Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Performance of active solar space-heating systems, 1980-1981 heating season  

SciTech Connect (OSTI)

Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

1981-01-01T23:59:59.000Z

2

Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM  

SciTech Connect (OSTI)

The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

Not Available

1982-06-30T23:59:59.000Z

3

An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps  

E-Print Network [OSTI]

AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulftilment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Approved...

Margo, Randal E.

1992-01-01T23:59:59.000Z

4

User's manual for heat-pump seasonal-performance model (SPM) with selected parametric examples  

SciTech Connect (OSTI)

The Seasonal Performance Model (SPM) was developed to provide an accurate source of seasonal energy consumption and cost predictions for the evaluation of heat pump design options. The program uses steady state heat pump performance data obtained from manufacturers' or Computer Simulation Model runs. The SPM was originally developed in two forms - a cooling model for central air conditioners and heat pumps and a heating model for heat pumps. The original models have undergone many modifications, which are described, to improve the accuracy of predictions and to increase flexibility for use in parametric evaluations. Insights are provided into the theory and construction of the major options, and into the use of the available options and output variables. Specific investigations provide examples of the possible applications of the model. (LEW)

Not Available

1982-06-30T23:59:59.000Z

5

Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF)  

E-Print Network [OSTI]

This report provides the recommendations to calculate cooling and heating energy-input-ratio (EIR) for DOE-2 simulations excluding indoor fan energy, from the rated cooling and heating seasonal performance efficiency (i.e., SEER or HSPF) that does...

Kim, H.; Baltazar, J. C.; Haberl, J. S.

2013-01-01T23:59:59.000Z

6

SEPEMO-Build SEasonal PErformance MOnitoring  

E-Print Network [OSTI]

· Etten-Leur is to achieve energy-neutral building for new developments by 2020. · Schoenmakershoek and energy-neutral development · From the onset of the project heat pumps are an integral part of this visionSEPEMO-Build SEasonal PErformance MOnitoring Roger Nordman, roger.nordman@sp.se SP Sveriges

Oak Ridge National Laboratory

7

Heating Season Has Ended An Update On The Numbers  

E-Print Network [OSTI]

Heating Season Has Ended An Update On The Numbers Heating Season Has Ended The snow in the mid to last at least 10 days!! So, we are declaring an end to the heating season and entering late into what temperature dip. As you likely do at home, please be mindful of the weather forecast and adjust accordingly

8

Central solar heating plants with seasonal storage in mines  

SciTech Connect (OSTI)

The solar assisted heat supply of building offers a great technical potential for the substitution of fossil energy sources. Central solar Heating Plants with Seasonal Storage (CSHPSS) supply 100 and more buildings and reach a solar fraction of 50% or more of the total load with far less specific heat costs [$/kWh{sub solar}] compared to small domestic hot water systems (DHW) for single-family houses. However, the construction of seasonal storage is too expensive. At the Ruhu University Bochum the use of mines for a seasonal storage of low temperature heat is examined in cooperation with industrial partners. The use of available storage volumes may lead to a decrease of investment costs. Additional geothermal heat gains can be obtained from the warm surrounding rock; therefore a high efficiency can be achieved.

Eikmeier, B.; Mohr, M.; Unger, H.

1999-07-01T23:59:59.000Z

9

Study of Applications of Solar Heating Systems with Seasonal Storage in China  

E-Print Network [OSTI]

the ratio of volume of seasonal storage tank to collector areas is 3~5, the system performance is optimal for many places in China; 3) the obtained solar heat is mainly dependent on the solar irradiance, length of heating period and ambient temperature...

Yu, G.; Zhao, X.; Chen, P.

2006-01-01T23:59:59.000Z

10

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

SciTech Connect (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

11

Radiant Barrier Performance during the Heating Season  

E-Print Network [OSTI]

with identical Fan Coil Units (FCU), digital thermostats and electric resistance heaters. Both heaters were identical and rated at 4100 Btu/hr. These heaters were directly connected to the thermostats and to watt-hour counters and watt-meters. The watt...

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

12

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

13

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

14

State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

15

State Heating Oil and Propane Program, 1990--1991 heating season  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

16

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect (OSTI)

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

17

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network [OSTI]

and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes...

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

18

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

19

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

20

Direct contact heat exchanger performance  

SciTech Connect (OSTI)

Although the final performance result of a DCHE is the cost of the net electricity produced, the best performance cannot be achieved without optimizing the components of the system as well as the whole system. Thus collection and analysis of data on the internal performance of the column assists in optimizing the operation of the particular column as well as in suggesting ways for improving the operation and design of future columns.

Wahl, E. F.

1981-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Demonstration and Performance Monitoring of Foundation Heat Exchangers...  

Energy Savers [EERE]

for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options...

22

Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs  

E-Print Network [OSTI]

An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

Huang, Y.; Sun, D.

2006-01-01T23:59:59.000Z

23

Solar energy system performance evaluation: seasonal report for IBM System IA, Huntsville, Alabama  

SciTech Connect (OSTI)

The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported. The Solar Energy System, Sims Prototype System 1A, was designed by IBM to provide 50 to 60% of the space heating and domestic hot water (DHW) preheating load to a 2000 square foot floor space single faily residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. Auxiliary energy for domestic hot water is from a conventional 20-gallon DHW storage tank. The solar energy system, uses air as the heat transport medium, has a 720 square foot Solar Energy Products Collector Array, a 22-ton rock storage located within the office building, a pump, heat exchanger, air handler, pre-heat tank, fan and associated plumbing. The system has five different modes of operation.

Not Available

1980-05-01T23:59:59.000Z

24

Improving Process Heating System Performance: A Sourcebook for...  

Broader source: Energy.gov (indexed) [DOE]

Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

25

DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP  

SciTech Connect (OSTI)

The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

2014-06-01T23:59:59.000Z

26

ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS  

E-Print Network [OSTI]

and heating efficiency, inexpensive and practical diagnosti.c techniques are needed, such as pressuriza- tion, infrared

Modera, M.P.

2012-01-01T23:59:59.000Z

27

SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

AUG 1979 SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. Richards W The development of the first prototype heat activated heat pump (HAHP) jointly sponsored by the Gas Research as a unitary heating and cooling product competing for the same market as is currently served by the gas year

Oak Ridge National Laboratory

28

State of Maine residential heating oil survey: 1994--1995 Season summary  

SciTech Connect (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

29

XI. DIFFUSEGLOBAL CORRELATIONS: SEASONAL VARIATIONS Estimating the performance of a solar system  

E-Print Network [OSTI]

39 XI. DIFFUSE­GLOBAL CORRELATIONS: SEASONAL VARIATIONS Estimating the performance of a solar system requires an accurate assessment of incident solar radiation. Ordinarily, solar radiation-step procedure. First a model is used to estimate the diffuse and direct components from global data. Then each

Oregon, University of

30

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season  

SciTech Connect (OSTI)

The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-11-01T23:59:59.000Z

31

Water-to-Air Heat Pump Performance with Lakewater  

E-Print Network [OSTI]

The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

Kavanaugh, S.; Pezent, M. C.

1989-01-01T23:59:59.000Z

32

Solar energy system performance evaluation. Seasonal report for Fern Lansing, Lansing, Michigan  

SciTech Connect (OSTI)

The Solar Energy System was designed by Fern Engineering Company, Bourne, Massachusetts to provide space heating and domestic hot water preheating for a 1300 square foot single-family residence located in Lansing, Michigan. The Solar Energy System consists of a 278 square foot flat-plate air collector subsystem, a three 120-gallon tank storage subsystem, a 40 gallon domestic hot water tank subsystem, a liquid/air heat exchanger, an energy transport module, pumps, controls and heat transfer medium lines. Natural gas provides the auxiliary energy for the space heating (100,000 Btu/h) and hot water (70,000 Btu/h) subsystems. The system is shown schematically and has five modes of operation. Typical system operation, system operating sequence, performance assessment, system performance, subsystems performance (collector array, storage, hot water, space heating), operating energy, energy savings, and maintenance are discussed. A brief summary of all pertinent parameters is presented.

Not Available

1980-06-01T23:59:59.000Z

33

BEMS-Assisted Seasonal Functional Performance Testing in the Initial Commissioning of Kista Entre and Katsan  

E-Print Network [OSTI]

BEMS-ASSISTED SEASONAL FUNCTIONAL PERFORMANCE TESTING IN THE INITIAL COMMISSIONING OF KISTA ENTR? AND KATSAN Per Isakson*, Per Wetterstr?m** and P?r Carling*** * Building Sciences KTH, Stockholm SWEDEN. per.isakson@byv.kth.se ** Vasakronan..., Stockholm, SWEDEN. per.wetterstrom@vasakronan.se *** ?F-Installation, Stockholm, SWEDEN. par.carling@af.se This paper reports on some concrete experiences from using intensive trending and visualization in the evaluation of the performance...

Isakson, P.; Wetterstrom, P.; Carling, P.

2004-01-01T23:59:59.000Z

34

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

35

The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump  

E-Print Network [OSTI]

. This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

Payne, William Vance

1992-01-01T23:59:59.000Z

36

Solar energy system performance evaluation: seasonal report for IBM System 3, Glendo, Wyoming  

SciTech Connect (OSTI)

The IBM System 3 Solar Energy System was designed by the Federal Systems Division of IBM in Huntsville, Alabama to provide 46% of the space heating and 80% of the domestic hot water (DHW) for a 1078 square foot retrofit of an existing building used as a residence at the Glendo Reservoir State Park Ranger Station. The system consists of fourteen Sunworks Model LA1001A flat plate liquid collectors (294 square feet), a 1000 gallon hot water storage tank, a 65 gallon electric domestic hot water tank, pumps, heat exchangers, controls, and associated plumbing. Water is the heat transfer medium for this closed volume, passive drain down system. A gas furnace is used for auxiliary space heating energy. The system which became operational in October 1978 has five modes of operation. Performance data for the year of 1979 are presented and assessed.

None

1980-06-01T23:59:59.000Z

37

A performance data network for solar process heat systems  

SciTech Connect (OSTI)

A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

Barker, G.; Hale, M.J.

1996-03-01T23:59:59.000Z

38

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect (OSTI)

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

39

Performance of Horizontal Field Earth-Coupled Heat Pumps  

E-Print Network [OSTI]

An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

Abbott, C. A.

1986-01-01T23:59:59.000Z

40

Field Performance of Heat Pump Water Heaters in the Northeast  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Shapiro, C.; Puttagunta, S.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

42

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

43

Solar energy system performance evaluation: seasonal report for IBM System 4 at Clinton, Mississippi  

SciTech Connect (OSTI)

The IBM System 4 Solar Energy System was designed to provide 35 percent of the space heating and 62 percent of the domestic hot water (DHW) preheating for a single-family residence located within the United States. The system is a prepackaged unit called the Remote Solar Assembly which has been integrated into the heating and DHW system in a dormitory in Clinton, Mississippi. The system consists of 259 square feet of Solaron 2001 Series flat-plate-air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing, two 30 gallon electric water heaters draw water from the preheat tank. A 20 kilowatt, duct mounted, electric heater supplies auxiliary energy. This system which has three modes of system operation was activated September, 1978. A system performance assessment is presented.

None

1980-07-01T23:59:59.000Z

44

Hygrothermal performance of an engineered clay barrier during sustained heating  

SciTech Connect (OSTI)

Bentonitic clay buffers, with a potential for swelling, form an integral part of the natural (geological formation)/engineered multi-barrier concepts being proposed for the disposal of heat-generating radioactive nuclear fuel wastes. The integrity of such barriers during thermal loadings is of primary interest to the assessment of their reliability. This paper discusses the results of a series of experiments performed to assess the performance of buffer material under sustained heating. These experiments were conducted in a large-scale granite block facility. The laboratory modeling approximately simulates the local environment that can be encountered in a disposal vault in a granitic rock mass. Experiments in which the power supply to an embedded heater was held constant are described. The temperature distributions within the buffer and the granite block together with the residual moisture content distributions are documented. Also discussed is the application of a computational model of coupled heat and moisture flows. Moisture and heat transfer in the buffer under coupled gradients is described by the Philip-de Vries-type model in which the hygrothermal parameters are determined separately.

Selvadurai, A.P.S. [Carleton Univ., Ottawa, Ontario (Canada). Dept. of Civil and Environmental Engineering; Onofrei, C. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.

1993-12-31T23:59:59.000Z

45

Performance estimates for attached-sunspace passive solar heated buildings  

SciTech Connect (OSTI)

Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

McFarland, R.D.; Jones, R.W.

