressurized Water Reactor and the Nonproliferation Alternative System Assessment Program Heavy Water Reactor. Failures of the SHRS following the initiating transients of loss of offsite power and loss of main feedwater system are evaluated. Common mode failures between components are incorporated in this anlaysis via the ..beta..-factor method and the sensitivity of the system reliability to common mode failures is investigated parametrically.

  18. Heat's Role in the Madden-Julian Oscillation | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer in GE Jet Engines Click

  19. More Heat than Light? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National ScienceModeling ofMore Heat than

  20. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in whichGCHP program was developed by a previous MS student to optimize the design of hybrid systems. The current design changes when actual yearly weather data are used and develop a means to increase the optimization

  1. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout ¬ĽDepartment of2 DOE F 1300.2

  2. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerhead DOE Seeks CommentReserve |

  3. Technology assessment of external heat systems for Stirling heat pumps. Final report

    SciTech Connect (OSTI)

    Vasilakis, A.D. [Advanced Mechanical Technology, Inc., Newton, MA (United States)

    1993-12-01T23:59:59.000Z

    A technology assessment and design improvement effort was undertaken for the Stirling engine heat pump external heat system (EHS) in order to reduce costs. It was found that only two applicable EHS design approaches have been developed to any extent: a relatively undeveloped design featuring a premixed fuel and air transpiration burner, and a turbulent diffusion type burner system developed by Mechanical Technology, Inc. To evaluate and optimize the design concepts, an analytical model was developed that examined design and performance variables. The model calculated key temperatures, allowing the specification of materials requirements. Adherence to American National Standards Institute appliance furnace code material specifications was assumed. Concepts for EHS control systems were evaluated, and a cost-effective control system design was developed for the turbulent diffusion burner EHS. The study reveals that optimizing the diffusion burner EHS design can result in significant cost savings. No clear choice between the diffusion burner and transpiration burner systems could be determined from this study, but the designs of both were further developed and improved. Estimates show the EHS based on a transpiration burner to have a manufactured cost that is roughly 70% of the turbulent diffusion burner EHS cost, but fuel efficiency is lower by about 18%.

  4. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  5. Rethinking energy conservation via an evaluation of the heating system: A

    E-Print Network [OSTI]

    Vellekoop, Michel

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Heating, Ventilation, and Air Conditioning (HVAC) . . . . . . . . . . . . 5 2.3.1 HeatRethinking energy conservation via an evaluation of the heating system: A Case Study of Zilverling Intan Permatasari The purpose of this research is to study the heating system in Zilverling building

  6. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    the cost and feasibility of a residential ground coupled heat pump space conditioning system requiring#12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using

  7. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    E-Print Network [OSTI]

    Wray, Craig P.

    2008-01-01T23:59:59.000Z

    Heating, Ventilating, and Air-Conditioning: Recent Advancesthe energy efficiency of many heating, ventilating, and air-system, which delivers heating, cooling, and ventilation air

  8. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  9. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ∑A further essential component of Gas Heat Pump air conditioning

  10. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    SciTech Connect (OSTI)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19T23:59:59.000Z

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650įC. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40įC temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.

  11. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  12. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01T23:59:59.000Z

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  13. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAROF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLARbuilding to changes in heat input, and to predict room and

  14. Development of an On-Line Expert System: Heat Rate Degradation Expert System Advisor

    E-Print Network [OSTI]

    Sopocy, D. M.; Henry, R. E.; Gehl, S.; Divakaruni, S. M.

    and performance monitors in evaluating and diagnosing plant performance. Recognizing an industry-wide need for this advanced capability, the Electric Power Research Institute (EPRI) has undertaken the development and demonstration of an on-line expert system... called "Heat Rate Degradation Expert System Advisor." This expert system will enhance the logic trees previously developed and documented in EPRI Report CS-4554, "Heat Rate Improvement Guidelines for Existing Fossil Plants" (1), with analytical...

  15. Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment†

    E-Print Network [OSTI]

    Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

    2004-01-01T23:59:59.000Z

    the specified performance was realized at the heat-pump, e) whether the pipes for fan-coil units are suitably insulated. Output Heat loss from piping Upward and downward heat flow from hot-water mat Heat loss from piping (boiler - header) Heat loss from...Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment S. Hokoi*, H. Miura*, Y. Huang*, N. Nakahara** and A. Iwamae*** * Kyoto University, Kyoto 606-8501, Japan ** Nakahara Laboratory, Environmental Syst...

  16. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01T23:59:59.000Z

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800įC. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  17. Designing Optimal Heat and Power Systems for Industrial Processes

    E-Print Network [OSTI]

    Rutkowski, M. A.; Witherell, W. D.

    Power Research Institute (EPRI) of Palo Alto, California. In the paper, the use of Pinch Technology as a tool for analyzing industrial processes is demonstrated along with proper simulation of a corresponding heat and power system. For each process...Xisting design to determine improvement opportunities. INTRODUCTION This paper presents the results of a study conducted for the Electric Power Research Institute (EPRI) by Linnhoff March. The objective of this study was to develop a methodology...

