Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Superinsulation in refrigerators and freezers  

SciTech Connect (OSTI)

The results presented here were obtained during Phase 4 of the first CRADA, which had the specific objective of determining the lifetime of superinsulations when installed in simulated refrigerator doors. The second CRADA was established to evaluate and test design concepts proposed to significantly reduce energy consumption in a refrigerator-freezer that is representative of approximately 60% of the US market. The stated goal of this CRADA is to demonstrate advanced technologies which reduce, by 50%, the 1993 National Appliance Energy Conservation Act (NAECA) standard energy consumption for a 20 ft{sup 3} (570 L) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction of efficient appliances by demonstrating design changes that can be effectively incorporated into new products. In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy consumption of 1.413 kWh/d [Vineyard, et al., 1995]. Following discussions with an advisory group comprised of all the major refrigerator-freezer manufacturers, several options were considered for the Phase 2 effort, one of which was cabinet heat load reductions.

Vineyard, E.; Stovall, T.K.; Wilkes, K.E.; Childs, K.W.

1998-02-01T23:59:59.000Z

2

2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration  

Broader source: Energy.gov [DOE]

This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

3

Energy-efficiency directory of refrigerators and refrigerator-freezers  

SciTech Connect (OSTI)

Information is presented about the energy costs of operating refrigerators and refrigerator-freezers and includes the type of refrigerator or refrigerator-freezer, the fresh food volume, the freezer volume, the total volume, and the yearly energy cost. The directory lists all currently marketed electric refrigerators and refrigerator-freezers that have Energy Guide labels. The Federal Trade Commission requires manufacturers who distribute refrigerators and refrigerator-freezers to attach Energy Guide labels to appliances manufactured on or after May 19, 1980. The data have been measured by manufacturers and/or their agents according to US Government standard test procedures.

Statt, T.G.; Coggins, J.L.

1981-06-01T23:59:59.000Z

4

Covered Product Category: Commercial Refrigerators and Freezers  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program.

5

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

residential refrigerators and freezers: function derivationsecond most-used) refrigerators, and freezers, and residualfor more efficient refrigerators and freezers, as well as

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

6

Refrigerator/freezer energy use: Measured values vs. simulation results  

SciTech Connect (OSTI)

The EPA Refrigerator Analysis (ERA) program was utilized in the engineering analysis performed to support the proposed refrigerator/freezer standards in the United States. In this paper the accuracy of the ERA program for predicting the energy consumption of domestic refrigerators, freezers, and refrigerator-freezers is studied by comparing the predicted energy consumption with the measured energy consumption.

Hakim, S.H.; Turiel, I. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1997-12-31T23:59:59.000Z

7

DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER  

E-Print Network [OSTI]

#12;DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER Richard F. Topping-efficient refrigerator- freezer prototype involving the Department of Energy's Oak Ridge National Laboratory, Arthur D refrigerator-freezers. The resulting 16 cubic foot prototype uses significantly less energy than the most

Oak Ridge National Laboratory

8

2014-04-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding test procedures for residential refrigerators and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014.

9

Refrigerator-freezer energy testing with alternative refrigerants  

SciTech Connect (OSTI)

As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

Vineyard, E.A.; Sand, J.R.; Miller, W.A.

1989-01-01T23:59:59.000Z

10

2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

11

Energy consumption testing of innovative refrigerator-freezers  

SciTech Connect (OSTI)

The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

1995-12-31T23:59:59.000Z

12

Refrigerator-freezer energy testing with alternative refrigerants  

SciTech Connect (OSTI)

As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

Sand, J.R. (Oak Ridge National Lab., Oak Ridge, TN (US)); Vineyard, E.A.; Sand, J.R.

1989-01-01T23:59:59.000Z

13

Synopsis of residential refrigerator/freezer alternative refrigerants evaluation  

SciTech Connect (OSTI)

The experimental testing on residential refrigerator/freezers (R/Fs) is summarized in this paper. R/F testing focused on two areas: alternative refrigerants and equipment configurations. The refrigerants evaluated consisted of single components, azeotropes, and zeotropes derived from hydrofluorocarbons (HFCs) and hydrocarbons (HCs). These refrigerants were evaluated in conventional and unconventional R/F designs. Major and minor design modifications were studied. Minor modifications consisted of various capillary tube lengths, door insulations, and compressors, while major modifications included two-evaporator and two-cycle R/F systems. Results obtained from testing the two-cycle system will be discussed in a later paper. This paper presents the experimental results of alternative technologies evaluated as replacements for ozone depleting chemicals.

Baskin, E. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1998-12-31T23:59:59.000Z

14

Review of energy efficiency of refrigerator/freezer gaskets. Final report, Jul-Nov 90  

SciTech Connect (OSTI)

The report gives results of an investigation of the significance of heat leakage through gaskets in household refrigerator/freezers, explores different design features, and suggests further study if necessary. The report gives results of an extensive literature review, interviews with refrigerator/freezer and gasket manufacturers, and some engineering analysis. (NOTE: Home refrigerators are the largest consumers of electricity among household appliances and are consuming an estimated 8% of the total electricity used in the U.S. Recent studies show that gasket area heat leakage may account for as much as 21% of the total thermal load.)

Ghassemi, M.; Shapiro, H.

1991-10-01T23:59:59.000Z

15

Performance of a two-cycle refrigerator/freezer using HFC refrigerants  

SciTech Connect (OSTI)

A two-cycle 18 ft{sup 3} (0.51 m{sup 3}) refrigerator/freezer was tested utilizing American National Standards Institute/Association of Home Appliance Manufacturers (ANSI/AHAM) standards for energy consumption testing. A 34.9% energy consumption reduction was realized for a 1984 model refrigerator/freezer (1020 kWh original energy use). This paper presents a proven method of reducing the current Department of Energy (DOE) minimum energy-efficiency standards for refrigerator/freezers to the proposed year 2001 standards utilizing existing technology. For a top-mount, frost-free refrigerator/freezer having the above volume, the current DOE minimum energy standard is 770 kWh/year, and the proposed DOE year 2001 standard is 530 kWh/year (a 31% reduction). Therefore, some significant reductions may be obtained by implementing the modifications discussed in this paper into newer refrigerator/freezer models. The paper gives an overview of the modifications implemented by a Danish university on a US refrigerator/freezer and presents experimental performance testing results of the refrigerator/freezer. The modifications will cause the refrigerator/freezer to be more expensive, but the performance enhancements should offset cost. No cost analysis is presented in this paper, but a detailed cost analysis of a two-cycle refrigerator/freezer is contained in a 1993 US Environmental Protection Agency (EPA) report (EPA 1993). The refrigerator/freezer was tested using four refrigerants and compressors. Two compressors and refrigerants were tested in the freezer cycle, and four were tested in the fresh food cycle.

Baskin, E.; Delafield, F.R.

1999-07-01T23:59:59.000Z

16

Compressor calorimeter performance of refrigerant blends: Comparative methods and results for a refrigerator/freezer application  

SciTech Connect (OSTI)

A protocol was developed to define calorimeter operating pressures for nonazeotropic refrigerant mixtures (NARMs) which corresponded with the saturated evaporator and condenser temperatures commonly used for pure refrigerants. Compressor calorimeter results were obtained using this equivalent-mean-temperature (EMT) approach and a generally applied Association of Home Appliance Manufacturers (AHAM) procedure at conditions characteristic of a domestic refrigerator-freezer application. Tests with R-12 and two NARMs indicate that compressor volumetric and isentropic efficiencies are nearly the same for refrigerants with similar capacities and pressure ratios. The liquid-line temperature conditions specified in the AHAM calorimeter rating procedure for refrigerator-freezer compressors were found to preferentially derate NARM performance relative to R-12. Conversion of calorimeter data taken with a fixed liquid-line temperature to a uniform minimal level of condenser subcooling is recommended as a fairer procedure when NARMs are involved. Compressor energy-efficiency-ratio (EER) and capacity data measured as a result of the EMT approach were compared to system performance calculated using an equivalent-heat-exchanger-loading (EHXL) protocol based on a Lorenz-Meutzner (L-M) refrigerator-freezer modeling program. The EHXL protocol was used to transform the calorimeter results into a more relevant representation of potential L-M cycle performance. The EMT method used to set up the calorimeter tests and the AHAM liquid-line conditions combined to significantly understate the cycle potential of NARMs relative to that predicted at the more appropriate EHXL conditions. Compressor conditions representative of larger heat exchanger sizes were also found to give a smaller L-M cycle advantage relative to R-12.

Rice, C K; Sand, J R

1993-01-01T23:59:59.000Z

17

Environmental assessment for proposed energy conservation standards for refrigerators, refrigerator-freezers, and freezers  

SciTech Connect (OSTI)

This Environmental Assessment (EA) on the candidate energy conservation standards for refrigerators, refrigerator-freezers, and freezers was prepared pursuant to the National Environmental Policy Act of 1969 (NEPA), regulations of the Council on Environmental Quality, Title 40, Code of Federal Regulations, Parts 1500 through 1508. The proposed energy conservation standard (Level 1) and the alternative standards are being reviewed in an energy-efficiency standards rulemaking that the Department has undertaken pursuant to the Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Conservation Act. The EA presents the associated environmental impacts from four energy conservation standards for this type of household appliance. For purposes of this EA, each standard is an alternative action and is compared to what is expected to happen if no new standards for this type of product were finalized, i.e., the no action alternative. Of the four energy conservation standard levels considered, standard level 4 has the highest level of energy efficiency and the largest environmental impact. The proposed action implementing Standard Level 1 would have the least environmental impacts, through emission reductions, of the four alternatives. The description of the standards results from the appliance energy-efficiency analyses conducted for the rulemaking. The presentation of environmental impacts for each of the alternatives appears at Section 3 of the EA.

NONE

1996-01-01T23:59:59.000Z

18

Covered Product Category: Commercial Refrigerators and Freezers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Beer-dispensing and direct draw units Glass frosters Deep well and bunker freezers. Open-air units, deli cases, prep tables, drawer cabinets, laboratory-grade products,...

19

Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

Vineyard, E.A.; Sand, J.R.

1997-05-01T23:59:59.000Z

20

Energy performance listings: Residential refrigerator/freezers  

SciTech Connect (OSTI)

The Energy Performance Listings series provides comparative information across manufacturers on products. The Refrigerator/Freezers Listings include more than 2900 models that meet or exceed federal standards contained in the Energy Conservation Program for Consumer Products. Information on model energy efficiency levels, performance characteristics, and manufacturer names permits easy selection of top-performing equipment. Each Energy Performance Listing includes an introductory section, two sections of model listings, and an appendix with manufacturer contacts. The first model-listing section presents information in descending order of efficiency for all manufacturers. These efficiency-ordered listings also include banners or symbols to identify voluntary efficiency thresholds for U.S. DOE/U.S. EPA`s Energy Star Program and U.S. DOE`s Federal Energy Management Program (FEMP). Products listed above each banner meet or exceed the efficiency level established by the Energy Star program. All models noted with the symbol meet or exceed FEMP levels. With these listings, users can quickly identify the most efficient product in a particular size range, identify products that meet the efficiency criteria of a specific program, or determine an efficiency threshold that will include a specific number of manufacturers. The second section of model listings presents products grouped by manufacturer and catalog number, allowing users to quickly find and identify performance information on specific models. Energy Performance Listings are tools that support purchasing and procurement by federal, state, and local governments and others, including utility companies, energy interest groups, and research organizations. The listings may be used for program design and planning purposes, equipment selection, specification, and purchasing decisions. The listings are a product of the Energy-Efficient Procurement Collaborative, Inc. and are available through NYSERDA.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SYMPOSIUM PAPER TC7.1 -DOMESTIC REFRIGERATORS AND FOOD FREEZERS  

E-Print Network [OSTI]

#12;SYMPOSIUM PAPER FOR TC7.1 - DOMESTIC REFRIGERATORS AND FOOD FREEZERS THE ENGINEERING AND MANUFACTURE OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER by Raymond H. Bohman, P.E. Robert REFRIGERATOR - FREEZER 1. INTRODUCTION This paper describes the engineering effort and method of manufacture

Oak Ridge National Laboratory

22

2014-07-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule Correction  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule correction regarding test procedures for refrigerators, refrigerator-freezers, and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

23

Removing Odors from Refrigerators and Freezers after Food has Spoiled  

E-Print Network [OSTI]

ER-005 6-06 Extension Family and Consumer Science Specialists The Texas A&M University System If food has spoiled in a refrigerator or freezer because of a power failure or some other reason, undesirable odors can develop. To eliminate these odors...

FCS Project Team - FDRM UNIT

2005-09-30T23:59:59.000Z

24

9-056-462-00 (3557) EXPLOSION-PROOF REFRIGERATOR, FREEZER  

E-Print Network [OSTI]

, FREEZER AND REFRIGERATOR-FREEZER Models 3557, 3557SS, 3557LHSS, 3557-2, 3557-4 o I At Lab-Line, we take in this manual include: Models 3557, 3557SS, 3557LHSS: Model 3557-2: Freezer Model 3557-4: Refrigerator-Freezer9-056-462-00 (3557) kN 4/88 ^INiyiAL LAB-LIIME lAB-LINE FRIGID-CAB EXPLOSION-PROOF REFRIGERATOR

Kleinfeld, David

25

Product Refrigerator Freezer Fresh, in shell 4 to 5 weeks Don't freeze  

E-Print Network [OSTI]

Product Refrigerator Freezer Eggs Fresh, in shell 4 to 5 weeks Don't freeze Raw yolks, whites 2 recommended storage times are for quality only. Refrigerator & Freezer Storage Chart Product Refrigerator, opened 3 days Don't freeze unopened 10 days 1 year Mayonnaise, commercial Refrigerate after opening 2

Burke, Peter

26

Cost-efficiency analysis in support of the energy conservation standards for refrigerator/freezers  

SciTech Connect (OSTI)

The National Appliance Energy Conservation At (NAECA) of 1987 requires the Department of Energy (DOE) to consider new or amended energy-efficiency standards for refrigerators and freezers along with several other appliances. This paper describes the cost-efficiency analysis of design options carried out in support of the proposed 1998 standards for refrigerator/freezers. These proposed standards are unique in that they have been reached by a consensus of various interested parties including the trade association of refrigerator and freezer manufacturers, environmental groups, state energy offices, and utility companies. In large part, these consensus standards are based on the analysis described in this paper. The analysis shows that, for example, for a 515-liter (18.2-ft{sup 3}) top-mount automatic-defrost refrigerator-freezer, the annual energy consumption can be reduced from 700 kWh/yr (2.52 GJ/yr) to 484 kWh/yr (1.74 GJ/yr) (30.9%) by the use of more efficient fan motors and compressors, improved gaskets, and insulation that is {1/2}-inch (12.7 mm) thicker. The energy use can be further reduced to 422 kWh/yr (1.52 GJ/yr) (39.8%) by employing improved heat exchangers, switching to adaptive defrost, and employing vacuum panel insulation instead of thicker walls and doors.

Hakim, S.H.; Turiel, I. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-12-31T23:59:59.000Z

27

NASA advanced refrigerator/freezer technology development project overview  

SciTech Connect (OSTI)

NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

Cairelli, J.E.

1995-03-01T23:59:59.000Z

28

Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems  

SciTech Connect (OSTI)

Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

Griffith, B.; Arasteh, D.; Tuerler, D.

1995-01-01T23:59:59.000Z

29

Refrigerator/freezer directory: sorted by type and volume, based on 1979 standards  

SciTech Connect (OSTI)

This directory identifies refrigerators, freezers and combinations thereof, that have been certified as complying with the regulations that became effective on November 3, 1979.

Not Available

1980-02-29T23:59:59.000Z

30

Factors affecting the energy consumption of two refrigerator-freezers  

SciTech Connect (OSTI)

Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

Kao, J.Y.; Kelley, G.E. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.

1996-12-31T23:59:59.000Z

31

Simulation results of single refrigerants for use in a dual-circuit refrigerator/freezer  

SciTech Connect (OSTI)

Dual-circuit RFs have been shown to have a theoretical advantage over single-evaporator RFs if the compressor efficiencies of the separate loops are equivalent to the compressor efficiency of the combined system. Single refrigerants were analyzed to determine the optimum pure refrigerant in each of the two separate freezer and fresh food loops. R-152a and R-142b were determined to be the optimum single refrigerants in the dual-circuit system. With the assumptions made, theoretical energy savings of up to 23% of compressor power are possible.

Bare, J.C. (Environmental Protection Agency, Research Triangle Park, NC (United States))

1992-02-01T23:59:59.000Z

32

Combination cooler and freezer for refrigerating containers and food in outer space  

SciTech Connect (OSTI)

A refrigeration apparatus for cooling containers and food in the microgravity conditions of outer space is described comprising: (a) a housing defining a refrigeration compartment for supporting the containers in a container storage area and food in a refrigerated food storage area, and freezer compartment; (b) cold plate means within the refrigeration compartment for cooling the containers and food by conduction; (c) thermoelectric refrigeration means for maintaining the cold plates at temperatures which cool the contents of the refrigeration compartment, and the freezer compartment.

Rudick, A.G.

1988-04-19T23:59:59.000Z

33

Engineering computer models for refrigerators, freezers, furnaces, water heaters, room and central air conditioners  

SciTech Connect (OSTI)

This User's Guide provides the necessary information for understanding and using a computer model developed for the US Department of Energy which predicts the performance (energy consumption) of household refrigerators, refrigerator-freezers, and freezers. The model is capable of simulating various cabinet configurations (top-mount, bottom-mount, side-by-side, single-door) and refrigeration unit combinations (back-mounted static condenser with single forced convection evaporator, hot wall condenser with cooled wall panels, etc.). The program is comprised of two main subroutines: a cabinet heat-load submodel and a refrigeration unit submodel; they can be used separately for preliminary design analysis or together for performance evaluations. A technical description of the model and information on how to structure input parameters are provided. The user is provided with specific guidance for running the model on a computer. Specific instructions are given in the Appendices for changing and running the model using the operating language compatible with the DOE computer terminal system. Other users will have to modify the procedures in these sections as necessary for different computers.

Not Available

1982-11-01T23:59:59.000Z

34

An experimental study on new egg-crate type evaporators in domestic refrigerators and freezers  

SciTech Connect (OSTI)

This paper presents experimental results of the heat transfer performance of new egg-crate type evaporators that are becoming popular in vapor compression cycle-based modern refrigerators and freezers. These forced flow, multiple finned evaporators are preferred in the local industry over the older roll-bonded designs due to efficiency and cost considerations. Extensive testing was done, and experimental data were gathered on evaporators of three different sizes at three airflow rates using a closed-loop test rig built for the purpose. This has led to the development of a novel approach of measuring low air velocities as encountered in domestic refrigerators. A correlation has been developed for the heat transfer performance of these evaporators following the j-Colburn factor analysis. The correlation relates the j-Colburn factor, a nondimensional heat transfer grouping of the Nusselt number, Reynolds number, and Prandtl number to the Reynolds number and finning factor.

Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; Neuren, O.S. van [OPUS International Consultants, Ltd., Auckland (New Zealand)

1998-12-31T23:59:59.000Z

35

Adapted from FDA refrigerator and freezer guidelines: http://www.fda.gov/downloads/Food/ResourcesForYou/HealthEducators/UCM109315.pdf Have you ever wondered how long you should keep things in the refrigerator or freezer? If so, then the chart below can he  

E-Print Network [OSTI]

Adapted from FDA refrigerator and freezer guidelines: http://www.fda.gov/downloads/Food/ResourcesForYou/HealthEducators/UCM109315.pdf Have you ever wondered how long you should keep things in the refrigerator or freezer? If so to preserve quality. Refrigerator & Freezer Storage Chart Product Refrigerator Freezer Product Refrigerator

36

Evaluation of performance and composition shift of zeotropic mixtures in a Lorenz-Meutzner refrigerator/freezer  

SciTech Connect (OSTI)

Results from previous testing of this refrigerator/freezer using a 750 Btu/h compressor and several zeotropic mixtures revealed a performance enhancement up to 16% above that of hydrofluorocarbon R-134a. In the study presented in this paper, the Lorenz-Meutzner (LM) refrigerator/freezer equipped with a 1060 Btu/h compressor, two evaporators, and two intercoolers was experimentally tested in an environmental chamber according to the Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a and results obtained using the 750 Btu/h compressor. Hydrofluorocarbons R-245ca/R-152a performed comparably to R-134a. R-245ca/hydrocarbon R-270 (cyclopropane C{sub 3}H{sub 6}) outperformed all zeotropic mixtures and R-134a by at least 12.2 {+-} 0.7%. All refrigerants performed better using the larger compressor due to its inherently better efficiency. Refrigerant samples taken during refrigerator/freezer operation revealed substantial composition shifts (e.g., a 30% running composition shift of R-134a in the R-245ca/R-134a mixture). Sand et al. (1993) obtained an approximately 20% energy reduction using steady-state on-cycle energy consumption results; a comparison was made between chlorofluorocarbon R-12 and a hydrofluorocarbon R-32/hydrochlorofluorocarbon R-124 mixture. Lorenz and Meutzner (1975), originators of the Lorenz-Meutzner refrigerator/freezer design, state that the following parameters influence the optimum performance of the design: (1) heat exchanger size, (2) capillary tube length, (3) refrigerant charge, and (4) compressor size. This work investigates three of these parameters--capillary tube length, compressor size, and refrigerant charge.

Baskin, E.; Smith, N.D.; Delafield, F.R.; Tufts, M.W.

1999-07-01T23:59:59.000Z

37

Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer  

SciTech Connect (OSTI)

In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

1995-03-01T23:59:59.000Z

38

End-Use Load and Consumer Assessment Program: Analysis of residential refrigerator/freezer performance  

SciTech Connect (OSTI)

The Bonneville Power Administration (Bonneville) is conducting a large end-use data acquisition program in an effort to understand how energy is utilized in buildings with permanent electric space heating equipment in the Pacific Northwest. The initial portion of effort, known as the End-Use Load and Consumer Assessment Program (ELCAP), was conducted for Bonneville by the Pacific Northwest Laboratory (PNL). The collection of detailed end-use data provided an opportunity to analyze the amount of energy consumed by both refrigerators and separate freezers units located in residential buildings. By obtaining this information, the uncertainty of long- term regional end-use forecasting can be improved and potential utility marketing programs for new appliances with a reduced overall energy demand can be identified. It was found that standby loads derived from hourly averages between 4 a.m. and 5 a.m. reflected the minimum consumption needed to maintain interior refrigerator temperatures at a steady-state condition. Next, an average 24-hour consumption that included cooling loads from door openings and cooling food items was also determined. Later, analyses were conducted to develop a model capable of predicting refrigerator standby loads and 24-hour consumption for comparison with national refrigerator label ratings. Data for 140 residential sites with a refrigeration end-use were screened to develop a sample of 119 residences with pure refrigeration for use in this analysis. To identify those refrigerators that were considered to be pure (having no other devices present on the circuit) in terms of their end-use classification, the screening procedure used a statistical clustering technique that was based on standby loads with 24-hour consumption. 5 refs., 18 figs., 4 tabs.

Ross, B.A.

1991-09-01T23:59:59.000Z

39

The alternative refrigerant dilemma for refrigerator-freezers: Truth or consequences  

SciTech Connect (OSTI)

In an effort to select a refrigerant that has minimal impact on energy consumption and the environment, a screening analysis of potential refrigerants was performed that resulted in the selection of six candidates. The screening results show that R-134a, R-134, R-152a, R-134a/R-152a, R-22/R-152a/R-124, and R-134a/R-152a/R-124 are the most promising refrigerants based on the following criteria: ozone depletion potential, greenhouse warming potential, coefficient of performance, and safety. Energy consumption tests were performed for the three pure refrigerants in accordance with the Association of Home Appliance Manufacturers standard for household refrigerators and household freezers. The results indicate an increased energy consumption of 6.8%, 7.3%, and 7.3%, respectively for R-134, R-152a, and R-134a in the most efficient oil. However, when the effects of compressor efficiency are taken into account, the normalized energy consumption results in an increase of only 2.7% for R-152a and 5.5% for both R-134a and R-134. 14 refs., 5 tabs.

Vineyard, E.A.

1991-01-01T23:59:59.000Z

40

Simulating effects of multispeed compressors on refrigerator/freezer performance  

SciTech Connect (OSTI)

Simulation analyses suggest that a multispeed compressor could increase steady-state operating efficiency by 4% to 14%. An additional 0.5% to 4% energy savings might be obtained from the reduction in the cycling frequency of the refrigerator. Several aspects of the robustness of the capillary tube-suction line heat exchanger design for the two-speed compressor system were also examined with the simulation model. It was shown that a system optimized for low-speed operation, when operating at the high speed, could have as much capacity as the original base case high-speed system. A relatively simple control strategy was proposed, one that requires measurement of on-cycle time and one or two compartment air temperatures. The effects of varying the speed of the evaporator or condenser fans at both compressor speeds were examined over a range of ambient temperatures. One energy-saving scenario was identified: decreasing the condenser fan speed for refrigerators operating at low ambient temperatures. By affecting the distribution of refrigerant change throughout the system, the decrease in condenser fan speed reduces the superheat in the evaporator and increases the overall UA of the evaporator. The resulting increase in evaporator capacity more than offsets the decrease in condenser UA and the energy use of the refrigerator is decreased.

Woodall, R.J. [International Paper Technology, Mobile, AL (United States); Bullard, C.W. [Univ. of Illinois, Urbana, IL (United States). Air Conditioning and Refrigeration Center

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of ozone-friendly hydrofluoropropane-based zeotropic refrigerant mixtures in a Lorenz-Meutzner refrigerator/freezer  

SciTech Connect (OSTI)

The design of the Lorenz-Meutzner refrigerator/freezer has two evaporators (located in the freezer and fresh food compartments), which makes it a leading candidate for use of zeotropic refrigerant mixtures. Zeotropic mixtures can have significant temperature glides during evaporation and condensation. Performance of the zeotropic mixture can be maximized in the LM design by permitting the lower end of the temperature glide to occur in the freezer compartment evaporator and the higher end in the fresh food compartment evaporator. Several hydrofluoropropane-based zeotropes (e.g., R-227 ea/R-245ca) have been shown through steady-state modeling to outperform R-134a by up to 15%. Results from previous testing of this refrigerator/freezer using R-32/R-124 (zeotropic mixture) were published in an ASHRAE paper (Sand et al. 1993). Their results showed performance gains of approximately 3% over R-12. In the study presented in this paper, the Lorenz-Meutzner refrigerator/freezer having two evaporators and two intercoolers was experimentally tested in an environmental chamber according to Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a. The R-245ca/R-134a and R-245ca/R-152a mixtures performed comparably to R-134a. R-245ca/R-270 outperformed all zeotropic mixtures and R-134a by at least 16%. Also, a refrigerant sampling loop is added to determine the running composition of the mixture and its effects on the performance of the refrigerator/freezer.

Baskin, E. [Environmental Protection Agency, Research Triangle Park, NC (United States); Bayoglu, E.S.; Delafield, F.R. [Acurex Environmental Corp., Durham, NC (United States)

1997-12-31T23:59:59.000Z

42

EPA's research projects relating to the dual-circuit and Lorenz refrigerator/freezers  

SciTech Connect (OSTI)

At a meeting in February 1989, EPA presented to several research universities, national laboratories, and refrigerator/freezer (RF) manufacturers the Agency's desire to replace CFC-12 as a refrigerant in the RF vapor compression cycle and increase RF energy efficiency. EPA recognized that, while eliminating CFCs, energy benefits could be gained by further product development (e.g., improving compressor efficiency or heat transfer surface areas). The largest cycle energy gains, however, were expected to be a result of completely different vapor compression configuration. Two new vapor compression configurations were suggested by the participants - the Lorenz design and the dual-circuit design. A decision was made to construct and test modified RFs as proof that the advanced refrigerants and cycles could achieve energy gains. An RF computer model has been updated and expanded which can model both the Lorenz and dual-circuit RF. Modified RF testing and component testing in test stands is being performed to determine the increased energy performance of these configurations.

Bare, J.C. (Environmental Protection Agency, Research Triangle Park, NC (United States))

1992-01-01T23:59:59.000Z

43

FIELD TEST OF A HIGH-EFFICIENCY, AUTOMATIC-DEFROST REFRIGERATOR-FREEZER  

E-Print Network [OSTI]

#12;FIELD TEST OF A HIGH-EFFICIENCY, AUTOMATIC- DEFROST REFRIGERATOR-FREEZER By Richard F. Topping and manufacture pre-production units for home usage tests. The purpose of the field test and the associated market been promising. The first five months of field test data have shown an average 57% decrease in energy

Oak Ridge National Laboratory

44

Field usage and its impact on energy consumption of refrigerator/freezers  

SciTech Connect (OSTI)

This study investigated the effect of door openings and kitchen environment on the energy consumption of nine household refrigerator/freezers (R/Fs) in the field. The factors under consideration include fresh food and freezer door openings, length of door openings, ambient kitchen temperature, and kitchen relative humidity (RH). Average daily energy consumption for the nine units ranged from 1.7 to 5.3 kWh/day. Energy consumption was found to correlate with kitchen temperature and the number of door openings. No dependence on kitchen relative humidity was found. In general, the magnitude of the door opening component of energy consumption was higher for the more efficient units.

Gage, C.L. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air Pollution Prevention and Control Div.

1995-12-31T23:59:59.000Z

45

Refrigerator-Freezers (multiple defrost waiver) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | DepartmentEvaluations |Freezers

46

Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis  

SciTech Connect (OSTI)

The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

NONE

1995-07-01T23:59:59.000Z

47

Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

Vineyard, E.A.; Sand, J.R.

1998-03-01T23:59:59.000Z

48

Field test of a high efficiency, automatic defrost refrigerator-freezer  

SciTech Connect (OSTI)

This paper describes the market evaluation and field test portion of a program to design, develop, and demonstrate a high efficiency, automatic defrosting refrigerator-freezer for the residential market. After the successful completion of Phase I of the program, which concentrated on the design, construction, and laboratory testing of a 453 1 (16 ft/sup 3/) high-efficiency refrigerator-freezer prototype, Phase II was initiated in February 1979 to evaluate the sales potential and performance of the high-efficiency refrigerator concept under field conditions, as a necessary step in creating a product that was both manufacturable and marketable. In Phase I, a survey of food consumption and storage trends, family size, and consumer buying habits led to a sales-weighted average-capacity forecast for 1985 of approximately 453 1 (16 ft/sup 3/) and identification of the top-mount, automatic defrosting refrigerator as the projected sales leader. To meet this market demand, a 453 1 (16 ft/sup 3/) top-mount was selected as the baseline for the Phase I design and development. In Phase II, a 509 1 (18 ft/sup 3/) unit using Phase I technology was chosen for the field test, since the slightly larger model better fit the participating manufacturer's new product development efforts and market.

Topping, R.F.; Vineyard, E.A.

1982-01-01T23:59:59.000Z

49

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

50

Development of minimum efficiency standards for large capacity air conditioners, and commercial water heaters, refrigerators, and freezers. Final report  

SciTech Connect (OSTI)

The California Energy Resources Conservation and Development Commission has promulgated appliance energy efficiency standards and energy conservation standards for new construction with the objective of reducing energy consumption in the State of California. The following appliance categories are specifically addressed: large capacity air conditioners; commercial water heaters; and commercial refrigerators and freezers. The tasks that have been performed include: an energy use pattern study for the subject equipment; an examination of the size distribution of commercial air conditioning equipment; an examination of the different types of commercial air conditioning systems; an evaluation of the effectiveness of economizers in reducing commercial air conditioning system energy consumption in California; an examination of the effects of oversizing commercial air conditioners; a detailed study of supermarket refrigeration and air conditioning equipment; an evaluation of the economic feasibility of utilizing air conditioner waste heat to heat water; an assessment of the applicability of existing test procedures for small water heaters to large water heaters; and a brief investigation of the marketing and distribution systems for air conditioning and refrigeration equipment. Results of the efforts are described.

Merrill, P.S.; Rettberg, R.J.; Erickson, R.C.; Toor, J.S.

1980-05-01T23:59:59.000Z

51

Investigation of design options for improving the energy efficiency of conventionally designed refrigerator-freezers  

SciTech Connect (OSTI)

Several design options for improving the energy efficiency of conventionally-designed, domestic refrigerator freezers (RFs) were incorporated into two 1990 production RF cabinets and refrigeration systems. The baseline performance of the original units and unit components were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model which could simulate cycling behavior was used to evaluate the daily energy use impacts for each modification, and modeled versus experimental results are compared. The model was shown to track measured RF performance improvement sufficiently well that it was used with some confidence to investigate additional options that could not be experimentally investigated. Substantial improvements in RF efficiency were demonstrated with relatively minor changes in system components and refrigeration circuit design. However, each improvement exacts a penalty in terms of increased cost or system complexity/reliability. For RF sizes typically sold in the United States (18-22 ft{sup 3} [510--620 1]), alternative, more-elaborate, refrigeration cycles may be required to achieve the program goal (1.00 Kilowatt-hour per day for a 560 l, top mount RF.

Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

1993-11-01T23:59:59.000Z

52

EPA's research projects relating to the dual-circuit and Lorenz refrigerator/freezers  

SciTech Connect (OSTI)

The paper discusses EPA research projects relating to the dual-circuit and Lorenz refrigerator/freezers (RFs). EPA is interested in not only phasing out chlorofluorocarbons (CFCs) in RFs, but doing so in a way that will maximize energy efficiency and minimize subsequent impacts on the greenhouse effect. An early decision was made to concentrate on replacing fully halogenated CFCs in RFs during the first year of EPA's research. RFs were chosen because they are small, require small quantities of refrigerants, are relatively easy to modify and test, and are the most energy-consumptive appliances in most U.S. households. In the future, other applications are expected to receive more attention. The first year of EPA's program has concentrated on implementing two alternative configurations of RFs which are believed to have the potential to make RFs more energy efficient: the dual-circuit and the Lorenz RFs. Research has included modeling alternative refrigerants and Non-azeotropic Refrigerant Mixtures (NARMs) in the dual-circuit and Lorenz configurations and experimental testing of modified RFs and refrigeration components in test stands.

Bare, J.C.

1992-01-01T23:59:59.000Z

53

Field test of a high-efficiency, automatic-defrost refrigerator-freezer  

SciTech Connect (OSTI)

Following the successful design, development, and demonstration of a high efficiency refrigerator-freezer prototype, work was done to design and manufacture pre-production units for home usage tests. The purpose of the field test and the associated market evaluation is to confirm the energy saving potential of the high-efficiency design, identify possible design deficiencies or service difficulties, and assess the consumer appeal of the new unit. The first five months of field test data have shown an average 57% decrease in energy consumption when compared to a baseline unit of convention design. This energy savings is larger than predicted by the standard DOE test procedure. No serious design or service problems have been encountered. Consumers have not been adversely affected by the larger cabinet and thicker doors, and responded favorably in an actual retail sales test to initially spending more for an energy-saving refrigerator that will reduce electric usage.

Topping, R.F.; Vineyard, E.A.

1982-01-01T23:59:59.000Z

54

Developing cost curves for conserved energy in new refrigerators and freezers: Demonstration of methodology and detailed engineering results  

SciTech Connect (OSTI)

This paper develops and demonstrates a procedure for determining the cost of conserved energy in residential refrigerators and freezers and for ranking conservation measures according to economic feasibility and practicality. Prepared jointly by the Natural Resources Defense Council and ACEE for the Solar Energy Research Institute.

Goldstein, D.; Miller, P.; Watson, R.

1987-01-01T23:59:59.000Z

55

Environmental assessment for proposed energy conservation standards for two types of consumer products; refrigerators, refrigerator-freezers, and freezers; small gas furnaces; and a proposed No standard standard for television sets  

SciTech Connect (OSTI)

This environmental assessment (EA) evaluates the environmental impacts resulting from new or amended energy-efficiency standard for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as mandated by the National Appliance Energy Conservation Act of 1987. A complete description of the Engineering and Economic Analysis of the proposed standards may be found elsewhere in the Technical Support Document (TSD). Four of the 14 scenarios for product design changes described in the Engineering Analysis of the TSD are chosen for environmental assessment based on their relative importance as design measures. Values for energy savings that result from product design changes are also taken from the TSD. The two main environmental concerns addressed are emissions from fossil fuel-fired electricity generation and the chlorofluorcarbons used in the production of rigid insulation foam. Each of the 12 design options for refrigerators and freezers result in decreased electricity use and and, therefore, reduced power plant emissions. Design changes that call for additional rigid foam insulation per appliance are of interest because they affect chlorofluorocarbon consumption. There is strong evidence that chlorofluorocarbons migrate to the stratosphere, break down, and catalyze the destruction of stratospheric ozone.

Not Available

1988-01-01T23:59:59.000Z

56

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect (OSTI)

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

57

China Refrigerator Information Label: Specification Development and Potential Impact  

E-Print Network [OSTI]

years. About 20% of refrigerators and freezers sold in 2000energy efficiency of refrigerators and freezers, Directiveof Energy, for refrigerators and freezers are base unit

Fridley, David

2008-01-01T23:59:59.000Z

58

Advanced insulations for refrigerator/freezers: The potential for new shell designs incorporating polymer barrier construction  

SciTech Connect (OSTI)

The impending phase-out of chlorofluorocarbons (CFCs) used to expand foam insulation, combined with requirements for increased energy efficiency, make the use of non-CFC-based high performance insulation technologies increasingly attractive. The majority of current efforts are directed at using advanced insulations in the form of thin, flat low-conductivity gas-filled or evacuated orthogonal panels, which we refer to as Advanced Insulation Panels (AIPs). AIPs can be used in composite with blown polymer foams to improve insulation performance in refrigerator/freezers (R/Fs) of conventional design and manufacture. This AIP/foam composite approach is appealing because it appears to be a feasible, near-term method for incorporating advanced insulations into R/Fs without substantial redesign or retooling. However, the requirements for adequate flow of foam during the foam-in-place operation impose limitations on the allowable thickness and coverage area of AIPs. This report examines design alternatives which may offer a greater increase in overall thermal resistance than is possible with the use of AIP/foam composites in current R/F design. These design alternatives generally involve a basic redesign of the R/F taking into account the unique requirements of advanced insulations and the importance of minimizing thermal bridging with high thermal resistance insulations. The focus here is on R/F doors because they are relatively simple and independent R/F components and are therefore good candidates for development of alterative designs. R/F doors have significant thermal bridging problems due to the steel outer shell construction. A three dimensional finite difference computer modeling exercise of a R/F door geometry was used to compare the overall levels of thermal resistance (R-value) for various design configurations.

Griffith, B.T.; Arasteh, D.

1992-11-01T23:59:59.000Z

59

U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys  

E-Print Network [OSTI]

vapor compression refrigerators and freezers), along withthe number of refrigerators and freezers in a home alongcompression refrigerators and freezers) in U.S. households.

Greenblatt, Jeffery B.

2013-01-01T23:59:59.000Z

60

Natural Refrigerant (R-729) Heat Pump  

Energy Savers [EERE]

Manufactured in the U.S. 2 Problem Statement * Current commercial and industrial heat pumps - Poor coefficient of performance (COP) at low temperatures * HFC refrigerant...

