National Library of Energy BETA

Sample records for heating space cooling

  1. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  2. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  3. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  4. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  5. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01

    the building (heating or cooling) served floor space, 11 andtotal floor space of all buildings with space heating andheating it applies only to buildings with a small floor

  6. Space Heating and Cooling Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Air Conditioning Research Institute A directory listing air conditioning and heat pump products that meet energy performance tiers established by the Consortium for Energy...

  7. Space Heating and Cooling Products and Services | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2, 2014 Smith Named as NewAprilSpaceSpaceSpace

  8. $500,000 annually for heating and cooling prior to the installation of the PureComfortTM cooling, heating, and power system. Electrical power and space conditioning are now

    E-Print Network [OSTI]

    Pennycook, Steve

    -fired boilers and a steam heating system, and supplements the remaining campus heating and cooling system$500,000 annually for heating and cooling prior to the installation of the PureComfortTM cooling, heating, and power system. Electrical power and space conditioning are now provided more efficiently

  9. Space Heating and Cooling Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar DecathlonSolid-StateManufacturing3Space

  10. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable Energy (EERE)NewslettersWaterSpace

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  13. Heat pipe cooled reactors for multi-kilowatt space power supplies

    SciTech Connect (OSTI)

    Ranken, W.A.; Houts, M.G.

    1995-01-01

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  14. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  15. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    Definitions Space Heating Space Cooling Hot Water . .in Passive Solar Heating and Cooling Section C: Program GoalSpace Heating Space Cooling Section G: Task Classifications

  16. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    passive and hybrid space heating systems. Space Cooling Aand hybrid solar heating and cooling systems. Experimentspassive, and hybrid systems for heating, cooling, and

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  18. Heating & Cooling | Department of Energy

    Energy Savers [EERE]

    Energy Saver Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for...

  19. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    AND HYBRID HEATING AND COOLING SYSTEMS Michael J. Holtzmost common passive cooling systems and a representativepassive space heating and cooling systems. It is based upon

  20. HOW TO HEAT AND COOL A HOME WITH 400 CFM SUPPLY AIR AND KEEP THE DUCTS IN THE CONDITIONED SPACE

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    1999-05-01

    A design strategy is presented that can enable a typical new home to be heated, cooled, and ventilated with less than 400 cfm of delivered air. The strategy has three major elements. First, peak cooling loads are minimized by using good available technologies for the envelope, with emphasis on minimizing heat gains through the windows. Second, the envelope is designed to have very low natural air leakage rates, such that all the ventilation air can be drawn in at one point and passed over the cooling coil before it is mixed with the house air. This permits a significant portion of the cooling load to be met at an air flow rate of {approximately}200 cubic feet per minute (cfm) per ton, compared with the typical 400 cfm per ton in standard air-conditioning systems. Third, by reducing the amount of supply air needed to meet the envelope loads, the required size of ductwork is reduced, making it easier to locate the ducts within the conditioned space. This reduces duct loads to zero, completing the three-part energy conserving strategy.

  1. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    operating solar heating and cooling systems covering a widepractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  2. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  3. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling

    SciTech Connect (OSTI)

    2010-04-01

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  4. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    Passive and Hybrid Heating Cooling Systems Michael]. Holtz,PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS Michael J.of passive and hybrid space heating and cooling systems are

  5. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating to a standard reversible heat pump (HP). The air evaporator is defrosted by a two-phase thermosiphon without

  6. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    SciTech Connect (OSTI)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  12. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  13. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  14. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  15. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  16. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  17. Tips: Passive Solar Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling July 27, 2014 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat...

  18. Mpemba effect, Newton cooling law and heat transfer equation

    E-Print Network [OSTI]

    Vladan Pankovic; Darko V. Kapor

    2012-12-11

    In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

  19. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application 

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01

    energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

  20. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  1. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Environmental Management (EM)

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power...

  2. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    LBL buildings, with the solar collectors on the roof, theCBB 757-5496 Figure 3: Solar Collectors Mounted· on the RoofSolar Heating and Cooling Systems. The components include Collectors (

  3. Phonon cooling by an optomechanical heat pump

    E-Print Network [OSTI]

    Ying Dong; F. Bariani; P. Meystre

    2015-07-27

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single pre-cooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  4. Phonon cooling by an optomechanical heat pump

    E-Print Network [OSTI]

    Ying Dong; F. Bariani; P. Meystre

    2015-12-04

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single pre-cooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  5. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  6. NASA Marshall Space Flight Center Improves Cooling System Performance...

    Office of Environmental Management (EM)

    Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center Improves Cooling System Performance NASA Marshall Space Flight Center Improves...

  7. An analysis of electrothermodynamic heating and cooling 

    E-Print Network [OSTI]

    Honea, Mark Stephen

    1998-01-01

    as the cold junction of a thermocouple. By way of the Peltier effect, then, heat could be added or removed at the interfaces at a rate proportional to the current density and local temperature; by increasing the current, the rate of cooling would be increased...

  8. Towards Occupancy-Driven Heating and Cooling

    E-Print Network [OSTI]

    Whitehouse, Kamin

    $100­$200 per home in hardware, and less than $0.10 per square foot in office buildings. It will also a 28% reduction per household in the energy required for heating and cooling, at the cost of only $25) accounts for 38% of building energy usage, and over 15% of all U.S. energy usage, making it one

  9. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    DOE Patents [OSTI]

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  10. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Systems Featured on NBC Nightly News Geothermal Heating and Cooling Systems Featured on NBC Nightly News April 13, 2009 - 11:24am Addthis NBC Nightly News...

  11. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  12. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  13. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  14. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaForced-Air Heating and Cooling Systems May 2002 Walker, I. ,

  15. NASA's Marshall Space Flight Center Improves Cooling System Performance

    SciTech Connect (OSTI)

    2011-02-22

    National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  16. March 1, 2013. Campus Wide District Heating & Cooling System

    E-Print Network [OSTI]

    ____________________________ March 1, 2013. Campus Wide District Heating & Cooling System. Today · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5 · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5. Tomorrow 6

  17. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    Common Passive and Hybrid Heating Cooling Systems Michael].THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

  18. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  19. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    AE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E and preventive maintenance procedures for ventilation, evaporative cooling and heating systems. Ventilation a ventilation system is not operating properly, the results can be pockets of stagnant air, inadequate cooling

  20. Solar heating and cooling diode module

    DOE Patents [OSTI]

    Maloney, Timothy J. (Winchester, VA)

    1986-01-01

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  1. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  2. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  3. Cooling, Heating, and Power for Industry: A Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades,...

  4. Cooling, Heating, and Power for Commercial Buildings - Benefits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings - Benefits Analysis, April 2002 Cooling, Heating, and Power for Commercial Buildings - Benefits Analysis, April 2002 In this paper, an analysis was performed...

  5. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colleges and Universities - Census, Survey, and Lessons Learned, February 2002 Cooling, Heating and Power in the Nation's Colleges and Universities - Census, Survey, and...

  6. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by...

  7. Covered Product Category: Light Commercial Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives. This acquisition guidance applies to...

  8. Energy Department Invests to Save on Heating, Cooling and Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory, commercial building owners could save an average 38 percent on heating and cooling bills by installing energy control systems. Find additional detail on...

  9. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  10. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  11. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect (OSTI)

    White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY

    2011-06-10

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  12. Comments on: Asymptotic Bound for Heat-Bath Algorithmic Cooling

    E-Print Network [OSTI]

    Nayeli Azucena Rodriguez-Briones; Jun Li; Xinhua Peng; Tal Mor; Yossi Weinstein; Raymond Laflamme

    2015-06-05

    In a recent paper, PRL 114 100404, 2015, Raeisi and Mosca studied Heat-Bath Algorithmic Cooling (HBAC) and claimed to have established "the fundamental limit of cooling for {\\it all} HBAC techniques" (italics are ours). We show that this claim is incorrect by giving a counterexample of an HBAC algorithm that provides better cooling bound for two qubits.

  13. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    water (solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen in

  14. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  15. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  16. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  17. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  18. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Radiant Heating and Cooling Systems, in, 2012. [15] F.Gain on Radiant Floor Cooling System Design. Proceedings ofof radiant floor cooling systems and their associated air

  19. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  20. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  1. NASA's Marshall Space Flight Center Improves Cooling System Performance

    Broader source: Energy.gov [DOE]

    Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its problematic cooling systems. The program saved the facility more than 800,000 gallons of water in eight months.

  2. Policymakers' Guidebook for Geothermal Heating and Cooling (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Heating and Cooling with information directing people to the Web site for more in-depth information.

  3. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  4. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  5. Covered Product Category: Light Commercial Heating and Cooling

    Broader source: Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STAR®–qualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  6. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect (OSTI)

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  7. Energy Accounting for District Heating and Cooling Plants 

    E-Print Network [OSTI]

    Barrett, J. A.

    1979-01-01

    FOR DISTRICT HEATING AND COOLING PLANTS John A. Barrett, P.E. Manager, Central Plant Utilities University of Houston Houston, Texas Introduction Energy accounting combines engineering science with the insights of cost accoupting theory. It requires...-25, 1979 The Science of Plant Utilities Control While the Weiss papers are not as specific to district heating and cooling plants as the preceding papers, they do treat other problem areas of interest. Undoubtedly the northeastern United States, which...

  8. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  9. Investigation of the heat pipe arrays for convective electronic cooling 

    E-Print Network [OSTI]

    Howard, Alicia Ann Harris

    1993-01-01

    A combined experimental and analytical investigation was conducted to evaluate a heat pipe convective cooling device consisting of sixteen small copper/water heat pipes mounted vertically in a 4x4 array 25.4 mm square. The analytical portion...

  10. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  11. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling 

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  12. Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002

    Broader source: Energy.gov [DOE]

    An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

  13. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report

    SciTech Connect (OSTI)

    Moriarty, M.P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  14. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    7] B. Borresen, Floor heating and cooling of an atrium, in:thermal performance of floor heating systems, Solar Energy,discussed this issue for floor heating, but not cooling.

  15. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01

    produced a ground coupled heat pump simulation (GSIM) which modeled ground coupled systems using soil properties, weather data, building load and ground coil properties. This model has been validated in cooling [Dobson, 1991] and heating [Margo, 1992... U-tube ground coupled heat pump heat exchangers for Texas climates is presented. Weather and soil data for Texas were gathered and presented using topographical charts. GSIM, the ground coupled heat pump simulation model, was utilized to provide...

  16. Rapid heating and cooling in two-dimensional Yukawa systems

    E-Print Network [OSTI]

    Yan Feng; Bin Liu; J. Goree

    2011-04-19

    Simulations are reported to investigate solid superheating and liquid supercooling of two-dimensional (2D) systems with a Yukawa interparticle potential. Motivated by experiments where a dusty plasma is heated and then cooled suddenly, we track particle motion using a simulation with Langevin dynamics. Hysteresis is observed when the temperature is varied rapidly in a heating and cooling cycle. As in the experiment, transient solid superheating, but not liquid supercooling, is observed. Solid superheating, which is characterized by solid structure above the melting point, is found to be promoted by a higher rate of temperature increase.

  17. Cooling rate, heating rate and aging effects in glassy water

    E-Print Network [OSTI]

    Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

    2004-03-03

    We report a molecular dynamics simulation study of the properties of the potential energy landscape sampled by a system of water molecules during the process of generating a glass by cooling, and during the process of regenerating the equilibrium liquid by heating the glass. We study the dependence of these processes on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare the properties of the potential energy landscape sampled during these processes with the corresponding properties sampled in the liquid equilibrium state to elucidate under which conditions glass configurations can be associated with equilibrium liquid configurations.

  18. Giant planet formation from disk instability; cooling and heating

    E-Print Network [OSTI]

    Lucio Mayer; James Wadsley; Thomas Quinn; Joachim Stadel

    2003-11-03

    We present the results of high resolution SPH simulations of the evolution of gravitationally unstable protoplanetary disks. We report on calculations in which the disk is evolved using a locally isothermal or adiabatic equation of state (with shock heating), and also on new simulations in which cooling and heating by radiation are explicitly modeled. We find that disks with a minimum Toomre parameter $cooling time comparable to the orbital time is needed to achieve fragmentation, for disk masses in the range $0.08-0.1 M_{\\odot}$. After about 30 orbital times, merging between the bound condensations always leads to 2-3 protoplanets on quite eccentric orbits.

  19. Signatures of Heating and Cooling Energy Consumption for Typical AHUs 

    E-Print Network [OSTI]

    Wei, G.; Liu, M.; Claridge, D. E.

    1998-01-01

    -patient measured values, respectively. hospital facility with a total conditioned floor area of 298,500 ft2. There are four constant 40 50 60 70 80 90 Tdb (OF) Figure 4. Comparison of measured and initial model predicted heating and cooling energy consumption.... 20 A M-Steam o S-Steam o M-CHW S-CHW La 9 \\ a g 10 --- ---------A r, 2 40 50 60 70 80 90 Tdb (OF) Figure 5. Comparison of measured and calibrated model predicted heating and cooling energy consumption 20 Measured chilled water...