1980-01-01T23:59:59.000Z

46

Demand Response Performance of GE Hybrid Heat Pump Water Heater  

SciTech Connect (OSTI)

This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation Brillion-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in Standard electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in Heat Pump mode to provide the comparison to heat pump-only demand response. It is expected that Hybrid DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

2013-07-01T23:59:59.000Z

47

Performance of Variable Capacity Heat Pumps in a Mixed Humid Climate  

SciTech Connect (OSTI)

Variable capacity heat pumps represent the next wave of technology for heat pumps. In this report, the performance of two variable capacity heat pumps (HPs) is compared to that of a single or two stage baseline system. The units were installed in two existing research houses located in Knoxville, TN. These houses were instrumented to collect energy use and temperature data while both the baseline systems and variable capacity systems were installed. The homes had computer controlled simulated occupancy, which provided consistent schedules for hot water use and lighting. The temperature control and energy use of the systems were compared during both the heating and cooling seasons. Multiple linear regression models were used along with TMY3 data for Knoxville, TN in order to normalize the effect that the outdoor air temperature has on energy use. This enables a prediction of each system's energy use over a year with the same weather. The first system was a multi-split system consisting of 8 indoor units and a single outdoor unit. This system replaced a 16 SEER single stage HP with a zoning system, which served as the baseline. Data was collected on the baseline system from August 2009 to December 2010 and on the multi-split system from January 2011 to January 2012. Soon after the installation of the multi-split system, some of the smaller rooms began over-conditioning. This was determined to be caused by a small amount of continuous refrigerant flow to all of the indoor units when the outdoor unit was running regardless of whether they were calling for heat. This, coupled with the fact that the indoor fans run continuously, was providing enough heat in some rooms to exceed the set point. In order to address this, the indoor fans were disabled when not actively heating per the manufacturer's recommendation. Based on the measured data, the multi-split system was predicted to use 40% more energy in the heating season and 16% more energy in the cooling season than the baseline system, for the typical meteorological year weather data. The AHRI ratings indicated that the baseline system would perform slightly better than the multi-split system, but not by as large of a margin as seen in this study. The multi-split system was able to maintain more consistent temperature throughout the house than the baseline system, but it did allow relative humidity levels to increase above 60% in the summer. The second system was a split system with an inverter driven compressor and a single ducted air handler. This unit replaced a 16 SEER two stage HP with a zoning system. Data was collected on the baseline system from July 2009 to November 2010 and on the ducted inverter system from December 2010 to January 2012. The ducted inverter system did not offer a zone controller, so it functioned as a single zone system. Due to this fact, the registers had to be manually adjusted in order to better maintain consistent temperatures between the two levels of the house. The predicted heating season energy use for the ducted inverter system, based on the measured energy use, was 30% less than that of the baseline system for the typical meteorological year. However, the baseline system was unable to operate in its high stage due to a wiring issue with the zone controller. This resulted in additional resistance heat use during the winter and therefore higher energy use than would be expected in a properly performing unit. The AHRI ratings would indicate that the baseline system would use less energy than the ducted inverter system, which is opposite to the results of this study. During the cooling season, the ducted inverter system was predicted to use 23% more energy than the baseline system during the typical meteorological year. This is also opposite of the results expected by comparing the AHRI ratings. After a detailed comparison of the ducted inverter system's power use compared to that of a recently installed identical system at a retro-fit study house, there is concern that the unit is not operating as intended. The power use and cycles indicate t

Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

48

Performance studies of a solar energy storing heat exchanger  

SciTech Connect (OSTI)

The design, construction, and performance of a solar energy storing heat exchanger is presented as a step toward a solar cooking concept. The solid-solid transition of pentaerythritol is the principal mechanism for energy storage. The methods for describing the system performance are explained and applied to a test system containing a controllable replacement for the solar input power. This first stage of the project will be followed by another in which the heat exchanger is connected to a concentrating array of CPC cylindrical troughs. Although a size appropriate to commercial cooking may prove easier to design from the point of view of economics in the US, the system discussed herein is sized for domestic use and addresses the question of what solar collector area and PCM mass are needed in order to provide adequate energy for several family-size meals with sufficient storage to cook at night and one or two days later. The performance is described from efficiency measurements and the determination of a figure of merit.

Bushnell, D.L. (Northern Illinois Univ., DeKalb (USA))

1988-01-01T23:59:59.000Z

49

Seasonal versus Episodic Performance Evaluation for an Eulerian Photochemical Air Quality Model  

SciTech Connect (OSTI)

This study presents detailed evaluation of the seasonal and episodic performance of the Community Multiscale Air Quality (CMAQ) modeling system applied to simulate air quality at a fine grid spacing (4 km horizontal resolution) in central California, where ozone air pollution problems are severe. A rich aerometric database collected during the summer 2000 Central California Ozone Study (CCOS) is used to prepare model inputs and to evaluate meteorological simulations and chemical outputs. We examine both temporal and spatial behaviors of ozone predictions. We highlight synoptically driven high-ozone events (exemplified by the four intensive operating periods (IOPs)) for evaluating both meteorological inputs and chemical outputs (ozone and its precursors) and compare them to the summer average. For most of the summer days, cross-domain normalized gross errors are less than 25% for modeled hourly ozone, and normalized biases are between {+-}15% for both hourly and peak (1 h and 8 h) ozone. The domain-wide aggregated metrics indicate similar performance between the IOPs and the whole summer with respect to predicted ozone and its precursors. Episode-to-episode differences in ozone predictions are more pronounced at a subregional level. The model performs consistently better in the San Joaquin Valley than other air basins, and episodic ozone predictions there are similar to the summer average. Poorer model performance (normalized peak ozone biases <-15% or >15%) is found in the Sacramento Valley and the Bay Area and is most noticeable in episodes that are subject to the largest uncertainties in meteorological fields (wind directions in the Sacramento Valley and timing and strength of onshore flow in the Bay Area) within the boundary layer.

Jin, Ling; Brown, Nancy J.; Harley, Robert A.; Bao, Jian-Wen; Michelson, Sara A; Wilczak, James M

2010-04-16T23:59:59.000Z

50

High-Performance Refrigerator Using Novel Rotating Heat Exchanger...  

Broader source: Energy.gov (indexed) [DOE]

pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially...

51

Natural Refrigerant High-Performance Heat Pump for Commercial...  

Broader source: Energy.gov (indexed) [DOE]

(DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

52

Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979  

SciTech Connect (OSTI)

Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

Duff, W.S.; Loef, G.O.G.

1981-03-01T23:59:59.000Z

53

High Performance Trays and Heat Exchangers in Heat Pumped Distillation Columns  

E-Print Network [OSTI]

AND LIQUID now PATHS fOA IltO TltAYS I A number of engineering contractors and 1 operating companies have employed Union Carbide'\\s High Flux and Multiple Downcomer tray technolog~es to improve performance, decrease utilities and I lower operating costs... ? Fi,?'d as nll\\ximum within hf'l~ht n'!:-;tl'ie-tlon. The control scheme for a heat pump can be de signed to be no more complex than a conventional steam/cooling water system which relies on flow and level controllers to set the various column flow...

Wisz, M. W.; Antonelli, R.; Ragi, E. G.

1981-01-01T23:59:59.000Z

54

Predicting household occupancy for smart heating control: A comparative performance analysis of  

E-Print Network [OSTI]

, energy management, smart home, energy efficiency, thermostat strategy, heating setback Corresponding, a heating control system may require some time to heat a home to a comfortable temperature after itsPredicting household occupancy for smart heating control: A comparative performance analysis

55

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

56

Management and Control for Optimal Performance of the Heating Substation  

E-Print Network [OSTI]

With the development of the scale of central heating, a higher managing level is needed for the heating substation. How to economize the more energy is the first factor that managers need to consider while ensuring the comfort of the heating...

Yang, J.

2006-01-01T23:59:59.000Z

57

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network [OSTI]

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

58

Solar energy system performance evaluation: seasonal report for Colt Yosemite, Yosemite National Park, California  

SciTech Connect (OSTI)

The Solar Energy System, Colt Yosemite, was designed to provide 52% of the heating (2500 sq ft area) for the Visitors Center at Yosemite National Park, California. The system consists of 980 sq ft of Colt A-151 series flat-plate liquid collectors, a petroleum-base thermal energy transport fluid, a 2500 gallon water-filled solar energy storage tank, heat exchangers, pumps, controls and associated plumbing. Solar heated water is pumped through a liquid-to-air heat exchanger in the space heating supply duct. Auxiliary hot water is provided from an oil-fired boiler to a second liquid-to-air heat exchanger when the solar energy is not sufficient to meet the space heating demand. There are four modes of system operation.

None

1980-08-01T23:59:59.000Z

59

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

SciTech Connect (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

60

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

62

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION  

E-Print Network [OSTI]

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

63

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network [OSTI]

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

64

The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic  

E-Print Network [OSTI]

The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic is only slightly dependent on the heat transfer law considered. In the limit of an infinite number of trays even this column with resistance to transfer of heat becomes reversible. 1 #12;Keywords Diabatic

Salamon, Peter

65

Predicting household occupancy for smart heating control: A comparative performance analysis of  

E-Print Network [OSTI]

, occupancy prediction, smart heating, energy management, smart home, energy efficiency Corresponding author.e. the household having too low a temperature when the residents come back home triggering the heatingPredicting household occupancy for smart heating control: A comparative performance analysis

66

E-Print Network 3.0 - air-to-air heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper... of operation 10, 197778, the Control House ......

67

Performance Evaluation of a Retrofit Industrial Heat Pump  

E-Print Network [OSTI]

the choice of power generation and heat pumping should be employed. The simplistic answer to only pump heat across the pinch will not provide sufficient guidance. The purpose of this paper is to provide a simple but accurate analysis to any process... that will indicate where power should be made through cogeneration and even prime power use as well as where heat pumps should be employed. Actual case studies are provided to illustrate the analytical framework and actual results for a small refinery, chemical...

Wagner, J.R.

68

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

69

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network [OSTI]

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

70

Thermal performance of direct contact heat exchangers for mixed hydrocarbons  

SciTech Connect (OSTI)

This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

1985-01-01T23:59:59.000Z

71

THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING...  

Office of Scientific and Technical Information (OSTI)

(and-eventually, spray ponds) that are proposed to be used as ultimate heat sinks in nuclear power plant emergency core cooling systems. The need is derived from the concern...

72

Comparative Performance of Heat Pumps and R&D Requirements  

E-Print Network [OSTI]

in a role of both increasing the process effi ciencies and recovering and reusing waste energy emitted in industrial manufacturing processes. The lead laboratories doing research in heat pumps in the U.S. are the Oak Ridge National Laboratory (ORNL... that have low-film heat and mass transfer coefficients, be able to operate at high temperatures if needed, operate within reasonable pressure limits, be stable, non-toxic, and above all, inexpensive. The program at ORNL addresses these issues...

Ally, M. R.

73

Solar energy system performance evaluation: seasonal report for Solaron-Duffield, Duffield, Virginia  

SciTech Connect (OSTI)

The Solaron Duffield Solar Energy System was designed to provide 51% of the space heating, and 49% of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. An air-to-liquid heat pump coupled with a 1000 gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system became operational July 1979, and modes of operation are described. (MHR)

None

1980-07-01T23:59:59.000Z

74

Influence of row spacing on performance of short-season cotton genotypes  

E-Print Network [OSTI]

. Hand har- vests were made at 121, 137, and 174 days after planting (DAP) on 1 Mention of commercial products or trade names is for identifica- tion only and does not imply endorsement by the author or Texas A&M University. 15 3-m row sections.../ha. Percentage maturity was determined at 121 ard 137 days after planting. At each date, differences among spacing treatments were non-significant. Genotype differences were significant at both dates; at 121 DAP, the long-season check variety (genotype 10...

Abreu, Jose?

2012-06-07T23:59:59.000Z

75

Development of a High Performance Air Source Heat Pump for the US Market  

SciTech Connect (OSTI)

Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

2011-01-01T23:59:59.000Z

76

Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Co ntrol Systems for Energy Efficiency and Comfort, Vol. V-5-2 Analysis of the Diagnostic Methods of the Performance Failure of Heating and Air Conditioning Systems Lianyou LI Zhihong ZHANG Yong...

Li, L.; Zhang, Z.; Sun, Y.; Li, D.; Xie, H.

2006-01-01T23:59:59.000Z

77

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect (OSTI)

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

78

Evaluating the performance of passive-solar-heated buildings  

SciTech Connect (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

79

Register Closing Effects on Forced Air Heating System Performance  

SciTech Connect (OSTI)

Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

Walker, Iain S.

2003-11-01T23:59:59.000Z

80

Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements  

SciTech Connect (OSTI)

High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ?0.27?wt.?%, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3?wt.?% exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250?C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2014-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Current performance and potential improvements in solar thermal industrial heat  

SciTech Connect (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

82

Current performance and potential improvements in solar thermal industrial heat  

SciTech Connect (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

83

Performance of a solar-heated assembly building at Sandia National Laboratories  

SciTech Connect (OSTI)

The passive solar-heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performance for December 1979 and January 1980 are shown.

Haskins, D.E.

1980-09-01T23:59:59.000Z

84

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED INTO A DWELLING  

E-Print Network [OSTI]

PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED.peuportier@mines-paristech.fr, Tel.: +33 1 40 51 91 51 ABSTRACT An inverter-driven air-to-air heat pump model has been developped capacity air-to-air heat pump coupled with temperate air sources (crawlspace, attic, sunspace, heat

Paris-Sud XI, Université de

85

Performance of Decay Heat Removal Systems in the LS-VHTR  

SciTech Connect (OSTI)

Investigations are underway to determine the viability of the Liquid Salt-Cooled - Very High Temperature Reactor (LS-VHTR) concept which combines fuel and moderator similar to gas cooled VHTR concepts but utilizes liquid salt coolant which can operate at low pressures with improved heat transfer properties relative to helium. Analyses have been carried out investigating the viability of two alternative passive approaches for emergency decay heat removal for a 2400 MWt LS-VHTR: RVACS air natural circulation cooling of the exterior of the guard vessel and DRACS Direct Reactor Heat Exchangers (DRHXs) immersed in the liquid salt coolant and connected to natural draft air heat exchangers through secondary and tertiary cooling circuits. Results of first principles and integrated systems analyses of RVACS and DRACS performance are presented for a postulated accident scenario involving loss-of-normal heat removal, loss-of-forced (pumped) liquid salt flow, and successful scram of the reactor. (authors)

Sienicki, James J.; Moisseytsev, Anton; Farmer, Mitchell T.; Dunn, Floyd E.; Cahalan, James E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

2006-07-01T23:59:59.000Z

86

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

SciTech Connect (OSTI)

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

87

BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data  

SciTech Connect (OSTI)

This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

1986-02-01T23:59:59.000Z

88

Comparison of Field Performance to Steady-State Performance for Two  

E-Print Network [OSTI]

efficiencies of these systems under field conditions. Steady-state performance data for individual heat pump reversal to defrost, by duty cycling, and by resort to electric resistance elements to supplement heating data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper

Oak Ridge National Laboratory

89

Spray evaporation heat transfer performance in R-123 in tube bundles  

SciTech Connect (OSTI)

This study focuses on evaluating the heat transfer performance of refrigerant R-123 in the spray evaporation environment for pure refrigerant and for the case of lubricant addition. Tests were conducted with triangular-pitch tube bundles made from enhanced boiling tubes, enhanced condensation tubes, and plain-surface tubes. A second enhanced boiling surface tube bundle, made with a square-pitch tube alignment, was also tested so a comparison could be made between the square- and triangular-pitch geometries. In addition to pure refrigerant work, experiments were performed with small concentrations of a 305 SUS naphthenic mineral oil to evaluate its effect on falling-film heat transfer performance. Two different refrigerant supply rates were used in this work so the effects of film-feed supply rate could be interpreted from the data. Refrigerant was introduced to the test section via low-pressure-drop, wide-angle nozzles located directly over the tube bundle. Data were taken over a heat flux range of 40 kW/m{sup 2} (12,688 Btu/[h{center_dot}ft{sup 2}]) to 19 kW/m{sup 2} (6,027 Btu/[h{center_dot}ft{sup 2}]), while the refrigerant supply rate remained fixed. Collector tests were performed in parallel with the heat transfer experiments so the amount of refrigerant bypassing the tube bundle could be determined. It was found that the heat transfer coefficients were dependent upon film-feed supply rate, oil concentration, and heat flux. The enhanced boiling surface yielded higher heat transfer coefficients than either the enhanced condensation surface or the plain surface.