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of a high-efficiency, automatic-defrosting refrigerator-freezer. Phase II. Field test. Volume III. Executive summary and task reports  

SciTech Connect (OSTI)

The second phase of the development of a high-efficiency, automatic-defrosting, refrigerator-freezer is described. Following the successful completion of Phase I (design, construction, and laboratory testing of a 16 ft/sup 3/ high efficiency refrigerator-freezer prototype), Phase II was initiated to evaluate sales potential and in-home performance as a necessary step in creating a product that was both manufacturable and marketable. Twenty-five pilot production 18 ft/sup 3/ units using prototype tooling were produced on the assembly line to confirm the feasibility of full-scale production. These units were then used in a market and field test program in which consumer appeal and in-home performance were assessed. The market evaluation confirmed that refrigerators incorporating high-efficiency features at added cost are saleable and that large capacity, automatic-defrosting, refrigerator-freezers will continue to capture a large portion of the market in the years ahead, The field test confirmed the in-home energy saving potential of a high efficiency, automatic-defrosting refrigerator-frezer utilizing advanced design features such as optimized, thick-wall, foam an average energy savings of 60% compared to a baseline unit of conventional design.

Topping, R.F.

1982-12-01T23:59:59.000Z

62

Air-Conditioning, Heating, and Refrigeration Institute (AHRI...  

Energy Savers [EERE]

Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These...

63

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

64

Analysis of heat recovery in supermarket refrigeration system using carbon dioxide as refrigerant.  

E-Print Network [OSTI]

?? The aim of this study is to investigate the heat recovery potential in supermarket refrigeration systems using CO2 as refrigerants. The theoretical control strategy… (more)

Abdi, Amir

2014-01-01T23:59:59.000Z

65

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

66

Experimental results of a household automatic icemaker in a refrigerator/freezer  

SciTech Connect (OSTI)

This paper describes the performance test results of an automatic icemaker refrigerator under various modes of icemaker operation. The tests were conducted on a 20-ft{sup 3} (0.566-m{sup 3}) household refrigerator that had a single forced convection evaporator and was charged with R-12. The focus of the research was to ascertain the effect of icemaker operation on the refrigerator`s daily energy consumption. Thus, three different types of tests were conducted, depending upon the icemaker`s operating mode. In the first test type, the baseline, the automatic icemaker was turned off and no ice was made. In the second test type, the ice-making mode (test A), the icemaker was turned on and ice was continuously made. Compared to the baseline, additional power was intermittently consumed by a mold heater that melts the ice cubes` interface with the tray, a solenoid valve that supplies water to the icemaker tray, and a motor that rotates the ejector blades to press the crescent-shaped ice cubes out of the mold and unload them into an ice bin. In the third test type, the failure mode (test B), the water supply was manually disconnected but the icemaker was left turned on. Even though no ice was made, additional power was still consumed by the mold heater, the solenoid valve, and the motorized ejector. In tests A and B, the energy consumed by the icemaker`s components increases the cooling load, which raises the compressor power consumption. The present study shows that at the AHAM-specified test conditions, uninterrupted icemaking increased the daily energy consumption by 22.5% to 27.2%.

Haider, I.; Feng, H.; Radermacher, R. [Univ. of Maryland, College Park, MD (United States). Center for Environmental Energy Engineering

1996-12-31T23:59:59.000Z

67

Quantum heat engines and refrigerators: Continuous devices  

E-Print Network [OSTI]

Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to the level of a single few level system coupled to the environment. Once the environment is split into three;a hot, cold and work reservoirs a heat engine can operate. The device converts the positive gain into power;where the gain is obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principle. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimisation of the devices leads to a balanced set of parameters where the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analysing refrigerators special attention is devoted to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when approaching the absolute zero are obtained by optimising the cooling current. At low temperature all refrigerators show universal behavior. Restrictions on the system imposed by the dynamical version of the third law are studied.

Ronnie Kosloff; Amikam Levy

2013-10-02T23:59:59.000Z

68

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network [OSTI]

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

Braud, H. J.

1986-01-01T23:59:59.000Z

69

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

70

High-Performance Refrigerator Using Novel Rotating Heat Exchanger...  

Broader source: Energy.gov (indexed) [DOE]

pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially...

71

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

72

Literature survey of heat transfer enhancement techniques in refrigeration applications  

SciTech Connect (OSTI)

A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

1994-05-01T23:59:59.000Z

73

Magnetocaloric Refrigerator Freezer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature CombustionGlassMackleMagnetically

74

Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts  

E-Print Network [OSTI]

Fans Lighting Refrigerators and Freezers Space Heating Our2011b. Refrigerator, Refrigerator-Freezer and Freezers Final2011c. Refrigerator, Refrigerator-Freezer and Freezers Final

Letschert, Virginie E.

2013-01-01T23:59:59.000Z

75

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect (OSTI)

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

76

IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems  

SciTech Connect (OSTI)

With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

Baxter, VAN

2003-05-19T23:59:59.000Z

77

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

78

Availability of refrigerants for heat pumps in Europe  

E-Print Network [OSTI]

grids Smart cities #12;8 Residential HPs Refrigerants Use of aero-geo- +hydrothermal renewable energy cooling and heating Residential Future: Heating of electric cars and cooling the batteries Future: Smart

Oak Ridge National Laboratory

79

DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD...  

Broader source: Energy.gov (indexed) [DOE]

Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011)...

80

CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER  

E-Print Network [OSTI]

1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

Kandlikar, Satish

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants  

E-Print Network [OSTI]

1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE and to install heat pumps in unoccupied spaces. Nevertheless manufacturers keep working on components for hydrocarbons. In the frame of a research project on heat pumps for simultaneous heating and cooling, an R407C

Paris-Sud XI, Université de

82

Natural Refrigerant, Geothermal Heating & Cooling Solutions  

E-Print Network [OSTI]

, January 2013, www.danfoss.com/co2 DIRECT Refrigerant Leakage (GWP) INDIRECT Energy Consumption (COP Geothermal's Direct Exchange System Advantage: · All Natural, Safe & Non-toxic Refrigerant · Highly Efficient Equivalent Warming Impact Commercial Food and Retail Application: Direct Leakage > Energy Consumption Brown

83

Heat pump employing optimal refrigerant compressor for low pressure ratio applications  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

Ecker, Amir L. (Dallas, TX)

1982-01-01T23:59:59.000Z

84

16 Heat Transfer and Air Flow in a Domestic Refrigerator  

E-Print Network [OSTI]

445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR GĂ©nie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

Paris-Sud XI, Université de

85

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

86

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

87

Waste heat driven absorption refrigeration process and system  

DOE Patents [OSTI]

Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

Wilkinson, William H. (Columbus, OH)

1982-01-01T23:59:59.000Z

88

Heat powered refrigeration compressor. Semi-annual technical report  

SciTech Connect (OSTI)

The objective of this program is to develop and improve the design of previously started prototypes of the Heat Powered Refrigeration Compressor. To build this prototype and ready it for testing by the University of Evansville is another goal. This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system. Work performed in the past four months has consisted of: engineering of HX-1; comparisons of specifications from different companies to ensure state of the art applications of parts for project; coordinating project requirements with machine shop; designing condenser; and partial assembly of HX-1.

Goad, R.R.

1981-01-01T23:59:59.000Z

89

Heat pump/refrigerator using liquid working fluid  

DOE Patents [OSTI]

A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

1982-01-01T23:59:59.000Z

90

Analysis of simultaneous cooling and heating in supermarket refrigeration systems.  

E-Print Network [OSTI]

?? In this master thesis project, conventional supermarket refrigeration systems using R404A are compared with refrigeration system solutions using natural refrigerants such as carbon dioxide… (more)

Marigny, Johan

2011-01-01T23:59:59.000Z

91

Application Availability of Insulation Heat of the Terrace in a Rebuilt Refrigerator  

E-Print Network [OSTI]

Dealing with the terrace in rebuilt refrigerators influences the performance characteristics, performance safety and construction costs. This paper researches the heat transfer of the terrace of the rebuilt refrigerator by the numerical method...

Qu, C.; Sun, Y.; Chen, Z.

2006-01-01T23:59:59.000Z

92

Combined refrigeration system with a liquid pre-cooling heat exchanger  

DOE Patents [OSTI]

A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

Gaul, Christopher J.

2003-07-01T23:59:59.000Z

93

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

94

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect (OSTI)

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

95

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

96

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network [OSTI]

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

97

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect (OSTI)

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

98

Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications  

SciTech Connect (OSTI)

In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

Shrestha, Som S [ORNL] [ORNL; Sharma, Vishaldeep [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL

2014-01-01T23:59:59.000Z

99

Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model sample in a dilution refrigerator. Sample temperature is  

E-Print Network [OSTI]

1 Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model were curious as to what the internal temperature of the sample may have been as it was heating ~ 6 pW, self heating begins to occur. The most dramatic result of this test was that a temperature

Weston, Ken

100

Refrigerated Warehouses Introduction Page 8-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network [OSTI]

, including both coolers and freezers. Coolers are defined as refrigerated spaces cooled between 32°F (0°C) and 55°F (13°C). Freezers are #12;Page 8-2 Refrigerated Warehouses ­ Introduction 2008 Nonresidential Efficiency Standards do not address walk-in refrigerators and freezers, as these are covered by the Appliance

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chapter 19. Heat Engines and Refrigerators That's not smoke. It's clouds  

E-Print Network [OSTI]

the cooling towers around a large power plant. The power plant is generating electricity by turning heat Addison-Wesley. · Ideal-Gas Refrigerators · The Limits of Efficiency · The Carnot Cycle #12;Chapter 19. Refrigerator B. Thermal motor C. Heat engine D. Carnot cycle E. Otto processor #12;The area enclosed within a pV

Dhamala, Mukesh

102

Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

Lowe, K.T.

2005-10-07T23:59:59.000Z

103

The application of Stirling cooler to refrigeration  

SciTech Connect (OSTI)

The application field of the free-piston Stirling Cooler, Model 100A of Global Cooling BV in the refrigeration has been studied. The cooling effectiveness of the free-piston Stirling Cooler which means small capacity with better efficiency, large range of temperature and capacity modulated operation is of much use to cool a space insulated well. One practicable application is suggested here, in which FPSC and secondary heat transfer fluid are used to the single temperature refrigerator (60 liter) instead of conventional vapor compression machines. In the freezer operation at {minus}20 C inside cabinet, the steady-state test results show 25% improvement in energy consumption over original one. The application of free-piston Stirling Cooler to a freezer at lower temperature shows great potentials also.

Kim, S.Y.; Chung, W.S.; Shin, D.K.; Cho, K.S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1997-12-31T23:59:59.000Z

104

COFELY Refrigeration | Rdiger Roth | European Heat Pump Summit 2013 CopyrightCOFELYDeutuschlandGmbH2009.AlleRechtevorbehalten.  

E-Print Network [OSTI]

COFELY Refrigeration | Rüdiger Roth | European Heat Pump Summit 2013 Seite 1 Copyright©COFELYDeutuschlandGmbH2009.AlleRechtevorbehalten. #12;COFELY Refrigeration | Rüdiger Roth | European Heat Pump Summit 2013 Campaign Spectrum: Heat pump with speed controlled screw compressor #12;COFELY Refrigeration | Rüdiger Roth

Oak Ridge National Laboratory

105

Cospolich Refrigerator: Order (2013-CE-5314)  

Broader source: Energy.gov [DOE]

DOE ordered Cospolich Refrigerator Co, Inc. to pay a $8,000 civil penalty after finding Cospolich Refrigerator had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

106

Refrigerator Manufacturers: Order (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

107

Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger  

DOE Patents [OSTI]

A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

1997-01-01T23:59:59.000Z

108

Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger  

DOE Patents [OSTI]

A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

Mei, V.C.; Chen, F.C.

1997-04-22T23:59:59.000Z

109

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network [OSTI]

RefrigerationRefrigerationRefrigeration coursecourse # 424503.0# 424503.0 v.v. 20122012 8. Heat pumps, heat pipes, cold thermal energy storage Ron on a vapour-compression cycle) /heat_pump.g Heat pumps make use of low- temperature (waste) heat, replacing/vcmfiles/ electricity!) for heating and air conditioning purposes Heat pumps became popular in ://www.bge.c Heat pumps

Zevenhoven, Ron

110

Thermodynamic optimization of heat-driven refrigerators in the transient regime  

SciTech Connect (OSTI)

The present work introduces a transient endoreversible model of a heat-driven refrigeration plant, which is driven by a fuel-burning heater. The model consists of a combustion chamber with negligible heat loss to the ambient, a refrigerator with three finite-size heat exchangers, namely, the evaporator between the refrigeration load and refrigerant, the condenser between the refrigerant and the ambient, and the generator between the combustion chamber and the refrigerant, and finally the refrigerated space. The total thermal conductance of the three heat exchangers is fixed. A thermodynamic optimization of the absorption cycle is then performed, reporting the operating conditions for minimum time to reach a prescribed cold-space temperature, thus maximum refrigeration rate, specifically, the optimal mass fuel flow rate and the optimal way of allocating the thermal conductance inventory. Half of the total supply of thermal conductance has to be divided equally between the generator and evaporator and the other half allocated to the condenser, for optimal operation. A narrow range of fuel flow rates lead to the minimum time to achieve a prescribed cold-space temperature, thus stressing the importance of the transient analysis. Appropriate dimensionless groups were identified and the generalized results are reported in dimensionless charts.

Vargas, J.V.C.; Parise, J.A.R.; Ledezma, G.A.; Bianchi, M.V.A.

2000-02-01T23:59:59.000Z

111

DOE Opens Three Investigations into Alleged Refrigerator Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that...

112

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

113

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

and the size of refrigerators and freezers; for all otherwhile water heating, refrigerator, and freezer end-uses showas projected by REEPS. Refrigerator and freezer percentage

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

114

Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants  

SciTech Connect (OSTI)

BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

None

2010-09-01T23:59:59.000Z

115

Reliability of Heat Pumps Containing R410-A Refrigerant  

E-Print Network [OSTI]

on alternate refrigerants. One major manufacturer announced a formation of black smudge on internal surfaces of field trial units using HFCs. Several causes were suggested but none were published. Reports of capillary tube plugging were wide spread. Polyol...

McJimsey, B. A.; Cawley, D.

1998-01-01T23:59:59.000Z

116

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP  

E-Print Network [OSTI]

- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

Paris-Sud XI, Université de

117

Regeneration tests of a room temperature magnetic refrigerator and heat pump  

E-Print Network [OSTI]

A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

Brown, G V

2014-01-01T23:59:59.000Z

118

Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program  

Broader source: Energy.gov [DOE]

This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

119

Effect of surface conditions on boiling heat transfer of refrigerants in shell-and-tube evaporators  

SciTech Connect (OSTI)

Experimental results are presented for the boiling heat transfer performance of R 22 and R 717 on surfaces with porous metallized coatings. A calculational-theoretical model is given for predicting the heat transfer of refrigerants boiling on a bundle of finned tubes.

Danilova, G.N.; Dyundin, V.A.; Borishanskaya, A.V.; Soloviyov, A.G.; Vol'nykh, Y.A.; Kozyrev, A.A.

1990-01-01T23:59:59.000Z

120

An experimental study of waste heat recovery from a residential refrigerator  

SciTech Connect (OSTI)

This paper describes the design, construction, and testing of an integrated heat recovery system which has been designed both to enhance the performance of a residential refrigerator and simultaneously to provide preheated water for an electric hot water heater. A commercial, indirect-heated hot water tank was retrofitted with suitable tubing to permit it to serve as a water cooled condenser for a residential refrigerator. This condenser operates in parallel with the air-cooled condenser tubing of the refrigerator so that either one or the other is active when the refrigerator is running. The refrigerator was housed in a controlled-environment chamber, and it was instrumented so that its performance could be monitored carefully in conjunction with the water pre-heating system. The system has been tested under a variety of hot water usage protocols, and the resulting data set has provided significantly insight into issues associated with commercial implementation of the concept. For the case of no water usage, the system was able to provide a 35 C temperature rise in the storage tank after about 100 hours of continuous operation, with no detectable deterioration of the refrigerator performance. Preliminary tests with simulations of high water usage, low water usage, and family water usage indicate a possible 18--20% energy savings for hot water over a long period of operation. Although the economic viability for such a system in a residential environment would appear to be sub-marginal, the potential for such a system associated with commercial-scale refrigeration clearly warrants further study, particularly for climates for which air conditioning heat rejection is highly seasonal.

Clark, R.A.; Smith, R.N.; Jensen, M.K. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Novel 4-Way Refrigerant Reversing Valve for Heat Pumps  

SciTech Connect (OSTI)

This project is nearing completion. Since the last progress report (November, 1999), all experimental tests have been completed. Preliminary analysis shows the refrigerant pressure drops through the reversing valve were reduced by an average of about 60{percent}, when compared to traditional reversing valves. Also, the prototype reversing valve reduced the overall coefficient of performance (COP) by an average of only 0.45{percent}.

Darin W. Nutter

2000-02-17T23:59:59.000Z

122

Natural Refrigerant High-Performance Heat Pump for Commercial...  

Broader source: Energy.gov (indexed) [DOE]

(DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

123

Covered Product Category: Commercial Refrigerators and Freezers |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilers CoveredDepartment of

124

APPLIANCE EFFICIENCY REGULATIONS FOR REFRIGERATORS AND FREEZERS  

E-Print Network [OSTI]

CENTRAL AIR CONDITIONERS GAS SPACE HEATERS WATER HEATERS PLUMBING FITTINGS FLUORESCENT LAMP BALLASTS LUMINAIRES GAS COOKING APPLIANCES AND GAS POOL HEATERS SEPTEMBER 1992 #12;TABLE OF CONTENTS APPLIANCE) Gas space heaters, excluding the following types: (1) gravity type central furnaces; (2) heaters

125

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

126

Cospolich Refrigerator: Proposed Penalty (2013-CE-5314)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Cospolich Refrigerator Co, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

127

Catalog of DC Appliances and Power Systems  

E-Print Network [OSTI]

current residential refrigerators and freezers rulemaking,Refrigerator/Freezers. .Refrigerator, Refrigerator-Freezer, and Freezers Rulemaking,

Garbesi, Karina

2012-01-01T23:59:59.000Z

128

Direct Refrigeration from Heat Recovery Using 2-Stage Absorption Chillers  

E-Print Network [OSTI]

Although the cost of some fossil fuels has moderated, the importance of energy conservation by heat recovery has not diminished. The application of waste heat generated steam to produce chilled water is not new. However, there is a newly developed...

Hufford, P. E.

1983-01-01T23:59:59.000Z

129

Hydrophilic structures for condensation management in refrigerator appliances  

DOE Patents [OSTI]

A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

2014-10-21T23:59:59.000Z

130

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network [OSTI]

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

131

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012  

E-Print Network [OSTI]

Refrigerator-Freezers .Refrigerators and Refrigerator-Freezers NAECA 1987 Freezers2005 Refrigerators, Refrigerator-Freezers and Freezers 2010,

Meyers, Stephen

2013-01-01T23:59:59.000Z

132

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...  

Broader source: Energy.gov (indexed) [DOE]

of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. DOE EX Parte Memo.pdf More Documents & Publications 3rd Semi-Annual Report to...

133

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

134

Refrigerators and Refrigerator-Freezers (Appendix A1 after May...  

Energy Savers [EERE]

templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE...

135

Conserving Energy in Blast Freezers Using Variable Frequency Drives  

E-Print Network [OSTI]

University Portland Greg Wheeler Director Industrial Assessment Center ABSTRACT A stationary blast freezer processing 22 -lb cartons of sardines in 19,000 pound lots was modified to improve efficiency and to conserve energy. Baffles... of Portland showed readings to agree within 1%. The procedure for measuring velocity profiles was to position the operator in the blast-cell with doors closed, downstream of the pack, prior to opening the refrigeration valve. We thus assumed...

Kolbe, E.; Ling, Q.; Wheeler, G.