  20. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    etc. Heat Exchangers Heat Pipes & Thermal Diodes ConceptJ. Heat Exchangers K. Heat Pipes & Thermal Diodes A. Conceptwith two control, one heat pipe, and one cooling study. In

  1. Bartholomew Heating and Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind Project JumpBarstow,Heating and

  2. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events: 1938-1950 AugustDepartmentHeating

  3. The Integration of Cogeneration and Space Cooling 

    E-Print Network [OSTI]

    Phillips, J.

    1987-01-01

    Cogeneration is the production of electrical and thermal energy from a single fuel source. In comparison, electric power generation rejects the useful heat energy into lakes or other heat sinks. Electric generation alone provides approximately 30...

  4. Method and apparatus for heat extraction by controlled spray cooling

    DOE Patents [OSTI]

    Edwards, Christopher Francis (5492 Lenore Ave., Livermore, Alameda County, CA 94550); Meeks, Ellen (304 Daisyfield Dr., Livermore, Alameda County, CA 94550); Kee, Robert (864 Lucille St., Livermore, Alameda County, CA 94550); McCarty, Kevin (304 Daisyfield Dr., Livermore, Alameda County, CA 94550)

    1999-01-01

    Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.

  5. Reducing Home Heating and Cooling Costs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space Heatingreports CoalJ

  6. Simulation and analysis of district-heating and -cooling systems

    SciTech Connect (OSTI)

    Bloomster, C.H.; Fassbender, L.L.

    1983-03-01

    A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

  7. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  8. 1999 Commercial Buildings Characteristics--Glossary--Space-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space-Heating Equipment Glossary-Space-Heating Equipment Boiler: A type of space-heating equipment consisting of a vessel or tank where heat produced from the combustion of such...

  9. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  10. Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to

    E-Print Network [OSTI]

    Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application;#12;Cryogenic Heat Pipe for Cooling High Temperature Superconductors with Application to Electromagnetic Superconductors with Application to Electromagnetic Formation Flight Satellites by Daniel W. Kwon Submitted

  11. An experimental and analytical study of the transient behavior of vertical u-tube ground-coupled heat pumps in the cooling mode 

    E-Print Network [OSTI]

    Dobson, Monte Keith

    1991-01-01

    GROUND-COIL MODELING . . . . . . . . FIELD MONITORING OF GCHP COOLING PERFORMANCE . . . . TRANSIENT PERFORMANCE . . . . . . . . . . . . SUMMARY . 23 24 28 IV EXPERIMENTAL EQUIPMENT AND MONITORING EXPERIENCE 31 RESIDENCE AND HEAT PUMP DATA... Regression Equation Return Air Soil sup Supply Air Total wat Ground-Coil Water CHAPTER I INTRODUCTION Heat pumps have become a popular alternative for space-heating and cooling in new residences. Heat pumps represent a decreased first-cost to new...

  12. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  13. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  14. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect (OSTI)

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  15. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  16. Strategy Guideline. Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, Arlan

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  17. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, A.

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  18. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  19. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  20. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  1. The Heat Balance Method (HBM) is used for estimating the heating and cooling loads encountered in a vehicle cabin. A

    E-Print Network [OSTI]

    Bahrami, Majid

    is a critical system for hybrid electric vehicles (HEVs) and electric vehicles (EVs), as it is the second most of AC systems of vehicle. A clear understanding of the heating and cooling loads, encounteredABSTRACT The Heat Balance Method (HBM) is used for estimating the heating and cooling loads

  2. Fluid-cooled heat sink with improved fin areas and efficiencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VARIOUS DEVICES Abstract: The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the...

  3. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  4. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

  5. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon...

  6. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature...

  7. Thulium heat sources for space power applications

    SciTech Connect (OSTI)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

  8. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01

    May 27-30, 1981 INCREMENTAL COOLING LOAD DETERMINATION FOR12048 May 1981 INCREMENTAL COOLING LOAD DETERMINATION FORfor increases in the building cooling load resulting from

  9. Solar Heating & Cooling: Energy for a Secure Future

    Broader source: Energy.gov [DOE]

    Today, more than 30,000 solar heating and cooling systems (SHC) are being installed annually in the United States, employing more than 5,000 American workers from coast to coast. These numbers are good – but they can be a lot better. Installing more SHC systems would provide a huge boost to the economy and help the environment, too. This first-of-its-kind SHC roadmap, developed by a task force made up of SEIA-member companies and BEAM Engineering, lays the groundwork – as well as makes a compelling case – for driving installed SHC capacity from 9 GW thermal to 300 GW thermal by 2050.

  10. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  11. Single nozzle spray cooling heat transfer mechanisms Bohumil Horacek, Kenneth T. Kiger, Jungho Kim *

    E-Print Network [OSTI]

    Kim, Jungho

    Single nozzle spray cooling heat transfer mechanisms Bohumil Horacek, Kenneth T. Kiger, Jungho Kim Abstract An investigation into single nozzle spray cooling heat transfer mechanisms with varying amounts the effective subcooling of the liquid, and shifted the spray cooling curves to higher wall temperatures

  12. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare

  13. Solar space cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPCSolarVisionSolar space

  14. AOSC 621AOSC 621 Radiative Heating/CoolingRadiative Heating/Cooling

    E-Print Network [OSTI]

    Li, Zhanqing

    ? Why drop off near sfc? 4 #12;Net flux Net flux: F = F+ - F- 1 2 F-(1) F+(1) F-(2) F+(2) Net energy at the top of the atmosphere is zero. Then we can write 1' ' )',( )'()0,()( 0 * dz dz zzdT zBzTBzF z z F F · The heating rate at z is defined as follows: )( )( d zdF zH net four termsofconsistwilland dz A

  15. Low-Cost Gas Heat Pump For Building Space Heating | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Gas Heat Pump For Building Space Heating Low-Cost Gas Heat Pump For Building Space Heating Credit: Stone Mountain Technologies Credit: Stone Mountain Technologies Lead...

  16. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant 

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    2008-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  17. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect (OSTI)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  18. Heat Bath Algorithmic Cooling with Spins: Review and Prospects

    E-Print Network [OSTI]

    Daniel K. Park; Nayeli A. Rodriguez-Briones; Guanru Feng; Robabeh R. Darabad; Jonathan Baugh; Raymond Laflamme

    2015-01-05

    Application of multiple rounds of Quantum Error Correction (QEC) is an essential milestone towards the construction of scalable quantum information processing devices. However, experimental realizations of it are still in their infancy. The requirements for multiple round QEC are high control fidelity and the ability to extract entropy from ancilla qubits. Nuclear Magnetic Resonance (NMR) based quantum devices have demonstrated high control fidelity with up to 12 qubits. On the other hand, the major challenge in the NMR QEC experiment is to efficiently supply ancilla qubits in highly pure states at the beginning of each round of QEC. Purification of qubits in NMR, or in other ensemble based quantum systems can be accomplished through Heat Bath Algorithmic Cooling (HBAC). It is an efficient method for extracting entropy from qubits that interact with a heat bath, allowing cooling below the bath temperature. For practical HBAC, coupled electron-nuclear spin systems are more promising than conventional NMR quantum processors, since electron spin polarization is about $10^3$ times greater than that of a proton under the same experimental conditions. We provide an overview on both theoretical and experimental aspects of HBAC focusing on spin and magnetic resonance based systems, and discuss the prospects of exploiting electron-nuclear coupled systems for the realization of HBAC and multiple round QEC.

  19. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon

    E-Print Network [OSTI]

    Boyer, Edmond

    of the high pressure control system, the transitions between heating, cooling and simultaneous modes1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 2 the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels

  20. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2: +33 2 23 23 42 97 Fax: +33 2 23 23 40 51 ABSTRACT This article presents a Heat Pump for Simultaneous heat pump i in is isentropic mec mechanical nof without frosting o out r refrigerant S sublimation sc

  1. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Dakin, Davis Energy Group Michael Koenig, American Honda Motor Company ABSTRACT The evolution of heat-pump design uses multiple systems and fuels to provide thermal services, the emerging generation of heat-pump

  2. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect (OSTI)

    Barnes, P.R.; Shapira, H.B.

    1980-01-01

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  3. "Cooling by heating" - demonstrating the significance of the longitudinal specific heat

    E-Print Network [OSTI]

    Jon J. Papini; Jeppe C. Dyre; Tage Christensen

    2012-06-26

    Heating a solid sphere at the surface induces mechanical stresses inside the sphere. If a finite amount of heat is supplied, the stresses gradually disappear as temperature becomes homogeneous throughout the sphere. We show that before this happens, there is a temporary lowering of pressure and density in the interior of the sphere, inducing a transient lowering of the temperature here. For ordinary solids this effect is small because c_p is almost equal to c_V. For fluent liquids the effect is negligible because their dynamic shear modulus vanishes. For a liquid at its glass transition, however, the effect is generally considerably larger than in solids. This paper presents analytical solutions of the relevant coupled thermoviscoelastic equations. In general, there is a difference between the isobaric specific heat, c_p, measured at constant isotropic pressure and the longitudinal specific heat, c_l, pertaining to mechanical boundary conditions that confine the associated expansion to be longitudinal. In the exact treatment of heat propagation the heat diffusion constant contains c_l rather than c_p. We show that the key parameter controlling the magnitude of the "cooling-by-heating" effect is the relative difference between these two specific heats. For a typical glass-forming liquid, when temperature at the surface is increased by 1 K, a lowering of the temperature in the sphere center of order 5 mK is expected if the experiment is performed at the glass transition. The cooling-by-heating effect is confirmed by measurements on a 19 mm diameter glucose sphere at the glass transition.

  4. Counter flow cooling drier with integrated heat recovery

    DOE Patents [OSTI]

    Shivvers, Steve D. (Prole, IA)

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  5. Performance of a radiatively cooled system for quantum optomechanical experiments in space

    E-Print Network [OSTI]

    Pilan-Zanoni, André; Johann, Ulrich; Aspelmeyer, Markus; Kaltenbaek, Rainer; Hechenblaikner, Gerald

    2015-01-01

    The performance of a radiatively cooled instrument is investigated in the context of optomechanical quantum experiments, where the environment of a macroscopic particle in a quantum-superposition has to be cooled to less than 20\\,K in deep space. A heat-transfer analysis between the components of the instrument as well as a transfer-function analysis on thermal oscillations induced by the spacecraft interior and by dissipative sources is performed. The thermal behaviour of the instrument in an orbit around a Lagrangian point and in a highly elliptical Earth orbit is discussed. Finally, we investigate further possible design improvements aiming at lower temperatures of the environment of the macroscopic particle. These include a mirror-based design of the imaging system on the optical bench and the extension of the heat shields.

  6. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  7. Space Cooling in North America: Market Overview and Future Impacts

    SciTech Connect (OSTI)

    Baxter, Van D; Khowailed, Gannate; Sikes, Karen; Grubbs, Tyler

    2015-01-01

    The North American space cooling market, particularly in the United States, is experiencing shifts in regulatory regimes, population patterns, economic conditions, and consumer preferences-all catalyzed further by rapid technological innovation. Taken together these factors may result in a slight reduction in air conditioning shipments in the short term, however the longer term trends indicate a continuing increase in the number of air conditioning systems in the U.S. markets. These increases will be greatest in the warmer and more humid (e.g. higher load demand) regions. This will result in increasing pressure on the U.S. electricity supply system to meet the energy peak and consumption demands for building space cooling.

  8. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    Technology Roadmap. Energy-efficient Buildings: Heating andH, Zhai Y. Enabling energy-efficient approaches to thermalEnergy-efficient comfort with a heated/cooled chair: results

  9. Transient cooling and heating via a bismuth-telluride thermoelectric device 

    E-Print Network [OSTI]

    Clancy, Terry L

    1998-01-01

    Thermoelectric cooling or heating can be used to drive materials to specified temperatures. By way of the Peltier effect, heat is liberated or absorbed when a current flows across a 'unction of two dissimilar conductors. A time history...

  10. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Broader source: Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

  11. A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING

    E-Print Network [OSTI]

    Tavana, Medhi

    2011-01-01

    on Heating Performance of Roof Pond XSL803-6664 Fig. 4.on Heating Performance of Roof Pond Phoenix, Arizona Auguston Cooling Performance of Roof Pond HOur of the doy (solar

  12. Impingement cooling and heat transfer measurement using transient liquid crystal technique 

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01

    A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...

  13. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

  14. Heating and cooling of coronal loops observed by SDO

    E-Print Network [OSTI]

    Li, Leping; Chen, Feng; Zhang, Jun

    2015-01-01

    Context: One of the most prominent processes suggested to heat the corona to well above 10^6 K builds on nanoflares, short bursts of energy dissipation. Aims: We compare observations to model predictions to test the validity of the nanoflare process. Methods: Using extreme UV data from AIA/SDO and HMI/SDO line-of-sight magnetograms we study the spatial and temporal evolution of a set of loops in active region AR 11850. Results: We find a transient brightening of loops in emission from Fe xviii forming at about 7.2 MK while at the same time these loops dim in emission from lower temperatures. This points to a fast heating of the loop that goes along with evaporation of material that we observe as apparent upward motions in the image sequence. After this initial phases lasting for some 10 min, the loops brighten in a sequence of AIA channels showing cooler and cooler plasma, indicating the cooling of the loops over a time scale of about one hour. A comparison to the predictions from a 1D loop model shows that t...