Moeykens, S. [Trane Co., LaCrosse, WI (United States); Kelly, J.E. [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.

1996-12-31T23:59:59.000Z

90

Performance analysis of solar-assisted chemical heat-pump dryer  

SciTech Connect (OSTI)

A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)

Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka (Malaysia); Sopian, K.; Daud, W.R.W. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2010-11-15T23:59:59.000Z

91

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP  

E-Print Network [OSTI]

- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

Paris-Sud XI, Université de

92

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

1.4 Heat Pipes for Waste Heat Recovery..analysis involving waste heat recovery of solar energyOverview of Industrial Waste Heat Recovery Technologies for

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

93

Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence  

SciTech Connect (OSTI)

With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses, and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.

Munk, Jeffrey D [ORNL; Odukomaiya, Adewale O [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2014-01-01T23:59:59.000Z

94

PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC (180?ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

2011-07-01T23:59:59.000Z

95

Statistical comparison of ICRF and NBI heating performance in JET-ILW L-mode plasmas  

SciTech Connect (OSTI)

After the change over from the C-wall to the ITER-like Be/W wall (ILW) in JET, the radiation losses during ICRF heating have increased and are now substantially larger than those observed with NBI at the same power levels, in spite of the similar global plasma energies reached with the two heating systems. A comparison of the NBI and ICRF performances in the JET-ILW experiments, based on a statistical analysis of ?3000 L-mode discharges, will be presented.

Lerche, E.; Van Eester, D. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquet, Ph.; Mayoral, M.-L.; Graham, M.; Matthews, G.; Monakhov, I.; Rimini, F. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Neu, R.; Puetterich, T. [Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Vries, P. de [FOM Institute DIFFER, Euratom Association, P.O. Box 1207, Nieuwegein (Netherlands); Collaboration: JET-EFDA Contributors

2014-02-12T23:59:59.000Z

96

Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe  

SciTech Connect (OSTI)

An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

Fang, Guiyin; Liu, Xu; Wu, Shuangmao [Department of Physics, Nanjing University, Nanjing 210093 (China)

2009-11-15T23:59:59.000Z

97

NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

Not Available

2012-01-01T23:59:59.000Z

98

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

99

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition. Industrial Technologies Program (ITP) (Book)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a

100

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump  

E-Print Network [OSTI]

mode, the system must remove heat from the cold outdoor air and provide it to the conditioned space. To remove the heat from the outdoor air, the refrigerant entering the outdoor heat exchanger must be colder than the outdoor air. The outdoor air... is pulled across the heat exchanger surface by the outdoor fan Hence, the cold liquid refrigerant passing through the evaporator coil receives heat from the outdoor ambient air passing over the coil, causing the refrigerant to vaporize into a cool gas...

Parker, Brandon DeWayne

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Regional-seasonal weather forecasting  

SciTech Connect (OSTI)

In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

1980-08-01T23:59:59.000Z

102

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents [OSTI]

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

Brantley, V.R.; Miller, D.R.

1982-05-18T23:59:59.000Z

103

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents [OSTI]

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

Brantley, Vanston R. (Knoxville, TN); Miller, Donald R. (Kingston, TN)

1984-01-01T23:59:59.000Z

104

A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps  

SciTech Connect (OSTI)

A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

105

Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan  

SciTech Connect (OSTI)

This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

Sullivan, W.N.

1997-11-01T23:59:59.000Z

106

SEASONAL VARIABILITY AND BILEVEL DISTRIBUTION OF RADON AND RADON PROGENY CONCENTRATIONS IN 200 NEW JBRSEY HOMES  

E-Print Network [OSTI]

To provide data necessaw to perform a health risk assessment of the radon problem in New Jersey, concurrent radon and radon progeny measurements were made in 200 homes on two lowest floors in two different seasons. The homes were divided into categories based on their substructure, heat distribution system, and the degree of air flow between the basement and first floor levels. Specific conversion factors (equilibrium coefficients, inter-floor radon ratios, inter-season radon ratios) were determined for each house type. Basement equilibrium coefficients were generally lower in the winter than in the non-winter season. First floor equilibrium coefficients were higher than basement values. First floor to'basement radon ratios were higher for forced air houses than for houses with hot water or electric heat distribution systems and the ratios for both types of houses were higher in the winter than in the non-heating season. The winter to non-winter ratio for first floors is

Keith B- Miller; Robert A. Hchaverv M-s; Camp Dresser; Udee Inc

107

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

the indirect increase in home heating (and the decrease inincrease the homes heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

Franco, Victor

2011-01-01T23:59:59.000Z

108

Assessment and Prediction of the Thermal Performance of a Centralized Latent Heat Thermal Energy Storage Utilizing Artificial Neural Network  

E-Print Network [OSTI]

A simulation tool is developed to analyze the thermal performance of a centralized latent heat thermal energy storage system (LHTES) using computational fluid dynamics (CFD). The LHTES system is integrated with a mechanical ventilation system...

El-Sawi, A.; Haghighat, F.; Akbari, H.

2013-01-01T23:59:59.000Z

109

BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses  

SciTech Connect (OSTI)

This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

1986-06-01T23:59:59.000Z

110

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

111

Thermal Performance of Microencapsulated Phase Material (MPCM) Slurry in a Coaxial Heat Exchanger  

E-Print Network [OSTI]

Microencapsulated phase change material (MPCM) slurries and coil heat exchangers had been recently studied separately as enhancers of convective heat transfer processes. Due to the larger apparent heat related to the phase change process...

Yu, Kun

2014-05-08T23:59:59.000Z

112

West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance  

SciTech Connect (OSTI)

West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

2012-11-01T23:59:59.000Z

113

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

Eq. (2.1). 2.2.3 Heat Capacity The pure liquid predictionsHeat Capacity... ii 2.2.4 Liquid

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

114

Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns  

SciTech Connect (OSTI)

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

Tang, L.H.; Zeng, M.; Wang, Q.W. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2009-07-15T23:59:59.000Z

115

Heat exchanges in fast, high-performance liquid chromatography. A complete thermodynamic study  

SciTech Connect (OSTI)

The successive physical transformations of the mobile phase that take place in very high pressure liquid chromatography were studied based on the formalism of classical thermodynamics. The eluent is initially under atmospheric pressure (P{sup 0}) and at ambient temperature (T{sub ext}). In a first step, it is compressed to a high pressure (P{sub max} of the order of 1 kbar) in the pump heads of the chromatograph. In a second step, the pressurized eluent is transferred to the inlet of the chromatographic column, along which, in a third step, it is decompressed to atmospheric pressure. Both the compression and the decompression of the fluid were considered to take place under conditions that can be either adiabatic or nonadiabatic and either reversible or irreversible. Applications of the first and second principles of thermodynamics allow the determination of the heat and energy exchanged between the eluent and the external surroundings during each transformation. Experimental data were acquired using acetonitrile as the mobile phase. The true state equation, {rho}(P, T), of liquid acetonitrile was used in the theoretical calculations. A series of four different flow rates (0.55, 0.85, 1.15, and 1.45 mL/min, corresponding to inlet pressures of 357.2, 559.5, 765.1, and 972.9 bar, respectively), were applied to a 2.1 x 100 mm column packed with 1.7-{micro}m bridged ethane-silicon hybrid particles. Thermocouples were used to measure the eluent temperature before and after its passage through the column. These data provide estimates of the variation of the internal energy of the eluent. The heat lost through the external wall of the column during the eluent decompression was estimated by measuring the surface temperature of the column tube under steady state. Both the compression and the decompression of acetonitrile were found to be nonadiabatic and irreversible transformations. The results showed that, during the eluent decompression, the heat released by the friction forces serves four different purposes: (1) it increases the eluent entropy at constant temperature (for 35%); (2) it increases the temperature of the eluent (for 5%); (3) it provides heat to the laboratory atmosphere (for 5%); and (4) it provides some work inside the column (for 5%). This quantitative heat balance description accounts well for the actual performance of the new, very high pressure liquid chromatographic technique.

Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

2008-01-01T23:59:59.000Z

116

Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier  

E-Print Network [OSTI]

Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

Zhao, X.; Li, Q.; Yun, C.

2006-01-01T23:59:59.000Z

117

Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins  

SciTech Connect (OSTI)

The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

1981-01-01T23:59:59.000Z

118

A quasi-3D analysis of the thermal performance of a flat heat pipe G. Carbajal a,*, C.B. Sobhan b  

E-Print Network [OSTI]

A quasi-3D analysis of the thermal performance of a flat heat pipe G. Carbajal a,*, C.B. Sobhan b form 29 January 2007 Available online 8 May 2007 Abstract The thermal performance of a flat heat pipe. The transient temperature distribution on a solid aluminum plate was compared with the flat heat pipe results

Wadley, Haydn

119

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes  

SciTech Connect (OSTI)

The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

Im, Piljae [ORNL] [ORNL; Hughes, Patrick [ORNL] [ORNL; Liu, Xiaobing [ORNL] [ORNL

2012-01-01T23:59:59.000Z

120

Analysis of system performance losses due to the reversing valve for a heat pump using R-410a  

SciTech Connect (OSTI)

A traditional reversing valve enables a heat pump to operate in the heating mode or cooling mode by switching the refrigerant flow path through the indoor and outdoor coils, thereby changing the functions of the two heat exchangers. However, the presence of a reversing valve causes additional pressure drops and undesired heat exchange. The objective of this research was to measure the overall effects of a reversing valve on a 3-ton heat pump system using R-401a and make comparisons to the same valve's performance with R-22 as the refrigerant. The experiments included tests of under- and over-sized valves at the same test conditions. Also, the effects of pressure drops and of heat transfer combined with mass leakage on system and compressor performance were analyzed. It was found that the use of a larger (oversized) reversing valve to reduce pressure drops provided only limited performance gains. Also, changing refrigerant from R-22 to R-410a resulted in an increase in mass leakage but did not significantly change the effect that the reversing valve had on the system COP.

Fang, W.; Nutter, D.W.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

122

Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint  

SciTech Connect (OSTI)

Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2014-01-01T23:59:59.000Z

123

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season  

SciTech Connect (OSTI)

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01T23:59:59.000Z

124

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

125

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

126

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect (OSTI)

This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

Not Available

2008-02-01T23:59:59.000Z

127

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

1988, Optimization of Solar Cell Output Power by Heat Pipeaverage solar cell by 1C can increase its output power by

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

128

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network [OSTI]

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting of a thermoelectric generator is to exploit the natural temperature difference between the air and the soil to generate small amounts of electrical energy. Since the conversion efficiency of even the best

129

Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface  

SciTech Connect (OSTI)

Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1980-11-01T23:59:59.000Z

130

Monitored energy use of homes with geothermal heat pumps: A compilation and analysis of performance. Final report  

SciTech Connect (OSTI)

The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

Stein, J.R.; Meier, A.

1997-12-01T23:59:59.000Z

131

Field Performance of a Ground-Coupled Heat Pump in Abilene, Texas  

E-Print Network [OSTI]

U-tube groundcoupled heat pump was installed in guest officer's quarters of Dyess Air Force Base in Abilene, Texas in December 1989. Monitored variables included: water temperature entering and leaving the condenser, temperature and relative...

Dobson, M.; O'Neal, D. L.; Aldred, W.; Margo, R.

1994-01-01T23:59:59.000Z

132

A DISCUSSION OF HEAT MIRROR FILM: PERFORMANCE, PRODUCTION PROCESS, AND COST ESTIMATES  

E-Print Network [OSTI]

transfer thnough a window by using Intrex film as a heatwindow construction will be PROCESS DESCRIPTION Intrex filmWindows and Lighting Program Building 90, Room 2056 Lawrence Berkeley Laboratory Berkeley, California -ii- A DISCUSSION OF HEAT MIRROR FILM:

Levin, B. P.

2011-01-01T23:59:59.000Z

133

Long-term performance of the Hunn passive solar residence  

SciTech Connect (OSTI)

Detailed performance and annual energy consumption data are reported, as well as occupant observations and conclusions, for three heating seasons in the Hunn hybrid passive/active solar residence located in Los Alamos, New Mexico. The performance data were gathered by the Los Alamos National Laboratory and include hourly storage wall and interior temperature data for a midwinter period, an interior air-temperature histogram, and measured auxiliary energy consumption and solar heating fraction for each heating season. Also, energy and cost savings over the three-year period are estimated.

Hunn, B.D.