  18. High Temperature Heat Recovery Systems Using Ceramic Recuperators

    E-Print Network [OSTI]

    Young, S. B.; Bjerklie, J. W.; York, W. A.

    1980-01-01T23:59:59.000Z

    HIGH TEMPERATURE HEAT RECOVERY SYSTEMS USING CERAMIC RECUPERATORS S. B. Young, J. W. Bjerklie, W. A. York Hague International South Portland, Maine ABSTRACT i Ceramic shell and tube recuperators capable of providing up to 1800 0 F (980... !HAGUE INTERNATIONAL ? 3 ADAMS STREET , SOUTH PORTLAND, MAINE 04106 2011111-1510 2011199-1341 FIGURE 1 ..__ .._.~_._---_._~ -- _._.- ._-----_._--_._-----_.__.._--- _._--~~~-~~~-~--_._._---~---~-~ .".;,,":;' ESL-IE-80-04-50 Proceedings from...

  19. Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19T23:59:59.000Z

    The Notice establishes DOE policy requirements and responsibilities for remote connections to DOE and contractor information technology systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, to protect DOE information and information technology systems commensurate with the risk and magnitude of harm that could result from their unauthorized access, use, disclosure, modification or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06. No cancellations.

  20. Quality Assurance Management System Guide for Use with 10 CFR 830.120 and DOE O 414.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-06-17T23:59:59.000Z

    DOE Elements and DOE contractors should consult this Guide in order to develop and implement effective management systems that are consistent with the Department's quality expectations and that support the Safety Management System Policy, DOE P 450.4. Canceled by DOE G 414.1-2A. Does not cancel other directives.

  1. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  2. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  3. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  4. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  5. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners and...

  6. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus Geothermal Heat Pump System for the New 500-bed 200,000 SF...

  7. Study of a Fault Analysis System for a Heat Supply Network Based on GIS

    E-Print Network [OSTI]

    Zou, P.; Liu, M.; Tang, H.; Wang, X.; Li, N.; Wang, W.

    2006-01-01T23:59:59.000Z

    Conventional methods cannot satisfy the request of the layout and operation management in a heating system. The geographical information system (GIS) in a heat supply network can realize information conformity and information share roundly, which...

  8. Process Waste Heat Recovery in the Food Industry - A System Analysis

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01T23:59:59.000Z

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  9. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  10. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  11. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01T23:59:59.000Z

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  12. TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T and hydraulic transmission (Figure 2). Engine power is transferred to the i A Free-Piston Stirling Engine prime's performance/ Stirling Engine - Spring operation over the specified operating range, Driver -'i. i, C

  13. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  14. STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC Volume Single Zone Unitary Air Conditioner and Heat Pump Systems (Page 1 of 4) Project Name CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC-MECH-3A (Revised 08

  15. RF heating systems evolution for the WEST project

    SciTech Connect (OSTI)

    Magne, R.; Achard, J.; Armitano, A.; Argouarch, A.; Berger-By, G.; Bernard, J. M.; Bouquey, F.; Charabot, N.; Colas, L.; Corbel, E.; Delpech, L.; Ekedahl, A.; Goniche, M.; Guilhem, D.; Hillairet, J.; Jacquot, J.; Joffrin, E.; Litaudon, X.; Lombard, G.; Mollard, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2014-02-12T23:59:59.000Z

    Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW ◊ 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resilience and its CW compatibility, three new actively cooled antennas are being designed, with the aim of reducing their sensitivity to the load variations induced by ELMs. The LH system has been recently upgraded with new klystrons and the PAM antenna, the possible reshaping of the antenna mouths is presently studied for matching with the magnetic field line in the WEST configuration. For the ECRH system, the device for the poloidal movement of the mirrors of the antenna is being changed for higher accuracy and speed.

  16. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results from the analysis were communicated to the FCT Office at the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation 3 and at a meeting of the...

  17. Model based methodology development for energy recovery in flash heat exchange systems

    E-Print Network [OSTI]

    McCarthy, John E.

    Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

  18. Microsoft Word - DOE-ID-11-002 DOE Direct cooling system [1].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShippingFacilityCAMDPhase1-0012

  19. 3.System Design Basis 2) MODELING

    E-Print Network [OSTI]

    Hong, Deog Ki

    was added to the heat gain of the each tank, because propane circulation system does not affect the propane

  20. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  1. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

  2. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    is little radiative heat transfer and little impact on thereturn air extrac- tion and heat transfer to the plenum. ItUFAD is often used and heat transfer out of the room through

  3. Energy Efficient Design of a Waste Heat Rejection System

    E-Print Network [OSTI]

    Mehta, P.

    In small and medium sized manufacturing facilities, several situations exist where sources of waste heat and sinks needing heat transfer coexist. Examples of waste heat include but are not limited to: drained hot water streams from water cooled...