  15. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  16. Predicting yearly energy savings using BIN weather data with heat-pipe heat exchangers with indirect evaporative cooling

    SciTech Connect (OSTI)

    Mathur, G.D.

    1998-07-01

    Heat-Pipe Heat-Exchangers (HPHE) are passive systems that have recently seen application in energy recovery (Mathur, 1997). A HPHE consists of individual closed end heat pipe tubes that are charged with a suitable working fluid. In these systems, the working fluid evaporates on one side of the heat exchanger and condenses over the other end of the heat exchanger. The condensed fluid returns back to the evaporator section through the capillary action of the wick. The performance of a HPHE system can be improved by the raising the condenser portion of the heat exchanger which facilitates effective return of the condensate back to the evaporator. HPHE can be used with air conditioning systems as retrofits and in new applications. For retrofit applications, the operating costs are reduced because of the reduction in the energy (kWh) and peak demand (kW) consumptions. For new installations, the heating and cooling equipment can be of smaller capacity which will result in lower equipment and operating costs. During the summer season, indirect evaporative cooling can also be used to further enhance the performance of the air conditioning system. When operated during both the heating and cooling seasons, a HPHE yields four types of savings: (i) Heating equipment savings (ii) Cooling equipment savings (iii) Heating operating savings (iv) Cooling operating savings. Savings in the energy consumption for both heating and cooling were calculated with the HPHE for 30 cities with widely different climactic conditions. The payback periods for most of the cities were less than 1 year. If indirect evaporative cooling is used during the summer season, more energy savings would be realized on an yearly basis along with further reductions in the peak demand. In this paper, the author has simulated the performance of a HPHE with indirect evaporative cooling using the BIN weather data.

  17. Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator

    E-Print Network [OSTI]

    Afshari, Ehsan

    Simultaneous radiation pressure induced heating and cooling of an opto- mechanical resonator://apl.aip.org/about/rights_and_permissions #12;Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator to a combination of large mechanical oscillations and necessary saturation of amplification, the noise floor

  18. Heat resistance and outgrowth of clostridium perfringens spores as affected by the type of heating medium, and heating and cooling rates in ground pork 

    E-Print Network [OSTI]

    Marquez Gonzalez, Mayra

    2009-05-15

    The survival and germination of Clostridium perfringens spores in different heating media and at different heating rates was studied to determine the fate of C. perfringens spores during abusive cooking and cooling of pork ...

  19. Single family heating and cooling requirements: Assumptions, methods, and summary results

    SciTech Connect (OSTI)

    Ritschard, R.L.; Hanford, J.W.; Sezgen, A.O. (Lawrence Berkeley Lab., CA (United States))

    1992-03-01

    The research has created a data base of hourly building loads using a state-of-the-art building simulation code (DOE-2.ID) for 8 prototypes, representing pre-1940s to 1990s building practices, in 16 US climates. The report describes the assumed modeling inputs and building operations, defines the building prototypes and selection of base cities, compares the simulation results to both surveyed and measured data sources, and discusses the results. The full data base with hourly space conditioning, water heating, and non-HVAC electricity consumption is available from GRI. In addition, the estimated loads on a per square foot basis are included as well as the peak heating and cooling loads.

  20. The Heat Equation (One Space Dimension) In these notes we derive the heat equation for one space dimension. This partial

    E-Print Network [OSTI]

    Fournier, John J.F.

    . It is called the specific heat of the body. · The rate at which heat energy crosses a surface is proportional), so the rate at which heat energy crosses the right hand end is AT x (x + dx, t). Similarly, the rateThe Heat Equation (One Space Dimension) In these notes we derive the heat equation for one space

  1. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  2. Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser 

    E-Print Network [OSTI]

    Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

    1981-01-01

    PERFORMANCE OF A DRY AND WET/DRY ADVANCED COOLING TOWER CONDENSER Hans D. Fricke, David J. Webster, Kenneth McIlroy Union carbide Corporation - Linde Division, Tonawanda, New York John A. Bartz Electric Power Research Institute, Palo Alto, california... cooling in creases siting flexibility, particularly for locations in arid Western coal fields. However, dry cooling requires considerable capital investment for the cooling towers. Hence, the development of effitient (low cost) heat transfer surfaces...

  3. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  4. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification

    E-Print Network [OSTI]

    Boyer, Edmond

    manufacturer. The operation of the high pressure control system, the transitions between heating, cooling1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1 40 51 ABSTRACT This article presents the concepts of an air-source Heat Pump for Simultaneous heating

  5. Heating and cooling of the intergalactic medium by resonance photons

    E-Print Network [OSTI]

    Leonid Chuzhoy; Paul R. Shapiro

    2007-01-27

    During the epoch of reionization a large number of photons were produced with frequencies below the hydrogen Lyman limit. After redshifting into the closest resonance, these photons underwent multiple scatterings with atoms. We examine the effect of these scatterings on the temperature of the neutral intergalactic medium (IGM). Continuum photons, emitted between the Ly_alpha and Ly_gamma frequencies, heat the gas after being redshifted into the H Ly_alpha or D Ly_beta resonance. By contrast, photons emitted between the Ly_gamma and Ly-limit frequencies, produce effective cooling of the gas. Prior to reionization, the equilibrium temperature of ~100 K for hydrogen and helium atoms is set by these two competing processes. At the same time, Ly_beta resonance photons thermally decouple deuterium from other species, raising its temperature as high as 10^4 K. Our results have important consequences for the cosmic 21-cm background and the entropy floor of the early IGM which can affect star formation and reionization.

  6. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  7. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  8. High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

    E-Print Network [OSTI]

    High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

  9. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    SciTech Connect (OSTI)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-07-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  10. East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

  11. WICKING OPTIMIZATION FOR THERMAL COOLING -WITH A TITANIUM BASED HEAT PIPE SYSTEM

    E-Print Network [OSTI]

    MacDonald, Noel C.

    WICKING OPTIMIZATION FOR THERMAL COOLING -WITH A TITANIUM BASED HEAT PIPE SYSTEM C. Ding1* , P for a proposed flat heat pipe system. This unique bitextured titania structure (BTS) provides a suprerhydrophilic based flat heat pipe is proposed to integrate the BTS wicks and study the concept of this titanium based

  12. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  13. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth

    E-Print Network [OSTI]

    Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations

  14. Principles of Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is heat traveling through a solid material. On hot days, heat is conducted into your home through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy...

  15. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  16. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  17. Incorporate Minimum Efficiency Requirements for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about FEMP-designated and ENERGY STAR-qualified heating, ventilating, and air conditioning (HVAC) and water heating products into tables that mirror American Society of...

  18. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  19. Subcooled Boiling Heat Transfer for Cooling of Power Electronics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the...

  20. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water 

    E-Print Network [OSTI]

    Cawley, R.

    1992-01-01

    % and that this amounts to the full daily need of 14.4 KW-HR. Table 5 (right column) shows the hour by hour demand' for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%, The draw schedule in Table 5 is the same...

  1. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    Plan for Passive Solar Heating and Cooling builds upon theto design, build, finance, and market passive solar systems.a build- ing•s thermal energy requirements, • Passive solar

  2. Retro-Commissioning and Improvement for District Heating and Cooling System Using Simulation 

    E-Print Network [OSTI]

    Shingu, H.; Nakajima, R.; Yoshida, H.; Wang, F.

    2006-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) system, retro-commissioning was analyzed using visualization method and simulation based on mathematical models, and improved operation schemes were proposed...

  3. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    a direct comparison of EnergyPlus simulated radiation heatStandards, 1983. [19] DOE, EnergyPlus Engineering Reference,as the ratio of the EnergyPlus simulated radiant cooling

  4. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    heating and Building and Environment 2015 DOI: 10.1016/j.buildenv.2014.10.026 http://escholarship.org/uc/item/6b05q82n cooling. The floor

  5. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations 

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01

    A commercial foundry has been established which makes extensive use of fluid beds in the production of heat treated alloy steel castings. The castings are cooled immediately after solidification by fluidizing the mold sand in which they were cast...

  6. Energy Conservation Through Heating/Cooling Retrofits in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N.; Eggebrecht, J.

    1996-01-01

    This paper discusses energy conservation projects in the area of industrial environment heating and cooling that have been recommended by the Texas A&M University Industrial Assessment Center (IAC) to small and medium-sized industries in Texas...

  7. Passive heating and cooling strategies for single family housing in Fresno, California: a case study 

    E-Print Network [OSTI]

    Winchester, Nathan James

    1995-01-01

    This study focuses on the integration of passive heating, cooling, and ventilating techniques for detached single family housing in Fresno, California. The energy use and patterns of energy use were simulated for a typical tract house in Fresno...

  8. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  9. Heat transfer and film-cooling for the endwall of a first stage turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    the turbine. Turbine inlet conditions in a gas turbine engine gen- erally consist of temperature and velocityHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

  10. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect (OSTI)

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  11. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation 

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  12. Ground state sideband cooling of an ion in a room temperature trap with a sub-Hertz heating rate

    E-Print Network [OSTI]

    G. Poulsen; Y. Miroshnychenko; M. Drewsen

    2012-05-10

    We demonstrate resolved sideband laser cooling of a single 40Ca+ ion in a macroscopic linear radio frequency trap with a radial diagonal electrode spacing of 7 mm and an rf drive frequency of just 3.7 MHz. For an oscillation frequency of 585 kHz along the rf-field-free axis, a ground state population of 99+-1% has been achieved, corresponding to a temperature of only 6 microkelvin. For several oscillation frequencies in the range 285 - 585 kHz, heating rates below one motional quantum per second have been measured at room temperature. The lowest measured heating power is about an order of magnitude lower than reported previously in room temperature, as well as cryogenically cooled traps.

  13. "Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"

    E-Print Network [OSTI]

    Columbia University

    "Potential for Combined Heat and Power and District Heating and Cooling from Waste- to supplies 60% of the heated floor, and 75% of the heat generation is generated in Combined Heat and Power: cogeneration of heat and power at the power plant is achieved with a higher thermal efficiency, hot water

  14. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOE Patents [OSTI]

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  15. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  16. Asymmetric crystallization during cooling and heating in model glass-forming systems

    E-Print Network [OSTI]

    Minglei Wang; Kai Zhang; Zhusong Li; Yanhui Liu; Jan Schroers; Mark D. Shattuck; Corey S. O'Hern

    2015-01-09

    We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature $T_l$ and cooled each sample to zero temperature at rate $R_c$. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate $R_p$ and then heated the samples to temperature $T > T_l$ at rate $R_h$. We measured the critical heating and cooling rates $R_h^*$ and $R_c^*$, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that $R_h^* > R_c^*$, and that the asymmetry ratio $R_h^*/R_c^*$ includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as $R_p \\rightarrow R_c^*$ from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate $R_p$ from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.

  17. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  18. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    rates of each fluid (water and air) to be known for eachcontained two separate air-to-water heat exchangers, rathercontained two, larger air-to-water heat exchangers, compared

  19. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating to systematically study the climate change impact on various types of residential and commercial buildings in all 7

  20. Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    found that adding a surfactant to the working fluid with an appropriate concentration will further to a heated surface is established for the cooling of high-power devices. The effects of the liquid volume flow rate, the nozzle-to-surface distance and the liquid inlet temperature on the heat transfer

  1. ASHRAE Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product categories. Download the tables below to incorporate FEMP and ENERGY STAR purchasing requirements into federal product acquisition documents.

  2. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    LBNL-XXXXX Data Center Economizer Cooling with Tower Water;included a water- side economizer. This model estimated theand without a water-side economizer and including or not

  3. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  4. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  5. Minimum Efficiency Requirements Tables for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency...