1981-01-01T23:59:59.000Z

134

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

135

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

SciTech Connect (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

136

Comparison of ICRF and NBI heated plasmas performances in the JET ITER-like wall  

SciTech Connect (OSTI)

During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher centrally peaked power deposition on the electrons and due to the central fast ion population to stronger sawtooth activity. Surprisingly, although a higher bulk radiation was observed during the ICRF phase, the thermal plasma energy was found similar for both cases, showing that a higher radiation inside the separatrix was not incompatible with an efficient central heating scheme. The higher radiation was attributed to the presence Tungsten (W). Tomographic inversion of SXR emissions allowed a precise observation of the sawtooth effect on the radiation pattern. W concentration profiles deconvolved from SXR emission showed the flattening of the profiles due to sawtooth for both heating and the peaking of the profiles in the NBI case only hinting for extra transport effect in the ICRF case.

Mayoral, M.-L. [EFDA Close Support Unit, Garching, Germany and Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Ptterich, T.; Bobkov, V. [Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Jacquet, P. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van-Eester, D.; Bourdelle, C.; Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Mlynar, J. [Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, 18200 Prague (Czech Republic); Neu, R. [EFDA Close Support Unit, Garching, Germany and Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: JET-EFDA Contributors

2014-02-12T23:59:59.000Z

137

Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System  

E-Print Network [OSTI]

deteriorated performance of the compressor, and a decrease in EER and refrigerant mass flow rate....

Song, Y.; Yao, Y.; Ma, Z.; Na, W.

2006-01-01T23:59:59.000Z

138

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification  

E-Print Network [OSTI]

manufacturer. The operation of the high pressure control system, the transitions between heating, cooling, heating and cooling energies using the same electric energy input at the compressor. Chua et al. [31 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1

Boyer, Edmond

139

Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser  

E-Print Network [OSTI]

phase change pilot plant (0.6 MWth) located at UCC/Linde. The first unit consisted of integral shaved-fin-extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face...

Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

1981-01-01T23:59:59.000Z

140

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network [OSTI]

of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot...

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network [OSTI]

panel system are given by its energy (the consumption of gas for heating, electricity for pumps Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

Paris-Sud XI, Université de

142

The development of a kinematic Stirling-engine-driven heat pump  

SciTech Connect (OSTI)

The continuing development of a 10-ton light commercial natural-gas-fired kinematic Stirling-engine-driven heat pump system is described. Basic Stirling cycle thermodynamics are presented, and a complete engine heat balance is shown to detail the inherent advantages of the V160 Stirling engine as a prime mover in a heat pump package. Results from environmental laboratory testing of a breadboard prototype are reviewed, and the test procedures used in the evaluation are explained. Seasonal performance of the heat pump package was predicted using a bin-temperature method based on Chicago and Dallas climatic data. Annual energy costs, as predicted by the seasonal performance analytical computer program, have been calculated for a gas furnace, standard electric heat pump, and the Stirling engine-driven prototype heat pump package. These computed costs for these systems are listed and compared.

Monahan, R.E.; Kountz, K.J.; Clinch, J.M.

1987-06-01T23:59:59.000Z

143

Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report  

SciTech Connect (OSTI)

A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

1994-11-01T23:59:59.000Z

144

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

145

Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility  

SciTech Connect (OSTI)

In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

2014-04-01T23:59:59.000Z

146

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

147

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

148

An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of aqueous suspensions of multi-walled carbon nanotubes  

E-Print Network [OSTI]

Through past research, it is known that carbon nanotubes have the potential of enhancing the thermal performance of heat transfer fluids. The research is of importance in electronics cooling, defense, space, transportation applications and any other...

Garg, Paritosh

2009-05-15T23:59:59.000Z

149

Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump  

E-Print Network [OSTI]

A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water...

Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

1996-01-01T23:59:59.000Z

150

Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies  

E-Print Network [OSTI]

of Cooling Water in Production Area: 3.5MW (11942KBtu/h), 1unit Heat Discharge: 2.6MW (8872KBtu/h), 1unit Additional Operation with Screw Refrigeration Machine: 2.3MW (7847KBtu/h), 1unit Turbo Refrigerating Machine (1.41MW): 152m3/h (5398mf3/h), 2units... Production Area (North) Production Area (South) Water Treatment Plant 21Cells Unit (14.1MW) Turbo Refrigerating Machines (1.4MW, 2units/ 4.2MW,6units) Screw Refrigerating Machines (0.8MW, 2units) Iced-thermal Storage Tank (28.5GJ, 2units) HEX for Additional...

Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

2004-01-01T23:59:59.000Z

151

Performance of an Organic Rankine Cycle Waste Heat Recovery System for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance AuditPerformance of aLight

152

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network [OSTI]

source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

153

Parametric performance studies on fluidized-bed heat exchangers. Task I. Fouling characteristics. Yearly technical progress report, 28 July 1981-31 July 1982  

SciTech Connect (OSTI)

Analyses and experiments are being performed in this program to investigate the heat transfer performance of single and multi-stage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. The work, which is an extension of that done previously under contracts EC-77-C-03-1433 and DE-AC03-79-ET11348, consists of three tasks. In Task 1, tests have been conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry-out, heat transfer equal to that obtained prior to condensation was again obtained. 8 figures, 1 table.

None

1982-09-01T23:59:59.000Z

154

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

155

Domestic olivine vs magnesite as a thermal-energy-storage material: performance comparisons for electrically heated room-size units in accordance with ASHRAE Standard 94. 2  

SciTech Connect (OSTI)

Electrically heated thermal-energy-storage (TES) heaters employing high-heat-capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these heaters, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored heat from the core by forced air circulation. Recently significant interest in the use of off-peak TES units in the US has occured, leading to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but under-utilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper, the suitability of North Carolina olivine for heat-storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two small room-sized commercially available TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons between the two materials are made and conclusions are drawn.

Laster, W.R.; Schoenhals, R.J.; Gay, B.M.; Palmour, H. III

1982-01-01T23:59:59.000Z

156

Nebraska Preparing for the Upcoming Heating Season  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 WeekCrude2.97Reserves (BillionN

157

Propane - A Mid-Heating Season Assessment  

Reports and Publications (EIA)

This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

2001-01-01T23:59:59.000Z

158

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

159

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

160

Environmental benefits of different types of heat pumps, available and expected  

SciTech Connect (OSTI)

A brief overview of integrated resource planning (IRP) is provided, with emphasis on how stakeholders interact within the process and where the opportunities may lie for heat pump advocates in cold climates. Five heat pump options that represent various approaches for improving heat pump cold weather performance are included here in a comparative analysis: 2-speed electric air source heat pumps, variable-speed electric air source heat pumps, electric ground-source heat pumps, natural gas engine-driven heat pumps, and natural gas absorption heat pumps. The comparative analysis addresses seasonal performance, seasonal peak demand, air pollutant emissions, customer energy costs, and recognition of environmental externalities in IRP, all in the context of a residential application in the Great Lakes region of the US. Several actions that may be in the interest of heat pump stakeholders in cold climates were identified, including: development of improved software for utility planners, advocacy of a practical form of the Societal Test for use in IRP that credits heat pumps for the residential air pollutant emissions that they avoid, and development of practical methods to credit heat pumps with other environmental benefits for which they may be responsible.

Hughes, P.J.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cooperative heat transfer and ground coupled storage system  

DOE Patents [OSTI]

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

Metz, Philip D. (Rocky Point, NY)

1982-01-01T23:59:59.000Z

162

Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe  

E-Print Network [OSTI]

We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

McCarthy, Matthew

163

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

164

A study of heat pump fin staged evaporators under frosting conditions  

E-Print Network [OSTI]

the performance of fin-and-tube outdoor coils as well as the whole heat pump system. The objective of the experimental part of this study was to investigate the effects of the staging fin on the frost/defrost performance of heat pump outdoor coils under different... and additional energy is used to melt the frost off the evaporator, the defrosting process increases energy consumption and reduces the seasonal efficiency of the heat pump. Frost formation and the subsequent defrost process continues to be a source...

Yang, Jianxin

2004-09-30T23:59:59.000Z

165

Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique  

SciTech Connect (OSTI)

Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or overlearning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing error achieved was in the order of magnitude of within 10{sup -5} - 10{sup -3}. It was also show that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error achieved by EBaLM-THP.

Dumidu Wijayasekara; Milos Manic; Piyush Sabharwall; Vivek Utgikar

2011-07-01T23:59:59.000Z

166

An Exploratory Study of the New Performance Index of the Heat Pump System Based on the Second Law of Thermodynamics  

E-Print Network [OSTI]

? The entropy current of the electry-drived heat pump, positive to endothermic process, negative to exothermic process, zero to insulating process; g ? The entropy generation of the ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener... Future Vol.VIII-13-4 electry-drived heat pump. irreversible process to positive, reversible process to zero; The entropy current of the electry-drived heat pump f is composed of two parts: one is 1f , which is produced during exothermic process...

Xu, W.; Li, H.

2006-01-01T23:59:59.000Z

167

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

168

Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials  

E-Print Network [OSTI]

The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled...

Tumuluri, Kalpana

2011-08-08T23:59:59.000Z

169

Performance Analysis of a Transcritical CO2 Heat Pump Water Heater Incorporating a Brazed-Plate Gas-cooler.  

E-Print Network [OSTI]

??This study focuses on the experimental testing and numerical modeling of a 4.5 kW transcritical CO2 heat pump water heater at Queens University in the (more)

Murray, PORTIA

2015-01-01T23:59:59.000Z

170

CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript  

Broader source: Energy.gov [DOE]

Kurmit Rockwell:Welcome. I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program. In this presentation we will introduce you to the basics of combined heat and...

171

Hodges residence: performance of a direct gain passive solar home in Iowa  

SciTech Connect (OSTI)

Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

Hodges, L.

1980-01-01T23:59:59.000Z

172

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

173

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network [OSTI]

Rankine systems for automotive applications apply the same principle used worldwide in industry is then cooled by a condenser which transfers heat to an external cold sink. Most Rankine systems are designed to produce elec- tricity via a generator connected to the auxiliary network and/or an energy storage system

Paris-Sud XI, Université de

174

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network [OSTI]

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground-source...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

175

Seasonal Landscape Maintenance  

E-Print Network [OSTI]

Seasonal Landscape Maintenance Oklahoma State University, in compliance with Title VI and VII State University's Department of Horticulture and Landscape Architecture and Oklahoma Cooperative to dry between watering allows plants to develop stronger, deeper roots. However, some landscape plants

Balasundaram, Balabhaskar "Baski"

176

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

detailed heat-balance approach f or load calculations, DOE-Loads for Computerized Energy Calculations: Algorithms for Building Heat

Carroll, William L.

2011-01-01T23:59:59.000Z

177

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

178

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

179

Heat-pipe-coupled planar thermionic converter: Performance characterization, nondestructive testing, and evaluation. Final report, 1 Aug 90-30 Nov 91  

SciTech Connect (OSTI)

This report provides the technical details on the research activities conducted by Wright Laboratory and UES, Inc. personnel during the period of August 1990 to November 1991. The performance of two heat pipe coupled, planar thermionic energy converters was characterized using experimental and analytical methods. Nondestructive failure analysis was performed to evaluate the causes for the failure of a molybdenum-rhenium converter. The experimentation was carded out at the thermionic facilities at the USAF Wright Laboratory while the computer simulations were performed at Wright Laboratory and the University of Central Florida. A maximum current density of 10.1 amps/cm[sup 2] and a peak power density of 7.7 watts/cm[sup 2] were obtained from the rhenium-rhenium diode operating in the ignited mode.

Young, T.J.; Lamp, T.R.; Tsao, B.H.; Ramalingam, M.L.

1992-03-15T23:59:59.000Z

180

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

First university owned district heating system using biomass heat  

E-Print Network [OSTI]

Highlights First university owned district heating system using biomass heat Capacity: 15 MMBtu Main Campus District Heating Performance Avoided: 3500 tonnes of CO2 Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

182

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986  

E-Print Network [OSTI]

EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO SF SQUARE FEET SHF SENSIBLE HEATING FACTOR TDB DRY BULB TEMPERATURE TON 12000 BTU/HR TXV THERMAL... Systems 6-13 5 Ton Package Systems 6-22 References 6-22 CONCLUSIONS AND RECOMMENDATIONS 7-1 iii APPENDIX * PAGE A ORNL MODEL OUTPUT A-1 B SEASONAL PERFORMANCE MODEL DESCRIPTION B-1 C OPTIMIZATION PROCEDURE C-1 iv CHAPTER 1 INTRODUCTION The National Energy...

O'Neal, D. L.; Murphy, W. E.

1985-01-01T23:59:59.000Z

183

Reduce Your Heating Bills with Better Insulation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average 4.13 per gallon this winter, an increase of about...

184

Experimental Investigation of the Effect Of Zeolite Coating Thickness on the Performance of a Novel Zeolite-Water Adsorption Heat Pump Module  

E-Print Network [OSTI]

A novel zeolite-water absorption heat pump module comprising an adsorber, an evaporator and a condenser heat exchanger as well as a module non-return valve in a hermetically sealed vessel is introduced. The investigated adsorber heat exchanger...

Dawoud, B.; Hofle, P.; Chmielewski, S.

2010-01-01T23:59:59.000Z

185

CAREL connectivity solutions ,,Improvement of the seasonal COP of  

E-Print Network [OSTI]

efficiency Seasonal efficiencySeasonal efficiency Full load rating Partial load ratingPartial load rating match the partial load giving an extremely high unit efficiency due to... ...the improved efficiency of the compressor at partial load as motor performance and basic COP... ... together with improved efficiency

Oak Ridge National Laboratory

186

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

187

Performance of the biose cascade-INEL manufactured solar home  

SciTech Connect (OSTI)

Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

1980-01-01T23:59:59.000Z

188

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect (OSTI)

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

189

Livestock Seasonal Price Variation  

E-Print Network [OSTI]

that number by the index of the future month for which the price forecast is being determined. For example, if June Amarillo direct fed cattle prices averaged $64 per hun- dredweight (cwt.), the forecast for October would be $64 divided by 97.12, multiplied... by 99.04 = $65.27 per cwt. Adjusting for the vari- ability suggests that there is a 68 percent proba- bility that the October monthly average price would fall between $70.67 cwt. and $59.87 cwt. Seasonal Price Index for Amarillo Direct Fed Steers...