2004-01-01T23:59:59.000Z

136

Heat-machine control by quantum-state preparation: from quantum engines to refrigerators  

E-Print Network [OSTI]

We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath, and parametrically driven by a classical time-dependent piston or field. Here by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

David Gelbwaser-Klimovsky; Gershon Kurizki

2015-01-31T23:59:59.000Z

137

Duracold Refrigeration Manufacturing: Order (2013-CE-5342)  

Broader source: Energy.gov [DOE]

DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

138

Commercial Refrigerator Door: Order (2013-CE-5351)  

Broader source: Energy.gov [DOE]

DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

139

North Star Refrigerator: Order (2013-CE-5355)  

Broader source: Energy.gov [DOE]

DOE ordered North Star Refrigerator Co., Inc. to pay a $8,000 civil penalty after finding North Star Refrigerator had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

140

Alternative refrigerants and refrigeration cycles for domestic refrigerators  

SciTech Connect (OSTI)

This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

Sand, J.R.; Rice, C.L.; Vineyard, E.A.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Improving the energy efficiency of refrigerators in India  

SciTech Connect (OSTI)

Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

1995-04-01T23:59:59.000Z

142

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

143

North Star Refrigerator: Proposed Penalty (2013-CE-5355)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

144

Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

145

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

146

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network [OSTI]

the heating system, a cooker, refrigerator and washinghere are heating systems, cookers, cold appliances (heating systems, cookers, refrigerators, freezers, washing

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

147

DOE/AHAM advanced refrigerator technology development project  

SciTech Connect (OSTI)

As part of the effort to improve residential energy efficiency and reduce greenhouse emissions from power plants, several design options were investigated for improving the energy efficiency of a conventionally designed domestic refrigerator-freezer. The program goal was to reduce the energy consumption of a 20-ft{sup 3} (570-L) top-mount refrigerator-freeze to 1.00 kWh/d, a 50% reduction from the 1993 National Appliance Energy Conservation Act (NAECA) standard. The options--such as improved cabinet and door insulation, a high-efficiency compressor, a low-wattage fan, a large counterflow evaporator, and adaptive defrost control--were incorporated into prototype refrigerator-freezer cabinets and refrigeration systems. The refrigerant HFC-134a was used as a replacement for CFC-12. The baseline energy performance of the production refrigerator-freezers, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The project consisted of three main phases: (1) an evaluation of energy-efficient design options using computer simulation models and experimental testing, (2) design and testing of an initial prototype unit, and (3) energy and economic analyses of a final prototype. The final prototype achieved an energy consumption level of 0.93 kWh/d--an improvement of 45% over the baseline unit and 54% over the 1993 NAECA standard for 20-fg{sup 3} (570-L) units. The manufacturer`s cost for those improvements was estimated at $134; assuming that cost is doubled for the consumer, it would take about 11.4 years to pay for the design changes. Since the payback period was thought to be unfeasible, a second, more cost-effective design was also tested. Its energy consumption level was 1.16 kWh/d, a 42% energy savings, at a manufacturer`s cost increase of $53. Again assuming a 100% markup, the payback for this unit would be 6.6 years.

Vineyard, E.A.; Sand, J.R.; Rice, C.K.; Linkous, R.L.; Hardin, C.V.; Bohman, R.H.

1997-03-01T23:59:59.000Z

148

Page 1 of 4 Health and Safety Programs Office 080406 DR/Heat Wave Guidelines.doc  

E-Print Network [OSTI]

. Protect incubators from overheating and killing cell cultures 4. Protect refrigerators and freezers from maintaining 4 degrees centigrade. o Refrigerators and freezers: after turning off, leave the doors open freezers, a laser, biosafety cabinet, computer and cryogenic probe failed due to high room temperatures. We

Ford, James

149

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-11-24T23:59:59.000Z

150

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-06-23T23:59:59.000Z

151

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

The historical factors for refrigerators and freezers arehistorical factors are used are gas heating, room and central air- conditioning, electric and gas water-heating, refrigerators, freezers,

Wenzel, T.P.

2010-01-01T23:59:59.000Z

152

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich  

E-Print Network [OSTI]

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

Oak Ridge National Laboratory

153

International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

energy labeling for refrigerators and freezers and nationalhousehold electric refrigerators, freezers and combinationfor Refrigerators, Refrigerator-Freezers and Freezers. ”

Zhou, Nan

2013-01-01T23:59:59.000Z

154

Thermoacoustic engines and refrigerators  

SciTech Connect (OSTI)

This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

Swift, G.

1996-12-31T23:59:59.000Z

155

New Energy Efficiency Standards for Residential Clothes Washers...  

Office of Environmental Management (EM)

June 2011 - Residential furnaces and residential central air conditioners and heat pumps September 2011 - Residential refrigerators, freezers, and refrigerator-freezers...

156

11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,  

E-Print Network [OSTI]

for this air conditioner are to be sketched. The heat absorbed by the refrigerant, the work input of the air conditioner is 689.4 Btu/h3.412 W1 W Btu/h 16 Btu/h3.412 W1 SEERCOPR

Kostic, Milivoje M.

157

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

158

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

159

Proc. 5th Minsk International Seminar (Heat Pipes, Heat Pumps and Refrigerators), Minsk, Belarus, 2003. 21 7+( '(),1,7,21 2) 38/6$7,1* +($7 3,3(6 $1 29(59,(  

E-Print Network [OSTI]

Proc. 5th Minsk International Seminar (Heat Pipes, Heat Pumps and Refrigerators), Minsk, Belarus)-711-685-2142, Fax: (+49)-711-685-2010, E-mail: khandekar@ike.uni-stuttgart.de $EVWUDFW Pulsating heat pipes (PHPs) have emerged as interesting alternatives to conventional heat transfer technologies. These simple

Khandekar, Sameer

160

Refrigeration monitor and alarm system  

SciTech Connect (OSTI)

A monitor is described for a refrigeration system including a heat reclaiming system coupled therewith, comprising: a sensor positioned to detect the level of liquid state refrigerant in the system and provide an electrical output signal therefrom; a digital display for displaying the refrigerant level; first circuit means coupling the digital display to the sensor for actuating the digital display; and lockout means coupled with the sensor for deactivating the heat reclaiming system when a preselected refrigerant level is reached.

Branz, M.A.; Renaud, P.F.

1986-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Demonstration Assessment of Light-Emitting Diode (LED) Freezer...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

162

Stirling-cycle refrigerator  

SciTech Connect (OSTI)

A Stirling-cycle refrigerator comprises a plurality of Stirling-cycle refrigerator units each having a displacer defining an expansion chamber, a piston defining a compression chamber, and a circuit including a heater and a cooler and interconnecting the expansion chamber and the compression chamber, and a heat exchanger shared by the circuits and disposed between the coolers and the heaters for effecting heat exchange between working gases in the circuits. The heat exchanger may comprise a countercurrent heat exchanger, and the Stirling-cycle refrigerator units are operated in cycles which are 180/sup 0/ out of phase with each other.

Nakamura, K.

1985-06-11T23:59:59.000Z

163

E-Print Network 3.0 - absorption-recompression refrigeration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REFRIGERATION CYCLE ACTUAL VAPOR-COMPRESSION REFRIGERATION CYCLE VAPOR-COMPRESSION HEAT PUMPS THE EXERGY... and Engineering Center CARNOT REFRIGERATION CYCLE Practical...

164

E-Print Network 3.0 - amr refrigeration cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COPs, pressure ratios, outlet temperatures of the refrigerants... , Ltd. KEY WORDS: refrigeration; refrigerants; water; comparison; compressor; cycle; heat pump; air... be...

165

Refrigerator recycling and CFCs  

SciTech Connect (OSTI)

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

166

Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010  

E-Print Network [OSTI]

Refrigerators and Refrigerator-Freezers NAECA 1987 Freezers2005 Refrigerators, Refrigerator-Freezers and Freezers 2010,in this case refrigerator-freezers. The average new

Meyers, Stephen

2013-01-01T23:59:59.000Z

167

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network [OSTI]

Refrigerators, Refrigerator-Freezers, Freezers PreliminaryRefrigerators, Refrigerator-Freezers, Freezers Pre-NOPRlighting, television, refrigerator-freezers, central air

Letschert, Virginie

2010-01-01T23:59:59.000Z

168

Foundation House, New York, geothermal heat pump  

SciTech Connect (OSTI)

The Foundation House, planned to house half a dozen nonprofit foundations, will be constructed on 64th Street just east of Central Park in Manhattan, New York. It is in a Landmark District and designed by the architectural firm of Henry George Greene, AIA of Scarsdale, NY (project architect, David Wasserman). The 20,000-square foot building of five floors above ground and two below, will illustrate how energy-savings technology and environmentally sensitive construction methods can be economical. The heating and cooling system, including refrigeration requirements for the freezers and refrigerators in the commercial kitchen, will be provided by geothermal heat pumps using standing column wells. The facility is the first building on the island of Manhattan to feature geothermal heating and cooling. The mechanical system has been the assistance of Carl Orio`s firm of Water & Energy Systems corporation of Atkinson, New Hampshire. The two 1550-foot standing column wells were drilled by John Barnes of Flushing, NY.

Lund, J.W.

1997-08-01T23:59:59.000Z

169

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

Hong, Tainzhen

2010-01-01T23:59:59.000Z

170

DOE Resolves Avanti Refrigerator and Freezer Civil Penalty Case |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary

171

6 Energy Saving Tips for Commercial Refrigerators and Freezers | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5of Energy 6 Energy Saving

172

Ex Parte Communication_Kitable Refrigerator/Freezer Guidance | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJusticeEnergy Efficiency Program forParteSeptemberof

173

Refrigerator-Freezer Appendix A1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | DepartmentEvaluations |

174

Low-temperature magnetic refrigerator  

DOE Patents [OSTI]

The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

Barclay, J.A.

1983-05-26T23:59:59.000Z

175

Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report  

SciTech Connect (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

176

BNL Refrigerant Overview Presentation to the  

E-Print Network [OSTI]

charge. #12;BNL Refrigeration Management Plan Details how BNL complies with Sections 608 and 609BNL Refrigerant Overview Presentation to the BER and CAC Ed Murphy, PE Chief Engineer / Manager is a heating process. Refrigeration is an engineered "cycle" where the refrigerant is made to evaporate

Homes, Christopher C.

177

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

Hong, Tainzhen

2010-01-01T23:59:59.000Z

178

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

Hong, Tainzhen

2010-01-01T23:59:59.000Z

179

Corrosion aspects in indirect systems with secondary refrigerants.  

E-Print Network [OSTI]

?? Aqueous solutions of organic or inorganic salts are used as secondary refrigerants in indirect refrigeration systems to transport and transfer heat. Water is known… (more)

Ignatowicz, Monika

2008-01-01T23:59:59.000Z

180

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control  

SciTech Connect (OSTI)

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Defrost Temperature Termination in Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

2011-11-01T23:59:59.000Z

182

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network [OSTI]

Taken together, refrigerators and freezers account for 8.9%Freezers   Refrigerator and Freezer Cases  without Doors Refrigerator, Refrigerator-Freezer and Freezers Rulemaking

Bojda, Nicholas

2011-01-01T23:59:59.000Z

183

Design of Industrial Process Refrigeration Systems  

E-Print Network [OSTI]

of the study is discussed in terms of identifying refrigeration intensive processes. Specific and general conclusions are presented to help faci I itate proper industrial refrigeration system design throughout fhe industry. This paper presents the resul ts... custaner's specifications. Most systems fall into two broad categories: Vapor Canpression Refrigeration Cycles - Mechanical or Steam Jet Canpression Systems Absorption Refrigeration Cycles - Heat Operated Cycles As shown in Table I, refrigerations...

Witherell, W. D.

184

Using National Survey Data to Estimate Lifetimes of Residential Appliances  

E-Print Network [OSTI]

conditioners (RACs), refrigerators, and freezers. GENERALsection). Refrigerators and Freezers Refrigerators followDifference* this Study Freezer Refrigerator Water Heater,

Lutz, James D.

2013-01-01T23:59:59.000Z

185

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Programs Equipment Refrigerators and Freezers Mains Pressureclothes washers, refrigerators and freezers, fluorescentYear Updated Refrigerators Freezers Kimchi Refrigerators Air

McNeil, MIchael

2011-01-01T23:59:59.000Z

186

Method and apparatus for desuperheating refrigerant  

DOE Patents [OSTI]

The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

Zess, James A. (Kelso, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Richland, WA)

1997-01-01T23:59:59.000Z

187

Malone refrigeration  

SciTech Connect (OSTI)

Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

Swift, G.W.

1993-01-01T23:59:59.000Z

188

Malone cycle refrigerator development  

SciTech Connect (OSTI)

This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

Shimko, M.A.; Crowley, C.J.

1999-07-01T23:59:59.000Z

189

EHD enhancement of boiling/condensation, heat transfer of alternate refrigerants. Final Report for 1993-1999  

SciTech Connect (OSTI)

The goal was to address the feasibility of frost control by the EHD technique for operating conditions and geometries of significance to refrigeration. The objective of the experimental investigation was to demonstrate by experiment the feasibility of the EHD technique for control of frost on a cold surface under operating conditions of direct significance to refrigeration applications.

Ohadi, M. M.

1999-09-01T23:59:59.000Z

190

Compact acoustic refrigerator  

DOE Patents [OSTI]

A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

Bennett, G.A.

1992-11-24T23:59:59.000Z

191

Compact acoustic refrigerator  

DOE Patents [OSTI]

A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

Bennett, Gloria A. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

192

IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P. Leblay  

E-Print Network [OSTI]

3rd IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P on the refrigerant side and louver fins on the air side. The flat tubes are grouped within a header, to use the heat exchangers with round tubes, such as charge reduction and higher heat transfer efficiency. But a reduced

Paris-Sud XI, Université de

193

Analysis of Minimum Efficiency Standards and Rebate Incentive Programs for Domestic Refrigerators in the Pacific Northwest.  

SciTech Connect (OSTI)

Refrigerator-freezers (R/Fs) and freezers (FRs) account for 16% of the electricity consumed in the residential sector of the Bonneville Power Administration (BPA) forecast region (Oregon, Washington, Idaho and Western Montana). After space and water heating, R/Fs are the largest residential electrical end-use. There is great potential for reducing electricity consumption in a cost-effective manner through the purchase and use of more energy-efficient R/Fs and FRs. For example, if every household in the BPA region had the best R/F model now mass-produced, the electricity savings would be about 5 billion kWh/yr, approximately the power supplied annually by 1000 MW of nuclear or coal-fired generating capacity. The Northwest Power Planning Council (NPPC) and BPA recognize the savings potential from efficient R/Fs and FRs as well as the barriers to their use. In the 1983 regional power plan, the Council directed BPA to develop and implement incentive and promotion programs for efficient appliances. The NPPC also called for the evaluation of minimum efficiency standards for appliances sold in the region. In response to this directive, the Office of Conservation in BPA funded an evaluation of both rebate incentive programs and minimum efficiency standards for R/Fs and FRs. The results are presented in this report.

Geller, Howard S.

1985-11-01T23:59:59.000Z

194

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

195

Refrigerator: Refrigerators and freezers are not typically constructed to assure that there is no  

E-Print Network [OSTI]

door switch or the thermostatic control can ignite a violent explosion. To prevent explosions from to prevent sparking. For the safety of all laboratory personnel, the EHS Office suggests that flammable toxicity. 14 to 40 nm titanium dioxide produced lung cancer in rats at doses of 10 mg/m3; micron sized dust

Cohen, Robert E.

196

Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #Study | DepartmentEvaluations

197

Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant  

DOE Patents [OSTI]

A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

2006-02-07T23:59:59.000Z

198

Malone refrigeration  

SciTech Connect (OSTI)

Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

Swift, G W

1992-01-01T23:59:59.000Z

199

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network [OSTI]

at constant p #12;Stirling cycle, Stirling engineStirling cycle, Stirling engine See for principle also http://www.cs.sbcc.net/~physics/flash/heatengines/stirlingRefrigerationRefrigerationRefrigeration coursecourse # 424503.0# 424503.0 v.v. 20122012 5. Low temperatures,p liquefied gases Ron Zevenhoven ��bo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron

Zevenhoven, Ron

200

Malone refrigeration  

SciTech Connect (OSTI)

Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

Swift, G.W.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Application of Best Industry Practices to the Design of Commercial Refrigerators  

SciTech Connect (OSTI)

The substantial efficiency improvements which have been realized in residential refrigerators over the last twenty years due to implementation of the National Appliance Energy Conservation Act and changing consumer reactions to energy savings give an indication of the potential for improvement in the commercial sector, where few such efficiency improvements have been made to date. The purchase decision for commercial refrigerators is still focused primarily on first cost and product performance issues such as maximizing storage capacity, quick pulldown, durability, and reliability. The project applied techniques used extensively to reduce energy use in residential refrigeration to a commercial reach-in refrigerator. The results will also be applicable to other commercial refrigeration equipment, such as refrigerated vending machines, reach-in freezers, beverage merchandisers, etc. The project described in this paper was a collaboration involving the Appliance and Building Technology Sector of TIAX, the Delfield Company, and the U. S. Department of Energy's Office of Building Technologies. Funding was provided by DOE through Cooperative Agreement No. DE-FC26-00NT41000. The program plan and schedule were structured to assure successful integration of the TIAX work on development of efficient design concepts into Delfield's simultaneous development of the Vantage product line. The energy-saving design options evaluated as part of the development included brushless DC and PSC fan motors, high-efficiency compressors, variable-speed compressor technology, cabinet thermal improvement (particularly in the face frame area), increased insulation thickness, a trap for the condensate line, improved insulation, reduced-wattage antisweat heaters, non-electric antisweat heating, off-cycle defrost termination, rifled heat exchanger tubing, and system optimization (selection of heat exchangers, fans, and subcooling, superheat, and suction temperatures for efficient operation). The project started with a thorough evaluation of the baseline Delfield Model 6051 two-door reach-in refrigerator. Performance testing was done to establish a performance baseline which, to meet end-users requirements, would have to be met or exceeded by the high-efficiency refrigerator design. Energy testing was done to establish the baseline energy use. Diagnostic testing such as reverse heat leak testing and insulation conductivity testing was done to evaluate factors contributing to the cabinet load and energy use. Modeling was done to assess the energy savings potential of the energy saving design options. Discussion with vendors and cost modeling was done to assess the manufacturing cost impact of the options. Based on this work, the following group of design options was selected for incorporation in the final refrigerator design: (1) Brushless DC evaporator fans; (2) Improved face frame design; (3) Reduced antisweat heater wattage; (4) Condensate line trap; and (5) Optimized refrigeration system. There was no net cost premium associated with these design changes, leading to a high-efficiency design requiring no payback of any initial additional investment. Delfield incorporated these design options in the Vantage line design and built a first prototype, which was tested at TIAX. Additional design changes were implemented in the transition to manufacturing, based in part on results of initial prototype testing, and a pilot production unit was sent to TIAX for final testing. The energy use of the pilot production unit was 68% less than that of the baseline refrigerator when tested according to the ASHRAE 117 Energy Test Standard. The energy test results for the baseline refrigerator and the two new-design units is shown in Figure ES-1 below. The resulting energy consumption is well below Energy Star and proposed Canadian and California standards levels. Delfield has successfully transitioned the design to production and is manufacturing all configurations of the energy efficient reach-ins at a rate greater than 7,000 per year, with production quantities projec

None

2002-06-30T23:59:59.000Z

202

Solid-Vapor Sorption Refrigeration Systems  

E-Print Network [OSTI]

adsorbents in heat pump cycles: 1. A high usable refrigerant mass per unit mass of adsorbent. 2. A high energy of adsorption and desorption. 3. Heat flows and composition changes occur at constant temperature. The advantages of complex compounds... 2. Useable refrigerant densities. Summarizing, complex compound exhibit inherent characteristics which make them ideal adsorbents in heat pump cycles: 1. A high usable refrigerant mass per unit mass of adsorbent. 2. A high energy of adsorption...

Graebel, W.; Rockenfeller, U.; Kirol, L.

203

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

204

Dual-circuit, multiple-effect refrigeration system and method  

DOE Patents [OSTI]

A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

DeVault, Robert C. (Knoxville, TN)

1995-01-01T23:59:59.000Z

205

Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamthermostats 3 Refrigerators and freezers Residential clothescabinets, commercial refrigerators and freezers, commercial

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

206

Assessment of the Impacts of Standards and Labeling Programs in Mexico (four products).  