  6. Principles of Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. Passive Solar Home...

  7. Crosslinked crystalline polymer and methods for cooling and heating

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Botham, Ruth A. (Dayton, OH); Ball, III, George L. (West Carrollton, OH)

    1980-01-01

    The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

  8. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  9. Time variability of AGN and heating of cooling flows

    E-Print Network [OSTI]

    Carlo Nipoti; James Binney

    2005-05-03

    There is increasing evidence that AGN mechanical feedback is important in the energetics of cooling flows in galaxies and galaxy clusters. We investigate the implications of the variability of AGN mechanical luminosity L_m on observations of cooling flows and radio galaxies in general. It is natural to assume that l=ln(L_m/L_x) is a Gaussian process. Then L_m will be log-normally distributed at fixed cooling luminosity L_x, and the variance in a measure of L_m will increase with the time-resolution of the measure. We test the consistency of these predictions with existing data. These tests hinge on the power spectrum of l(t). Monitoring of Seyfert galaxies combined with estimates of the duty cycle of quasars imply flicker noise spectra, similar to those of microquasars. We combine a sample of sources in cooling flows that have cavities with the assumption that the average mechanical luminosity of the AGN equals L_x. Given that the mechanical luminosities are characterized by flicker noise, we find that their spectral amplitudes lie between the estimated amplitudes of quasars and the measured values for the radio luminosities of microquasars. The model together with the observation that powerful radio galaxies lie within a narrow range in optical luminosity, predicts the luminosity function of radio galaxies, in agreement with observations. Forthcoming radio surveys will test the prediction that the luminosity function turns over at about the smallest luminosities so far probed. [Abridged

  10. Directly connected heat exchanger tube section and coolant-cooled structure

    SciTech Connect (OSTI)

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  11. Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

  12. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  13. Heat Recovery From Arc Furnaces Using Water Cooled Panels 

    E-Print Network [OSTI]

    Darby, D. F.

    1987-01-01

    located on the intake air side of the gas burners. From the heat/vent units, the glycol is re turned via the glycol return piping (GWHR) to the secondary side of the water to glycol heat exchanger HE-I, and then back to the surge tank. The system... stream_source_info ESL-IE-87-09-17.pdf.txt stream_content_type text/plain stream_size 21344 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-17.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT RECOVERY FROM...

  14. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01

    of space heating to air conditioning choice; 3) explicitthe presence of central air conditioning, it seems unwise tonot to have central air conditioning. Statistical evidence

  15. Heat Transfer Enhancement in Rectangular Channel with Compound Cooling Techniques 

    E-Print Network [OSTI]

    Krad, Belal

    2013-11-27

    to analyze heat transfer and pressure loss characteristics to determine which configuration had the overall best performance. Two different flow configurations were considered, a uniform channel flow setup as well as a jet impingement setup. There were a...

  16. Heating and Cooling System Support Equipment Basics | Department...

    Office of Environmental Management (EM)

    thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy...

  17. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policyand Cooling System Support

  18. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  19. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  20. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  1. GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs

    SciTech Connect (OSTI)

    Fassbender, L.L.; Bloomster, C.H.

    1981-06-01

    GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

  2. Cooling, Heating and Power in the Nation's Colleges and Universities- Census, Survey, and Lessons Learned, February 2002

    Broader source: Energy.gov [DOE]

    Presentation on the results of a survey of the nation's colleges and university to identify cooling, heating, and power installations on college campuses

  3. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  4. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomacCool Roof Infrastructure Urban

  5. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  6. Turbulent heat transfer and friction in a segmental channel that simulates leading-edge cooling channels of modern turbine blades 

    E-Print Network [OSTI]

    Spence, Rodney Brian

    1995-01-01

    Experiments are conducted to study the effects of channel geometry and asymmetric heating on the heat transfer and friction characteristics of turbulent flows in leading edge cooling channels in stator blades of gas turbines. The leading edge...

  7. Tips: Passive Solar Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeatEnergy Solar Training for Veterans toHomeLighting

  8. Parametric modelling of a bellows heat pipe for electronic component cooling 

    E-Print Network [OSTI]

    Patnaik, Preetam

    1987-01-01

    PARAMETRIC MODELLING OF A BELLO'WS HEAT PIPE FOR ELECTRONIC COMPONENT COO ING A Thesis PREETAM PATNAIE, Submitted to the Graduate College of Texas AkM TJniversity ir. Payat;al fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Mechanical Engineering PARAMETRIC MODELLING OF A BELLOWS HEAT PIPE FOR ELECTRONIC COMPONENT COOLING A Thesis by PREETAM PATNAIK Approved as to style and content by: G. P. Peterson (Chairman of Committee) K. Annamslai...

  9. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit 

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01

    Considering a heating/cooling coil with adjustable heat-exchange area, an unequal type is put forward in this paper. Aiming at the application of such heat exchanger in an air-handling unit, restriction conditions are given for the minimum heat...

  10. Vegetable oils: liquid coolants for solar heating and cooling applications

    SciTech Connect (OSTI)

    Ingley, H A

    1980-02-01

    It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

  11. 5 Cool Things about Solar Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofApplianceU.S. DepartmentthreetheRulemakingsSolar heating

  12. Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space 

    E-Print Network [OSTI]

    Mohamed, E.; Abdalla, K. N.

    2010-01-01

    This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

  13. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOE Patents [OSTI]

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  14. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  15. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  16. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  17. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  18. Dual Heating and Cooling Sorption Heat Pump for a Food Plant 

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    1993-01-01

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present ...

  19. Micro-scale heat-exchangers for Joule-Thomson cooling.

    SciTech Connect (OSTI)

    Gross, Andrew John

    2014-01-01

    This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX as part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.

  20. Use of cooling-temperature heat for sustainable food production

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01

    Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based “renewable” energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between today’s food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of society’s organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

  1. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  2. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  3. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit 

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15

    compares the heating load and comfort level as measured by uniformity of operative temperature for two different layouts of radiators in the same geometric space. The air exchange rate has been identified as an important factor which affects energy saving...

  4. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01

    system for different solar storage temperatures, outdoorhydronic solar and space that heating adjusts the storagethe heat source is solar heated water at the storage tank

  5. Stirling cycle heat pump for heating and/or cooling systems

    SciTech Connect (OSTI)

    Meijer, R.J.; Khalili, K.; Meijer, E.; Godett, T.M.

    1991-03-05

    This patent describes a duplex Stirling cycle machine acting as a heat pump. It comprises: a Stirling engine having pistons axially displaceable within parallel cylinders, the engine further having a swashplate rotatable about an axis of, rotation parallel to the cylinders and defining a plane inclined from the axis of rotation. The pistons connected to the swashplate via crossheads whereby axial displacement of the pistons is converted to rotation of the swashplate, and a Stirling cycle heat pump having a compression heat exchanger, an expansion heat exchanger and a regenerator with pistons equal in number to the engine pistons and axially displaceable within cylinders which are oriented co-axially with the engine cylinders. The crossheads further connected to the heat pump pistons whereby the heat pump pistons move simultaneously with the engine pistons over an equal stroke distance.

  6. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  7. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  8. THE EFFECT OF AIR-COOLING HEAT TREATMENTS ON THE STRUCTURE AND PROPERTIES OF Fe/4Cr/ 0.3C/2Mn ALLOY

    E-Print Network [OSTI]

    Rabe, T.H.

    2010-01-01

    transmission electron microscopy were obtained from heat-transmission electron microscopy was limited to 1100°C and 900°C as-cooled heat

  9. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building at the University of British Columbia Abha Parajulee Kim Smet............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1

  10. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01

    SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International Conference for Enhanced Building... Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat island effect. The system...

  11. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore »evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  12. Investigation of detailed film cooling effectiveness and heat transfer distributions on a gas turbine airfoil

    SciTech Connect (OSTI)

    Drost, U.; Boelcs, A. [Swiss Federal Inst. of Tech., Lausanne (Switzerland)

    1999-04-01

    In the present study film cooling effectiveness and heat transfer were systematically investigated on a turbine NGV airfoil employing the transient liquid crystal technique and a multiple regression procedure. Tests were conducted in a linear cascade at exit Reynolds numbers of 0.52e6, 1.02e6 and 1.45e6 and exit Mach numbers of 0.33, 0.62 and 0.8, at two mainstream turbulence intensities of 5.5 and 10%. The film cooling geometry consisted of a single compound angle row on the pressure side (PS), and a single or a double row on the suction side (SS). Foreign gas injection was used to obtain a density ratio of approximately 1.65, while air injection yielded a density ratio of unity. Tests were conducted for blowing ratios of 0.25 to 2.3 on the SS, and 0.55 to 7.3 on the PS. In general film cooling injection into a laminar BL showed considerably higher effectiveness in the near-hole region, as compared to a turbulent BL. While mainstream turbulence had only a weak influence on SS cooling, higher effectiveness was noted on the PS at high turbulence due to increased lateral spreading of the coolant. Effects of mainstream Mach and Reynolds number were attributed to changes of the BL thickness and flow acceleration. Higher density coolant yielded higher effectiveness on both SS and PS, whereas heat transfer ratios were increased on the SS and decreased on the PS. Comparison of the single and double row cooling configurations on the SS revealed a better film cooling performance of the double row due to an improved film coverage and delayed jet separation.

  13. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC 

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01

    and Operational Improvements in the District Heating and Cooling Plant Tomoaki TAKASE, Mitsubishi Jisho Sekkei Inc., Osamu TAKADA, Mitsubishi Jisho Sekkei Inc., Kiyoshi SHIMA, Obayashi Corporation Mitsuru MORIYA, Takasago Thermal Engineering Co., Ltd... Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 5ABOUT THE DHC PLANT DHC plant in Nishi-Umeda district of Osaka, Japan The 2nd Plant The 1st Plant ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  14. NASA's Marshall Space Flight Center Improves Cooling System Performanc...

    Broader source: Energy.gov (indexed) [DOE]

    The program saved the facility more than 800,000 gallons of water in eight months. nasa-msfcwatercs2.pdf More Documents & Publications NASA's Marshall Space Flight Center...

  15. Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling

    E-Print Network [OSTI]

    Daniel K. Park; Guanru Feng; Robabeh Rahimi; Stephane Labruyere; Taiki Shibata; Shigeaki Nakazawa; Kazunobu Sato; Takeji Takui; Raymond Laflamme; Jonathan Baugh

    2015-05-13

    The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another, and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $^{13}$C-labeled malonic acid provides up to 5 spin qubits: 1 spin-half electron and 4 spin-half nuclei. The nuclei are strongly hyperfine coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron-nuclear double resonance (ENDOR) techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron's thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both 3-qubit and 5-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

  16. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPCSolarVisionSolar spaceSolar

  17. Passive Solar Space Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltos del Voltoya SAPassive Solar Space

  18. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Heating and Cooling with Mini-Splits in the Northeast Building America Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the...

  19. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  20. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, Therese K. (Knoxville, TN); Tomlinson, John J. (Knoxville, TN)

    1996-01-01

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  1. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

    2012-08-21

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  2. Experimental study of gas turbine blade film cooling and internal turbulated heat transfer at large Reynolds numbers 

    E-Print Network [OSTI]

    Mhetras, Shantanu

    2009-06-02

    superposition of effectiveness data from individual rows are comparable with that from full coverage film cooling. Internal heat transfer measurements are also performed in a high aspect ratio channel and from jet array impingement on a turbulated target wall...

  3. A Real Time Self-Tuning Algorithm for PI Control of the Heating and Cooling Coils in Buildings 

    E-Print Network [OSTI]

    Zhou, Qianghua

    1999-01-01

    Proportional and Integral (PI) controllers are used widely in HVAC applications. It is necessary to choose suitable values for PI gains for PI control of the heating and cooling coils in buildings. Consequently, suitable ...

  4. Empirical Modeling of a Rolling-Piston Compressor Heat Pump for Predictive Control in Low-Lift Cooling

    E-Print Network [OSTI]

    Gayeski, Nicholas

    Inverter-driven variable-capacity air conditioners, heat pumps, and chillers can provide energy-efficient cooling, particularly at part-load capacity. Varying the capacity of vapor compression systems enables operation at ...

  5. Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers 

    E-Print Network [OSTI]

    Liu, Yao-Hsien

    2009-05-15

    at the highest rotation number of 0.58. Heat transfer coefficients are also experimentally measured in a wedge-shaped cooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage near the trailing edge of a gas turbine blade where the coolant...

  6. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect (OSTI)

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  7. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  8. Passive cooling and heating program at Oak Ridge National Laboratory for FY-1981

    SciTech Connect (OSTI)

    Shapira, H.B.; Kaplan, S.I.; Chester, C.V.

    1981-01-01

    Construction was completed of an earth-sheltered, passively solar heated office-dormitory, the Joint Institute for Heavy Ion Research, designed at ORNL. Instrumentation of the building was designed, procured, and installed. Building performance will be monitored and compared with predictions of the DOE-2 code. A study of the incorporation of vegetation on architecture was conducted by the Harvard School of Design. A final report was issued which is a prototype handbook for the use of vegetation to reduce cooling loads in structures. An experiment to reduce the cooling requirement of mobile homes by shading with fast-growing vines was begun: a maintenance-oriented trellis was constructed and vines were planted. An RFP for the production of a prototype set of reflective insulating blinds was issued.

  9. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  10. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application). The experiments and simulations focused on the air-cooled Ballard Nexa fuel cell. The experimental

  11. Mist/steam cooling in a heated horizontal tube -- Part 1: Experimental system

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01

    To improve the airfoil cooling significantly for the future generation of advanced turbine systems (ATS), a fundamental experimental program has been developed to study the heat transfer mechanisms of mist/steam cooling under highly superheated wall temperatures. The mist/steam mixture was obtained by blending fine water droplets (3 {approximately} 15 {micro}m in diameter) with the saturated steam at 1.5 bars. Two mist generation systems were tested by using the pressure atomizer and the steam-assisted pneumatic atomizer, respectively. The test section, heated directly by a DC power supply, consisted of a thin-walled ({approximately} 0.9 mm), circular stainless steel tube with an ID of 20 mm and a length of 203 mm. Droplet size and distribution were measured by a phase Doppler particle analyzer (PDPA) system through view ports grafted at the inlet and the outlet of the test section. Mist transportation and droplet dynamics were studied in addition to the heat transfer measurements. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet mass ratios ranging from 1 {approximately} 6%.