  4. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1.3. Components of Ground Source Heat Pump Systems..........................................3 1.4. Types of Ground

  5. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump†

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  6. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  7. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2010-03-15T23:59:59.000Z

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  8. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  9. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2008-02-01T23:59:59.000Z

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  10. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and Operators (July 2004) More Documents & Publications...

  11. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  12. Optimization of storage in passive solar heating systems. Final report

    SciTech Connect (OSTI)

    Bahm, R.J.

    1980-05-01T23:59:59.000Z

    The search for a simple method of estimating the optimum amount of storage for passive solar space heating system designs and the results of that search are described. The project goals, and why the project is important are described. The major project results are presented in the order of their importance with respect to meeting the project goal. A narrative description of the project is given. Here the various approaches attempted are described, giving the reasons for failure in those areas that were not successful. The Appendices contain the bulk of data generated by this project. Most of the data is presented in graphical form. (MHR)

  13. Experimental Research of an Active Solar Heating System

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    Re newable Energy Resources and a Greener Future Vol.VIII-1-5 REFERENCES: [1]. Rao KUANG, Yongyun Zhou, Shaoyu Shao. The relation between PV modules? gesture in BIPV and absorbed solar irradiation [J]. Acta Energiae Solaris Sinica, 2004, 25... ventilation and air conditioning, 2000, 30(4): 30-32. [4]. Hong Ye, Jun WANG, Shuangyong ZHUANG. Experimental Study on the Radiant Floor Heating System Utilizing Form-stable PCM As the Thermal Mass [J]. Acta Energiae Solaris Sinica, 2004, 25(5): 651...

  14. Geothermal District Heating System City of Klamath Falls | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnetInformation District Heating System

  15. Control system analysis for off-peak auxiliary heating of passive solar systems

    SciTech Connect (OSTI)

    Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

  16. Use of an open-cycle absorption system for heating and cooling

    SciTech Connect (OSTI)

    Schlepp, D. R.; Collier, R. K.

    1981-03-01T23:59:59.000Z

    Solar cooling for commercial applications using open-cycle absorption refrigeration systems has been investigated and found to be feasible. If an open-cycle absorption system can be operated as a chemical heat pump for winter heating operation, the system would offer year-round operation that could make the system economically viable for many regions of the US. An analysis of heating operation for the open-cycle system is presented using a computer program that simulates heat and mass transfer processes for any environmental condition. The open-cycle absorption refrigeration system can be operated as a chemical heat pump. Simulations for winter heating operation were run for five US cities, with solar COP's in the range of .06 to .16. At these levels, the OCAR system can provide full heating and cooling operation for office buildings in many southern US cities.

  17. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  18. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance†

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01T23:59:59.000Z

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  19. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01T23:59:59.000Z

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  20. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  1. A Functional Regression Approach for Prediction in a District-Heating System

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    A Functional Regression Approach for Prediction in a District-Heating System Aldo Goia Dipartimento in a district heating sys- tem. Our dataset consists of four separated periods, with 198 days each period and 24 load forecasting, district heat- ing system Introduction Among the activities of support

  2. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  3. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    FernŠndez de Cůrdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Ń coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  4. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    FernŠndez de Cůrdoba, Pedro

    Short communication Optimization of hybrid ≠ ground coupled and air source ≠ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  5. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library development is focused on the develop- ment of models for building heating, ventilation and air

  6. Study of Applications of Solar Heating Systems with Seasonal Storage in China†

    E-Print Network [OSTI]

    Yu, G.; Zhao, X.; Chen, P.

    2006-01-01T23:59:59.000Z

    In most northern parts of China, it is cold in winter and needs space heating in winter. This paper studies applications of solar heating systems with seasonal storage in China. A typical residential district was selected, and a solar heating system...

  7. A Model-Driven Home Heating Control System Alexandre Demeure Galle Calvary Jean-Sbastien Sottet

    E-Print Network [OSTI]

    A Model-Driven Home Heating Control System Alexandre Demeure GaŽlle Calvary Jean-Sťbastien Sottet be specified by directly manipulating either the UI or its model as exemplified on a Model-Driven Home Heating.g., labels, buttons, links). Figure 1 shows the final UI of a Home Heating Control System (H2CS). The user

  8. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect (OSTI)

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05T23:59:59.000Z

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  9. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Broader source: Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

  10. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction†

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01T23:59:59.000Z

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  11. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China†

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  12. The Earth-Coupled or Geothermal Heat Pump Air Conditioning System

    E-Print Network [OSTI]

    Wagers, H. L.; Wagers, M. C.

    1985-01-01T23:59:59.000Z

    " and next at proper home insulation, window coverings, etc. The other electrical appliances in the home use relatively minor amounts of electricity compared to the air conditioning and hot water heating system. This paper will describe the geothermal heat...

  13. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01T23:59:59.000Z

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  14. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  15. Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area

    E-Print Network [OSTI]

    Yanagihara, R.; Okagaki, A.

    2006-01-01T23:59:59.000Z

    The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical...

  16. Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area†

    E-Print Network [OSTI]

    Yanagihara, R.; Okagaki, A.

    2006-01-01T23:59:59.000Z

    The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical...