Davis, Ernest E.; Sartwelle III, James D.; Mintert, James R.

1999-09-21T23:59:59.000Z

190

Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications  

SciTech Connect (OSTI)

A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

Soinski, Arthur; Hanson, Mark

2006-06-28T23:59:59.000Z

191

Heat-transfer coefficients in agitated vessels. Sensible heat models  

SciTech Connect (OSTI)

Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

1995-12-01T23:59:59.000Z

192

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

193

Low-Cost Microchannel Heat Exchanger  

Broader source: Energy.gov (indexed) [DOE]

Produce prototype heat exchangers for electronics cooling and high pressure waste heat recovery power system applications Test integrity and confirm high performance of...

194

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

The Performance of Solar Water Heater With Natural Ci rcul2-6, 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERSJune 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS*

Mertol, Atila

2012-01-01T23:59:59.000Z

195

E-Print Network 3.0 - advanced heat process Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Performance... ) Heat Transfer Solid Mechanics Energy Systems Air-Conditioner Performance Evaluations Alternate... and Diagnostic Center...

196

Thermoelectrics Partnership: High Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

197

State heating oil and propane program  

SciTech Connect (OSTI)

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-01-01T23:59:59.000Z

198

Seasonal cycle dependence of temperature fluctuations in the atmosphere. Master's thesis  

SciTech Connect (OSTI)

The correlation statistics of meteorological fields have been of interest in weather forecasting for many years and are also of interest in climate studies. A better understanding of the seasonal variation of correlation statistics can be used to determine how the seasonal cycle of temperature fluctuations should be simulated in noise-forced energy balance models. It is shown that the length scale does have a seasonal dependence and will have to be handled through the seasonal modulation of other coefficients in noise-forced energy balance models. The temperature field variance and spatial correlation fluctuations exhibit seasonality with fluctuation amplitudes larger in the winter hemisphere and over land masses. Another factor contributing to seasonal differences is the larger solar heating gradient in the winter.

Tobin, B.F.

1994-08-01T23:59:59.000Z

199

Ground source heat storage and thermo-physical response of soft clay  

E-Print Network [OSTI]

Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

Saxe, Shoshanna Dawn

2009-01-01T23:59:59.000Z

200

IEA HPP Annex 41 Cold Climate Heat  

E-Print Network [OSTI]

of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Understanding Seasonal Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling & SimulationUnderstanding Seasonal Effects of WEC Operation using the SNL-SWAN Wave Model Application Understanding Seasonal Effects of WEC Operation using the SNL-SWAN...

202

No. 2 heating oil/propane program  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

203

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

204

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

Comparison of NBSLD, BLAST 2. and Effect of Selected Changessignificant effect on annual heating loads, BLAST 2 predictsComparison of NBSLD, BLAST 2, and DOE~2.1 Effect of Climate

Carroll, William L.

2011-01-01T23:59:59.000Z

205

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

Carroll, William L.

2011-01-01T23:59:59.000Z

206

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

207

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications  

E-Print Network [OSTI]

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications A Abstract Fusion power plant studies have found helium to be an attractive coolant based on its safety tend to provide modest heat transfer performance due to their inherently low heat capacity and heat

Raffray, A. René

208

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance AuditPerformance of a Heat

209

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

210

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

211

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

212

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

213

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

214

Status report on survey of alternative heat pumping technologies  

SciTech Connect (OSTI)

The Department of Energy is studying alternative heat pumping technologies to identify possible cost effective alternatives to electric driven vapor compression heat pumps, air conditioners, and chillers that could help reduce CO{sub 2} emissions. Over thirty different technologies are being considered including: engine driven systems, fuel cell powered systems, and alternative cycles. Results presented include theoretical efficiencies for all systems as well as measured performance of some commercial, prototype, or experimental systems. Theoretical efficiencies show that the alternative electric-driven technologies would have HSPFs between 4 and 8 Btu/Wh (1.2 to 2.3 W/W) and SEERs between 3 and 9.5 Btu/Wh (0.9 and 2.8 W/W). Gas-fired heat pump technologies have theoretical seasonal heating gCOPs from 1.1 to 1.7 and cooling gCOPs from 0.95 to 1.6 (a SEER 12 Btu/Wh electric air conditioner has a primary energy efficiency of approximately 1.4 W/W).

Fischer, S.

1998-07-01T23:59:59.000Z

215

An analysis of heating fuel market behavior, 1989--1990  

SciTech Connect (OSTI)

The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

Not Available

1990-06-01T23:59:59.000Z

216

Proceedings: Heat exchanger workshop  

SciTech Connect (OSTI)

Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

Not Available

1987-07-01T23:59:59.000Z

217

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

218

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

219

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-08-01T23:59:59.000Z

220

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Final Report on Work Performed Under Agreement  

SciTech Connect (OSTI)

Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogic trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogic window films also offer significantly greater energy savings than previously available with window films with similar visible light transmissions. EnerLogic window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogic window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogic window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogic window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogic window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogic window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogic window film provides unparalleled glass insulating capabilities for window film products. With its patent-pending low-e technology, EnerLogic window film has the best insulating performance of any film product available. The insulating power of EnerLogic window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.

None

2012-04-15T23:59:59.000Z

222

E-Print Network 3.0 - advanced heat transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Evaluations Alternate... and Diagnostic Center (EADC) Ground Coupled Heat Pumps Heat and Mass Transfer in Attic Systems Industrial... and Heat Transfer...

223

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

224

How to Construct a Seasonal Index  

E-Print Network [OSTI]

For many crops, seasonality is often the dominant factor influencing prices within a single production period. This publication explains how to construct and use several kinds of seasonal indexes for crop marketing information....

Tierney Jr., William I.; Waller, Mark L.; Amosson, Stephen H.

1999-07-12T23:59:59.000Z

225

SDI Shifting Seasons Summit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SDI Shifting Seasons Summit SDI Shifting Seasons Summit October 15, 2014 12:00PM CDT to October 17, 2014 9:00PM CDT Keshena, WI http:sustainabledevelopmentinstitute.org201402...

226

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps.  

E-Print Network [OSTI]

??An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation (more)

Rodriguez, Angel Gerardo

2012-01-01T23:59:59.000Z

227

HEAT STORAGE AND ADVECTION IN THE NORTH PACIFIC OCEAN  

E-Print Network [OSTI]

HEAT STORAGE AND ADVECTION IN THE NORTH PACIFIC OCEAN A DISSERTATION SUBMITTED TO THE GRADUATE maintaining the seasonal heat storage in the 0 to 250 meter surface layer of the North Pacific Ocean. Approximately 140,000 bathy- thermograph observations taken in the Pacific Ocean from 10° South latitude to 70

Luther, Douglas S.

228

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

229

alter heat chock: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

230

ampicillin increased heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

231

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents  

E-Print Network [OSTI]

energy from the environment (from air, water or soil) and uses this to heat the water of a central energy from the soil often a serious financial investment is needed, whereas a heatpump by itself countries, a substantial amount of domestic energy use during the winter season concerns heating. Often

Treur, Jan

232

A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates  

E-Print Network [OSTI]

between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

Gonzalez, Jose Antonio

1993-01-01T23:59:59.000Z

233

Citrus limonoids: seasonal changes and their potential in glutathione S-transferase induction  

E-Print Network [OSTI]

Seasonal changes of citrus limonids in 'Rio Red' grapefruit were investigated using reverse phase high performance liquid chromatography (HPLC). Several citrus limonoids, limonoid mixtures and a flavonone were evaluated for their ability to induce...

Li, Jiaxing

2002-01-01T23:59:59.000Z

234

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

235

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network [OSTI]

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced...

Rodriguez, Angel Gerardo

2012-06-07T23:59:59.000Z

236

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

237

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

238

Energy Resources for Tornado Season | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy Blog EnergyMedia AdvisoriesTornado Season

239

High Temperature Heat Exchanger Project  

SciTech Connect (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

240

Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump  

SciTech Connect (OSTI)

A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

None

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

242

Seasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover  

E-Print Network [OSTI]

that lateral ocean heat flux from the shelf to the basin melts a substantial amount of ice in the marginal iceSeasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover Lena M to characterize differences in upwelling near the shelf break in the Alaskan Beaufort Sea due to varying sea ice

Pickart, Robert S.

243

Seasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover  

E-Print Network [OSTI]

ocean heat flux42 from the shelf to the basin melts a substantial amount of ice in the marginal ice Seasonal variation of upwelling in the Alaskan Beaufort Sea: Impact of sea ice cover Lena M the shelfbreak in the Alaskan Beaufort Sea due to3 varying sea-ice conditions. The record is divided into three

Pickart, Robert S.

244

Strategies for Aligning Program Demand with Contractor's Seasonal...  

Energy Savers [EERE]

Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

245

anisothermal heat treatment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump Texas A&M University - TxSpace Summary: The effects of outdoor heat exchanger...

246

Active heat transfer enhancement in integrated fan heat sinks  

E-Print Network [OSTI]

Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

Staats, Wayne Lawrence

2012-01-01T23:59:59.000Z

247

Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies  

E-Print Network [OSTI]

AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

Camci, Cengiz

248

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

249

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

250

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

251

DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS  

E-Print Network [OSTI]

a seasonal mismatch exists between the wind resource and the conventional electric load. The heating system1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama consists of dispatchable electric space heating units, with integrated thermal storage, functioning

Massachusetts at Amherst, University of

252

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

253

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

254

Seasonal demand and supply analysis of turkeys  

E-Print Network [OSTI]

SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Ma)or Sub...)ect: Agricultural Economics SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Approved as to style and content by: (Chairman of C mmittee) (Head of Department) (Member) (Member) ( ber) (Memb er) May 1972 ABSTRACT Seasonal...

Blomo, Vito James

1972-01-01T23:59:59.000Z

255

Minimal universal quantum heat machine  

E-Print Network [OSTI]

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

256

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

257

Seasonality and Its Effects on Crop Markets  

E-Print Network [OSTI]

consistent than the highs) and then rely on magnitude to predict the high. For example, a particular crop?s seasonal low may have occurred in October-November 80 percent of the time. The seasonal high was 12 to 15 percent above the seasonal low 75 percent... of the time. Based on this analysis, one would expect the seasonal low to come at harvest (in October or November) and the high to be 12 to 15 percent above the low. Of the two, timing is the more important for speculative purposes, whereas magnitude is often...

Tierney Jr., William I.; Waller, Mark L.; Amosson, Stephen H.

1999-07-12T23:59:59.000Z

258

Natural Refrigerant (R-729) Heat Pump  

Energy Savers [EERE]

Manufactured in the U.S. 2 Problem Statement * Current commercial and industrial heat pumps - Poor coefficient of performance (COP) at low temperatures * HFC refrigerant...

259

Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers  

SciTech Connect (OSTI)

This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Singh, Randeep; Akbarzadeh, Aliakbar [Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora East Campus, Bundoora, Victoria 3083 (Australia)

2010-09-15T23:59:59.000Z

260

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect (OSTI)

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The effect of nonuniform axial heat flux distribution on the critical heat flux  

E-Print Network [OSTI]

A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

Todreas, Neil E.

1965-01-01T23:59:59.000Z

262

In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance  

SciTech Connect (OSTI)

The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

Hacke, P.; Terwilliger, K.; Kurtz, S.

2013-08-01T23:59:59.000Z

263

Residential Slab-On-Grade Heat Transfer in Hot Humid Climates  

E-Print Network [OSTI]

Heat transfer through an uninsulated slab on grade is calculated using a simple method developed by Kusuda. The seasonal and annual slab loads are graphed as a function of annual average soil temperature, Tm, for a variety of floor system...

Clark, E.; Ascolese, M.; Collins, W.

1989-01-01T23:59:59.000Z

264

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect (OSTI)

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

265

Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion  

E-Print Network [OSTI]

An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

Edwards, Bronwyn K

2009-01-01T23:59:59.000Z

266

Development of a compensation chamber for use in a multiple condenser loop heat pipe  

E-Print Network [OSTI]

The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

Roche, Nicholas Albert

2013-01-01T23:59:59.000Z

267

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

268

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

269

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

270

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

271

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network [OSTI]

, University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

272

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

273

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

274

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

275

Smart Grid Week: Hurricane Season and the Department's Efforts...  

Broader source: Energy.gov (indexed) [DOE]

Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid More...

276

Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986  

SciTech Connect (OSTI)

This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

Not Available

1986-01-01T23:59:59.000Z

277

Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered VehicleRecovery

278

Heat Pump Water Heater Performance in  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

279

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

280

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Control and optimal operation of simple heat pump cycles  

E-Print Network [OSTI]

Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

Skogestad, Sigurd

282

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

283

Optimizing performance of energy systems  

SciTech Connect (OSTI)

This book discusses optimizing performance of energy systems. Topics covered include a test station, heat flow integrator, microcomputer control of MIMIC operation, and microcomputer control of simulation operation.

Stricker, S.

1985-01-01T23:59:59.000Z

284

Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed  

E-Print Network [OSTI]

1 Thermochemical process for seasonal storage of solar energy: characterization and modeling to maximize the use of solar energy for house heating, it is interesting to valorize the solar energy excess efficiency, and a 20 per cent share of renewable). The use of renewable energies and in particular solar

Paris-Sud XI, Université de

285

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

286

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

287

7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.  