  12. A Compact Thermal Heat Switch for Cryogenic Space Applications Operating near 100 K

    E-Print Network [OSTI]

    Dietrich, Marc; Thummes, Günter

    2013-01-01

    A thermal heat switch has been developed intended for cryogenic space applications operating around 100 K. The switch was designed to separate two pulse tube cold heads that cool a common focal plane array. Two cold heads are used for redundancy reasons, while the switch is used to reduce the thermal heat loss of the stand-by cold head, thus limiting the required input power, weight and dimensions of the cooler assembly. After initial evaluation of possible switching technologies, a construction based on the thermal expansion coefficient (CTE) of different materials was chosen. A simple design is proposed based on thermoplasts which have one of the highest CTE known permitting a relative large gap width in the open state. Furthermore, the switch requires no power neither during normal operation nor for switching. This enhances reliability and allows for a simple mechanical design. After a single switch was successfully built, a second doubleswitch configuration was designed and tested. The long term performan...

  13. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-01

    ?A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. They are controlled differently than standard fixed-capacity systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40% - 118% of nominal full capacity), thus staying 'on' for 60% - 100% more hours per day compared to fixed -capacity systems. Experiments in this research examined the performance of 2-ton and 3-ton fixed- and variable-capacity systems and the impacts of system oversizing.

  14. Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes

    E-Print Network [OSTI]

    Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

    2005-08-24

    We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

  15. An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling 

    E-Print Network [OSTI]

    Choi, Jungho

    2005-02-17

    and internal model of a gas turbine blade. It was also used to determine the film effectiveness on the trailing edge. For the internal model, Reynolds numbers based on the hydraulic diameter of iv the exit slot and exit velocity were 5,000, 10,000, 20...-1 AN EXPERIMENTAL INVESTIGATION OF TURBINE BLADE HEAT TRANSFER AND TURBINE BLADE TRAILING EDGE COOLING A Dissertation by JUNGHO CHOI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  16. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  17. Overall U-values and heating/cooling loads: Manufactured homes

    SciTech Connect (OSTI)

    Conner, C.C.; Taylor, Z.T.

    1992-02-01

    This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development`s (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

  18. Tsunamis in Galaxy Clusters: Heating of Cool Cores by Acoustic Waves

    E-Print Network [OSTI]

    Yutaka Fujita; Takeru Ken Suzuki; Keiichi Wada

    2003-09-30

    Using an analytical model and numerical simulations, we show that acoustic waves generated by turbulent motion in intracluster medium effectively heat the central region of a so-called ``cooling flow'' cluster. We assume that the turbulence is generated by substructure motion in a cluster or cluster mergers. Our analytical model can reproduce observed density and temperature profiles of a few clusters. We also show that waves can transfer more energy from the outer region of a cluster than thermal conduction alone. Numerical simulations generally support the results of the analytical study.

  19. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  20. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect (OSTI)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  1. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  2. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

  3. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Stout, Tyson E.; Dirks, James A.; Fernandez, Nicholas

    2012-12-01

    This article identifies and describes five alternative cooling technologies (magnetic, thermionic, thermoacoustic, thermoelectric, and thermotunnel) and qualitatively assesses the prospects of each technology relative to vapor compression for space cooling and food refrigeration applications. Assessment of the alternatives was based on the theoretical maximum % of Carnot efficiency, the current state of development, the best % of Carnot efficiency currently achieved, developmental barriers, and the extent of development activity. The prospect for each alternative was assigned an overall qualitative rating based on the subjective, composite view of the five characteristics.

  4. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will develop hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. Various...

  5. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  6. The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions

    SciTech Connect (OSTI)

    Akbari, H.; Huang, J.; Martien, P.; Rainer, L.; Rosenfeld, A.; Taha, H.

    1988-08-01

    It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce building cooling loads and peak power in selected US cities, and are the cheapest way to save energy and reduce CO{sub 2} emissions. This paper compares the economics of technologies to mitigate summer heat islands with other types of conservation measures. The authors estimate the cost of energy conserved by planting trees and recoating surfaces on a national level and compare it with the cost of energy conserved by increasing efficiencies in electrical appliances and cars. Early results indicate that the cost of energy saved by controlling heat islands is less than 1{cents}/kWh, more attractive than efficient electric appliances ({approximately} 2{cents}/kWh), and far more attractive than new electric supplies ({approximately}10{cents}/kWh). In transportation, the cost of conserving a gallon of gasoline, though far more attractive than buying gasoline at current prices, is again more expensive than controlling heat islands. By accounting for the carbon content of the fuels used for power generation and transportation, the authors restate these comparisons in terms of cents per avoided pound of carbon emitted as CO{sub 2}. The results show that the cost of avoided CO{sub 2} from planting trees/increasing albedo is about 0.3--1.3{cents}/lb. of carbon; for buying efficient electric appliances, 2.5{cents}/lb. of carbon; and for efficient cars, 10{cents}/lb. of carbon.

  7. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System 

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  8. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  9. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect (OSTI)

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  10. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01

    of cool coating on the air conditioning energy use is onlycoating comparison of air-conditioning energy usage for bothtemperature, heat flux, and air conditioning electricity use

  11. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Broader source: Energy.gov [DOE]

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  12. Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200604 Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry in a northern country such as Canada. Residential space heating is of particular interest in Prince Edward (NRCan) suggests that despite their similarities, the space heating requirements for Prince Edward Island

  13. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  14. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01

    source heat pump system integrated with phase change cooling storage tank in an office building Dr. Na Zhu Department of Building Environment and Energy Engineering Huazhong University of Science & Technology, Wuhan, China 2014-09-14 ESL-IC-14-09-18a...-conditioning system: ?Splitting air-conditioner for cooling and coal fired boiler for heating. • Problems: a)Energy efficiency is low b)This system is not environmental friendly 2014/11/11 New energy saving technology ESL-IC-14-09-18a Proceedings of the 14th...

  15. The Effect of Optimal Tuning of the Heating/Cooling Curve in AHU of HVAC System in Real Practice 

    E-Print Network [OSTI]

    2004-01-01

    TNO Bouw, The Netherlands Page: 1 of 12 THE EFFECT OF OPTIMAL TUNING OF THE HEATING-/ COOLING CURVE IN AHU OF HVAC SYSTEM IN REAL PRACTISE P.A. (Bert) Elkhuizen(1), J.E. (Jan Ewout) Scholten(1), H.C. (Henk) Peitsman(1), A (Ad) Kooijman (2... of the heating/ cooling curve in the central Air Handling Unit?s (AHU?s) of HVAC systems without loss of comfort. In most cases the number of complaints will also be reduced. The method can be used in both new and existing buildings. The approach will generate...

  16. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  17. Glass-like dynamical behavior in hierarchical models submitted to continuous cooling and heating processes

    E-Print Network [OSTI]

    A. Prados; J. J. Brey

    2001-07-02

    The dynamical behavior of a kind of models with hierarchically constrained dynamics is investigated. The models exhibit many properties resembling real structural glasses. In particular, we focus on the study of time-dependent temperature processes. In cooling processes, a phenomenon analogous to the laboratory glass transition appears. The residual properties are analytically evaluated, and the concept of fictive temperature is discussed on a physical base. The evolution of the system in heating processes is governed by the existence of a normal solution of the evolution equations, which is approached by all the other solutions. This trend of the system is directly related to the glassy hysteresis effects shown by these systems. The existence of the normal solution is not restricted to the linear regime around equilibrium, but it is defined for any arbitrary, far from equilibrium, situation.

  18. Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection

    E-Print Network [OSTI]

    Alexandersen, Joe; Aage, Niels

    2015-01-01

    This work presents the application of density-based topology optimisation to the design of three-dimensional heat sinks cooled by natural convection. The governing equations are the steady-state incompressible Navier-Stokes equations coupled to the thermal convection-diffusion equation through the Bousinessq approximation. The fully coupled non-linear multiphysics system is solved using stabilised trilinear equal-order finite elements in a parallel framework allowing for the optimisation of large scale problems with order of 40-330 million state degrees of freedom. The flow is assumed to be laminar and several optimised designs are presented for Grashof numbers between $10^3$ and $10^6$. Interestingly, it is observed that the number of branches in the optimised design increases with increasing Grashof numbers, which is opposite to two-dimensional optimised designs.

  19. Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems

    SciTech Connect (OSTI)

    Freeman, T.L.

    1981-03-01

    A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

  20. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  1. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  2. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  3. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    SciTech Connect (OSTI)

    Guo, Fulai

    2014-12-20

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M{sub ?}/R{sub eff}{sup 1.5} is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be M{sub bh}{sup 1.6}M{sub ?}/R{sub eff}{sup 1.5}, which may be tested in future observational studies.

  4. Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy Information Space Heating Low

  5. Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open Energy Information Space Heating

  6. Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe

    E-Print Network [OSTI]

    McCarthy, Matthew

    We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

  7. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates 

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    1992-01-01

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  8. The impact of different weather data on simulated residential heating and cooling load

    SciTech Connect (OSTI)

    Huang, J. [Lawrence Berkeley National Lab., CA (United States)

    1998-12-31

    Since 1995, two major new sources of typical year weather data--ASHRAE`s Weather Year for Energy Calculations, Version 2 (WYEC2), for 59 US and Canadian locations and NREL`s Typical Meteorological Year, Version 2 (TMY2), for 239 US locations--have become available for use in building energy simulations. Both of these data sets represent several years of effort in correcting data anomalies and adding improved solar models to the earlier WYEC and TMY weather sets. Although it is straightforward to tabulate and compare the changes in climate statistics, e.g., degree-days, wind speed, average solar heat gain, etc., the impact that such changes have on the simulated energy consumption of a building is less clear. The purpose of this study is to use DOE-2 simulations of prototypical residential buildings to (1) determine the ability of various typical year weather data such as TMY2, TMY, WYEC2, WYEC, and TRY to reproduce the long-term average heating and cooling energy consumption when simulated using 30 years of historical weather data and (2) compare the simulated energy consumption from different typical year data and determine if there are systematic differences due to the type of weather data.

  9. Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration

    E-Print Network [OSTI]

    Bahrami, Majid

    ) for vehicle air conditioning and refrigeration (A/C­R) applications. Adsorber beds should be specificallyAssessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Conversion

  10. An On-line Self-tuning Algorithm of PI Controller for the Heating and Cooling Coil in Buildings 

    E-Print Network [OSTI]

    Zhou, Q.; Liu, M.

    1998-01-01

    An on-line self-tuning algorithm of PI controller for the heating and cooling coil in buildings is described in the paper. The algorithm evaluates the controller performance by the integral square error (ISE) of the coil supply air temperature...

  11. Materials Reliability Program: Development of a New Process for Calculating RPV Heat-Up and Cool-Down Curves - Proof of Concept

    SciTech Connect (OSTI)

    M. EricksonKirk

    2005-04-30

    A strategy and framework were developed for incorporating best-estimate, fracture toughness models and methodologies into procedures for fracture safety assessment of nuclear RPVs during normal heat-up and cool-down operations. The process included detailed process flow diagramming to identify all details of the current process for obtaining heat-up and cool-down curves.

  12. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  13. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Menguc, Thermal radiation heat transfer, CRC Press, 2011.convection and radiation heat transfer are compared to theused for this study. Radiation Heat Transfer In the ASHRAE

  14. Local heat transfer and film effectiveness of a film cooled gas turbine blade tip 

    E-Print Network [OSTI]

    Adewusi, Adedapo Oluyomi

    1999-01-01

    Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

  15. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    heat exchangers, hybrid components such as fans and pumps,for fans, pumps, and valves used in hybrid systems; heat

  16. Modeling Free Convection Flow of Liquid Hydrogen within a Cylindrical Heat Exchanger Cooled to 14 K

    E-Print Network [OSTI]

    Yang, S.W.; Oxford U.

    2004-01-01

    is to put part of the heat exchange surface inside thewall as well as added heat exchange surface. This study

  17. Cooling using complimentary tapered plenums

    DOE Patents [OSTI]

    Hall, Shawn Anthony (Pleasantville, NY)

    2006-08-01

    Where a fluid cooling medium cools a plurality of heat-producing devices arranged in a row along a generalized coordinate direction, with a space between each adjacent pair of devices, each space may have a partition that defines a boundary between a first plenum and a second plenum. The first plenum carries cooling medium across an entrance and thence into a first heat-producing device located on a first side of the partition facing the first plenum. The second plenum carries cooling medium away from a second heat-producing device located on a second side of the partition facing the second plenum and thence across an exit. The partition is disposed so that the first plenum becomes smaller in cross-sectional area as distance increases from the entrance, and the second plenum becomes larger in cross sectional area as distance decreases toward the exit.