  17. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect (OSTI)

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing (China)

    2010-08-15T23:59:59.000Z

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  18. Two well storage systems for combined heating and airconditioning by groundwater heatpumps in shallow aquifers

    SciTech Connect (OSTI)

    Pelka, W.

    1980-07-01T23:59:59.000Z

    The use of soil and ground water as an energy source and heat storage systems for heat pumps in order to conserve energy in heating and air conditioning buildings is discussed. Information is included on heat pump operation and performance, aquifer characteristics, soil and ground water temperatures, and cooling and heating demands. Mathematical models are used to calculate flow and temperature fields in the aquifer. It is concluded that two well storage systems with ground water heat pumps are desirable, particularly in northern climates. (LCL)

  19. Development of a Computer Heating Monitoring System and Its Applications

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Shen, L.

    2006-01-01T23:59:59.000Z

    to computer and monitor. Calculations of heating load, accumulative heat supply, etc. are carried out by the computer established with professional software programmed by C computer language. ??? ???? ??? ??? ??? ???? ??? ??? ??? ? ? ? ? ? Supply water... of supply and return water temperature, indoor and outdoor temperature, circulating flow, heating load, and accumulative heat supply. It can save and print the data and figures for checking and study. 3. APPLICATIONS The application of heating...

  20. Heat capacity of the site-diluted spin dimer system Ba?(Mn1-xVx)?O?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samulon, E. C.; Shapiro, M. C.; Fisher, I. R.

    2011-08-01T23:59:59.000Z

    Heat-capacity and susceptibility measurements have been performed on the diluted spin dimer compound Ba?(Mn1-xVx)?O?. The parent compound Ba?Mn?O? is a spin dimer system based on pairs of antiferromagnetically coupled S=1, 3d≤ Mn?? ions such that the zero-field ground state is a product of singlets. Substitution of nonmagnetic S=0, 3d? V?? ions leads to an interacting network of unpaired Mn moments, the low-temperature properties of which are explored in the limit of small concentrations 0?x?0.05. The zero-field heat capacity of this diluted system reveals a progressive removal of magnetic entropy over an extended range of temperatures, with no evidence for a phase transition. The concentration dependence does not conform to expectations for a spin-glass state. Rather, the data suggest a low-temperature random singlet phase, reflecting the hierarchy of exchange energies found in this system.

  1. The Stirling alternative. Power systems, refrigerants and heat pumps

    SciTech Connect (OSTI)

    Walker, G.; Reader, G.; Fauvel, O.R.; Bingham, E.R. (Univ. of Calgary, Alberta (Canada))

    1993-01-01T23:59:59.000Z

    This book provides an up-to-date reference on the technology, history, and practical applications of Stirling engines, including recent developments in the field and a convenient survey of the Stirling engine literature. The topics of the book include: fundamentals of Stirling technology, definition and terminology, thermodynamic laws and cycles: some elementary considerations, the Stirling cycle, practical regenerative cycle, theoretical aspects and computer simulation of Stirling machines, mechanical arrangements, control systems, heat exchangers, performance characteristics, working fluids, applications of Stirling machines, advantages of Stirling machines, disadvantages of Stirling machines, Stirling versus internal combustion engines, Stirling versus Rankine engines, applications for Stirling machines, Stirling power systems, the literature and sources of supply, the literature of Stirling engines, and the literature of cryocoolers.

  2. District heating and cooling technology development program: Phase 2, Investigation of reduced-cost heat-actuated, desiccant cooling systems for DHC applications; Quarterly report, August 20, 1990--November 24, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the first Quarterly Report for DOE Project Number FG01-90CE26603. The principal objective of this program is to perform a more detailed study aimed at producing lower-cost heat-actuated liquid desiccant cooling system for use with two-pipe District Heating (DH) systems. This quarterly report covers project work conducted from August 20, 1990 to November 24, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a DH system, but still enable cooling via that transport medium. At this time a district heating and cooling (DHC) system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing DH systems that already have a two-pipe system installed.

  3. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect (OSTI)

    Walker, Iain S.

    2003-11-01T23:59:59.000Z

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  4. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01T23:59:59.000Z

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  5. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect (OSTI)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir [Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791 (Iran, Islamic Republic of)

    2014-09-07T23:59:59.000Z

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  6. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    load calculations effects, some authors[4,5,6] neglect thermal capacitance do consider the response of room tempera- ture to sudden heat

  7. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  8. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18T23:59:59.000Z

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  9. DOE Headquarters (HQ) Environmental Management System (EMS) Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout ¬ĽDepartment of2 DOE F 1300.2Million) Go to Stairwell or

  10. PIA - DOE Savannah River Operations Office PRISM System | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForums OutreachAMWTP2009DOE

  11. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production |DistribuTECH |DOE andGeothermal

  12. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004August 2011 Wed,2011November

  13. Advanced Combustion Systems Project Information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvancedInformation

  14. Microsoft Word - System Plan R18 (DOE Final).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised: April 3, 2014 1 of2P.O.Figure 1.578

  15. Understanding Emissions from Combined Heat and Power Systems

    E-Print Network [OSTI]

    Shipley, A. M.; Greene, N.; Carter, S.; Elliott, R. N.