E-Print Network [OSTI]

7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

Bahrami, Majid

288

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

SciTech Connect (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

289

NOVA Making Stuff Season 2  

SciTech Connect (OSTI)

Over the course of four weeks in fall 2013, 11.7 million Americans tuned in to PBS to follow host David Pogue as he led them in search of engineering and scientific breakthroughs poised to change our world. Levitating trains, quantum computers, robotic bees, and bomb-detecting plantsthese were just a few of the cutting-edge innovations brought into the living rooms of families across the country in NOVAs four-part series, Making Stuff: Faster, Wilder, Colder, and Safer. Each of the four one-hour programs gave viewers a behind-the-scenes look at novel technologies poised to change our worldshowing them how basic research and scientific discovery can hold the keys to transforming how we live. Making Stuff Season 2 (MS2) combined true entertainment with educational value, creating a popular and engaging series that brought accessible science into the homes of millions. NOVAs goal to engage the public with such technological innovation and basic research extended beyond the broadcast series, including a variety of online, educational, and promotional activities: original online science reporting, web-only short-form videos, a new online quiz-game, social media engagement and promotion, an educational outreach toolkit for science educators to create their own makerspaces, an online community of practice, a series of nationwide Innovation Cafs, educator professional development, a suite of teacher resources, an Idealab, participation in national conferences, and specialized station relation and marketing. A summative evaluation of the MS2 project indicates that overall, these activities helped make a significant impact on the viewers, users, and participants that NOVA reached. The final evaluation conducted by Concord Evaluation Group (CEG) confidently concluded that the broadcast, website, and outreach activities were successful at achieving the projects intended impacts. CEG reported that the MS2 series and website content were successful in raising awareness and sparking interest in innovation, and increased public awareness that basic research leads to technological innovation; this interest was also sustained over a six month period. Efforts to create an online community of practice were also successful: the quality of collaboration increased, and community members felt supported while using Maker pedagogy. These findings provide clear evidence that large-scale science media projects like MS2 are an effective means of moving the needle on attitudes about and excitement for science. NOVAs broadcast audience and ratings have always indicated that a large portion of the population is interested in and engages with educational science media on a weekly basis. Yet these evaluation results provide the empirical evidence that beyond being capable of attracting, maintaining, and growing a dedicated group of citizens interested in science, these showswith their diverse content provided on a variety of media channelsare capable of sparking new interest in science, raising public awareness of the importance of science, and maintaining and growing that interest over time. In a country where approximately a quarter of the population doesnt know the earth rotates around the sun,1 roughly half still dont accept evolution,2 and about 20% dont think climate change is happening,3 the importance of these findings cannot be overstated. The success of MS2 suggests that large-scale media projects dedicated to and linked by coverage of scientific big ideas are an effective means of shifting public opinion onand improving understanding ofscience. REFERENCES 1, 2 National Science Foundation, Science and Engineering Indicators (2014). Chapter 7: Science and Technology: Public Attitudes and Understanding. 3 Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G., & Rosenthal, S. (2014) Climate change in the American mind: April, 2014. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.

Leombruni, Lisa; Paulsen, Christine Andrews

2014-12-12T23:59:59.000Z

290

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

291

An experimental study of waste heat recovery from a residential refrigerator  

SciTech Connect (OSTI)

This paper describes the design, construction, and testing of an integrated heat recovery system which has been designed both to enhance the performance of a residential refrigerator and simultaneously to provide preheated water for an electric hot water heater. A commercial, indirect-heated hot water tank was retrofitted with suitable tubing to permit it to serve as a water cooled condenser for a residential refrigerator. This condenser operates in parallel with the air-cooled condenser tubing of the refrigerator so that either one or the other is active when the refrigerator is running. The refrigerator was housed in a controlled-environment chamber, and it was instrumented so that its performance could be monitored carefully in conjunction with the water pre-heating system. The system has been tested under a variety of hot water usage protocols, and the resulting data set has provided significantly insight into issues associated with commercial implementation of the concept. For the case of no water usage, the system was able to provide a 35 C temperature rise in the storage tank after about 100 hours of continuous operation, with no detectable deterioration of the refrigerator performance. Preliminary tests with simulations of high water usage, low water usage, and family water usage indicate a possible 18--20% energy savings for hot water over a long period of operation. Although the economic viability for such a system in a residential environment would appear to be sub-marginal, the potential for such a system associated with commercial-scale refrigeration clearly warrants further study, particularly for climates for which air conditioning heat rejection is highly seasonal.

Clark, R.A.; Smith, R.N.; Jensen, M.K. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1996-12-31T23:59:59.000Z

292

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

293

AVIAN NESTING DENSITY AND SUCCESS IN ALFALFA, COOL SEASON CRP, AND WARM SEASON CRP PLANTINGS IN EASTERN SOUTH DAKOTA  

E-Print Network [OSTI]

AVIAN NESTING DENSITY AND SUCCESS IN ALFALFA, COOL SEASON CRP, AND WARM SEASON CRP PLANTINGS;II AVIAN NESTING DENSITY AND SUCCESS IN ALFALFA, COOL SEASON CRP, AND WARM SEASON CRP PLANTINGS not have been completed. For those that allowed us to trample their alfalfa before it was cut, thank you

294

The Storage and Seasoning of Pecan Bud Wood.  

E-Print Network [OSTI]

be returned to cold storage and will remain ready for use at a later date. It has been found that bud wood cut late in the dormant period seasons in a shorter time than that cut early. Bud wood of the Delmas variety seasons more readiIy than that of Stuart... _._-_._.--__..__------~-..._..--_...._.--_.....-. Relation of Time of Cutting Bud Wood to Seasoning ._.__....._._-___._------------ ., Relative Response of Stuart and Delmas in Seasoning _---..__._.__....._.---....-....--.- 10 Number of Days for Seasoning Bud Wood During Different Months .... 12 Storage...

Brison, Fred R. (Fred Robert)

1933-01-01T23:59:59.000Z

295

Efficient Heat Engines and Heat Pumps (10 credits) The aim of the module is to introduce the various ideal thermodynamic cycles that form  

E-Print Network [OSTI]

Efficient Heat Engines and Heat Pumps (10 credits) The aim of the module is to introduce the various ideal thermodynamic cycles that form the basis for power generation, heat pumping and IC Engines performance. Syllabus Heat Engines and Heat Pumps · Second Law of Thermodynamics, Concept

Miall, Chris

296

Halide and Oxy-Halide Eutectic Systems for High Performance High...  

Broader source: Energy.gov (indexed) [DOE]

High Performance High Temperature Heat Transfer Fluids Halide and Oxy-Halide Eutectic Systems for High Performance High Temperature Heat Transfer Fluids This document summarizes...

297

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

298

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

299

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

300

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

302

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

303

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

304

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

305

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

306

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

307

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

308

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

309

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

310

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

311

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

312

Winter Heating Fuels Update  

Gasoline and Diesel Fuel Update (EIA)

Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

313

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zrich, Switzerland,Performance of ground source heat pump system in a near-zero

Hong, Tainzhen

2010-01-01T23:59:59.000Z

314

Models for the Prediction of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Fouling has two significant effects upon pre-heat train performance. Firstly, any of layer of foulant on the heat transfer surface presents a resistance to heat transfer. This thermal resistance increases as the layer builds up, so fouling reduces...

Yeap, B. L.; Wilson, D. I.; Polley, G. T.

315

Number 371 November / December 2010 The season of wintertime operations is here, along with  

E-Print Network [OSTI]

, checking oil and tire pressure. The checklist procedures were not performed in the standard order and were or procedures 14 Airport facility or procedure 12 Company policies 1 Maintenance procedure 2 TOTAL 46 SituationNumber 371 November / December 2010 The season of wintertime operations is here, along with another

316

What's in Season from the Garden State  

E-Print Network [OSTI]

in the system. New Jersey is deficient in a distribution mechanism which respects and embraces seasonality or restaurants or have refrigerated trucks for deliveries. What the New Jersey wholesale produce distribution it with Jersey and bridge the gap in the system: Gaurino Sons Produce and Zone 7. Guarino Sons Produce Long

Goodman, Robert M.

317

Potential for seasonal power oversupply in 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

202013 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Potential for seasonal power oversupply in 2013 BPA has estimated the amount of wind generation that could be...

318

Thermal Performance of Vegetative Roofing Systems  

SciTech Connect (OSTI)

Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.

Desjarlais, Andre Omer [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL; Ennis, Mike J [ORNL

2010-01-01T23:59:59.000Z

319

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network [OSTI]

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

Pasquinelli, D. M.; Burns, E. D.

320

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated Approach to Revamping Heat Exchangers Networks  

E-Print Network [OSTI]

geometry configurations for a given set of process conditions. Develop simulation model (in Aspen Plus) incorporating rigorous heat exchanger (Aspen Hetran) models for the 1) Validate existing preheat train performance & evaluate the existing and de...-bottlenecked cases de-bottlenecked performance Initiate pinch analysis (using Aspen Pinch) directly 2) Determine feasible energy saving from (Aspen Plus) simulation results Heat exchanger network pinch analysis (using Aspen Pinch) incorporating rigorous (Aspen...

Glass, K. E.; Dhole, V.; Wang, Y.

322

Gap between active and passive solar heating  

SciTech Connect (OSTI)

The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

323

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

324

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

325

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

326

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

327

Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values.  

E-Print Network [OSTI]

at 20 C? [Specific heat capacity of air = 703 J/(kg C ) at constant volume.] 7. What is the specific of a heat engine and a heat pump. Include QH, QC, TH, TC, and W. What is the major difference in your two not the same? 6. Determine the maximum coefficient of performance of a heat pump used to heat the inside

Mansell, Edward "Ted"

328

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

329

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

330

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

331

Chemical heat pump project: Final report  

SciTech Connect (OSTI)

Solid/vapor working media can be used as working fluids in industrial heat pumps for heat amplifier and temperature amplifier concepts. This report describes the theoretical investigation of candidate solid/vapor fluids and the development of single and multi-stage heat pump cycles. Ammoniated complex compounds, hydrated complex compounds, metal carbonate-metal oxide media, and metal hydrides were investigated. A preliminary computer model was developed to predict the performance characteristics of a single-stage complex compound temperature amplifier and to outline the limitations of such concepts. A preliminary first cost calculation was performed in order to determine the economical feasibility of solid/vapor industrial heat pumps in comparison to boilers nd state-of-the-art heat pump equipment.

Not Available

1985-01-01T23:59:59.000Z

332

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

333

Performance Criteria for Residential Zero Energy Windows  

SciTech Connect (OSTI)

This paper shows that the energy requirements for today's typical efficient window products (i.e. ENERGY STAR{trademark} products) are significant when compared to the needs of Zero Energy Homes (ZEHs). Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate. In heating dominated climates, windows with U-factors of 0.10 Btu/hr-ft{sup 2}-F (0.57 W/m{sup 2}-K) will become energy neutral. In mixed heating/cooling climates a low U-factor is not as significant as the ability to modulate from high SHGCs (heating season) to low SHGCs (cooling season).

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-10-09T23:59:59.000Z

334

Original article Belowground biomass seasonal variation in two  

E-Print Network [OSTI]

Original article Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian March 2001) Abstract ­ The belowground biomass of two types of ecosystems, frequently burned open by flotation and sieving. Belowground biomass showed significant seasonal variation, values being higher during

Paris-Sud XI, Université de

335

ALEXANDRU MIHAIL FLORIAN TOMESCU PROBING THE SEASONALITY SIGNAL IN POLLEN  

E-Print Network [OSTI]

OF ENEOLITHIC COPROLITES (H?ROVA- TELL, CONSTANA COUNTY, SOUTHEAST ROMANIA at Hârova-tell (Constana County, southeast Romania) were analyzed to test for seasonality signals, coprolites, seasonality, Eneolithic, Gumelnia culture, Romania. Pollen and spore spectra of coprolites

Tomescu, Alexandru MF

336

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting  

E-Print Network [OSTI]

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting Seasonal Prediction · POAMA · Issues for future Outline #12;Pacific Adaptation Strategy Assistance Program Major source Adaptation Strategy Assistance Program El Nino Mean State · Easterlies westward surface current upwelling

Lim, Eun-pa

337

St. Augustinegrass Warm-season turfgrass. Prefers full sun, but  

E-Print Network [OSTI]

St. Augustinegrass Warm-season turfgrass. Prefers full sun, but has a high tolerance for shade-season grass. It does best in full sun and high temperatures. Goes dormant and turns brown in winter. Very

Ishida, Yuko

338

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

339

Acoustically Enhanced Boiling Heat Transfer  

E-Print Network [OSTI]

An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

Z. W. Douglas; M. K. Smith; A. Glezer

2008-01-07T23:59:59.000Z

340

Cab Heating and Cooling  

SciTech Connect (OSTI)

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

theenergyperformanceof photovoltaicroofs,ASHRAETransAthermalmodelforphotovoltaicsystems,SolarEnergy,EffectsofSolarPhotovoltaicPanelsonRoofHeatTransfer

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

342

austenitic heat resisting: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C-dynamical system 160 THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Energy Storage, Conversion and Utilization Websites Summary: 12;THE...

343

No. 2 heating oil/propane program. Final report, 1992/93  

SciTech Connect (OSTI)

During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1993-05-01T23:59:59.000Z

344

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

345

Warm-Season (C4) Grasses Lowell E. Moser  

E-Print Network [OSTI]

-season perennial grasses as biomass feedstock candidates (Table II-I). Most of this research has focused

346

Feasibility of seasonal multipurpose reservoir operation in Texas  

E-Print Network [OSTI]

constant top of conservation pool elevation. Managing Texas reservoirs by seasonal rule curve operation shows the potential for increasing the firm yield from a reservoir and at the same time decreasing damages due to flooding. However, seasonal rule... Framework for Reservoir Management . . Flood Control Versus Conservation Purposes Conservation Operations . Flood Control Operations Operating Procedures Seasonal Rule Curve Operation in Texas CHAPTER III SEASONAL FACTORS AFFECTING RESERVOIR OPERATION...