E-Print Network [OSTI]

of Household Refrigerators and Freezers Energy Efficiency offor Household Refrigerators and Freezers Official Mexicanof Household Refrigerators and Freezers). Name Publication

Sanchez, Itha; Pulido, Henry; McNeil, Michael A.; Turiel, Isaac; della Cava, Mirka

2007-01-01T23:59:59.000Z

207

An Exploration of Innovation and Energy Efficiency in an Appliance Industry  

E-Print Network [OSTI]

clothes washers; refrigerators and freezers; dishwashers;and tubes, household refrigerators and freezers, householdhousehold refrigerators and freezers, air conditioning (room

Taylor, Margaret

2013-01-01T23:59:59.000Z

208

Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamProfessional Displays Refrigerators and freezers ResidentialCommercial Refrigerators and Freezers • Computers •

Homan, GregoryK

2010-01-01T23:59:59.000Z

209

2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

210

Trends in the cost of efficiency for appliances and consumer electronics  

E-Print Network [OSTI]

Appliance Refrigerators and Freezers Room Air ConditionersPCU3352283352285 a The refrigerator and freezer price trendRefrigerators, Refrigerator-Freezers, and Freezers (Final

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

211

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Refrigerators, Refrigerator-Freezers, and Freezers,and Updates RESIDENTIAL Refrigerators Freezers Central Aira given year for refrigerators, freezers, clothes washers,

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

212

Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial Buildings?  

E-Print Network [OSTI]

Refrigerators, Refrigerator-Freezers & Freezers. DOE/EE-refrigerator, commercial speakers switch, ethernet freezer,refrigerator, microscope, autoclave, shaker/stirrer, lab freezer,

Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

2007-01-01T23:59:59.000Z

213

Technical support document: Energy conservation standards for consumer products: Refrigerators and furnaces including: environmental impacts regulatory impact analysis  

SciTech Connect (OSTI)

The National Appliance Energy Conversation Act (NAECA) of 1987 (P.L. 100-12) establishes energy efficiency standards for 13 types of consumer products. The legislation requires the Department of Energy (DOE) to consider new or amended standards on these and other types of products at specified times. DOE is currently selecting standards for two types of products: refrigerators, refrigerator-freezers, and freezers; and small gas furnaces. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of the proposed standards. 8 refs., 39 figs., 135 tabs.

Not Available

1989-11-01T23:59:59.000Z

214

Control of household refrigerators. Part 1: Modeling temperature control performance  

SciTech Connect (OSTI)

Commercial household refrigerators use simple, cost-effective, temperature controllers to obtain acceptable control. A manually adjusted airflow damper regulates the freezer compartment temperature while a thermostat controls operation of the compressor and evaporator fan to regulate refrigerator compartment temperature. Dual compartment temperature control can be achieved with automatic airflow dampers that function independently of the compressor and evaporator fan thermostat, resulting in improved temperature control quality and energy consumption. Under dual control, freezer temperature is controlled by the thermostat while the damper controls refrigerator temperature by regulating airflow circulation. A simulation model is presented that analyzes a household refrigerator configured with a conventional thermostat and both manual and automatic dampers. The model provides a new paradigm for investigating refrigerator systems and temperature control performance relative to the extensive verification testing that is typically done by manufacturers. The effects of each type of control and damper configuration are compared with respect to energy usage, control quality, and ambient temperature shift criteria. The results indicate that the appropriate control configuration can have significant effects and can improve plant performance.

Graviss, K.J.; Collins, R.L.

1999-07-01T23:59:59.000Z

215

Analysis of Minimum Efficiency Standards and Rebate Incentive Programs for Domestic Refrigerators in the Pacific Northwest, Executive Summary.  

SciTech Connect (OSTI)

Refrigerator-freezers (R/Fs) and freezers (FRs) account for 16% of the electricity consumed in the residential sector of the Bonneville Power Administration (BPA) forecast region (Oregon, Washington, Idaho and Western Montana). After space and water heating, R/Fs are the largest residential electrical end-use. The Northwest Power Planning Council (NPPC) and BPA recognize the savings potential from efficient R/Fs and FRs as well as the barriers to their use. In the 1983 regional power plan, the Council directed BPA to develop and implement incentive and promotion programs for efficient appliances. The NPPC also called for the evaluation of minimum efficiency standards for appliances sold in the region. In response to this directive, the Office of Conservation in BPA funded an evaluation of both rebate incentive programs and minimum efficiency standards for R/Fs and FRs. The results are presented in this report. The energy savings potential and economic feasibility of rebate programs and efficiency standards are the primary issues considered.

Geller, Howard S.

1986-01-01T23:59:59.000Z

216

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

1992-01-01T23:59:59.000Z

217

Superfluid thermodynamic cycle refrigerator  

DOE Patents [OSTI]

A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

Swift, G.W.; Kotsubo, V.Y.

1992-12-22T23:59:59.000Z

218

Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant  

DOE Patents [OSTI]

A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

2007-03-20T23:59:59.000Z

219

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

220

Method and apparatus for de-superheating refrigerant  

DOE Patents [OSTI]

The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

Zess, J.A.; Drost, M.K.; Call, C.J.

1997-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seven-effect absorption refrigeration  

DOE Patents [OSTI]

A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

DeVault, R.C.; Biermann, W.J.

1989-05-09T23:59:59.000Z

222

Seven-effect absorption refrigeration  

DOE Patents [OSTI]

A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

1989-01-01T23:59:59.000Z

223

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

224

Analysis of household refrigerators for different testing standards  

SciTech Connect (OSTI)

This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energy consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.

Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; McGill, I. [Fischer and Paykel Ltd., Auckland (New Zealand)

1995-08-01T23:59:59.000Z

225

Fridge of the future: ORNL`s refrigeration R&D  

SciTech Connect (OSTI)

Fears about warming the globe may change the way foods are chilled. Concern about global warming, as expressed in the President`s Climate Change Action Plan of 1993, is the latest motivation for putting future American refrigerators and freezers on a strict energy diet. A current national goal is to design an environmentally sound refrigerator-freezer by 1998 that uses half as much energy as 1993 models. Interest in designing a more energy-efficient refrigerator is not new. It first became a goal almost 20 years ago. In the 1970`s the United States was relying on increasingly unstable supplies of imported oil for fuel, and energy prices began to rise. Utilities balked at building additional power plants because of rising costs and investment risks. As a result, a premium was placed on developing energy-efficient appliances, culminating in the passage of the National Appliance Energy Conservation Act of 1987. In the late 1980`s refrigerator design was again a target of engineers because of the need to change the refrigerant and insulation used. The reason: the Montreal Protocol called for phasing out of substances containing chlorofluorocarbons (CFCs) by the year 2000 because they were thought to be destroying the earth`s stratospheric ozone layer. Ozone shields humans from solar rays that can cause skin cancer and cataracts. Among the CFCs to be phased out are common refrigerants like R-12 and the refrigerator insulation blowing agent R-11.

Krause, C.

1995-12-31T23:59:59.000Z

226

U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys  

SciTech Connect (OSTI)

Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’s Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.

Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia; Long, Timothy; Beraki, Bereket; Price, Sarah K.; Pratt, Stacy; Willem, Henry; Desroches, Louis-Benoit

2013-11-14T23:59:59.000Z

227

1st TECCS meeting, 26th April 2007 Adsorption Refrigeration  

E-Print Network [OSTI]

TECCS meeting, 26th April 2007 Adsorption refrigerators and heat pumps These machines ADsorb cycles for: Heat pumps Refrigerators Air conditioning Driven by heat from: Fossil fuels Bio fuels Waste of concept forced convection adsorption machine [#1] · Generating temperature 225° C · Heat rejection

Davies, Christopher

228

Evaluation of Local Enforcement of Energy Efficiency Standards and Labeling Program in China  

E-Print Network [OSTI]

of 54 product models of refrigerators, freezers and room airfor household refrigerators/ freezers and room air

Zheng, Nina

2013-01-01T23:59:59.000Z

229

Environmental Stewardship: How Semiconductor Suppliers Help to Meet Energy-Efficiency Regulations and Voluntary Specifications in China  

E-Print Network [OSTI]

Standards Domestic refrigerators/freezers* Room airLabeling Domestic refrigerators/freezers* Room air

Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju, Jeff

2008-01-01T23:59:59.000Z

230

Experimentally validated models of refrigerant distribution in microchannel heat exchangers used to evaluate charge reduction of various working fluids.  

E-Print Network [OSTI]

??This thesis presents experimentally validated simulation models developed to obtain accurate prediction of microchannel heat exchanger performance and charge. Effects of using various correlations are… (more)

Padilla, Yadira

2012-01-01T23:59:59.000Z

231

Heat pump with freeze-up prevention  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

232

NBSIFI 86-3373 Impact of Refrigerant Property  

E-Print Network [OSTI]

of performance prediction to refrigerant properties for a residential, split heat pump operating in the cooling mode. The NBS steady-state heat pump model, HPSIM, was used in this study. The individual influence and refrigerant mass flow rate are also given in the report. iii #12;Discrepancy between heat pump laboratory test

Oak Ridge National Laboratory

233

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network [OSTI]

cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system...

White, T. L.

1980-01-01T23:59:59.000Z

234

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network [OSTI]

; Gas processing (O2, H2, CO2, LPG, LNG...) (3) Air conditioning, cooling towers, rg/pages/zon Air conditioning, cooling towers, food cooling and freezing (4) Heat pumps, heat pipes, special ww.sgisland.o p p

Zevenhoven, Ron

235

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

solid door refrigerator and freezer Commercial steam cooker4, 5 New home Refrigerator and freezer 6 Residential clothesdoor commercial refrigerators and freezers, refrigerated

Sanchez, Marla

2010-01-01T23:59:59.000Z

236

International Comparison of Energy Efficiency Awards for Appliance Manufacturers and Retailers  

E-Print Network [OSTI]

dehumidifiers, refrigerators and freezers, room airAutomatic Commercial Ice Makers Refrigerators, Freezers,and Refrigerator?Freezers Refrigerated Beverage Vending

Zhou, Nan

2014-01-01T23:59:59.000Z

237

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M.

1996-11-15T23:59:59.000Z

238

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

1999-01-01T23:59:59.000Z

239

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M.

1996-07-01T23:59:59.000Z

240

Dynamic simulation of a reverse Brayton refrigerator  

SciTech Connect (OSTI)

A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

Peng, N.; Xiong, L. Y.; Dong, B.; Liu, L. Q. [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 (China); Lei, L. L.; Tang, J. C. [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 China and Graduate University of Chinese Academy of Sciences, Beijing, 100190 (China)

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of energy-efficiency standards for Indian refrigerators  

SciTech Connect (OSTI)

The application of advanced techniques in engineering simulation and economic analysis for the development of efficiency standards for Indian refrigerators is illustrated in this paper. A key feature of this methodology is refrigerator simulation to generate energy savings for a set of energy-efficient design options and life-cycle cost (LCC) analysis with these design options. The LCC of a refrigerator is analyzed as a function of five variables: nominal discount rate, fuel price, appliance lifetime, incremental price, and incremental energy savings. The frequency of occurrence of the LCC minimum at any design option indicates the optimum efficiency level or range. Studies carried out in the US and European Economic Community show that the location of the LCC minimum under different scenarios (e.g., variable fuel price, life-time, discount rate, and incremental price) is quite stable. Thus, an efficiency standard can be developed based on the efficiency value at the LCC minimum. This paper examines and uses this methodology in developing efficiency standards for Indian refrigerators. The potential efficiency standard value is indicated to be 0.65 kWh/day for a 165-liter, CFC-based, manual defrost, single-door refrigerator-freezer.

Bhatia, P.

1999-07-01T23:59:59.000Z

242

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network [OSTI]

system /2 The rich NH3/H2O mix is pumped via a heatpumped via a heat exchanger to a regenerator, where

Zevenhoven, Ron

243

Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps  

E-Print Network [OSTI]

An experimental study was conducted to quantify the effect of several installation items on the high outdoor ambient temperature performance of air conditioners. These installation items were: improper amount of refrigerant charge, reduced...

Rodriguez, Angel Gerardo

2012-06-07T23:59:59.000Z

244

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

245

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network [OSTI]

-compression Absorption Absorption + heat exchange Process comparison /2Process comparison /2 In the compressor, work heat is converted into enthalpy Compressor (or absorber + regenerator) efficiency is very important screw Centrifugal / Turbo compres- sors aporiser sors 2-stage cascade open reciprocal 2-stage cascade

Zevenhoven, Ron

246

Paper No. 206 IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, The Netherlands, 2012  

E-Print Network [OSTI]

outside the buildings for devices having the refrigerant charge of small heat pumps for space heatingPaper No. 206 10th IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, The Netherlands by subcooling of the refrigerant in the cold water tank (not used for cooling during winter). The water tank

Paris-Sud XI, Université de

247

Refrigeration system having standing wave compressor  

DOE Patents [OSTI]

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

248

Proceedings: commercial refrigeration research workshop. Summary  

SciTech Connect (OSTI)

The purpose of this workshop was to identify the state-of-the-art and determine research needs for improving energy use and demand in commercial refrigeration applications. Workshop attendees included research and development, technical operations and marketing people from manufacturers of supermarket refrigeration, space conditioning, and energy management systems equipment, and from supermarket chains and electric utilities. Presentations were given on best current practice and research needs from the perspective of each of these industry segments. Working groups identified ten important research, development and equipment demonstration projects to improve the efficiency of refrigerating equipment, heating, ventilating and air-conditioning (HVAC) equipment, and other energy-using systems in supermarkets.

Blatt, M.H.

1984-10-01T23:59:59.000Z

249

Next Generation Low-Global Warming Potential Refrigerants R&D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities...

250

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

all units in our da- taset. (AHAM) (see Appendix 7-B in DOEownership provided by AHAM (2010, personal communication).in ownership provided by AHAM to weight the RECS ownership

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

251

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

Residential Energy Consumption Survey (RECS), U.S. Energyod for estimating field energy consumption of US residentialconsumption survey—detailed tables. Residential Energy Con- sumption Survey (RECS), U.S.

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

252

ARTI Refrigerant Database  

SciTech Connect (OSTI)

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

1994-05-27T23:59:59.000Z

253

Plant Site Refrigeration Upgrade  

E-Print Network [OSTI]

Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

Zdrojewski, R.; Healy, M.; Ramsey, J.

254

Save with Hybrid Refrigeration  

E-Print Network [OSTI]

SAVE WITH HYBRID REFRIGERATION Cheng-Wen (Wayne) Chung, P.E. Fluor Engineers, Inc. Irvine, California ABSTRACT Two level demand makes it possible to use two systems for refrigeration and save energy and money. An example of this type... of refrigeration, consisting of an ammonia absorption refrigeration (AAR) unit and a mechanical compression refrigera tion (MCR) unit, is presented in this article. This paper will briefly describe process configur ation, advantages and utility consumption...

Chung, C. W.

255

Thermoacoustic refrigerator  

DOE Patents [OSTI]

A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.

Moss, W.C.

1997-10-07T23:59:59.000Z

256

Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere  

DOE Patents [OSTI]

A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

DeVault, Robert C. (Knoxville, TN); Fairchild, Phillip D. (Clinton, TN); Biermann, Wendell J. (Fayetteville, NY)

1990-01-01T23:59:59.000Z

257

2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

258

Living and Working in the Freezer  

SciTech Connect (OSTI)

Very little data of any kind exists from the early spring in the Arctic. The reason? It's extremely cold and that makes it difficult to survive, let alone conduct science. From March through the end of April, 2011, scientists from around the world braved temperatures of -48?C in the high Canadian Arctic in the name of science. At the Catlin Arctic Survey's floating 'Ice Base' off Ellef Ringnes Island, Dr. Victoria Hill was investigating how organic material in fresh water near the surface of the ocean may be trapping heat from the sun, causing the upper ocean layers to warm. This is a very new area of research and this mechanism represents a key uncertainty in accurate modeling of ice thickness and upper ocean heat content. In this presentation Dr. Hill will talk about living and working at the ice base and discuss preliminary data from the expedition.

Hill, Victoria (Dept of Ocean, Earth, and Atmospheric Sciences, Old Dominion Unversity) [Dept of Ocean, Earth, and Atmospheric Sciences, Old Dominion Unversity

2012-02-07T23:59:59.000Z

259

Demonstration Assessment of LED Freezer Case Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release Notes

260

Optimal performance of endoreversible quantum refrigerators  

E-Print Network [OSTI]

The derivation of general performance benchmarks is important in the design of highly optimized heat engines and refrigerators. To obtain them, one may model phenomenologically the leading sources of irreversibility ending up with results which are model-independent, but limited in scope. Alternatively, one can take a simple physical system realizing a thermodynamic cycle and assess its optimal operation from a complete microscopic description. We follow this approach in order to derive the coefficient of performance at maximum cooling rate for \\textit{any} endoreversible quantum refrigerator. At striking variance with the \\textit{universality} of the optimal efficiency of heat engines, we find that the cooling performance at maximum power is crucially determined by the details of the specific system-bath interaction mechanism. A closed analytical benchmark is found for endoreversible refrigerators weakly coupled to unstructured bosonic heat baths: an ubiquitous case study in quantum thermodynamics.

Luis A. Correa; José P. Palao; Gerardo Adesso; Daniel Alonso

2014-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

M . B a h r a m i ENSC 388 Experiment 2: Vapor Compression Refrigeration Cycle ENSC 388: Engineering Thermodynamics and Heat Transfer  

E-Print Network [OSTI]

Determining the coefficient of performance of a vapour compression refrigeration cycle. Apparatus Figure 1, a condenser, an evaporator and an expansion valve. The compressor unit shown in Fig. 2 comprises the liquid to vapor. The system has an expansion valve which is a float valve. Schematic of the expansion

Bahrami, Majid

262

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)] [Calm (James M.), Great Falls, VA (United States)

1996-04-15T23:59:59.000Z

263

Check-Testing of Manufacturer Self Reported Labeling Data & Compliance with MEPS  

E-Print Network [OSTI]

Table B- 1 Refrigerator and Freezer Effective capacity ?L?energy label Refrigerators and Freezers No. Product featurecon- ditioners, refrigerators and freezers, greatly improved

Zhou, Nan

2008-01-01T23:59:59.000Z

264

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

solid door refrigerators and freezers Commercial steamProfessional Displays Refrigerators and freezers ResidentialCommercial Refrigerators and Freezers • Compact Florescent

Homan, Gregory K

2011-01-01T23:59:59.000Z

265

Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan  

E-Print Network [OSTI]

televisions, refrigerators and freezers, mobile phones,dishwashers, refrigerators and freezers and clothes washersand 48 million refrigerator/freezers with exports of 20

Levine, Mark D.

2010-01-01T23:59:59.000Z

266

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

auto-defrost refrigerators and freezers, and solid-state/For example, new refrigerators and freezers have increasedfactors for refrigerators and freezers are based on data for

Wenzel, T.P.

2010-01-01T23:59:59.000Z

267

White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)  

E-Print Network [OSTI]

Variable speed AC Gas water heaters Refrigerators Freezer-refrigerators Freezers CC?4500 CC?7100 CC?14000 CC?4500 CC?televisions, refrigerators (with freezer), cellular phones,

Zhou, Nan

2013-01-01T23:59:59.000Z

268

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

E-Print Network [OSTI]

testing in 2006 for refrigerators, freezers and room air-three products (refrigerators, freezers, air-conditionersStandards Domestic refrigerators/freezers* Room air

Zhou, Nan

2010-01-01T23:59:59.000Z

269

2007 Status Report: Savings Estimates for the ENERGY STAR(R) VoluntaryLabeling Program  

E-Print Network [OSTI]

Commercial Reach-In Refrigerators and Freezers. Prepared for1996 Commercial Refrigerators and Freezers 2001 OilCommercial Reach-In Refrigerators and Freezers." March 1,

Sanchez, Marla; Webber, Carrie A.; Brown, Richard E.; Homan, Gregory K.