    Combined Heat and Power (CHP) is more energy efficient than separate generation of electricity and thermal energy. In CHP, heat that is normally wasted in conventional power generation is recovered as useful energy for satisfying an existing thermal...

  16. Heat Transport in Groundwater Systems--Laboratory Model

    E-Print Network [OSTI]

    Reed, D. B.; Reddell, D. L.

    Solar energy is a possible alternate energy source for space heating. A method of economic long term solar energy storage is needed. Researchers have proposed storing solar energy by heating water using solar collectors and injecting the hot water...

  17. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  18. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01T23:59:59.000Z

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  19. BSU GHP District Heating and Cooling System (Phase I)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Concept" completed * Borehole field designed using "Thermal Dynamics" software * Heat Pump Chiller requirements determined * Surveys conducted throughout campus to...

  20. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  1. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08T23:59:59.000Z

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  2. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  3. SEP Success Stories: "Idle Free Systems" Does Not Stand Idly...

    Broader source: Energy.gov (indexed) [DOE]

    retaining power to a truck's cab. | Courtesy of Idle Free Systems. Wisconsin-based Idle Free Systems received nearly 1.2M from the Energy Department's State Energy Program to...

  4. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01T23:59:59.000Z

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  5. Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards Environmentally Friendly Seawater Cooling Systems

    E-Print Network [OSTI]

    Binmahfouz, Abdullah

    2012-10-19T23:59:59.000Z

    the heat exchanger tubes in the system. In some instances, even a 250 micrometer thickness of fouling film can reduce the heat exchanger's heat transfer coefficient by 50 percent. On the other hand, macrofouling is the blockage caused by relatively large...

  6. A FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVERADIATIVE HEAT TRANSFER EQUATIONS \\Lambda

    E-Print Network [OSTI]

    ­differential equations that model steady­state combined conductive­radiative heat transfer. This system of equations­Brakhage algorithm. Key words. conductive­radiative heat transfer, multilevel algorithm, compact fixed point problems integro­differential equations that model steady­state combined conductive­radiative heat transfer

  7. Discrete thermal element modelling of heat conduction in particle systems: Basic formulations

    E-Print Network [OSTI]

    Martin, Ralph R.

    methodology, termed the discrete thermal element method (DTEM), for the effec- tive modelling of heat rights reserved. Keywords: Discrete thermal element method; Circular particle; Thermal contact; Heat conduction; Boundary (integral) equation/element 1. Introduction Heat transfer in particle systems can

  8. Building the DOE Systems Biology Knowledgebase (KBase) ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Brettin, Tom [Oak Ridge National Laboratory

    2013-03-22T23:59:59.000Z

    Tom Brettin on "Building the DOE Systems Biology Knowledgebase (KBase)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  9. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Arkin, Adam [LBNL] [LBNL

    2012-03-21T23:59:59.000Z

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  10. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Arkin, Adam [LBNL

    2013-01-15T23:59:59.000Z

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  11. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03T23:59:59.000Z

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  12. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    None

    1980-02-01T23:59:59.000Z

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  13. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01T23:59:59.000Z

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  14. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

  15. arXiv:cond-mat/0502546v123Feb2005 Heat conduction in one dimensional systems

    E-Print Network [OSTI]

    Li, Baowen

    , and heat control Giulio Casati1,2 and Baowen Li2 1 Center for Nonlinear and Complex Systems, Universita. However, modern ergodic theory tells us that for K-systems, a sequence of measurements with finitearXiv:cond-mat/0502546v123Feb2005 Heat conduction in one dimensional systems: Fourier law, chaos

  16. SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES FOR

    E-Print Network [OSTI]

    SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: SUMMARY OF PROCEDURES that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

  17. SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING

    E-Print Network [OSTI]

    SOLAR HEAT GAIN THROUGH FENESTRATION SYSTEMS CONTAINING SHADING: PROCEDURES FOR ESTIMATING that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about

  18. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01T23:59:59.000Z

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  19. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    CCP system provides electricity and cooling to a data centersystem with a high cooling load and no heating load (such as a data center)

  20. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  1. Natural convection heat transport in a small, HLMC reactor system

    SciTech Connect (OSTI)

    Spencer, B.W.; Sienicki, J.J.; Farmer, M.T. [Argonne National Lab., IL (United States)