Tibbets, Michael N

1986-01-01T23:59:59.000Z

347

The 2007 North Atlantic Hurricane Season A Climate Perspective  

E-Print Network [OSTI]

Atmospheric Administration(NOAA)AccumulatedCyclone Energy (ACE) index (Bell et al. 2000), a measure of the season's overall

348

Effect of different heat treatments during processing of soybean meal in a commercial solvent-extraction plant on the performance of pigs weaned at four weeks of age and growing swine  

E-Print Network [OSTI]

(P). 05), although diet 3 had numerically betr. er gains (. 59 vs . 55 kg/d) and F/G (4. 07 vs 4. 41). Diet 1 failed to support normal growth (. 47 kg/d), however, F/G was similar to diet 2 (4. 36). It would appear that application of heat up... Condensed weights of amino acids were used in calculat- ing percentages. 28 TABLE 7. COMPOSITION OF OIETS FOR NURSERY TRIAL 3 Heat treatment classification Ingredient Rumen Under Normal Over Escape Corn, ground (IFN 4-02-935) 67. 92 Soybean meal...

Hansen, Blaine Curt

1984-01-01T23:59:59.000Z

349

Heat flux solarimeter  

SciTech Connect (OSTI)

The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

2010-12-15T23:59:59.000Z

350

Holographic Heat Engines  

E-Print Network [OSTI]

It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

Clifford V. Johnson

2014-09-04T23:59:59.000Z

351

AT 351 Lab 3: Seasons and Surface Temperature (Ch. 3)  

E-Print Network [OSTI]

an important role in an area's local vertical temperature distribution. Below, Figure 1 shows the verticalAT 351 Lab 3: Seasons and Surface Temperature (Ch. 3) Question #1: Seasons (20 pts) A. In your own words, describe the cause of the seasons. B. In the Northern Hemisphere we are closer to the sun during

Rutledge, Steven

352

The seasonal cycle dependence of temperature fluctuations in the atmosphere  

E-Print Network [OSTI]

to determine how the seasonal cycle of temperature fluctuations should be simulated in noise-forced energy balance models. It is shown that the length scale does have a seasonal dependence and will have to be handled through the seasonal modulation of other...

Tobin, Bridget Frances

1994-01-01T23:59:59.000Z

353

Identifying seasonal stars in Kaurna astronomical traditions  

E-Print Network [OSTI]

Early ethnographers and missionaries recorded Aboriginal languages and oral traditions across Australia. Their general lack of astronomical training resulted in misidentifications, transcription errors, and omissions in these records. Additionally, many of these early records are fragmented. In western Victoria and southeast South Australia, many astronomical traditions were recorded, but curiously, some of the brightest stars in the sky were omitted. Scholars claimed these stars did not feature in Aboriginal traditions. This under-representation continues to be repeated in the literature, but current research shows that some of these stars may in fact feature in Aboriginal traditions and could be seasonal calendar markers. This paper uses established techniques in cultural astronomy to identify seasonal stars in the traditions of the Kaurna Aboriginal people of the Adelaide Plains, South Australia.

Hamacher, Duane W

2015-01-01T23:59:59.000Z

354

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network [OSTI]

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

355

Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage  

SciTech Connect (OSTI)

Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

Blahnik, D.E.

1980-11-01T23:59:59.000Z

356

Managing Warm-season Improved Pastures  

E-Print Network [OSTI]

. However, west of a line from Corpus Christi through San Antonio to Fort Worth, rainfall is greatly reduced year round and spring calving is preferred. The rainfall pattern in this area corresponds to for- age production as shown in Fig. 1. Spring calving... season corresponds to better forage quality and quantity in native rangeland and improved pastures. Because improved small grain pastures must be irrigated in many areas of west Texas, the cost of producing improved winter forages for cow-calf op...

Stichler, Charles; Prostko, Eric P.; Livingston, Stephen

1998-10-09T23:59:59.000Z

357

Application of Industrial Heat Improving energy efficiency of  

E-Print Network [OSTI]

compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

Oak Ridge National Laboratory

358

innovati nAdvanced Heat Transfer Technologies Increase Vehicle  

E-Print Network [OSTI]

innovati nAdvanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping with industry to develop and demonstrate advanced heat transfer technologies such as jet impingement cooling for thermal grease and significantly enhances direct heat transfer from the electronics. A series of nozzles

359

Revamping Pre-Heat Trains for Energy Saving  

E-Print Network [OSTI]

In this paper we look at the principles underlying the revamping of pre-heat trains to save energy through increased heat recovery. For brevity, we do not consider throughput changes. Only pre-heat train performance is considered. The interaction...

Yeap, B. L.; Wilson, I.; Pretty, B.; Polley, G. T.

360

Heat Management Strategy Trade Study  

SciTech Connect (OSTI)

This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Influences on seasonal ski worker intention to return and indicators and standards of quality for seasonal ski jobs  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCF. August 2002 Major Subject: Recreation, Park and Tourism Sciences INFLUENCES ON SEASONAL SKI WORKER INTENTION TO RETURN AND INDICATORS AND STANDARDS OF QUALiTY FOR SEASONAL SKI JOBS A Thesis By MATTHEW D... 'Lear (He c of partment) August 2002 Major Subject: Recreation, Park and Tourism Sciences ABSTRACT Influences on Seasonal Ski Worker Intention to Return and Indicators and Standards of Quality for Seasonal Ski Jobs. (August 2002) Matthew D. Ismert...

Ismert, Matthew D

2012-06-07T23:59:59.000Z

362

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

363

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

364

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network [OSTI]

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

365

Natural convection heat exchangers for solar water heating systems. Technical progress report, November 15, 1996--January 14, 1997  

SciTech Connect (OSTI)

The goals of this project are: (1) to develop guidelines for the design and use of thermosypohon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger.

Davidson, J.H.

1998-06-01T23:59:59.000Z

366

Model-Based Functional Performance Testing of AHU in Kista Entre  

E-Print Network [OSTI]

A seasonal functional performance test based on detailed system simulation together with intensive trending is used to commission a large AHU in the office building, Kista Entr, Sweden....

Carling, P.; Isakson, P.

2004-01-01T23:59:59.000Z

367

Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump  

E-Print Network [OSTI]

The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

Ao, Y.; Duanmu, L.; Shen, S.

2006-01-01T23:59:59.000Z

368

E-Print Network 3.0 - aerodynamic heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COLLEGE OF ENGINEERING Research Areas Summary: ) Heat Transfer Solid Mechanics Energy Systems Air-Conditioner Performance Evaluations Alternate... and Diagnostic...

369

Development and Field Testing of a Hybrid Water Heating and Dehumidification Appliance  

E-Print Network [OSTI]

standard system is replaced by a Heat Pump Water Heater (HPWH), the performance can be increased by 140

Aaron K. Ball; Chip Ferguson; William Mcdaniel

370

SEASONAL DISAPPEARANCE OF FAR-INFRARED HAZE IN TITAN'S STRATOSPHERE  

SciTech Connect (OSTI)

A far-infrared emission band attributed to volatile or refractory haze in Titan's stratosphere has been decreasing in intensity since Cassini's arrival in 2004. The 220 cm{sup -1} feature, first seen by the Voyager Infrared Interferometer Spectrometer, has only been found in Titan's winter polar region. The emission peaks at about 140 km altitude near the winter stratospheric temperature minimum. Observations recorded over the period 2004-2012 by the Composite Infrared Spectrometer on Cassini show a decrease in the intensity of this feature by about a factor of four. Possible seasonal causes of this decline are an increase in photolytic destruction of source chemicals at high altitude, a lessening of condensation as solar heating increased, or a weakening of downwelling of vapors. As of early 2012, the 220 cm{sup -1} haze has not yet been detected in the south. The haze composition is unknown, but its decrease is similar to that of HC{sub 3}N gas in Titan's polar stratosphere, pointing to a nitrile origin.

Jennings, Donald E.; Anderson, C. M.; Flasar, F. M.; Cottini, V. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Samuelson, R. E.; Nixon, C. A.; Kunde, V. G.; Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); De Kok, R. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Coustenis, A.; Vinatier, S. [LESIA, Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Calcutt, S. B., E-mail: donald.e.jennings@nasa.gov [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

2012-07-20T23:59:59.000Z

371

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Broader source: Energy.gov [DOE]

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

372

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

373

Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses  

SciTech Connect (OSTI)

This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

1986-12-01T23:59:59.000Z

374

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

375

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

376

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

377

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

378

Cold Climates Heat Pump Design Optimization  

SciTech Connect (OSTI)

Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

2012-01-01T23:59:59.000Z

379

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

380

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

Ulmschneider, Peter

382

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

383

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

384

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

385

Field Monitoring Protocol: Mini-Split Heat Pumps  

SciTech Connect (OSTI)

The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

2011-03-01T23:59:59.000Z

386

Building America Webinar: High Performance Space Conditioning...  

Energy Savers [EERE]

Kohta Ueno, Building Science Corporation. Kohta will discuss BSC's research on ductless heat pumps versus mini-splits being used in high performance (high R value enclosurelow...

387

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

388

Management of the seasonally anestrous mare  

E-Print Network [OSTI]

21st Convention, 245. Evans, N. J. and C. H. G. Irvine. 1975. Serum concentrations of FSH, LH and progesterone during the oestrous cycle and early pregnancy in the mare. J, Reprod. Fert. , Suppl. 23:193. Freedman, L. J. , N. C. Garcia, and 0. J... of season and nursing. Am. J. Vet. Res. 33:1935. Irvine, C. H. G. 1981. Endocrinology of the estrous cycle of the mare: applications of embryo transfer. Theriogenology 15:85. Nishikawa, Y. 1959. Studies on reproduction in horses. Jap. Racing Assn. Tokyo...

Fisher, Buddy B.

2012-06-07T23:59:59.000Z

389

Four Seasons Windpower, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a page with thisFortunySeasons

390

Absorption heat pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

391

Heat pump apparatus  

DOE Patents [OSTI]

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

392

A GUIDE TO FUEL PERFORMANCE  

SciTech Connect (OSTI)

Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

LITZKE,W.

2004-08-01T23:59:59.000Z

393

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

394

Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Not Available

2014-05-01T23:59:59.000Z

395

Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger  

SciTech Connect (OSTI)

One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2004-07-01T23:59:59.000Z

396

PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN  

E-Print Network [OSTI]

PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN A RESIDENTIAL HEAT PUMP By NATHAN ANDREW WEBER PROFILES IN A RESIDENTIAL HEAT PUMP Thesis Approved: _______________________________________ Thesis Advisor the air speed transducer mount and the Plexiglas model of the heat pump. Ipseng Iu and myself worked side

397

Seasonal effects on income over feed costs  

E-Print Network [OSTI]

in production may not apply in Texas, as the month of May while not having the highest temperatures, does predominate as one of the higher humidity months and thus, may contribute to reduced production levels. Thatcher (45) reported evidence of the effects... of "heat stress" on milk production. This study concerned the use of air-conditioning to reduce the effects of heat stress, and data were reported that indicated that air-conditioned cattle had a production advantage over non air-conditioned cattle...

Smith, Robert Murray

1990-01-01T23:59:59.000Z

398

Summer HeatSummer Heat Heat stress solutions  

E-Print Network [OSTI]

occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

Liskiewicz, Maciej

399

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

400

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Measured Performance Signature Method  

E-Print Network [OSTI]

information for adaptive on-line optimum dispatch, equipment performance monitoring, or for conducting system "what if' scenarios. The MPS is a very useful technique which may be applied to Acceptance Testing Monitoring and Operations Optimization... performance signature, may be determined from on-line measurements, and corrected to a specified reference. This procedure also provides information for adaptive on-line optimum dispatch, incremental plant heat rate data for centralized system dispatch...

Ahner, D. J.

402

Bering Sea Chinook Salmon Seasonal Bycatch Report (includes CDQ)  

E-Print Network [OSTI]

101 IPA Season Total Catch Allocation Remaining Allocation % Taken Last Week Catch A 2,153 6,748 4,595 32% 0 B 5 4,024 4,019 0% 5 Total 2,158 10,772 8,614 20% 5 BS Chinook Salmon AFA COOP 102 IPA Season 0 0% 0 BS Chinook Salmon AFA COOP 103 IPA Season Total Catch Allocation Remaining Allocation % Taken

403

Bering Sea Chinook Salmon Seasonal Bycatch Report (includes CDQ)  

E-Print Network [OSTI]

101 IPA Season Total Catch Allocation Remaining Allocation % Taken Last Week Catch A 0 6,748 6,748 0% 0 B 0 4,024 4,024 0% 0 Total 0 10,772 10,772 0% 0 BS Chinook Salmon AFA COOP 102 IPA Season Total BS Chinook Salmon AFA COOP 103 IPA Season Total Catch Allocation Remaining Allocation % Taken Last

404

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

405

Think Nutrition During the Hurricane Season  

E-Print Network [OSTI]

of water per person daily for drinking, and additional water for cooking. Filling the tub with water jerky · Vienna sausage #12;EXTRA · bottled water, Gatorade, instant ice tea, instant coffee, tea bags (canned heat) · camping stove · grill with burners · extra propane or charcoal for the grill · heavy duty

Watson, Craig A.

406

Taylor bubble-train flows and heat transfer in the context of Pulsating Balkrishna Mehta, Sameer Khandekar  

E-Print Network [OSTI]

Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes Balkrishna Mehta Nusselt number Heat transfer enhancement a b s t r a c t Understanding the performance of Pulsating Heat Pipes (PHPs) requires spatio-temporally coupled, flow and heat transfer information during the self

Khandekar, Sameer

407

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network [OSTI]

heat transfer performance in fenestration system based on finite element methods.finite -element method (FEM) was used to solve the conductive heat -transfer

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

408

Get Ahead of the Heating Season with an Energy Assessment | Department...  