2007-01-01T23:59:59.000Z

270

2006 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program  

E-Print Network [OSTI]

1996 Commercial Refrigerators and Freezers 2001 OilCommercial Reach-In Refrigerators and Freezers. Prepared forfans, and reach-in refrigerators and freezers in 2001 and

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan, Gregory K.

2006-01-01T23:59:59.000Z

271

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

heaters Walk-in refrigerators and freezers Single-voltagewashers, commercial refrigerators and freezers, commercialDay Domestic RefrigeratorFreezer. ” ASHRAE Transactions ,

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

272

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

of household refrigerators and freezers 2 . Therefore, thesales of the refrigerators and freezers are about 20.6for household refrigerators and freezers has been updated

Lin, Jiang

2006-01-01T23:59:59.000Z

273

Incorporating Experience Curves in Appliance Standards Analysis  

E-Print Network [OSTI]

furnaces, and refrigerators and freezers. These allow us topumps, furnaces, refrigerators and freezers (US DepartmentPCU333415333415C Refrigerators and freezers Household

Desroches, Louis-Benoit

2012-01-01T23:59:59.000Z

274

Savings estimates for the United States Environmental Protection Agency?s ENERGY STAR voluntary product labeling program  

E-Print Network [OSTI]

cabinets commercial refrigerators and freezers commercialsolid door refrigerators and freezers Commercial steam7 New homes Refrigerators and freezers Room air conditioners

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

275

Impacts of China's Current Appliance Standards and Labeling Program to 2020  

E-Print Network [OSTI]

Standards Domestic refrigerators/freezers* Room airLabeling Domestic refrigerators/freezers* Room air3-star compartment Refrigerator/Freezer Chest frozen food

Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

2007-01-01T23:59:59.000Z

276

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network [OSTI]

Statement Household Refrigerators and Freezers. 2008. EC,technologies (e.g. refrigerators and freezers are groupedresidential refrigerators and freezers: function derivation

McNeil, Michael A.

2013-01-01T23:59:59.000Z

277

Compliance and Verification of Standards and Labelling Programs in China: Lessons Learned  

E-Print Network [OSTI]

for household refrigerators/ freezers and room airZhou et al 2008] Refrigerators Freezers Air conditionersZhou et al 2008] Refrigerators Freezers Air conditioners

Saheb, Yamina

2010-01-01T23:59:59.000Z

278

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network [OSTI]

standards on refrigerators and freezers, room and centralexample, while refrigerators and freezers contribute to peakelectric lights refrigerator/freezer plasma screen

Peffer, Therese E.

2009-01-01T23:59:59.000Z

279

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network [OSTI]

standards Other Refrigerators and Freezers DWsandCWs: g aioo%- Other | Refrigerators and Freezers Gas and oil watermarket prices for refrigerators and freezers from 1987 to

Koomey, J.G.

2010-01-01T23:59:59.000Z

280

Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization  

E-Print Network [OSTI]

States MEPS Test Procedures Refrigerators and freezersRefrigerators and freezers Split system central AC Centralof test procedures: refrigerators and freezers, room air

Wiel, Stephen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U.S. residential consumer product information: Validation of methods for post-stratification weighting of Amazon Mechanical Turk surveys  

E-Print Network [OSTI]

refrigerators and freezers 4.4.3 Average numbers of refrigerators and freezers acrossthe number of refrigerators and freezers in a home along

Greenblatt, Jeffery B.

2013-01-01T23:59:59.000Z

282

Compliance and Verification of Standards and Labeling Programs in China: Lessons Learned  

E-Print Network [OSTI]

for household refrigerators/ freezers and room airZhou et al 2008] Refrigerators Freezers Air conditionersZhou et al 2008] Refrigerators Freezers Air conditioners

Saheb, Yamina

2011-01-01T23:59:59.000Z

283

Energy Management A Program of Energy Conservation for the Community College Facility  

E-Print Network [OSTI]

STEAM COOKERS REFRIGERATORS and FREEZERS Some importantcapability. Leveling. Refrigerators and freezers should beH Continued Refrigerators and Freezers Every food service

Authors, Various

2011-01-01T23:59:59.000Z

284

2005 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program  

E-Print Network [OSTI]

Commercial Reach-In Refrigerators and Freezers. Prepared forCommercial Refrigerators and Freezers …… Set-topfans, and reach-in refrigerators and freezers in 2001 and

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

2006-01-01T23:59:59.000Z

285

Potential Refrigerants for Power Electronics Cooling  

SciTech Connect (OSTI)

In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

Starke, M.R.

2005-10-24T23:59:59.000Z

286

China Refrigerator Information Label  

E-Print Network [OSTI]

LBNL-246E China Refrigerator Information Label: Specification Development and Potential Impact Jianhong Cheng China National Institute of Standardization Tomoyuki Sakamoto The Institute of Energy

287

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

1998-08-01T23:59:59.000Z

288

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

289

Small Commercial Refrigeration Incentive  

Broader source: Energy.gov [DOE]

Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

290

ARTI refrigerant database  

SciTech Connect (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

Calm, J.M.

1997-02-01T23:59:59.000Z

291

Energy Efficient Operation of Ammonia Refrigeration Systems  

SciTech Connect (OSTI)

Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

Mohammed, Abdul Qayyum [University of Dayton, Ohio] [University of Dayton, Ohio; Wenning, Thomas J [ORNL] [ORNL; Sever, Franc [University of Dayton, Ohio] [University of Dayton, Ohio; Kissock, Professor Kelly [University of Dayton, Ohio] [University of Dayton, Ohio

2013-01-01T23:59:59.000Z

292

Using Backup Generators: Choosing the Right Backup Generator...  

Broader source: Energy.gov (indexed) [DOE]

your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers;...

293

2014-06-23 Issuance: Energy Conservation Standards for Walk-in...  

Broader source: Energy.gov (indexed) [DOE]

23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration 2014-06-23 Issuance:...

294

Innovative Method for Performance Inspections often save 20-30% through Optimization of Air-Conditioning and Refrigeration  

E-Print Network [OSTI]

of performance?. (Nordtest.) Esbo, Finland. 16. NT VVS 116, 1997. ?Refrigeration and heat pump equipment: Check-ups and performance data inferred from measurements under field conditions in the refrigerant system?. (Nordtest.) Esbo, Finland. ESL-IC-10...

Berglof, K.

2010-01-01T23:59:59.000Z

295

Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels  

SciTech Connect (OSTI)

Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

296

Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels  

SciTech Connect (OSTI)

Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

Jordan, W.C.

1993-02-01T23:59:59.000Z

297

ARTI Refrigerant Database  

SciTech Connect (OSTI)

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

Calm, J.M.

1992-04-30T23:59:59.000Z

298

Basics of Low-temperature Refrigeration  

E-Print Network [OSTI]

This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

Alekseev, A

2014-01-01T23:59:59.000Z

299

The Quantum Absorption Refrigerator Amikam Levy and Ronnie Kosloff  

E-Print Network [OSTI]

, 07.20.Pe,05.30.-d I. INTRODUCTION The adsorption chiller is a refrigerator which employs a heat source to replace mechanical work for driving a heat pump [1]. The first device was developed in 1850 c J h P Tc Th Tw - - - 0 FIG. 1: The quantum trickle: A quantum heat pump des- ignated

Kosloff, Ronnie

300

International Refrigeration: Order (2012-CE-1510) | Department...  

Broader source: Energy.gov (indexed) [DOE]

Refrigeration: Order (2012-CE-1510) July 20, 2012 DOE ordered International Refrigeration Products to pay an 8,000 civil penalty after finding International Refrigeration had...

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners  

SciTech Connect (OSTI)

This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

2014-01-01T23:59:59.000Z

302

Modeling Supermarket Refrigeration Systems with EnergyPlus  

SciTech Connect (OSTI)

Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

Stovall, Therese K [ORNL; Baxter, Van D [ORNL

2010-01-01T23:59:59.000Z

303

Uranium hexaflouride freezer/sublimer process simulator/trainer  

SciTech Connect (OSTI)

This paper describes a software and hardware simulation of a freezer/sublimer unit used in gaseous diffusion processing of uranium hexafluoride (UF{sub 6}). The objective of the project was to build a plant simulator that reads control signals and produces plant signals to mimic the behavior of an actual plant. The model is based on physical principles and process data. Advanced Continuous Simulation Language (ACSL) was used to develop the model. Once the simulation was validated with actual plant process data, the ACSL model was translated into Advanced Communication and Control Oriented Language (ACCOL). A Bristol Babcock Distributed Process Controller (DPC) Model 3330 was the hardware platform used to host the ACCOL model and process the real world signals. The DPC will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new distributed control system without disturbing the process. 2 refs., 4 figs.

Carnal, C.L. (Tennessee Technological Univ., Cookeville, TN (USA)); Belcher, J.D.; Tapp, P.A.; Ruppel, F.R.; Wells, J.C. (Oak Ridge National Lab., TN (USA))

1991-01-01T23:59:59.000Z

304

EA-1138: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1138: Final Environmental Assessment Proposed Energy Conservation Standards for Refrigerators, Refrigerator-Freezers, and Freezers This Environmental Assessment (EA)...

305

Refrigerants in Transition  

E-Print Network [OSTI]

.E. Senior Engineer The Hartford Steam Boiler Inspection and Insurance Company Hartford,. Connecticut ABSTRACT The massive growth of air conditioning and refrigeration has been a direct result of the development of a class of chemicals called fluorocarbons..., Gordon, "Forty Years Research on Atmospheric Ozone at Oxford: A !Iistory," Applied Optics, March t968, pp. 387-405. 4. Downing, R., "Development of Chloro fluorocarbon Refrigerants," CFCs: Time of Transition, ASHRAE Publication, Atlanta, GA, 1989...

Stouppe, D. E.

306

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

307

M. Bahrami ENSC 461 (S 11) Refrigeration Cycle 1 Refrigeration Cycle  

E-Print Network [OSTI]

of refrigerators and heat pumps is expressed in terms of coefficient of performance (COP): innet H HP innet L R W Q specified temperature levels. It sets the highest theoretical COP. The coefficient of performance for Carnot Evaporator QH Expansion valve h4 = h3 Compressor 3 2 1 4 Superheated vapor Saturated vapor Saturated liquid

Bahrami, Majid

308

Super energy saver heat pump with dynamic hybrid phase change material  

DOE Patents [OSTI]

A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

Ally, Moonis Raza (Oak Ridge, TN) [Oak Ridge, TN; Tomlinson, John Jager (Knoxville, TN) [Knoxville, TN; Rice, Clifford Keith (Clinton, TN) [Clinton, TN

2010-07-20T23:59:59.000Z

309

Demand Side Management (DSM) Through Absorption Refrigeration Systems  

E-Print Network [OSTI]

DEMAND SIDE MANAGEMENT (DSM) TIIROUGH ABSORPTION REFRIGERATION SYSTEMS Peter Y. Chao, PhD, Deepak Shukla, PhD, Sr. Process Engineers, TENSA Services, Inc. Ammi Amarnath, Sr. Project Manager, Electrical Power Research Institute Ed. Mergens.... They are Peak Clipping, Valley filling, Load Shifting, Strategic Conservation, Strategic Load Growth, and Flexible Load Shaping. Absorption Refrigeration from waste heat offers a viable option for DSM. This will either reduce the peak load (peak clipping...

Chao, P. Y.; Shukla, D.; Amarnath, A.; Mergens, E.

310

Downhole pulse tube refrigerators  

SciTech Connect (OSTI)

This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

1997-12-01T23:59:59.000Z

311

ARTI Refrigerant Database  

SciTech Connect (OSTI)

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

1993-04-30T23:59:59.000Z

312

ETME 422 -REFRIGERATION & HVAC SYSTEMS FALL 2011 LEC -10:00 -10:50am M W F RH 312  

E-Print Network [OSTI]

-1209(h) Office Hours: M-F 1-2p.m. Text: Heating, Ventilating, and Air Conditioning - Analysis and Design. -- Refrigeration and heating, ventilating and air-conditioning (HVAC) for comfort and industrial applications of the fundamentals of Heating, Ventilating, Air Conditioning, and Refrigeration as they relate to human comfort

Dyer, Bill

313

Proceedings: Commercial Refrigeration Research Workshop  

SciTech Connect (OSTI)

Improving refrigeration systems for commercial use can enhance both utility load factors and supermarket profits. This workshop has pinpointed research needs in commercial refrigeration and systems integration for a supermarket environment.

None

1984-10-01T23:59:59.000Z

314

Frost sensor for use in defrost controls for refrigeration  

DOE Patents [OSTI]

An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

French, Patrick D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Butz, James R. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Veatch, Bradley D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); O'Connor, Michael W. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107)

2002-01-01T23:59:59.000Z

315

Ames Lab 101: Magnetic Refrigeration  

ScienceCinema (OSTI)

Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

Pecharsky, Vitalij

2013-03-01T23:59:59.000Z

316

ARTI Refrigerant Database  

SciTech Connect (OSTI)

The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

Calm, J.M.

1992-11-09T23:59:59.000Z

317

Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump  

E-Print Network [OSTI]

A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water...

Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

1996-01-01T23:59:59.000Z

318

Tapered pulse tube for pulse tube refrigerators  

DOE Patents [OSTI]

Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

Swift, Gregory W. (Sante Fe, NM); Olson, Jeffrey R. (San Mateo, CA)

1999-01-01T23:59:59.000Z

319

Helium dilution refrigeration  

E-Print Network [OSTI]

. 1875" OD exchanger Qu ID copper cap Fig. 6. Assembled view of 3He - He dilution refrigerator. 26 The joint thru the tubing wall and the joining of the two sizes of capillary were silver soldered (35/ silver content). A 0. 250" OD tube... the inert atmosphere inside the refrigerator. After removal from the nitrogen atmosphere the graphite support, was 'attached to the still and mixing chamber using Stycast 2850 GT with catalyst g9 ). The mass of the graphite 26 support 1s 11. 62 grams...

McKee, Thomas Raymond

2012-06-07T23:59:59.000Z

320

Enhanced naphthenic refrigeration oils for household refrigerator systems  

SciTech Connect (OSTI)

Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R. [Witco Corp., Oakland, NJ (United States); Barbour, C.B. [Americold, Cullman, AL (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid-vapor adsorption-refrigeration system development. Final report, March 1990-May 1991  

SciTech Connect (OSTI)

The study describes the development of heat-activated industrial refrigeration systems using ammoniated complex compound sorption media. The focus was on single-stage cycles for low temperature (+20 F and below) refrigeration. Compared to vapor compression refrigeration, these cycles have the advantages of lower operating energy costs, reduction of peak electrical demand and associated demand charges, and reduced maintenance costs due to replacement of the compressor with solid-state sorbers. In many cases, particularly for refrigeration at -40 F and below, complex compound sorption cycles also have the potential for lower first cost than conventional electrically driven refrigeration systems. Technical issues addressed included the following: economic optimization of sorber design, demonstration of cyclic stability of the sorption reactions, construction material compatibility, and reactor scale-up. Sorption reactions for refrigeration at -40 F, and -70 F were demonstrated. Optimum heat exchanger configuration, complex compound loading, and cycle time were determined.

Rockenfeller, U.; Kirol, L.; Graebel, B.

1991-12-01T23:59:59.000Z

322

TEMPERATURE PREDICTION IN DOMESTIC REFRIGERATOR: DETERMINIST AND STOCHASTIC APPROACHES  

E-Print Network [OSTI]

the calculation of air and load temperatures. An analysis of the predicted temperatures was undertaken temperature and thermostat setting, on air and load temperatures in non ventilated domestic refrigerator was studied. A simplified steady state heat transfer model was developed which takes into account heat

Paris-Sud XI, Université de

323

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

324

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

325

Comparison of Several Eco-Friendly Refrigeration Technologies  

E-Print Network [OSTI]

In this paper, the operation principles, thermodynamics characteristics, and technical practicability were compared between thermoelectric refrigeration, magnetic refrigeration and adsorption refrigeration. The TE refrigeration is the most well...

Tang, C.; Luo, Q.; Li, X.; Zhu, X.

2006-01-01T23:59:59.000Z

326

A correlation for local coefficients of heat transfer in boiling of R12 and R22 refrigerants on multirow bundles of smooth tubes  

SciTech Connect (OSTI)

Experimental results on the boiling of R12 and R22 on bundles of 30 to 50 vertically stacked rows of smooth tubes are presented and correlated. Engineering equations for determining the coefficients of heat transfer in the pool boiling of freons on such multirow bundles are derived.

Rebrov, P.N.; Bukin, V.G.; Danilova, G.N.

1989-07-01T23:59:59.000Z

327

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

kWh) (kWh) b b Refrigerator and Freezer (kWh) Source: Unionseveral months for refrigerators and freezers to a maximumPart 2, June, 1980. Refrigerator/freezers Freezers Clothes

Authors, Various

2010-01-01T23:59:59.000Z

328

China Refrigerator Information Label: Specification Development and Potential Impact  

SciTech Connect (OSTI)

In the last five years, China's refrigerator market has grown rapidly, and now urban markets are showing signs of saturation, with ownership rates in urban households reaching 92%. Rural markets continue to grow from a much lower base. As a result of this growth, the Chinese government in 2006 decided to revise the refrigerator standards and its associated efficiency grades for the mandatory energy information label. In the Chinese standards process, the efficiency grades for the information label are tied to the minimum standards. Work on the minimum standards revision began in 2006 and continued through the first half of 2007, when the draft standard was completed under the direction of the China National Institute of Standardization (CNIS). Development of the information label grades required consideration of stakeholder input, continuity with the previous grade classification, ease of implementation, and potential impacts on the market. In this process, CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing technical input to the process, comment and advice on particular technical issues, and evaluation of the results. After three months of effort and three drafts of the final grade specifications, this work was completed. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. The new information label thresholds to be implemented in 2008 maintain the approach first adopted in 2005 of establishing efficiency levels relative to the minimum standard, but increased the related required efficiency levels by 20% over those established in 2003 and implemented in 2005. The focus of improvement was on the standard refrigerator/freezer (class 5), which constitutes the bulk of the Chinese market. Indeed, the new requirements to achieve grade 1 on the label are now virtually as stringent as those for US Energy Star-qualified or EU A-grade refrigerators. When the energy information label went into effect in March 2005, refrigerator manufacturers were required to display their declared level of efficiency on the label and report it to the China Energy Label Center (CELC), a newly established unit of CNIS responsible for label program management. Because of the visible nature of the label, it was found, through a METI/IEEJ-supported study, that MEPS non-compliance dropped from 4% to zero after the label became mandatory, and that the percentage of higher-grade refrigerators increased. This suggests that the label itself does have potential for shifting the market to higher-efficiency models (Lin 2007). One challenge, however, of assessing this potential impact is the lack of a comprehensive baseline of market efficiency and a program to evaluate the market impact on a yearly basis. As a result, the impact evaluation in this study draws upon the market transformation experience of the related EU energy information label, for which quantitative assessments of its market impact exist. By assuming a parallel process unfolding in China, it is possible to look at the potential impact of the label to 2020. The results of the analysis demonstrates that a robust market transformation program in China focused on the energy information label could save substantial amounts of electricity by 2020, totaling 16.4 TWh annually by that year, compared to a case in which the efficiency distribution of refrigerators was frozen at the 2007 level. Remarkably, the impact of a successful market transformation program with the label would essentially flatten the consumption of electricity for refrigerator use throughout most of the next decade, despite the expectations of continued growth in total stock by nearly 190 million units. At the end of this period, total consumption begins to rise again, as the least efficient of the units have been mostly removed from the market. Such a level of savings would reduce CO{sub

Fridley, David; Fridley, David; Zheng, Nina; Zhou, Nan; Aden, Nathaniel; Lin, Jiang; Jianhong, Cheng; Sakamoto, Tomoyuki

2008-02-01T23:59:59.000Z

329

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

330

Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels  

E-Print Network [OSTI]

Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels Brandon cavitation has on heat transfer. The fluid medium is refrigerant R-123 flowing through 227 lm hydraulic diameter microchannels. The cavitation is instigated by the inlet orifice. Adiabatic tests were con- ducted

Peles, Yoav

331

Control of household refrigerators. Part 2: Alternate control approaches for improving temperature performance and reducing energy use  

SciTech Connect (OSTI)

In Part 1 it was shown that conventional control of household refrigerators is achieved by regulating the distribution of air in the freezer compartment to all other parts of the plant. In Part 2 three alternative approaches to the conventional control of a top-mount refrigerator are presented: variable temperature bandwidths, uncoupled compressor and evaporator fan, and the combination of these two. These allowed the plant to achieve near-ideal control with respect to improved temperature performance in each compartment. Automatic airflow dampers were used with the dual controllers to independently regulate refrigerator compartment temperature. Plant performance was simulated using a model that computes the refrigerant and airflow systems behavior. Together, these alternate configurations and approaches define new control algorithms that reveal the plant's optimal control model for improving performance and energy usage relative to conventional controllers. Results based on model simulations are dependent upon the model's accuracy and validity. However, the model validation studies cited here, though limited in scope, do show agreement between simulation and experimental data for the ambient temperatures and thermal load conditions considered. This suggests that these model results are reasonable, and representative of actual plant behavior under these conditions and configurations for a top-mount style refrigerator plant.