    1999-09-01T23:59:59.000Z

    Concepts are being developed and evaluated at Argonne National Laboratory for a small nuclear steam supply system (NSSS) with proliferation-resistant features targeted for export to developing countries. Here the authors are specifically investigating how simple and compact such a system can be. A heavy-liquid-metal coolant (HLMC) is being considered owing to its excellent heat transport characteristics and its relative inertness with the reference thermodynamic working fluid (water/steam). The purpose of the present work is to explore the possibility to take advantage of these HLMC characteristics by eliminating the intermediate loop needed in sodium-cooled systems and additionally eliminating the primary system coolant pumps. The criteria imposed on the system include the following: (1) low power, i.e., 300 MW(thermal); (2) small size for factory fabrication and overland transportation; (3) elimination of fuel access at the site (no refueling, fuel shuffling, nor storage at site); integral fueled module replacement at 15-yr goal interval; and (4) completion of all research and development needed for detailed prototype design within 5 yr. To accomplish the latter requirement, the authors are addressing whether existing coolant and materials technology is capable of supporting the sought-after simplifications. In this regard, they are at present considering technology developed in Russia for Pb-Bi eutectic as a reactor coolant and ferritic-martensitic stainless steel with oxide-layer corrosion protection as cladding. The figure of merit in the investigation is the peak cladding temperature insofar as the cladding technology is considered proven to {approximately}600 C.

  2. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  3. NiSource Energy Technologies: Optimizing Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Not Available

    2003-01-01T23:59:59.000Z

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  4. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  5. Power Generation From Waste Heat Using Organic Rankine Cycle Systems

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01T23:59:59.000Z

    universal bottoming cycle that can convert the energy in waste heat streams into usable shaft power. The nominal rating of the unit is 600 KWe or 900 SHP. The basic bottoming cycle concept is shown in Figure I. GAS TURBINE -, Y. DIESEL PROCESS HEAT... in Figure 2. The diverter valve directs the waste heat stream through the vaporizer. The working fluid is boiled and slightly superheated in the vaporizer. The superheated vapor expands through the turbine, generating mechanical power. This expansion...

  6. auxiliary heating system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute...

  7. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    Program eere.energy.gov * The project started in FY10 * Collaboration between LBNL (Pruess) and INL (Redden) - Berkeley leads modeling, CO 2 -brine flow and heat...

  8. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01T23:59:59.000Z

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  9. Interaction of a solar space heating system with the thermal behavior of a building

    SciTech Connect (OSTI)

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01T23:59:59.000Z

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  10. Introduction Ground source heat pump (GSHP) systems are used

    E-Print Network [OSTI]

    to drilling of bore- holes for vertical ground heat exchangers (GHX), or excavation for horizontal GHX heating and cooling loads and their distribution over the year, as well as ground thermal properties, undisturbed ground temperature, and GHX design, as well as other factors. For low energy buildings the greatly

  11. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  12. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones†

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  13. Save Energy Now in Your Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heating Systems Process heating

  14. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed...

  15. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  16. How Does the Republic of Science Shape the Patent System? Broadening the

    E-Print Network [OSTI]

    Loudon, Catherine

    357 How Does the Republic of Science Shape the Patent System? Broadening the Institutional Analysis of Innovation Beyond Patents Fiona E. Murray,* Joshua S. Gans,** and Mackey L. Craven*** I. The Republic. Intertwined Relationship Between the Patent System & the Republic of Science

  17. God Does Play Dice: Diagnosis and Validation for Autonomous Systems Tim Menzies

    E-Print Network [OSTI]

    Menzies, Tim

    God Does Play Dice: Diagnosis and Validation for Autonomous Systems S. Bayana David Owen ° Tim for validating and diagnosing autonomous intelligent systems. Such techniques provide efficient approximate of LURCH, a random- ized inference engine that we have developed in validating and diagnosing autonomous

  18. Notice of Intent to Revise DOE G 414.1-1B, Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18T23:59:59.000Z

    This memorandum provides justification for revising DOE G 414.1-1B, Management and Independent Assessments Guide for Use With 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of Department of Energy Oversight Policy.

  19. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01T23:59:59.000Z

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  20. Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...

  1. A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment

    E-Print Network [OSTI]

    Kozman, T. A.; Reynolds, C. M.; Lee, J.

    2008-01-01T23:59:59.000Z

    Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

  2. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30T23:59:59.000Z

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  3. Solar/performance goals for solar and ground-coupled heat pump systems

    SciTech Connect (OSTI)

    Andrews, J.W.

    1980-09-01T23:59:59.000Z

    Cost goals for combined solar/heat pump systems are developed. Three methods of analysis are used: simple payback, positive cash flow, and life cycle costing. The goals are parameterized on system energy efficiency, with the air-to-air heat pump as the conventional system which is used as a basis for comparison. Cost goals for nine systems are determined in three generic climates.

  4. Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System

    Broader source: Energy.gov [DOE]

    This project will expand Expand eQUEST, a building energy analysis software with latest implementation of DOE-2, for simulations of HGSHP systems and improve its existing simulation capabilities for ordinary GSHP systems.

  5. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  6. Sodium storage facility trace heat system design description

    SciTech Connect (OSTI)

    Jones, D.D.

    1997-06-12T23:59:59.000Z

    This document describes the SSF PLC Ladder Logic, Cross references, and the software that was used to control the amount of power applied to the SSF Trace Heated components.