  18. Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards Environmentally Friendly Seawater Cooling Systems 

    E-Print Network [OSTI]

    Binmahfouz, Abdullah

    2012-10-19

    FOR SEAWATER-COOLED POWER AND DESALINATION PLANTS....................................................... 127 5.1 Overview .............................................................................................. 127 5.2 Introduction... 5.2 Representation of a Once-Thorough Cooling System................................ 141 5.3 An Overall Representation of the Power/Desalination Plant ..................... 152 5.4 The Cooling System for the Case Study...

  19. New composition dependent cooling and heating curves for galaxy evolution simulations

    E-Print Network [OSTI]

    De Rijcke, Sven; Vandenbroucke, Bert; Jachowicz, Natalie; Decroos, Jeroen; Cloet-Osselaer, Annelies; Koleva, Mina

    2013-01-01

    In this paper, we present a new calculation of composition-dependent radiative cooling and heating curves of low-density gas, intended primarily for use in numerical simulations of galaxy formation and evolution. These curves depend on only five parameters: temperature, density, redshift, [Fe/H], and [Mg/Fe]. They are easily tabulated and can be efficiently interpolated during a simulation. The ionization equilibrium of 14 key elements is determined for temperatures between 10K and 10^9K and densities up to 100 amu/cm^3 taking into account collisional and radiative ionization, by the cosmic UV background and an interstellar radiation field, and by charge-transfer reactions. These elements, ranging from H to Ni, are the ones most abundantly produced and/or released by SNIa, SNII, and intermediate-mass stars. Self-shielding of the gas at high densities by neutral Hydrogen is taken into account in an approximate way by exponentially suppressing the H-ionizing part of the cosmic UV background for HI densities abo...

  20. Cooled particle accelerator target

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  1. Lightning Dock Geothermal Space Heating Project: Lightning Dock...

    Open Energy Info (EERE)

    home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It...

  2. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  3. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  4. High strength and heat resistant chromium steels for sodium-cooled fast reactors.

    SciTech Connect (OSTI)

    Kamal, S.; Grandy, C.; Farmer, M.; Brunsvold, A.

    2004-12-22

    This report provides the results of a preliminary phase of a project supporting the Advanced Nuclear Fuel Cycle Technology Initiative at ANL. The project targets the Generation IV nuclear energy systems, particularly the area of reducing the cost of sodium-cooled fast-reactors by utilizing innovative materials. The main goal of the project is to provide the nuclear heat exchanger designers a simplified means to quantify the cost advantages of the recently developed high strength and heat resistant ferritic steels with 9 to 13% chromium content. The emphasis in the preliminary phase is on two steels that show distinctive advantages and have been proposed as candidate materials for heat exchangers and also for reactor vessels and near-core components of Gen IV reactors. These steels are the 12Cr-2W (HCM12A) and 9Cr-1MoVNb (modified 9Cr-1Mo). When these steels are in tube form, they are referred to in ASTM Standards as T122 and T91, respectively. A simple thermal-hydraulics analytical model of a counter-flow, shell-and-tube, once-through type superheated steam generator is developed to determine the required tube length and tube wall temperature profile. The single-tube model calculations are then extended to cover the following design criteria: (i) ratio of the tube stress due to water/steam pressure to the ASME B&PV Code allowable stress, (ii) ratio of the strain due to through-tube-wall temperature differences to the material fatigue limit, (iii) overall differential thermal expansion between the tube and shell, and (iv) total amount of tube material required for the specified heat exchanger thermal power. Calculations were done for a 292 MW steam generator design with 2200 tubes and a steam exit condition of 457 C and 16 MPa. The calculations were performed with the tubes made of the two advanced ferritic steels, 12Cr-2W and 9Cr-1MoVNb, and of the most commonly used steel, 2 1/4Cr-1Mo. Compared to the 2 1/4Cr-1Mo results, the 12Cr-2W tubes required 29% less material and the 9Cr-1MoVNb tubes required 25% less material. Also, with the advanced steels, the thermal strains in the tubes and differential thermal expansion between tubes and shell were significantly better. For steam generators with higher steam exit temperatures, the benefits of the advanced steels become much larger. A thorough search for the thermal and mechanical properties of the two advanced steels was conducted. A summary of the search results is provided. It shows what is presently known about these two advanced steels and what still needs to be determined so that they can be used in nuclear heat exchanger designs. Possible follow up steps are outlined.

  5. The influence of longitudinal space charge fields on the modulation process of coherent electron cooling

    SciTech Connect (OSTI)

    Wang, G.; Blaskiewicz, M.; Litvinenko, V. N.

    2014-05-21

    Initial modulation in Coherent electron cooling (CeC) scheme relies on ion charge screening by electrons. In a CeC system with bunched electron beam, the long-range longitudinal space charge force is inevitably induced. For a relatively dense electron beam, it can be comparable or even greater than the attractive force from the ion. Hence, space-charge field influence to the modulation process could be important. If the longitudinal Debye length is much smaller than the electron bunch length, the modulation induced by the ion happens locally. In this case, the long-range longitudinal space charge field can be approximated as a uniform electric field across the region. In this paper we developed an analytical model to study the dynamics of ion shielding in the presence of a uniform electric field. We are solving the coupled Vlasov-Poisson equation system for infinite anisotropic electron plasma and estimate the influences of the longitudinal space charge field to the modulation process. We present numerical estimates for a case of the proof of CeC principle experiment at RHIC.

  6. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  7. Mon. Not. R. Astron. Soc. 371, 477483 (2006) doi:10.1111/j.1365-2966.2006.10680.x Magnetars as cooling neutron stars with internal heating

    E-Print Network [OSTI]

    Gnedin, Oleg Y.

    2006-01-01

    as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent temperature gradients extending deeply into the heat blanketing envelope. Thus even high magnetic fields do as cooling neutron stars with internal heating A. D. Kaminker,1 D. G. Yakovlev,1 A. Y. Potekhin,1 N

  8. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  9. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

  10. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  11. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    SciTech Connect (OSTI)

    Sanders, W.J.; Harter, J.W.; Snyder, M.K.

    1983-12-06

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  12. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  13. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    INTRODUCTION A passive building design attempts, within eco-and features of the building, the passive system componentsenergy. Passive cooling also uses elements of the building

  14. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    M. Filippi, B.W. Olesen, Solar radiation and cooling loadY. Chen, The effect of solar radiation on dynamic thermaldependant upon solar radiation, ASHRAE Transactions, (2006)

  15. Photoelectric heating and [CII] cooling in translucent clouds: results for cloud models based on simulations of compressible MHD turbulence

    E-Print Network [OSTI]

    M. Juvela; P. Padoan; R. Jimenez

    2003-03-23

    The photoelectric heating is believed to be the main heating mechanism in cool HI clouds. The heating rate can be estimated through observations of the [CII] line emission, since this is the main coolant in regions where the photoelectric effect dominates the heating. Comparison of the [CII] emission with the far-infrared (FIR) emission allows to constrain the efficiency of the photoelectric heating, using model calculations that take into account the strength of the radiation field. Recent [CII] observations carried out with the ISO satellite have made this study possible. In this work we study the correlation between FUV absorption and FIR emission using three-dimensional models. The density distributions are obtained with numerical simulations of compressible magneto-hydrodynamic turbulence, with rms sonic Mach numbers 0.6cooling equals the FUV absorption multiplied by the efficiency of the photoelectric heating, epsilon. The average ratio between the predicted [CII] and FIR emissions is found to be remarkably constant between different models, implying that the derived values of epsilon should not depend on the rms Mach number. The comparison with empirical data from translucent, high latitude clouds yields an estimate of the photoelectric heating efficiency of 2.9 10^-2. This value confirms previous theoretical predictions. Our models show that most of the scatter in the observed [CII] and FIR intensities can be understood as a result of the highly fragmented density field in turbulent HI clouds. The scatter can be reproduced with models with supersonic turbulence, while subsonic turbulence fails to generate the observed scatter.

  16. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan

    2014-01-01

    embedded heating and cooling systems. Brussels, Belgium,radiant heating and cooling systems. Proceedings of Climaradiant heating and cooling systems: integration with a

  17. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01

    embedded heating and cooling systems. Brussels, Belgium,radiant heating and cooling systems. Proceedings of Climaof Slab Heating and Cooling Systems Studied by Dynamic

  18. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an ...

  19. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    LBNL-5732E An in-depth Analysis of Space Heating Energy Use in Office Buildings Author(s), Hung Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH than 7 trillion Joules of site energy annually [USDOE]. Analyzing building space heating performance

  20. Irregular spacing of heat sources for treating hydrocarbon containing formations

    SciTech Connect (OSTI)

    Miller, David Scott; Uwechue, Uzo Philip

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  1. SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

  2. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect (OSTI)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  3. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part One: Basic Structure and Characteristics Analysis 

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01

    An AHU's energy performance is greatly influenced by its heating/cooling coil energy performance, which is also greatly influenced by the different kinds of control methodologies such as PID control and fuzzy logic control. The conventional...

  4. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  5. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect (OSTI)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  6. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    SciTech Connect (OSTI)

    Morrison, L.; Swisher, J.

    1980-12-01

    A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

  7. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore »with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  8. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  9. A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London

    SciTech Connect (OSTI)

    Kolokotroni, Maria; Bhuiyan, Saiful; Davies, Michael; Croxford, Ben; Mavrogianni, Anna

    2010-12-15

    This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found that site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)

  10. Development of an air-cooled, loop-type heat pipe with multiple condensers

    E-Print Network [OSTI]

    Kariya, H. Arthur (Harumichi Arthur)

    2012-01-01

    Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

  11. Design of compact intermediate heat exchangers for gas cooled fast reactors

    E-Print Network [OSTI]

    Gezelius, Knut, 1978-

    2004-01-01

    Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

  12. Municipal District Heating and Cooling Co-generation System Feasibility Research 

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  13. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer 

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22

    Improvements to gas turbine efficiency depend closely on cooling technologies, as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be ...

  14. Flow boiling and two-phase flow instabilities in silicon microchannel heat sinks for microsystems cooling 

    E-Print Network [OSTI]

    Bogojevi?, Dario

    2010-01-01

    Flow boiling in microchannels, while very promising as a cooling technology in electronics thermal management, is still a subject being explored that requires further investigation. Before applying this technology for ...

  15. Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems 

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.

    2006-01-01

    With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

  16. Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer 

    E-Print Network [OSTI]

    Narzary, Diganta P.

    2010-10-12

    of compressor discharge air exacts a penalty on engine performance, the cooling functions must be accomplished with the smallest possible secondary air injection. This necessitates a detailed and systematic study of the various flow and geometrical parameters...

  17. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  18. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    Technology Roadmap. Energy-efficient Buildings: Heating andenergy-efficient approaches to thermal comfort using room air motion. Building

  19. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    Thermal sensation, Climate change. Abstract A novel heated/resilience to future climate change, and serve to deepen

  20. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance 

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  1. Numerical simulation of flow and heat transfer of internal cooling passage in gas turbine blade 

    E-Print Network [OSTI]

    Su, Guoguang

    2007-04-25

    for efficient energy utilization; one of the most powerful means of achieving higher efficiency in industrial gas turbine engines is to raise the turbine inlet temperature (TIT). Sophisticated cooling techniques must be employed to cool the components... for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. 2.1 The Governing Equation and Chimera Method For unsteady incompressible flow, the continuty equation and momentum...

  2. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    operating and control strategies in a hybrid ground-source heat pump application using an hourly system performance, one of the available options is a hybrid ground-source heat pump application. Hybrid systems of Operating and Control Strategies for Hybrid Ground-Source Heat Pump Systems Using a Short Time Step

  3. REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles

    E-Print Network [OSTI]

    Coles, Cynthia

    at a temperature as low as 74ºC is possible using binary plants that employ a secondary, usually organic fluid with a lower boiling point than water, and below 74ºC geothermal energy can provide heating. Cogeneration plants supplying electricity and then "cascaded heating" or heating at progressively lower levels

  4. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  5. Do radio mini-halos and gas heating in cool-core clusters have a common origin?