Graviss, K.J.; Collins, R.L.

1999-07-01T23:59:59.000Z

332

Multilayer Thermionic Refrigeration  

SciTech Connect (OSTI)

A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

Mahan, G.D.

1999-08-30T23:59:59.000Z

333

Vaccine refrigerator testing. Final report  

SciTech Connect (OSTI)

For the Central American Health Clinic Project initiated in 1986, Sandia National Laboratories and the Florida Solar Energy Center recognized the need for a test and evaluation program for vaccine refrigeration systems. At the Florida Solar Energy Center, side-by-side testing of three photovoltaic powered vaccine refrigerators began in 1987. The testing was expanded in 1988 to include a kerosene absorption refrigerator. This report presents observations, conclusions, and recommendations derived from testing the four vaccine refrigeration systems. Information is presented pertaining to the refrigerators, photovoltaic arrays, battery subsystems, charge controllers, and user requirements. This report should be of interest to designers, manufacturers, installers, and users of photovoltaic-powered vaccine refrigeration systems and components.

Ventre, G.G. [Univ. of Central Florida, Orlando, FL (United States); Kilfoyle, D.; Marion, B. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

1990-06-01T23:59:59.000Z

334

Supplement to: March 1982 consumer products efficiency standards, engineering analysis and economic analysis documents  

SciTech Connect (OSTI)

The following product types are discussed: refrigerators and refrigerator freezers, freezers, furnaces and boilers, and central air conditioners. Some topics included are: hybrid evaporators, cost efficiency relationships, high-efficiency compressor substitution, pulsed combustion, all aluminium heat exchanger, and high-efficiency two-speed compressor.

Not Available

1983-07-01T23:59:59.000Z

335

The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System  

SciTech Connect (OSTI)

The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

Bowden, Gordon B.; Langton, Brian J.; /SLAC; Little, William A.; /MMR-Technologies, Mountain View, CA; Powers, Jacob R; Schindler, Rafe H.; /SLAC; Spektor, Sam; /MMR-Technologies, Mountain View, CA

2014-05-28T23:59:59.000Z

336

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...  

Broader source: Energy.gov (indexed) [DOE]

Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

337

Space Heating and Cooling Products and Services | Department...  

Energy Savers [EERE]

to allow for the use of central heating and air conditioning. Publications Directory American Society of Heating, Refrigerating and Air-Conditioning Engineers Resource guide...

338

Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels--Three-Year Results with Third-Generation Blowing Agents  

SciTech Connect (OSTI)

Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements--HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and -10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for the first three years of a multi-year aging study. Preliminary comparisons of measured data with predictions of a mathematical aging model are presented.

Wilkes, K.E.

2001-05-29T23:59:59.000Z

339

Aging of polyurethane foam insulation in simulated refrigerator panels -- Initial results with third-generation blowing agents  

SciTech Connect (OSTI)

Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements -- HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and {minus}10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for about 250 days of aging for the core-foam specimens and for the first six months of aging for the full-thickness panels.

Wilkes, K.E.; Gabbard, W.A.; Weaver, F.J.

1998-11-01T23:59:59.000Z

340

Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels--Two-Year Results with Third-Generation Blowing Agents  

SciTech Connect (OSTI)

Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements--HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and {minus}10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for the first two years of a multi-year aging study. Preliminary comparisons of measured data with predictions of a mathematical aging model are presented.

Wilkes, K.E.

2001-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels--One-Year Results with Third-Generation Blowing Agents  

SciTech Connect (OSTI)

Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements--HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and {minus}10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for the first year of a multi-year study for the full-thickness panels and for about 1-1/2 years of aging for the core-foam specimens.

Gabbard, W.A.; Weaver, F.J.; Wilkes, K.E.

1999-09-27T23:59:59.000Z

342

Heat reclaiming method and apparatus  

DOE Patents [OSTI]

Method and apparatus to extract heat by transferring heat from hot compressed refrigerant to a coolant, such as water, without exceeding preselected temperatures in the coolant and avoiding boiling in a water system by removing the coolant from direct or indirect contact with the hot refrigerant.

Jardine, Douglas M. (Colorado Springs, CO)

1984-01-01T23:59:59.000Z

343

California Appliance Efficiency Regulations for Manufacturers  

E-Print Network [OSTI]

· Externalpowersupplies · Refrigerators,refrigerator-freezers, andfreezers · Televisions,andconsumeraudio and video

344

Industrial and Commercial Heat Pump Applications in the United States  

E-Print Network [OSTI]

compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

Niess, R. C.

345

An experimental investigation of critical heat flux in subcooled internal flow  

E-Print Network [OSTI]

An experimental investigation has been conducted to determine the critical heat flux for subcooled refrigerant-11 and refrigerant-113 flowing upward in a vertical cylindrical tube. Critical heat flux (CHF) values are determined for a range of tube...

Shatto, Donald Patrick

1997-01-01T23:59:59.000Z

346

New Energy Efficiency Standards for Commercial Refrigeration...  

Office of Environmental Management (EM)

for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

347

Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

348

Cool energy savings opportunities in commercial refrigeration  

SciTech Connect (OSTI)

The commercial sector consumes over 13 quads of primary energy annually. Most of this consumption (two-thirds) meets the energy needs of lighting and heating, ventilation, and air-conditioning. The largest consuming group of the remaining one-third is commercial refrigeration at about one quad annually (990 trillion Btu), valued at over $7 billion per year to the commercial sector consumer. Potential energy savings are estimated to be about 266 trillion Btu, with consumer savings valued at about $2 billion. This study provides the first known estimates of these values using a bottom-up approach. The authors evaluated numerous self-contained and engineered commercial refrigeration systems in this study, such as: supermarket central systems, beverage merchandisers, ice machines, and vending machines. Typical physical characteristics of each equipment type were identified at the component level for energy consumption. This information was used to form a detailed database from which they arrived at the estimate of 990 trillion Btu energy consumption for the major equipment types used in commercial refrigeration. Based on the implementation of the most cost-effective technology improvements for the seven major equipment types, they estimated an annual potential energy savings of 266 trillion Btu. Much of the savings can be realized with the implementation of high-efficiency fan motors and compressors. In many cases, payback can be realized within three years.

Westphalen, D.; Brodrick, J.; Zogg, R.

1998-07-01T23:59:59.000Z

349

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22T23:59:59.000Z

350

Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases  

SciTech Connect (OSTI)

Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

Parker, Steven; Parker, Graham B.

2008-10-25T23:59:59.000Z

351

E-Print Network 3.0 - air treatment heating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

352

The refrigerator revolution  

SciTech Connect (OSTI)

This article discusses how a simple, new technology threw the best-laid plans of the chemical and refrigerator industries into disarray-and provided a new perspective on how future environmental agreements can be reached. In recent years, a series of massive business mergers has mesmerized the industrial world. However in the early 1990s a German environmentalist, triggered global reprocussions in the wake of the mandate to phase out the use of ozone depleting substances. The economic and political background of this is explained in detail.

Ayres, E.; French, H.

1996-09-01T23:59:59.000Z

353

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network [OSTI]

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

354

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

355

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

356

The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation  

SciTech Connect (OSTI)

This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

Pratt, R.G.; Miller, J.D.

1998-09-01T23:59:59.000Z

357

Helium dilution refrigeration system  

DOE Patents [OSTI]

A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

1988-01-01T23:59:59.000Z

358

Helium dilution refrigeration system  

DOE Patents [OSTI]

A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

Roach, P.R.; Gray, K.E.

1988-09-13T23:59:59.000Z

359

Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation  

SciTech Connect (OSTI)

Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

Abdelaziz, Omar [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

2014-01-01T23:59:59.000Z

360

page 1 of 4 TkF Vrmeteknik Refrigeration / Kylteknik  

E-Print Network [OSTI]

kJ/kg. a. Calculate the heat of vaporisation of the R-40 at 30°C and -20°C, and calculate with methylchloride (CH3Cl, R-40) as refrigerant. The evaporator operates at Te = -20 °C and exchanges heat-1), closing the cycle. The following data is given for these states: T °C p bar h kJ/kg s kJ/(kg·K) 1 -20 1

Zevenhoven, Ron

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Field performance of residential refrigerators: A comparison with the laboratory test  

SciTech Connect (OSTI)

The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 [times] (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

Meier, A.; Jansky, R.

1991-05-01T23:59:59.000Z

362

Field performance of residential refrigerators: A comparison with the laboratory test  

SciTech Connect (OSTI)

The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 {times} (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

Meier, A.; Jansky, R.

1991-05-01T23:59:59.000Z

363

Policy Supporting Energy Efficiency and Heat Pump Technology  

E-Print Network [OSTI]

Policy Supporting Energy Efficiency and Heat Pump Technology Antonio M. Bouza, DOE/BTP Technology Space Heating ResidentialMELs Residential Lighting ResidentialWashing & drying Residential Cooking Residential Refrigeration Residential Water Heating Residential Space Cooling Residential Space Heating 80

Oak Ridge National Laboratory

364

Cryogenic refrigeration apparatus  

DOE Patents [OSTI]

A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

Crunkleton, James A. (Cambridge, MA)

1992-01-01T23:59:59.000Z

365

Cryogenic refrigeration apparatus  

DOE Patents [OSTI]

A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

Crunkleton, J.A.

1992-03-31T23:59:59.000Z

366

The Quantum Absorption Refrigerator  

E-Print Network [OSTI]

A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified, the cooling power J_c vanishes as J_c proportional to T_c^{alpha}, when T_c approach 0, where alpha =d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

Amikam Levy; Ronnie Kosloff

2011-11-09T23:59:59.000Z

367

Miniaturized Air-to-Refrigerant Heat Exchangers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwestSept. 2005 | Department

368

Page 1 of 4 Refrigerant Charge Verification: 70F Return Air Requirement  

E-Print Network [OSTI]

by operating the central heating system to preheat the dwelling sufficiently to keep the air temperature above 70°F for the duration of the test, or by using supplemental electric resistance heating devices on for the refrigerant charge test. This preheating is best accomplished by the central heating system, but a plug

369

Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction  

E-Print Network [OSTI]

-product of power, refrigeration, or heat pump cycles according to the second law of thermodynamics [1]. In 2009 pump, cryogenic refrigeration, and air liquefaction applications [3]. Organic Rankine cycles useAuthor's personal copy Pyroelectric waste heat energy harvesting using heat conduction Felix Y. Lee

Pilon, Laurent

370

Energy Efficient, Environmentally Friendly Refrigerants  

E-Print Network [OSTI]

This paper describes a new family of safe, environmentally friendly, high performance substitute refrigerants for application in manufacturing and facilities operations. Due to the Montreal Protocol and subsequent environmental regulations, CFC...

Nimitz, J.; Glass, S.; Dhooge, P. M.

371

Bipolar pulse field for magnetic refrigeration  

DOE Patents [OSTI]

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25T23:59:59.000Z

372

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

373

Non-intrusive refrigerant charge indicator  

DOE Patents [OSTI]

A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

Mei, Viung C.; Chen, Fang C.; Kweller, Esher

2005-03-22T23:59:59.000Z

374

Triple-effect absorption refrigeration system with double-condenser coupling  

DOE Patents [OSTI]

A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

1993-01-01T23:59:59.000Z

375

Triple-effect absorption refrigeration system with double-condenser coupling  

DOE Patents [OSTI]

A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

DeVault, R.C.; Biermann, W.J.

1993-04-27T23:59:59.000Z

376

Assessment of gas-fired commercial refrigeration. Final report Mar-Aug 1982  

SciTech Connect (OSTI)

Gas-fired commercial refrigeration is not common today. However, today's and tomorrow's gas engines (internal combustion, Stirling, gas turbines) could power cost-effective refrigeration systems. One key is effectively utilizing the prime mover's reject heat to economic advantage. Another is the capacity control afforded by a variable-speed prime mover. The best example of such a system is comparatively near-term. It serves the large and steady supermarket refrigeration market with an industrial-grade internal combustion engine driving an open-shaft reciprocating compressor. The gas engine's exhaust enables a reciprocating steam engine to boost shaft power by 20%.

Hynek, S.J.; Krepchin, I.P.; Harvey, A.C.; Demler, R.L.; Borhanian, H.H.

1983-02-01T23:59:59.000Z

377

Loveland Water and Power- Refrigerator Recycling Program  

Broader source: Energy.gov [DOE]

Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator...

378

International Refrigeration: Order (2012-CE-1510)  

Broader source: Energy.gov [DOE]

DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

379

Energy Saving with Absorption Refrigeration Technologies  

E-Print Network [OSTI]

Absorption refrigeration technology can be an economical and cost effective means of reducing energy cost and/or improving the efficiency and output of your process. We believe the potential benefits of absorption refrigeration technology have...

Davis, R. C.

1984-01-01T23:59:59.000Z

380

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

382

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

1998-01-01T23:59:59.000Z

383

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

384

Analysis of Mass Flow and Enhanced Mass Flow Methods of Flashing Refrigerant-22 from a Small Vessel  

E-Print Network [OSTI]

The mass flow characteristics of flashing Refrigerant-22 from a small vessel were investigated. A flash boiling apparatus was designed and built. It was modeled after the flashing process encountered by the accumulator of air-source heat pump...

Nutter, Darin Wayne

385

Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation  

E-Print Network [OSTI]

data. Listings for refrigerators and freezers as of May 1,not only do some refrigerator- freezers offer thru-the-door-In the case of refrigerator-freezer labels, for example, the

Harris, Jeff

2008-01-01T23:59:59.000Z

386

Retrospective Evaluation of Appliance Price Trends  

E-Print Network [OSTI]

of Certified Refrigerators and Freezers. Business Newst(59) R 2 =.76 Refrigerators Top mounted freezer-AutodefrostRefrigerator consumption is given by adjusted volume/annual consumption, where adjusted volume, is defined as fresh food volume+1.63×freezer

Dale, Larry

2010-01-01T23:59:59.000Z

387

Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation  

E-Print Network [OSTI]

Data. Listings for refrigerators and freezers as of May 1,not only do some refrigerator- freezers offer thru-the-door-In the case of refrigerator-freezer labels, for example, the

Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

2007-01-01T23:59:59.000Z

388

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

The study found that refrigerator and freezer temperaturekWh per year), and refrigerator and freezer (1,120 kWh perrefrigeration (refrigerators and freezers) included in the

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

389

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network [OSTI]

Historical Shipment' Compact RefrigeratorRefrigerator?Freezer Refrigerator?Freezer and Freezers NOPR National Impact Analysis Spreadsheet, USDOE (2010g)  Price Source Location By Category* Shipments Table 8.4.x Lifetime 'Historical 

Bojda, Nicholas

2011-01-01T23:59:59.000Z

390

Performance of HCFC22 alternative refrigerants  

SciTech Connect (OSTI)

In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.

Jung, D.; Kim, C.B.; Song, Y.J.; Park, B.J.

1999-07-01T23:59:59.000Z

391

Ternary Dy-Er-Al magnetic refrigerants  

DOE Patents [OSTI]

A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

Gschneidner, K.A. Jr.; Takeya, Hiroyuki

1995-07-25T23:59:59.000Z

392

Ternary Dy-Er-Al magnetic refrigerants  

DOE Patents [OSTI]

A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

1995-07-25T23:59:59.000Z

393

Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties  

SciTech Connect (OSTI)

The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

2002-08-30T23:59:59.000Z

394

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect (OSTI)

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

395

Wheel-type magnetic refrigerator  

DOE Patents [OSTI]

The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

Barclay, J.A.

1983-10-11T23:59:59.000Z

396

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network [OSTI]

)" #12;1. Introduction Brazed aluminium heat exchangers are composed of flat tubes on the refrigerant exchangers with round tube, such as charge reduction and higher heat transfer coefficient. But, according are thus not suitable to small-channel heat exchangers. As a consequence, the refrigerant distribution

Boyer, Edmond

397

Research Positionsfor Development of Novel Green Air Conditioning and Refrigeration Systems for Transportation Vehicles  

E-Print Network [OSTI]

in refrigeration and heat pump systems, HVAC, porous media development/characterization, transport phenomena of compact and lightweight heat exchangers for evaporator and condenser; v) Development of heatdriven adsorption chillers tailored to service vehicles; vi) Development and implementation of thermal energy

Bahrami, Majid

398

EA-1643: Finding of No Significant Impact  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commerical Freezers, and Commercial Refrigerator-Freezers without Doors; and Remote Condensing Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator-Freezers

399

Dry dilution refrigerator with 4He-1K-loop  

E-Print Network [OSTI]

In this article we summarize experimental work on cryogen-free 3He/4He dilution refrigerators which, in addition to the dilution refrigeration circuit, are equipped with a 4He-1K-stage. This type of DR becomes worth considering when high cooling capacities are needed at T ~ 1 K to cool cold amplifiers and heat sink cables. In our application, the motivation for the construction of this type of cryostat was to do experiments on superconducting quantum circuits for quantum information technology and quantum simulations. In other work, DRs with 1K-stage were proposed for astro-physical cryostats. For neutron scattering research, a top-loading cryogen-free DR with 1K-stage was built which was equipped with a standard commercial dilution refrigeration insert. Cooling powers of up to 100 mW have been reached with our 1K-stage, but higher refrigeration powers were achieved with more powerful pulse tube cryocoolers and higher 4He circulation rates in the 1K-loop. Several different versions of a 1K-loop have been test...

Uhlig, Kurt

2014-01-01T23:59:59.000Z

400

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optimization of Industrial Refrigeration Systems  

E-Print Network [OSTI]

A computer program designed to optimize the size of an evaporative condenser in a two-stage industrial refrigeration plant was created. The program sizes both the high-stage and low-stage compressors and an evaporative condenser. Once the initial...

Flack, P. J.; Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L.

402

Direct condensation refrigerant recovery and restoration system  

SciTech Connect (OSTI)

This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

Grant, D.C.H.

1992-03-10T23:59:59.000Z

403

Dual Heating and Cooling Sorption Heat Pump for a Food Plant  

E-Print Network [OSTI]

Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

Rockenfeller, U.; Dooley, B.

404

http://www.procurement.vt.edu/HokieMart/hm.html Revised 12.12.13  

E-Print Network [OSTI]

) ­ Include expenses for refrigerators, freezers, fume hoods, biological safety cabinets, radiation survey for refrigerators, freezers, fume hoods, biological safety cabinets, radiation survey instruments costing $2

Buehrer, R. Michael

405

EA-0372: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the environmental impacts resulting from new or amended energy-efficiency standards for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as...