  7. Modeling, Estimation, and Control of Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Luong, David

    2013-01-01T23:59:59.000Z

    Kan08] for flow through vertical and horizontal tubes. TheFlow Boiling Heat Transfer Inside Horizontal and Vertical Tubes. Ēand thin horizontal tube. 2. Working fluid flow modeled as a

  8. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  9. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  10. air heating system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  11. air heating systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  12. additional heating systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  13. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01T23:59:59.000Z

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  14. Performance Evaluation of a ground source heat pump system based on ANN and ANFIS models

    E-Print Network [OSTI]

    Sun, W.; Hu, P.; Lei, F.; Zhu, N.; Zhang,J.

    2014-01-01T23:59:59.000Z

    Performance evaluation of a ground source heat pump system based on ANN and ANFIS models Weijuan SUN a, Pingfang HUa,*, Fei Leia, Na Zhua, Jiangning Zhanga aHuazhong University of Science and Technology, Wuhan 430074, P. R. China Abstract...: The aim of this work is to calculate the heat pump coefficient of performance (COP) and the system COP of a ground source heat pump (GSHP) system based on an artificial neural network (ANN) model and (adaptive neuro-fuzzy inference system (ANFIS) model...

  15. Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)

    SciTech Connect (OSTI)

    Khrustalyov, Yu. V., E-mail: yuri.khrustalyov@gmail.com; Vaulina, O. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-05-15T23:59:59.000Z

    New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.

  16. Control system for, and a method of, heating an operator station of a work machine

    DOE Patents [OSTI]

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05T23:59:59.000Z

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  17. Influences of electrical field on boiling-condensation heat transfer system

    SciTech Connect (OSTI)

    Yang Jiaxiang; Ding Lijian; Chi Xiaochun; Liu Ji [Harbin Inst. of Electrical Technology (China). Dept. of Electrical Materials Engineering; Yang He [Harbin Inst. of Tech. (China). Dept. of Thermal Energy Engineering

    1996-12-31T23:59:59.000Z

    In this paper, the influences of electrical field on boiling-condensation heat transfer system have been investigated using a cylinder heat transfer model. Freon-11 is selected as working fluid. The condensation heat transfer coefficient, the boiling heat flux and the saturation pressure are measured in this investigation. According to the experimental results, it is found that the electrical field can influence heat transfer system. The boiling heat transfer is enhanced by the applied voltage, and the saturate vapor of working fluid is condensed on the high voltage electrode directly when the applied voltage is higher than 6 kv. The experimental results have been discussed, and it is considered that the high electrical field strength change the thermal properties of working fluid.

  18. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect (OSTI)

    Cole, G.H.

    1993-01-01T23:59:59.000Z

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  19. Performance predictions and measurements for space-power-system heat pipes

    SciTech Connect (OSTI)

    Prenger, F.C. Jr.

    1981-01-01T23:59:59.000Z

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

  20. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31T23:59:59.000Z

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  1. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect (OSTI)

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H. [Cryogenic Engineering Division, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

    2014-01-29T23:59:59.000Z

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  2. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method†

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  3. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  4. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  5. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  6. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  7. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  8. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  9. Study of Applications of Solar Heating Systems with Seasonal Storage in China

    E-Print Network [OSTI]

    Yu, G.; Zhao, X.; Chen, P.

    2006-01-01T23:59:59.000Z

    the ratio of volume of seasonal storage tank to collector areas is 3~5, the system performance is optimal for many places in China; 3) the obtained solar heat is mainly dependent on the solar irradiance, length of heating period and ambient temperature...

  10. VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series and may well be the most efficient alternative for residences in cold climates. INTRODUCTION A heat pump. Baxter, Energy Division, N8 O Oak Ridge National Laboratory37831 Ridge, Tennessee 37831 WI ' ABSTRACT

  11. On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg

    E-Print Network [OSTI]

    On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power the absolute maximum efficiency of energy conversion by thermoelectric devices that operate as part of the heat

  12. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22T23:59:59.000Z

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  13. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  14. Large ELMs Triggered by MHD in JET Advanced Tokamak Plasmas: Impact on Plasmas Profiles, Plasmas Facing Components and Heating Systems

    E-Print Network [OSTI]

    Large ELMs Triggered by MHD in JET Advanced Tokamak Plasmas: Impact on Plasmas Profiles, Plasmas Facing Components and Heating Systems

  15. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heatHow

  16. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergy Heating Oil Reserve ¬Ľ

  17. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEastHomesHeat

  18. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05T23:59:59.000Z

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  19. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald; Kennedy, Ian

    2013-12-17T23:59:59.000Z

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  20. Study of a Fault Analysis System for a Heat Supply Network Based on GIS†

    E-Print Network [OSTI]

    Zou, P.; Liu, M.; Tang, H.; Wang, X.; Li, N.; Wang, W.

    2006-01-01T23:59:59.000Z

    of heat supply network while city heat supply network?s operation time becomes longer and the heat consumer?s number becomes larger. Furthermore, it?s rather difficult to know the pipeline situation, for the complex laying structure, the ceaseless... changing of overground buildings and underground pineline. It?s typical for china?s city pipe network that the data are lack and the layouts of pipeline are complex. Because of these, it is difficult to operate and manage the heating system. Especially...