    E-Print Network [OSTI]

    Bravi, Luca; Brunetti, Gianfranco

    2015-01-01

    In this letter we present a study of the central regions of cool-core clusters hosting radio mini-halos, which are diffuse synchrotron sources extended on cluster-scales surrounding the radio-loud brightest cluster galaxy. We aim to investigate the interplay between the thermal and non-thermal components in the intra-cluster medium in order to get more insights into these radio sources, whose nature is still unclear. It has recently been proposed that turbulence plays a role for heating the gas in cool cores. By assuming that mini-halos are powered by the same turbulence, we expect that the integrated radio luminosity of mini-halos, $\

  6. Heat exchange apparatus

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  7. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  8. HEAT KERNEL AND GREEN FUNCTION ESTIMATES ON NONCOMPACT SYMMETRIC SPACES

    E-Print Network [OSTI]

    Ji, Lizhen

    HEAT KERNEL AND GREEN FUNCTION ESTIMATES ON NONCOMPACT SYMMETRIC12, 43A80, 43A85, * *43A90, 58G11. Key words and phrases. Green function, heat kernel, Iwasawa effi* *ciently to pro- duce sharp and complete results comparable to the Euclidean or the compact case

  9. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-24

    A new generation of full variable-capacity air-conditioning (A/C) and heat pump units has come on the market that promises to deliver very high cooling and heating efficiency. The units are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and cycling off when the thermostat is satisfied, the new units can vary their capacity over a wide range (approximately 40%–118% of nominal full capacity) and stay on for 60%–100% more hours per day than the fixed-capacity systems depending on load-to-capacity ratios. Two-stage systems were not evaluated in this research effort.

  10. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  11. Growth and mortality of the oyster, Crassostrea virginica (Gmelin) in an electric generating station cooling lake receiving heated discharge water 

    E-Print Network [OSTI]

    Oja, Robert Kenneth

    1974-01-01

    on the amount of fouling organisms attached I o irner shell surfaces of the dead oysters. Fresh boxes show littl if any fouling unless the inner surfaces become silted over shortly after death of the oyster. 22 RESULTS Hydrology Skat r temperature... of the Oyster, Cram. . ostrea virginica (Cmel'n) 'n -n Flcctric Generating Station Cooling Lake Receiving Heated Discharge Hater. (Augu t 1974) I!o'&art Ke!!neth Oja, B. S. , U. S. Coast Guarc Academy Chai sTian of Advisory Co!n!aittee! Dr. Sammy FI. Ray...

  12. The Ritz Carlton San Francisco has become the first hotel in the world to install the PureComfort 240M a combined cooling, heating, power system developed by UTC

    E-Print Network [OSTI]

    Pennycook, Steve

    Comfort 240M ­ a combined cooling, heating, power system developed by UTC Power in partnership with the DE, heating, and cooling demands of large hotels are high year-round. The benefits of integrated energy system Program. It is anticipated that the IES will provide 240 kW of electricity and 120 tons of cooling

  13. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01

    dual compressor available on the market Compared with the selected building, a more energy efficient building will have lower space cooling and heating

  14. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    load and capacity; solar heat gain; Radiant design standardssignificance of solar radiation in the design process andthe magnitude of solar impacts under various design/control

  15. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    IV. E. 2 Hold passive solar design competitions, the primarysolar heating. Passive solar design concepts and climacticor applied to pas- sive solar design. A major effort should

  16. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    supported by the California Energy Commission (CEC)Public Interest Energy Research (PIER) Buildings ProgramIEA. Technology Roadmap. Energy-efficient Buildings: Heating

  17. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    the immediate and potential applications of the solar energyutilities potential of passive finance solar system andthe potentials of dehumidifiers, heat pumps, and solar

  18. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect (OSTI)

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  19. Enhancement of Pool Boiling Heat Transfer in Confined Space 

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05

    Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

  20. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Saturday 25 May Given Rowell CBW Converse HSRF > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning

  1. THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    high heat fluxes. The high temperature helium can then be used to power a gas turbine for high. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle helium flow loop at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34

  2. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05

    studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low...

  3. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01

    A, Gungor A. Energy and exergy analyses of space heating inThe results from exergy analysis drew similar conclusions -presented energy and exergy analyses for the whole process

  4. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  5. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  6. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  7. Solar space heating installed at Kansas City, Kansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  8. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01

    recognition of ground-source heat pumps as an option? DesignOmicron A ground source heat pump & radiant heating cooling

  9. Near-wall reaction effects on film-cooled surface heat transfer

    E-Print Network [OSTI]

    Kirk, Daniel Robert, 1975-

    2003-01-01

    As commercial and military aircraft engines approach higher total temperatures and increasing overall fuel-to-air ratios, there exists a potential for significant heat release to occur in the turbine if energetic species ...

  10. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    and Light Commercial Passive Solar Costs and Energy ImpactsLight Commercial Passive Solar Costs and Energy Impacts l~iledge of performance and costs of passive solar heating and

  11. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01

    for thermal comfort. Energy and Buildings 2002;34:593-9.IEA. Technology Roadmap. Energy-efficient Buildings: HeatingH, Arens E, Webster T. Energy Savings from Extended Air

  12. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications 

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01

    In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present...

  13. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect (OSTI)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  14. Evaporative Cooling for Energy Conservation 

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01

    The evaporative cooling principle applies to all equipment that exchanges sensible heat for latent heat. Equipment of this type falls into two general categories: (1) equipment for heat rejection, such as cooling towers and (2) equipment for air...

  15. Evolution of Crustal Magnetic Fields in Isolated Neutron Stars : Combined Effects of Cooling and Curvature of Space-time

    E-Print Network [OSTI]

    Sujan Sengupta

    1998-01-29

    The ohmic decay of magnetic fields confined within the crust of neutron stars is considered by incorporating both the effect of neutron star cooling and the effect of space-time curvature produced by the intense gravitational field of the star. For this purpose a stationary and static gravitational field has been considered with the standard as well as the accelerated cooling models of neutron stars. It is shown that general relativistic effect reduces the magnetic field decay rate substantially. At the late stage of evolution when the field decay is mainly determined by the impurity-electron scattering, the effect of space-time curvature suppresses the role of the impurity content significantly and reduces the decay rate by more than an order of magnitude. Even with a high impurity content the decay rate is too low to be of observational interest if the accelerated cooling model along with the effect of space-time curvature is taken into account. It is, therefore, pointed out that if a decrease in the magnetic field strength by more than two orders of magnitude from its initial value is detected by observation then the existence of quark in the core of the neutron star would possibly be ruled out.

  16. A Fourier series model to predict hourly heating and cooling energy use in commercial buildings with outdoor temperature as the only weather variable

    SciTech Connect (OSTI)

    Dhar, A. [Enron Corp., Houston, TX (United States); Reddy, T.A. [Drexel Univ., Philadelphia, PA (United States). Civil and Architectural Engineering Dept.; Claridge, D.E. [Texas A and M Univ., College Station, TX (United States). Energy Systems Lab.

    1999-02-01

    Accurate modeling of hourly heating and cooling energy use in commercial buildings can be achieved by a Generalized Fourier Series (GFS) approach involving weather variables such as dry-bulb temperature, specific humidity and horizontal solar flux. However, there are situations when only temperature data is available. The objective of this paper is to (i) describe development of a variant of the GFS approach which allows modeling both heating and cooling hourly energy use in commercial buildings with outdoor temperature as the only weather variable and (ii) illustrate its application with monitored hourly data from several buildings in Texas. It is found that the new Temperature based Fourier Series (TFS) approach (1) provides better approximation to heating energy use than the existing GFS approach, (ii) can indirectly account for humidity and solar effects in the cooling energy use, (iii) offers physical insight into the operating pattern of a building HVAC system and (iv) can be used for diagnostic purposes.

  17. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  18. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  19. FLUID-COOLED HEAT SINK WITH IMPROVED FIN AREAS AND EFFICENCIES FOR USE IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans - PermeationGovernmentCOOLING VARIOUS DEVICES -

  20. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  1. Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling

    E-Print Network [OSTI]

    Fan, Shanhui

    Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling Eden designed, terrestrial structures can passively cool themselves through radiative emission of heat to outer space. For the first time, we present a metal-dielectric photonic structure capable of radiative cooling

  2. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    building en- velope); ~ thermal storage (this may be nothingheat is discharged; • thermal storage (this may be nothingthermal coup 1i ng of the space to absorbing surfaces or storage

  3. Drop Impact Behaviors for Cooling Applications

    E-Print Network [OSTI]

    Ajawara, Cynthia Ogechi

    2015-01-01

    1992). Liquid Immersion Cooling of a Longitudinal Array ofNext generation spray cooling: high heat flux management inS. (2002). Cryogen spray cooling efficiency: Improvement of

  4. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  5. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    SciTech Connect (OSTI)

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  6. Novel Controls for Time-Dependent Economic Dispatch of Combined Cooling Heating and Power (CCHP)

    SciTech Connect (OSTI)

    Samuelsen, Scott; Brouwer, Jack

    2013-08-31

    The research and development effort detailed in this report directly addresses the challenge of reducing U.S. industrial energy and carbon intensity by contributing to an increased understanding of potential CCHP technology, the CCHP market and the challenges of widespread adoption. This study developed a number of new tools, models, and approaches for the design, control, and optimal dispatch of various CCHP technologies. The UC Irvine campus served as a ‘living laboratory’ of new CCHP technologies and enabled the design and demonstration of several novel control methods. In particular, the integration of large scale thermal energy storage capable of shifting an entire day of cooling demand required a novel approach to the CCHP dispatch optimization. The thermal energy storage proved an economically viable resource which reduced both costs and emissions by enabling generators and chillers to operate under steady high efficiency conditions at all times of the day.

  7. Best Management Practice #10: Cooling Tower Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  8. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA)

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  9. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  10. Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel Air North,Bell County,Information Space

  11. Radiant Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a steady cooling effect. Homes built on concrete slabs are prime candidates for radiant heating systems, and radiant floor cooling takes advantage of the same principle using...

  12. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect (OSTI)

    Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  13. Integrated heat pump water heater

    SciTech Connect (OSTI)

    Robinson, G.P.; Blackshaw, A.L.

    1986-07-08

    An integrated heat pump water heater system is described for providing either heating or cooling of an interior space, and heating water in conjunction with either the heating or cooling cycle or independently, by means of a refrigerant flowing through the system. The system consists of: a compressor; a first heat exchanger means for providing heat to the interior space in the heating cycle and for removing heat during the cooling cycle by heat transfer with a refrigerant therein; a second heat exchanger means for transferring heat to or from a refrigerant therein by heat exchanger with an exterior medium; a third heat exchanger means for transferring heat from a refrigerant therein to water circulated therethrough; a first expansion device; a second expansion device; a third expansion device; refrigerant flow connection means connected between the compressor, the heat exchanger means, and the expansion devices which may be controllably connected in alternate configurations whereby. In a first configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the second heat exchanger means, through the first expansion device, through the first heat exchanger means, and back to the compressor. In a second configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the first heat exchanger means, through the second expansion device, through the second heat exchanger means, and back to the compressor. In a third configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the third expansion device, through the second heat exchanger means, and back to the compressor.

  14. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  15. Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014 Car seat comfort is becoming more and more a competitive issue, moving optional to standard vehicle equipment. From early 1960s, it was shown that aerated car seats improved

  16. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. The project will build on...

  17. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

  18. Promising Technology: Cool Roofs

    Broader source: Energy.gov [DOE]

    A cool roof increases the solar reflectance of the roof surface. By reflecting more sunlight, the roof surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the roof into the building below. During the cooling season, the addition of a cool roof can decrease the cooling load of the building.

  19. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  20. Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE and to install heat pumps in unoccupied spaces. Nevertheless manufacturers keep working on components for hydrocarbons. In the frame of a research project on heat pumps for simultaneous heating and cooling, an R407C

  1. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  2. A study of aggregation bias in estimating the market for home heating and cooling equipment

    SciTech Connect (OSTI)

    Wood, D.J.; Ruderman, H.; McMahon, J.E.

    1989-05-01

    Econometricians frequently propose parametric models which are contingent on an underlying assumption of rational economic agents maximizing their utility. Accurate estimation of the parameters of these models depends on using data disaggregated to the level of the actual agents, usually individual consumers or firms. Using data at some other level of aggregation introduces bias into the inferences made from the data. Unfortunately, properly disaggregated data is often unavailable, or at least, much more costly to obtain than aggregate data. Research on consumer choice of home heating equipment has long depended on state-level cross-sectional data. Only recently have investigators been able to build up and successfully use data on consumer attributes and choices at the household level. A study estimated for the Electric Power Research Institute REEPS model is currently one of the best of these. This paper examines the degree of bias that would be introduced in that study if only average data across SMSAs or states were used at several points in the investigation. We examine the market shares and elasticities estimated from that model using only the mean values of the exogenous variables, and find severe errors to be possible. However, if the models were calibrated on only aggregate data originally, we find that proper treatment allows market shares and elasticities to be found with little error relative to the disaggregate models. 22 refs., 4 figs., 10 tabs.

  3. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01

    both the ventila- tion and cooling effects of outdoorair exchange, including coolingpeople, cooling the space during the day, or cooling the

  4. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System 

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01

    latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies...