Energy Savers [EERE]

such as blower doors, which measure the extent of leaks in the building, and infrared cameras, which reveal hard-to-detect areas of air infiltration and missing...

409

abundance seasonal dynamics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -seasonal climate variability: simulation and prediction using POAMA-2 Andrew Marshall Debbie Hudson, Matthew management Can POAMA help fill the gap? 12;Background...

410

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

411

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

412

Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad  

E-Print Network [OSTI]

Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

Skogestad, Sigurd

413

Degrees of freedom and optimal operation of simple heat pump cycles  

E-Print Network [OSTI]

Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

Skogestad, Sigurd

414

Stochastic electron heating in bounded radio-frequency plasmas I. D. Kaganovich,a)  

E-Print Network [OSTI]

Stochastic electron heating in bounded radio-frequency plasmas I. D. Kaganovich,a) V. I. Kolobov Received 2 November 1995; accepted for publication 7 October 1996 The mechanisms of electron heating in low for the stochastic heating. A classification of heating regimes is performed and expressions for the power deposition

Kaganovich, Igor

415

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

416

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

417

Condensation in horizontal heat exchanger tubes  

SciTech Connect (OSTI)

Many innovative reactor concepts for Generation III nuclear power plants use passive safety equipment for residual heat removal. These systems use two phase natural circulation. Heat transfer to the coolant results in a density difference providing the driving head for the required mass flow. By balancing the pressure drop the system finds its operational mode. Therefore the systems depend on a strong link between heat transfer and pressure drop determining the mass flow through the system. In order to be able to analyze these kind of systems with the help of state of the art computer codes the implemented numerical models for heat transfer, pressure drop or two phase flow structure must be able to predict the system performance in a wide parameter range. Goal of the program is to optimize the numerical models and therefore the performance of computer codes analyzing passive systems. Within the project the heat transfer capacity of a heat exchanger tube will be investigated. Therefore the tube will be equipped with detectors, both temperature and pressure, in several directions perpendicular to the tube axis to be able to resolve the angular heat transfer. In parallel the flow structure of a two phase flow inside and along the tube will be detected with the help of x-ray tomography. The water cooling outside of the tube will be realized by forced convection. It will be possible to combine the flow structure measurement with an angular resolved heat transfer for a wide parameter range. The test rig is set up at the TOPLFOW facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), so that it will be possible to vary the pressure between 5 and 70 bar. The steam mass content will be varied between 0 and 100 percent. The results will be compared to the large scaled Emergency Condenser Tests performed at the INKA test facility in Karlstein (Germany). The paper will explain the test setup and the status of the project will be presented. (authors)

Leyer, S.; Zacharias, T.; Maisberger, F.; Lamm, M. [AREVA NP GmbH, Paul-Gossen-Strasse 100, Erlangen, 91052 (Germany); Vallee, C.; Beyer, M.; Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, Dresden, 01328 (Germany)

2012-07-01T23:59:59.000Z

418

Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems  

SciTech Connect (OSTI)

This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

Vierow, Karen

2005-08-29T23:59:59.000Z

419

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

420

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

422

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2007-09-18T23:59:59.000Z

423

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

424

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

425

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

426

Enhanced two phase flow in heat transfer systems  

DOE Patents [OSTI]

A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

2013-12-03T23:59:59.000Z

427

Plasma heating and hot ion sustaining in mirror based hybrids  

SciTech Connect (OSTI)

Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-75121 Uppsala (Sweden)

2012-06-19T23:59:59.000Z

428

Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery  

SciTech Connect (OSTI)

This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

2011-01-01T23:59:59.000Z

429

Performance Assessment Report Domain CHP System  

E-Print Network [OSTI]

Performance Assessment Report for the Domain CHP System November 2005 By Burns & McDonnell Engineering #12;Domain CHP System Performance Assessment Report for the Packaged Cooling, Heating and Power

Oak Ridge National Laboratory

430

ORIGINAL ARTICLE Sensible and latent heat flux response to diurnal variation in soil  

E-Print Network [OSTI]

of the soil, but also the energy/water exchanges between the land surface and atmosphere (Li et al. 2002) dueORIGINAL ARTICLE Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region

431

ORIGINAL ARTICLE Sensible and latent heat flux response to diurnal variation in soil  

E-Print Network [OSTI]

condition of the soil, but also the energy/water exchanges between the land surface and atmosphere (Li et alORIGINAL ARTICLE Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region

432

BY SHAWN XU, Ph.D. Ground Source Heat Pumps Serve  

E-Print Network [OSTI]

BY SHAWN XU, Ph.D. 1 Ground Source Heat Pumps Serve A Large; BY SHAWN XU, Ph.D. 7 Loop Func>ons Seasonal storage (Single output) Hourly buffering (Dual output) #12; BY SHAWN XU, Ph.D. 8 Ground Loops Ground

433

The Assessment and Calibration of Ensemble Seasonal Forecasts of Equatorial Pacific Ocean Temperature and the Predictability of Uncertainty  

E-Print Network [OSTI]

We evaluate the performance of two 44 year ensemble seasonal hindcast time series for the Nino3 index produced as part of the DEMETER project. We show that the ensemble mean carries useful information out to six months. The ensemble spread, however, only carries useful information out to four months in one of the models, and two months in the other.

Jewson, S; Hagedorn, Rolf; Jewson, Stephen; Doblas-Reyes, Francisco; Hagedorn, Renate

2003-01-01T23:59:59.000Z

434

Computational model of miniature pulsating heat pipes.  

SciTech Connect (OSTI)

The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

Martinez, Mario J.; Givler, Richard C.

2013-01-01T23:59:59.000Z

435

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

436

Business surveys modelling with Seasonal-Cyclical Long Memory models  

E-Print Network [OSTI]

Business surveys modelling with Seasonal-Cyclical Long Memory models Ferrara L. and Guégan D. 2nd business surveys released by the European Commission. We introduce an innovative way for modelling those linear models. Keywords: Euro area, nowcasting, business surveys, seasonal, long memory. JEL

Paris-Sud XI, Université de

437

Seasonal mass balance gradients in Norway L. A. Rasmussen1  

E-Print Network [OSTI]

16 Aug 05 Seasonal mass balance gradients in Norway L. A. Rasmussen1 and L. M. Andreassen2 1 Norwegian Water Resources and Energy Directorate (NVE) P. O. Box 5091 Majorstua, N-0301 Oslo, Norway in Norway exists in their profiles of both seasonal balances, winter bw(z) and summer bs(z). Unlike many

Rasmussen, L.A.

438

Seasonal patterns in energy partitioning of two freshwater marsh ecosystems  

E-Print Network [OSTI]

). The study period included several wet and dry seasons and variable water levels, allowing us to gain better and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET that produce considerable variation in the hydrologic cycle, affecting nutrient delivery, ecosystem primary

439

The 2002 North Atlantic Hurricane Season Gerald D. Bell1  

E-Print Network [OSTI]

. 2000). One measure of this seasonal activity is the Accumulated Cyclone Energy (ACE) index (Fig. 1), which is essentially a wind energy index calculated by summing the squares of the estimated 6-hourly storm or hurricane. For the 2002 season the total ACE index was 62.5 x 105 kt2 (Fig. 1), or 73

440

SEASONAL CLIMATE EXTREMES: MECHANISMS, PREDICTABILITY AND RESPONSES TO GLOBAL  

E-Print Network [OSTI]

SEASONAL CLIMATE EXTREMES: MECHANISMS, PREDICTABILITY AND RESPONSES TO GLOBAL WARMING Mxolisi Excellent Shongwe #12;ISBN : 978-90-902-5046-5 #12;SEASONAL CLIMATE EXTREMES: MECHANISMS, PREDICTABILITY;. . . Dedicated to my late father John Mabhensa Shongwe #12;ABSTRACT Climate extremes are rarely occurring natural

Haak, Hein

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

442

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

443

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER  

E-Print Network [OSTI]

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

444

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

445

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

446

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

447

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

448

Microchannel heat sink assembly  

DOE Patents [OSTI]

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

449

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

450

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

451

Industrial heat pumps: types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP), is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-03-01T23:59:59.000Z

452

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP) is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics. 6 refs., 7 figs.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-01-01T23:59:59.000Z

453

Enhanced heat transfer using wire-coil inserts for high-heat-load applications.  

SciTech Connect (OSTI)

Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

2002-09-20T23:59:59.000Z

454

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

455

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network [OSTI]

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

456

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

457

Micro heat barrier  

DOE Patents [OSTI]

A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

2003-08-12T23:59:59.000Z

458

Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor  

SciTech Connect (OSTI)

The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangershelical coiled heat exchanger and printed circuit heat exchangeras possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

2012-06-01T23:59:59.000Z

459

Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors  

E-Print Network [OSTI]

for performing the experimental measurements. TFT arrays were designed (which included design of photomask layout), microfabricated, packaged and assembled for testing with the experimental apparatus. Heat removal rates from the heated surface to the different...

Yu, Jiwon 1982-

2012-12-03T23:59:59.000Z

460

Design, fabrication, and characterization of a multi-condenser loop heat pipe  

E-Print Network [OSTI]

A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

Hanks, Daniel Frank

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of an air-cooled, loop-type heat pipe with multiple condensers  

E-Print Network [OSTI]

Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

Kariya, H. Arthur (Harumichi Arthur)

2012-01-01T23:59:59.000Z

462

Usefulness of North Carolina olivine in heat storage bricks  

SciTech Connect (OSTI)

Sensible heat storage systems are available which make use of low cost electric energy during off-peak hours to heat ceramic refractories to approx. 1500/sup 0/F. Thereafter, heat is extracted as needed and without further energy demand (fan excluded) by controlled circulation of air through the core to meet residential or commercial space conditioning needs. Heat storage furnaces represent valuable load-leveling capabilities for central electric utilities and safe, convenient, reliable heat sources for consumers. The background of this new technology is reviewed, the different available types of heat storage furnaces are described, and attention is focused on materials selections, ceramic processing, thermal and mechanical properties and in-service performance factors for the ceramic refractories which make up the actual storage core. Prototype domestic heat storage refractories produced from North Carolina olivine (magnesium iron orthosilicate) are used as examples in discussing some of the available engineering options and tradeoffs, and their technical and economic consequences.

Palmour, H.; Gay, B.M.; Cochrane, R.L.

1980-07-01T23:59:59.000Z

463

Sensitivity Analysis of the Gap Heat Transfer Model in BISON.  

SciTech Connect (OSTI)

This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

2014-10-01T23:59:59.000Z

464

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network [OSTI]

ically feasible systems have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating... are discussed, and performance is bounded. A discussion on liquid-vapor equilibria is included as introduction to the systems I- considered. The electric drive heat pump and TA are promising systems; the TA has potential for higher COP than absorption...

Kirol, L.

465

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

466

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

467

Economic Options for Upgrading Waste Heat  

E-Print Network [OSTI]

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

Erickson, D. C.

1983-01-01T23:59:59.000Z

468

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

469

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

470

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

471

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network [OSTI]

Project Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12.444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils of the industry and markets in the ProHeatPump partner countries, and should provide useful comparisons

472

Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module  

SciTech Connect (OSTI)

A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

Rice, C Keith [ORNL] [ORNL; Uselton, Robert B. [Lennox Industries, Inc] [Lennox Industries, Inc; Shen, Bo [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

2014-01-01T23:59:59.000Z

473

Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes  

SciTech Connect (OSTI)

The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

2013-03-01T23:59:59.000Z

474

Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification  

E-Print Network [OSTI]

Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical, Mesoamerica, niche conservatism, seasonally dry tropical forests. Summary Mesoamerican arid biomes epitomize the vast species richness of Meso- american seasonally dry tropical forests (SDTFs), and to evaluate

Olson, Mark

475

*1|s~~~~ ~~~FINAL REPORT 1~~~~~~~*~A HIGH SEASONAL  

E-Print Network [OSTI]

a direct anticedent in a residential steam turbine-driven gas heat pump development program conducted. The residential heat pump development program demonstrated the energy conservation effectiveness of certain system Performance Factor (HSPF) gas heat pump development and demonstration program was initiated by Consolidated

Oak Ridge National Laboratory

476

Capture of Heat Energy from Diesel Engine Exhaust  

SciTech Connect (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

477

Photovoltaic roof heat flux  

E-Print Network [OSTI]

under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

478

Composite heat damage assessment  

SciTech Connect (OSTI)

The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

1993-12-31T23:59:59.000Z

479

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

480

Passive solar heating analysis  

SciTech Connect (OSTI)

This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating season performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

482

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

SciTech Connect (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

483

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

484

Heat flux limiting sleeves  

DOE Patents [OSTI]

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

485

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

486

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

CA nursing homes is the constant total NYC heating load. Theand heating demand were performed for the CA nursing home.home meets all of its electricity demand via utility purchases and heating

Stadler, Michael

2009-01-01T23:59:59.000Z

487

Examination of Liquid Fluoride Salt Heat Transfer  

SciTech Connect (OSTI)

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

488

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

489

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

490

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

491

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P. (San Ramon, CA)

2012-07-24T23:59:59.000Z

492

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P

2013-12-10T23:59:59.000Z

493

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

SciTech Connect (OSTI)

High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

2014-06-01T23:59:59.000Z

494

New constraints on Northern Hemisphere growing season net flux  

E-Print Network [OSTI]

AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

2007-01-01T23:59:59.000Z

495

EECBG Success Story: South Carolina Community Lights Up the Season...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Holiday Lights EECBG Success Story: South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights December 20, 2011 - 2:33pm Addthis Carolers sing in front...

496

Combined permeable pavement and ground source heat pump systems  

E-Print Network [OSTI]

The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

497

Process Heating Assessment and Survey Tool | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that identifies major areas of energy use under various operating conditions and...