  1. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

    1997-12-31T23:59:59.000Z

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  2. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23T23:59:59.000Z

    This Guide provides the Department of Energy's federal project directors with the methodologies and tools needed to plan, implement and complete assigned projects using a Systems Engineering approach in accordance with the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. No cancellations.

  3. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

  4. Co-sponsored second quarter progress review conference on district heating

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  5. DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama system designed to increase the utilization of wind power in cold climate wind/diesel systems where and load occurs in many isolated cold-climate diesel systems around the world where the summer population

  6. INSTALLATION CERTIFICATE CF-6R-MECH-03 Pool And Spa Heating Systems (Page 1 of 2)

    E-Print Network [OSTI]

    : Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Pool and Spa Heating Systems for outdoor pools or spas that have a heat pump or gas heater. 3. Pool system has directional inletsINSTALLATION CERTIFICATE CF-6R-MECH-03 Pool And Spa Heating Systems (Page 1 of 2) Site Address

  7. Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

  8. March 1, 2013. Campus Wide District Heating & Cooling System

    E-Print Network [OSTI]

    Units Chillers recovery Hot Water Heaters recovery Second Stage Heatpumps (HWH + DHW) 70 (tons) X 4;18 Energy Loop 18 Energy Loop Geothermal Cooling Units Chillers recovery Hot Water Heaters recovery Second,338 sq.ft) Heating: steam network at = 100 PSIG (328F) Approximitely 600m (2,000') of buried lines #12

  9. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect (OSTI)

    Hovingh, J.

    1980-04-23T23:59:59.000Z

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  10. Modeling, Estimation, and Control of Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Luong, David

    2013-01-01T23:59:59.000Z

    heat capacity, constant volume Cv, in kJ kgK kJ kgK 13. liquidheat capacity, constant volume Cv, in kJ kgK 12. liquidheat capacity in region 3 Cp3, in kJ kgK 17. saturated liquid

  11. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  12. Investigation of boiling heat transfer at a surface with a system of cylindrical cavities under conditions of free motion

    SciTech Connect (OSTI)

    Danilova, G.N.; Reznikov, V.I.

    1988-01-01T23:59:59.000Z

    The authors propose a mathematical model for the intensification of boiling heat transfer and the subsequent increase in thermal efficiency of the cylindrical heat transfer surfaces in an evaporative cooling system. The boiling curves for water, ethanol, and freon 113 are calculated for a surface with artificial nucleation sites. The model incorporates such coolant properties as surface tension, specific heat, and vaporization heat.

  13. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

    2001-01-01T23:59:59.000Z

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  14. Dynamic measurement of heat loss coefficients through Trombe wall glazing systems

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    A Trombe wall presents a unique opportunity to measure the heat-loss coefficient through the glazing system because the wall itself can be used as a heat meter. Since the instantaneous heat flux through the outer wall surface can be determined, the heat loss coefficient at night can be calculated by dividing by the wall surface-to-ambient temperature difference. This technique has been used to determine heat-loss coefficients for Los Alamos test rooms during the winter of 1980-1981. Glazing systems studied include single and double glazing both with and without night insulation used in conjunction with a flat black paint, and both single and double glazing used in conjunction with a selective surface.

  15. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01T23:59:59.000Z

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  16. An electrochemical system for efficiently harvesting low-grade heat energy

    E-Print Network [OSTI]

    Lee, Seok Woo

    Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

  17. Using Remote Control Systems for the Re-Commissioning of Heating Plants of School Building

    E-Print Network [OSTI]

    Vaezi-Nejad, H.; Detaille, C.; Jandon, M.; Bruyat, F.

    2004-01-01T23:59:59.000Z

    The objective of this work is to develop a semi-automatic commissioning tool that can be implemented in Remote Control Systems to help building operators test the performance of heating plants in school buildings. The work was carried out...

  18. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01T23:59:59.000Z

    This paper presented the concept, prototype application, operational performance and benefits relating to a novel solar assisted water heating system for building services. It was undertaken through dedicated theoretical analysis, computer...

  19. Second generation ground coupled solar assisted heat pump systems. Six month progress report

    SciTech Connect (OSTI)

    Rhodes, G W; Backlund, J C; Helm, J M

    1981-01-01T23:59:59.000Z

    Progress is reported on an investigation of the technical and commercial viability of a novel ground coupled, solar assisted heat pump system for residential space heating and cooling applications. Specific areas of study are solar collector/heat rejector performance, flat plate earth heat exchanger performance, system performance simulations, and commercialization and marketing analysis. Collector/rejector performance, determined by various thermal experiments, is discussed. The design and construction of an experimental site to study ground coupling is discussed. Theoretical analysis is also presented. The performance of the GCSAHP system and conventional alternatives, as determined by simple computer models, is presented and discussed. Finally, the commercial viability of this unique space conditioning system is examined.

  20. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels†

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...