  5. Heat Transfer -1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with dimensions and properties given below. (a) Calculate the solar heat flux (W/m2 is at a distance where the solar heat flux (as defined above) is 500 W/m2 , and the flat plate is oriented

  6. Adequacy of the Heat-Mass Transfer Analogy to Simulate Containment Atmospheric Cooling in the New Generation of Advanced Nuclear Reactors: Experimental Confirmation

    SciTech Connect (OSTI)

    Herranz, Luis E. [CIEMAT (Spain); Campo, Antonio [Idaho State University (United States)

    2002-09-15

    Driving forces of passive cooling systems of advanced reactor containments are substantially weaker than those brought in by active systems of operating power plants. This fact along with the new geometries being used suggest the need either to develop new reliable simulation techniques or to adapt and validate traditional approaches. Suitability of the heat-mass transfer analogy for this purpose is investigated based on previous authors' experience. Major analogy drawbacks are identified and overcome by supplementing it with analytically derived factors. By comparing against experimental data available, the heat-mass transfer analogy is demonstrated to be a sound, configuration-independent, and accurate-enough theoretical approximation.

  7. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect (OSTI)

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  8. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    E-Print Network [OSTI]

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  9. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  10. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  11. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  12. PHYSICAL REVIEW E 91, 032309 (2015) Asymmetric crystallization during cooling and heating in model glass-forming systems

    E-Print Network [OSTI]

    O'Hern, Corey S.

    2015-01-01

    heating limits the thermoplastic forming processing time window for BMGs [17­20]. Recent studies have

  13. Thermal Equilibrium in Nebulae1 For an ionized nebula under steady conditions, heating and cooling processes that in

    E-Print Network [OSTI]

    Boettcher, Markus

    processes that in isolation would change the thermal energy content of the gas are in balance to as a "photoelectron"). This kinetic energy represents an addition to the thermal energy of the gas bookkeeping for ionization. II. Cooling. Cooling occurs when thermal energy in the gas particles is converted

  14. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01

    67, 15. Hangst, J "Laser Cooling of a Stored Ion Beam - ATheorem an.d Phase Space Cooling", Proceedings of theWorkshop on Beam Cooling and Related Topics, Montreaux, CERN

  15. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  16. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  17. Negative heat capacity for a Klein-Gordon oscillator in non-commutative complex phase space

    E-Print Network [OSTI]

    Slimane Zaim; Hakim Guelmamene; Yazid Delenda

    2015-10-30

    We obtain exact solutions to the two-dimensional Klein-Gordon oscillator in a non-commutative complex phase space to first order in the non-commutativity parameter. We derive the exact non-commutative energy levels and show that the energy levels split to $2m$ levels. We find that the non-commutativity plays the role of a magnetic field interacting automatically with the spin of a particle induced by the non-commutativity of complex phase space. The effect of the non-commutativity parameter on the thermal properties is discussed. It is found that the dependence of the heat capacity $C_V$ on the non-commutative parameter gives rise to a negative quantity. Phenomenologically, this effectively confirms the presence of the effects of self-gravitation induced by the non-commutativity of complex phase space.

  18. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  19. An experimental study of external reactor vessel cooling strategy on the critical heat flux using the graphene oxide nano-fluid

    SciTech Connect (OSTI)

    Park, S. D.; Lee, S. W.; Kang, S.; Kim, S. M.; Seo, H.; Bang, I. C.

    2012-07-01

    External reactor vessel cooling (ERVC) for in-vessel retention (IVR) of corium as a key severe accident management strategy can be achieved by flooding the reactor cavity during a severe accident. In this accident mitigation strategy, the decay heat removal capability depends on whether the imposed heat flux exceeds critical heat flux (CHF). To provide sufficient cooling for high-power reactors such as APR1400, there have been some R and D efforts to use the reactor vessel with micro-porous coating and nano-fluids boiling-induced coating. The dispersion stability of graphene-oxide nano-fluid in the chemical conditions of flooding water that includes boric acid, lithium hydroxide (LiOH) and tri-sodium phosphate (TSP) was checked in terms of surface charge or zeta potential before the CHF experiments. Results showed that graphene-oxide nano-fluids were very stable under ERVC environment. The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slide test section. The radius of the curvature is 0.1 m. The dimension of each part in the facility simulated the APR-1400. The heater was designed to produce the different heat flux. The magnitude of heat flux follows the one of the APR-1400 when the severe accident occurred. All tests were conducted under inlet subcooling 10 K. Graphene-oxide nano-fluids (concentration: 10 -4 V%) enhanced CHF limits up to about 20% at mass flux 50 kg/m{sup 2}s and 100 kg/m{sup 2}s in comparison with the results of the distilled water at same test condition. (authors)

  20. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    radiant heating and cooling systems, in: Proceedings ofInc, Altanta,GA, 2009. Cooling load differences betweensurface level 24-hour total cooling energy between radiant

  1. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    radiant heating and cooling systems, in: Proceedings ofSizing of the radiant system cooling equipment is highlycooling rate and air system cooling rate in this section. To

  2. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01

    shown that radiant system cooling capacity could be enhancedof trends regarding radiant system cooling load analysis andEmbedded Radiant Heating and Cooling Systems, International

  3. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  4. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  5. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  6. Cooling Dry Cows 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17

    in the summer causes sig- nificant economic losses in the dairy industry. That decrease in production is brought on by heat stress, and studies have documented that cooling lactat- ing cows increases their milk pro- duction. Although little research has been... produc- tion. yeast, etc.). Management consid- erations include installing cool- ing systems. Although much of the diet adjustment is made with a nutritional consultant, it is typ- ically the dairy producer who decides on the cooling system. Cooling...

  7. Data center cooling system

    DOE Patents [OSTI]

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  8. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  9. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a.5 Space Heating

  10. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01

    billion Rupees for cooling energy in India. Meteorologicalbillion Rupees for cooling energy in India. Meteorologicalbillion Rupees for cooling energy in India. Meteorological

  11. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    2012-11-29

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  12. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01

    methods for ground-source heat pumps. in ASHRAE Summergas emission savings of ground source heat pump systems inheat exchangers for ground-source heat pumps: A literature

  13. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  14. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    SciTech Connect (OSTI)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  15. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect (OSTI)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  16. Heat pump simulation model and optimal variable-speed control for a wide range of cooling conditions

    E-Print Network [OSTI]

    Zakula, Tea

    2010-01-01

    The steady-state air-to-air heat pump model presented in this thesis was developed from the first principles. The main objective was to develop a heat pump model that can be used as a part of larger simulation models, and ...

  17. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  18. Cooling system for a bearing of a turbine rotor

    DOE Patents [OSTI]

    Schmidt, Mark Christopher (Niskayuna, NY)

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  19. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  20. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  1. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  2. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  3. System Modeling of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2012-01-01

    To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

  4. Large Diameter Lasing Tube Cooling Arrangement

    DOE Patents [OSTI]

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  5. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  6. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  7. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  8. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P.; Tuluca, A.

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  9. Optimization of Cooling Water 

    E-Print Network [OSTI]

    Matson, J.

    1985-01-01

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  10. Process Cooling Systems 

    E-Print Network [OSTI]

    McCann, C. J.

    1983-01-01

    Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling...

  11. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01

    dampened. A presentation was made at the 1940 semi-annual meeting of the American Society of Heating and Ventilating Engineers entitled 'Summer Cooling Load as Affected by Heat Gain Through Dry, Sprinkled and Water Covered Roofs.' Solar evaporative roof...

  12. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  13. Applications Tests of Commercial Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  14. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect (OSTI)

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  15. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building 

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01

    Sections . . . . 85 4. 7 Daycare Center . . . . . . . 86 4, 8 Sun Angle Calculator and Altitude Measurement Device . . . 4. 9 Photovoltaic and Domestic Hot Water Solar Panels. . . . . . . . . . 92 4. 10 Heating, Ventilating, and Air... and Daily Minutes of Sunshine . . . . . . . I 1 5 4. 18 Sky Clearness and Daily Percent Possible Sunshine . . . . . . . . 116 4. 19 Hourly Photovoltaic Electricity and Hourly Solar Radiation. . . . . . . . . . 1 1 8 4. 20 Solar Data Example . . . . . 121...

  16. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  17. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  18. COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR

    SciTech Connect (OSTI)

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower/circulators would be kept low by maintaining a pressurized system coolant back pressure of {approx}7-8 bars through the design of the guard containment for such a design pressure. This approach is termed the medium pressure approach by both CEA and the US. Such a containment design pressure is in the range of the LWR experience, both PWRs and BWRs. Both metal containments and concrete guard containments are possible in this pressure range. This approach is then a time-at-risk approach as the power requirements should be low enough that battery/fuel cell banks without diesel generator start-up failure rate issues should be capable of providing the necessary power. Compressed gas sources are another possibility. A companion PRA study is being conducted to survey the reliability of such systems.

  19. Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. Building Size,1. Heated,

  20. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  1. M. Sri, J. Remund, T. Cebecauer, D. Dumortier, L. Wald, T. Huld, P. Blanc, Proceeding of the EUROSUN 2008, International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 10 October 2008.

    E-Print Network [OSTI]

    Boyer, Edmond

    of the EUROSUN 2008, 1st International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 ­ 10 October 2008. First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe M in complex climate conditions of mountains, along some coastal zones and in areas where solar radiation

  2. A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes, Mandeep Dhaliwal, Aaron Long, Nikita Sheth

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200605 A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes in June 2006. #12;Hughes, Dhaliwal, Long, Sheth: Wind for space heating 1 Abstract Prince Edward Island, or other energy sources, are at the mercy of rapidly changing energy prices. Prince Edward Island

  3. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    floor area, and consume the most energy in the commercialheating energy, while the Low Heating cases consume less

  4. Methods for forming wellbores in heated formations

    DOE Patents [OSTI]

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  5. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.embedded radiant heating and cooling. Geneva: InternationalM. Deru. 2010. “Radiant slab cooling for retail. ” ASHRAE

  6. Cooling our Communities. A Guidebook on Tree Planting and Light-Colored Surfacing

    E-Print Network [OSTI]

    Akbari, H.

    2009-01-01

    Huang. 1988. "Residential Cooling Loads and the Urban Heaton Energy Efficient Cooling (San Jose, CA). Akbari, H. ,mer Heat Islands on Residential Cooling Energy Consumption."

  7. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01

    below: ?Urban Heat Islands and Mitigation Technologies?India ?Urban Heat Islands and Mitigation Technologies?India ?Urban Heat Islands and Mitigation Technologies? India

  8. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01

    from heat island control ..Taha, H. 1990. "Summer Heat Islands, Urban Trees, and WhiteGas Emissions, and Urban Heat- island Effects: Findings from

  9. THE EFFECT OF AIR-COOLING HEAT TREATMENTS ON THE STRUCTURE AND PROPERTIES OF Fe/4Cr/ 0.3C/2Mn ALLOY

    E-Print Network [OSTI]

    Rabe, T.H.

    2010-01-01

    published in Met. Trans. , Heat Treatment Conf. , The Metalstempered in (f). All heat treatments were performed for onefor the 1100 C heat treatment. Several undissolved spherical

  10. Field monitoring of a variable-speed integrated heat pump/water-heating appliance

    SciTech Connect (OSTI)

    Fanney, A.H. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.

    1995-12-31

    A variable-speed integrated heat pump/water-heating appliance was monitored for two years while meeting the space-conditioning and water-heating needs of an occupied residence. Experimental results are presented that show the total energy consumed by the residence was significantly reduced compared to previous years in which electric base-board heat, a wood stove, and window air conditioners were used. During the two space-heating seasons, the variable-speed integrated heat pump/water-heating appliance used 60% less energy than would have been consumed by an electric furnace with the same air distribution system and a storage-type electric water heater. The monthly space-cooling-only coefficients of performance (COP) ranged from 2.50 to 4.03, whereas the monthly space-heating-only coefficients of performance ranged from a low of 0.91 to a high of 3.33. A proposed index to quantify the overall system performance of integrated water-heating/space-conditioning appliances, referred to as the combined performance factor, ranged from 1.55 to 3.50. The majority of larger values occurred during months in which space cooling dominated. The combined performance factor for the entire two-year study was 2.45. A conventional watt-hour meter supplied by the local electrical utility and an electronic digital power analyzer were used to measure the energy consumption of the variable-speed heat pump to discern if variable-speed equipment introduces errors in conventional utility metering equipment. Measurements made using the two instruments were in excellent agreement. The monthly energy consumption and peak electrical demands of the residence, integrated heat pump/water-heating appliance, supplemental space heater, and water heater are discussed. The influence of outdoor temperature on electrical power demand is presented.

  11. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  12. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Broader source: Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  13. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  14. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    E-Print Network [OSTI]

    Akbari, Hashem

    2011-01-01

    like Brazil, has strong programs on energy efficiency, andenergy savings due to cool roofs for the median climate in Brazil,energy savings due to cool roofs for the median climate in Brazil,

  15. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01

    L. Thorndahl, Stochastic Cooling o f Momentum Spread by F ion Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. Sand S. A. Kheifhets', On Stochastic Cooling, P a r t i c l e

  16. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  17. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,2.2,1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water...

  18. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,8.5,3.9,2.2,2.4 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot...

  19. "Table HC10.5 Space Heating Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,6.9,8.5,6.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","Q",0.4,"Q" "Central Warm-Air Furnace",2.3,"Q",0.9,0.7,0.6 "SteamHot...

  20. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.1,2,4.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water...