406

Fridges to fight childhood disease  

SciTech Connect (OSTI)

A solar-powered refrigerator/freezer has been installed in a medical center in Bhoorbaral, India. The installation and performance of the refrigerator/freezer are described.

Lerner, T.

1983-04-01T23:59:59.000Z

407

OCCUPATIONAL & ENVIRONMENTAL SAFETY SERVICES C:\\Documents and Settings\\sysdev\\Local Settings\\Temporary Internet Files\\OLK412\\Lab Equipment Release -New Format.doc  

E-Print Network [OSTI]

, autoclaves, centrifuges, refrigerators, freezers, incubators, BioSafety cabinets, and analytical equipment, refrigerators, freezers, incubators, etc. #12;OCCUPATIONAL & ENVIRONMENTAL SAFETY SERVICES C

Krovi, Venkat

408

EA-1138: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1138: Finding of No Significant Impact Proposed Energy-Conservation Standards for Refrigerators, Refrigerator - Freezers, and Freezers Finding of No Significant Impact for...

409

Research and development of highly energy-efficient supermarket refrigeration systems. Volume 2. Supplemental laboratory testing  

SciTech Connect (OSTI)

The Supermarket Refrigeration System project was structured to investigate and develop a new, highly energy-efficient supermarket refrigeration system which features unequal, parallel compressors, microprocessor suction pressure control, and floating head pressure control. Energy savings are achieved because such a system is better able to match compressor capacity with the required refrigeration load. For this same reason, the unequal, parallel compressor system can operate at the lowest possible condenser pressure. The combined effect of highest possible suction pressure and lowest possible condensing pressure substantially increases the energy efficiency ratio (EER) of the refrigeration system. The test conditions included winter and spring ambient temperatures ranging from 8/sup 0/ to 70/sup 0/F, refrigerants R-12 and R-502 with corresponding evaporator temperatures of 20/sup 0/ and -20/sup 0/F, respectively, and variable refrigeration loads between 100,000 and 170,000 Btu/hr. Heat reclaim tests were performed with R-12 only. For the three sets of tests performed, R-12, R-12 with heat reclaim, and R-502, the highest system EER was achieved when the unequal, parallel compressor system was operated with microprocessor control and floating head control.

Toscano, W.M.; Walker, D.H.; Tetreault, R.D.

1983-06-01T23:59:59.000Z

410

An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade  

SciTech Connect (OSTI)

In February 2006, Jefferson Laboratory in Newport News, VA, received â Critical Decision 1â (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

2008-03-01T23:59:59.000Z

411

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

412

HFC supermarket refrigeration demonstration. Phases 1 and 2  

SciTech Connect (OSTI)

The HFC Supermarket Refrigeration Demonstration tested and evaluated HFC refrigerants in a new Shop `n Save supermarket in Glens Falls, New York. This project included laboratory testing of HFC refrigerants for medium- and low-temperature application, the design of a supermarket refrigeration system to accommodate the new refrigerants, installation, start-up, and field monitoring.

Borhanian, H.; Rafuse, L.

1996-04-01T23:59:59.000Z

413

The 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, U.S.A, 11-15 May 2009  

E-Print Network [OSTI]

REFRIGERATION SYSTEMS USING DESIGN OF EXPERIMENTS J. ROUDAUT1,2,* , H. BOUCHEKARA1 , A. KEDOUS-LEBOUC1 , J Refrigeration (AMRR) system. The heat transfer fluid is water, the regenerator consists of stacked gadolinium avoid using greenhouse gases and lower energy consumption by 20-30% over conventional technology

Boyer, Edmond

414

New age water chillers with water as refrigerant  

E-Print Network [OSTI]

Vacuum-process technology producing chilled water needs no refrigerant of the conventional kind, but water from the process itself is used to generate cooling. This eye-catching novelty incorporates many of the considerations about the future of refrigerants: "ozone friendly", no extra demands for safety measures or for skilful operators, no special requirements concerning the installation's components, lower maintenance costs since leakages can be accommodated from the system. Vacuum-process technology may be used not only for production of chilled water but also for Binary Ice - pumpable suspension of minute ice crystals in an aqueous solution. This means that all the advantages related to a latent heat system may become available.

Kühnl-Kinel, J

1998-01-01T23:59:59.000Z

415

Guide for the selection of supermarket refrigeration systems  

SciTech Connect (OSTI)

This report presents an evaluation of supermarket refrigeration involving the use of conventional and multiplex compressor systems. Computer simulations of these systems were performed for six representative sites. The performance predictions generated in this fashion were tabulated to allow hand calculation of electric costs for any prevailing electric rate schedule. A methodology was also developed to allow economic assessment of the conventional and multiplex systems and of various enhancements employed with the multiplex system. The results of the evaluation showed the multiplex refrigeration system produced a reasonable payback for all sites examined, depending upon the enhancements employed. System features that had the greatest impact on payback were heat reclaim, hot gas defrost, and floating head pressure. 25 figs., 28 tabs.

Walker, D.H.; Tsaros, T.L.; Deming, G.I. (Foster-Miller, Inc., Waltham, MA (USA))

1990-03-01T23:59:59.000Z

416

California Energy Resources Conservation and Development Commission  

E-Print Network [OSTI]

Division Regulations for Appliance Efficiency Standards Re 1ating to Refrigerators, Refrigerator-Freezers sold in California: (a) Refrigerators, refrigerator-freezers, and freezers, which are directly operated on the appliance. ~ (b) Refrigerators and Freezers (1) "Automatic defrost system" means the defrosting action

417

Suction muffler for refrigeration compressor  

DOE Patents [OSTI]

A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

Nelson, R.T.; Middleton, M.G.

1983-01-25T23:59:59.000Z

418

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

1984-01-01T23:59:59.000Z

419

Comparison of environmental impact for air source heat pump when using symmetric and  

E-Print Network [OSTI]

­ Driving to reduce refrigerant charge and GWP values · EPBD Directive ­ Lower heating demand per m2 on subcooling and NoP · The "Pinch point" between Refrigerant and Water will allow for "free" subcooling · SSP GCOP Subcooling #12;Distribution system for reversed evaporator duty · Refrigerant distribution ­ Reduce need

Oak Ridge National Laboratory

420

Covered Product Category: Refrigerated Beverage Vending Machines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vending machines are equipped with controls or software that put the lighting andor refrigeration systems into a low power state at night, on weekends, or other periods of...

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures  

E-Print Network [OSTI]

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures Improved Refrigerant Charge Purpose Component packages require in some climate zones that split system air refrigerant charge. For the performance method, the proposed design is modeled with less efficiency

422

Layer of protection analysis applied to ammonia refrigeration systems  

E-Print Network [OSTI]

Ammonia refrigeration systems are widely used in industry. Demand of these systems is expected to increase due to the advantages of ammonia as refrigerant and because ammonia is considered a green refrigerant. Therefore, it is important to evaluate...

Zuniga, Gerald Alexander

2009-05-15T23:59:59.000Z

423

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

424

RECENT PROGRESS IN DYNAMIC PROCESS SIMULATION OF CRYOGENIC REFRIGERATORS  

SciTech Connect (OSTI)

At the CEC 2005 a paper with the title 'Helium refrigerator design for pulsed heat load in Tokamaks' was presented. That paper highlighted the control requirements for cryogenic refrigerators to cope with the expected load variations of future nuclear fusion reactors. First dynamic computer simulations have been presented.In the mean time, the computer program is enhanced and a new series of process simulations are available. The new program considers not only the heat flows and the temperature variations within the heat exchangers, but also the variation of mass flows and pressure drops. The heat transfer numbers now are calculated in dependence of the flow speed and the gas properties. PI-controllers calculate the necessary position of specific valves for maintaining pressures, temperatures and the rotation speed of turbines.Still unsatisfactory is the fact, that changes in the process arrangement usually are attended by adjustments in the program code. It is the main objective of the next step of development a more flexible code which enables that any user defined process arrangements can be assembled by input data.

Kuendig, A. [Linde Kryotechnik AG, Dattlikonerstrasse 5, CH-8422 Pfungen (Switzerland)

2008-03-16T23:59:59.000Z

425

Switchover software reliability estimate for Paducah Freezer/Sublimer computer systems  

SciTech Connect (OSTI)

K-25 Engineering Division purchased a series of redundant computer systems and developed software for the purpose of providing continuous process monitoring and control for the Freezer/Sublimer equipment in the gaseous diffusion process at the Paducah Gaseous Diffusion Plant. The application software is loaded on two central processing units (CPU) so that in the event of a failure of the primary unit, the processing can switch to the backup unit and continue processing without error. It is the purpose of this document to demonstrate the reliability of this system with respect to its ability to switch properly between redundant CPU. The total reliability estimation problem -- which considers the computer hardware, the operating system software, and the application software -- has been reduced to one that considers only the application software directly involved in the switchover process. Estimates are provided for software reliability and the testing coverage. Software and hardware reliability models and reliability growth models are considered in addition to Bayesian approaches.

Flanagan, D.M.; Davis, J.N.

1993-04-01T23:59:59.000Z

426

Active Diesel Emission Control Technology for Transport Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

427

Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate...

428

DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...  

Broader source: Energy.gov (indexed) [DOE]

Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm...

429

2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...  

Energy Savers [EERE]

11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

430

2014-04-10 Issuance: Test Procedures for Commercial Refrigeration...  

Broader source: Energy.gov (indexed) [DOE]

0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document...

431

Working Fluids Low Global Warming Potential Refrigerants - 2013...  

Energy Savers [EERE]

Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies...

432

Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

environmentally harmful refrigerants and foam and enables the recycling of the plastic, metal, and wiring components. 1 Secondary refrigerators are units not located in the...

433

Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Low-Global-Warming-Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Next Generation Low-Global...

434

Working Fluids Low Global Warming Potential Refrigerants | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center. Life Cycle Climate Performance of supermarket refrigeration.
Credit: Oak Ridge National Lab Life Cycle Climate Performance of supermarket refrigeration....

435

Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...  

Broader source: Energy.gov (indexed) [DOE]

Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of...

436

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump  

E-Print Network [OSTI]

mode, the system must remove heat from the cold outdoor air and provide it to the conditioned space. To remove the heat from the outdoor air, the refrigerant entering the outdoor heat exchanger must be colder than the outdoor air. The outdoor air... is pulled across the heat exchanger surface by the outdoor fan Hence, the cold liquid refrigerant passing through the evaporator coil receives heat from the outdoor ambient air passing over the coil, causing the refrigerant to vaporize into a cool gas...

Parker, Brandon DeWayne

1995-01-01T23:59:59.000Z

437

Entrainment of refrigerated air curtains down a wall  

SciTech Connect (OSTI)

Refrigerated air curtains are used in open supermarket display cases as a barrier between the warm ambient air and the cold refrigerated air. Entrainment of ambient air into the curtain by shear layer mixing contributes to both the sensible and the latent heat load on the display case. To better understand the fluid dynamics which govern entrainment, velocity and temperature measurements of the curtains were made in a refrigerated display case, which was modified to allow a more fundamental flow. In particular, a vertical solid wall was installed to approximately represent a fully-stocked configuration. As such, negatively-buoyant wall jets (with high inflow turbulence) in the Reynolds number range of 4200-8000 and in the Richardson number range of 0.13-0.58 were examined. To define the air curtain vortex structures, flow visualization of the curtain interface was employed. The results of which showed that the entrainment of the ambient air was found to be governed by a variety of eddy engulfing structures. Particle Image Velocimetry was used to examine the velocity profiles of the air curtains in a non-intrusive manner, the measurements of which indicated negatively-buoyant acceleration following the jet exhaust, followed by a more linear curtain growth characteristic of isothermal wall jets. In addition, thermocouples were used to obtain the net increase in temperature of the curtain due to entrainment, where it was found that the dimensionless thermal energy loss decreased with decreasing Reynolds number.

Field, Brandon S.; Loth, Eric [Department of Aerospace Engineering, University of Illinois, Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

2006-01-01T23:59:59.000Z

438

Advances in the Research of Heat Pump Water Heaters  

E-Print Network [OSTI]

This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

439

Energy-conservation program: notice of proposed rulemaking  

SciTech Connect (OSTI)

A notice of proposed rulemaking, proposing energy efficiency standards for refrigerators, refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment (not including furnaces) kitchen ranges and ovens, and central air conditioners ispresented. Comments are invited and the procedure for public comment is detailed. Issues included and presented in the proposed rulemaking are: determination of energy efficiency levels, macro-economic analysis, certification and enforcement, effect on other law, small business exemptions, environmental assessment, and regulatory analysis. (MCW)

Not Available

1980-06-12T23:59:59.000Z

440

Aluminum tunnel junction detector operation in an adiabatic demagnetization refrigerator  

SciTech Connect (OSTI)

Superconducting tunnel junction detectors are being developed as both particle and X-ray detectors. Aluminum junctions are desirable for detectors because of their strong native oxide barriers, and because the small energy gap of aluminum is a good match to ballistic phonons generated by particle interactions in single crystals of silicon or other low acoustic-loss insulating crystals. Aluminum tunnel junction detectors must be operated near 0.1 T{sub C} which is 110 mK for aluminum. To operate detectors at these temperatures, we have developed adiabatic demagnetization refrigerators (ADRs) for the laboratory and prototype ADRs for space based operation. These cryogenic systems are simpler, more convenient and more portable than most dilution refrigerators. We have demonstrated that the magnetic field of the ADR need not compromise the performance of aluminum tunnel junctions. We have recently initiated a program to develop superconducting tunnel junctions (STJs) as high resolution X-ray detectors and low energy threshold particle detectors. This complements our existing program in which we are developing high resolution X-ray microcalorimeter detectors. One of our goals for both of these cryogenic detector development efforts is to observe X-ray emission from cosmic sources. This requires a refrigeration system that can operate under zero gravity space flight conditions. For the microcalorimeter project, temperatures of 100 mK and below are required to sufficiently reduce the heat capacity of the device. We have therefore developed an adiabatic demagnetization refrigerator (ADR) system which can be configured for space flight.

Labov, S.; Silver, E.; Le Gros, M. (Lawrence Livermore National Lab., CA (United States)); Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Laws, K.; Johnson, R.T.; Simon, M.W.; Stricker, D.A.; Watson, R.M. (San Francisco State Univ., CA (United States)); Madden, N.; Landis, D. (Lawrence Berkeley Lab., CA (United States))

1992-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use  

SciTech Connect (OSTI)

Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

Potter, T.F.; Benson, D.K.

1991-01-01T23:59:59.000Z

442

Experimental analysis of variable capacity heat pump system equipped with vapour injection and permanent magnet motor.  

E-Print Network [OSTI]

?? This study analyzes the performance of variable capacity heat pump scroll compressor which is equipped with vapour injection and permanent magnet motor. Refrigerant used… (more)

Awan, Umer Khalid

2012-01-01T23:59:59.000Z

443

Accepted Manuscript Title: A critical approach to the determination of optimal heat rejection pressure in  

E-Print Network [OSTI]

. A commercial refrigeration plant and a heat pump water heater were finally simulated to verify their energy. Keywords: CO2, Transcritical cycle, Optimisation, Refrigeration, Heat pump, Gas cooler. Nomenclature CAccepted Manuscript Title: A critical approach to the determination of optimal heat rejection

Paris-Sud XI, Université de

444

PhD student in Energy Technology, specifically in New low GWP refrigerants  

E-Print Network [OSTI]

processes in a sustainable fashion as concerns technical management, financial profitability for applying refrigeration and heat pump technology and systems studies of buildings and complete neighborhoods include the following documents: 1. Curriculum vitae, 2. Transcripts of college/university degrees 3

Kazachkov, Ivan

445

RADIATION SAFETY MANUAL (REVISED MARCH 2010) 103 USER RADIATION SURVEY REPORT  

E-Print Network [OSTI]

on hand, is the isotope secured? e. Refrigerator and other storage area logs current? f. Refrigerators/freezers

446

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

447

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

448

Solid-vapor adsorption refrigeration system development. Final report, October 1987-September 1988  

SciTech Connect (OSTI)

The report describes the feasibility study of several gas-fired refrigeration cycles using ammoniated complex compounds as the working media. The cycles take advantage of the coordinative characteristic of complex compound ligand bonds which result in large coordination spheres with only one degree of freedom. The coordinative bond yields refrigerant concentration plateaus of constant pressure, which in turn result in high thermal-cycle efficiencies and eliminate electrical parasitics and the requirement for moving parts. Media properties of known complex compound materials were verified with respect to vapor-pressure equilibria, coordination properties, and thermal stability. An existing computer model was used to predict heat balances and coefficients of performance.

Rockenfeller, U.

1988-10-01T23:59:59.000Z

449

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

450

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

451

Duke University Laboratory Equipment  

E-Print Network [OSTI]

prior to transport includes, but is not limited to the following: refrigerators, freezers, centrifuges

Wolpert, Robert L

452

Herb Production--Is It for You?  

E-Print Network [OSTI]

such as refrigerators, freezers, drying sheds, and dehydrators take money to buy and maintain. Specialty crop

O'Laughlin, Jay

453

California State University, Fullerton Campus Fire Safety Right-to-Know Act  

E-Print Network [OSTI]

, freezers, refrigerators, stoves (in addition to the one provided) outdoor clotheslines or drying equipment

de Lijser, Peter

454

California State University, Fullerton University Police Campus Fire Safety Right-to-Know Act  

E-Print Network [OSTI]

, freezers, refrigerators, stoves (in addition to the one provided) outdoor clotheslines or drying equipment

de Lijser, Peter

455

California State University, Fullerton University Police Campus Fire Safety Right-to-Know Act  

E-Print Network [OSTI]

, dryers, freezers, full sized refrigerators and stoves (except those provided in the apartments), outdoor

de Lijser, Peter

456

California State University, Fullerton University Police Campus Fire Safety Right-to-Know Act  

E-Print Network [OSTI]

caused by the earthquake. Page 9, Navigating Your New Space: Washers, dryers, freezers, refrigerators

de Lijser, Peter

457

RECOMMENDED SHIPBUILDING CONSTRUCTION GUIDELINES FOR CRUISE VESSELS DESTINED TO CALL ON U. S. PORTS  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 15.0 Provision Rooms and Walk-In Refrigerators and Freezers

458

By Robert D. Brown, Jr. Domestic indium production was confined 227, containing 20% indium, 2.8% silver, and  

E-Print Network [OSTI]

doors on commercial refrigerators and freezers frost free. Infrared reflecting coatings on window glass

459

Office of Emergency Management UCF Facilities and Safety  

E-Print Network [OSTI]

equipment from outdoor and rooftop locations Clear refrigerators and freezers of items that could spoil

Wu, Shin-Tson

460

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

Boynton, Walter R.

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

Boynton, Walter R.

462

PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant  

E-Print Network [OSTI]

the use of carbon dioxide as refrigerant in supermarket refrigeration systems. The work includes fieldPhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 a PhD student in Energy Technology, specifically Commercial refrigeration systems with CO2

Kazachkov, Ivan

463

Energy use of icemaking in domestic refrigerators  

SciTech Connect (OSTI)

This study was designed to develop and test a procedure to measure the electrical consumption of ice making in domestic refrigerators. The Department of Energy (DOE) test procedure was modified to include the energy used for icemaking in conventional refrigerators and those equipped with automatic icemakers. The procedure assumed that 500 grams of ice would be produced daily. Using the new test procedure and the existing DOE test (as a benchmark), four refrigerators equipped with automatic icemakers were tested for ice-making energy use. With the revised test, gross electricity consumption increased about 10% (100 kWh/yr) due to automatic icemaking but about 5% (55 kWh/yr) could be attributed to the special features of the automatic icemaker. The test also confirmed the feasibility of establishing procedures for measuring energy use of specific loads and other activities related to domestic refrigerators. Field testing and subsequent retesting revealed a 14% increase in energy use.

Meier, A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Martinez, M.S. [ENVEST-SCE, Irwindale, CA (United States)

1996-02-01T23:59:59.000Z

464

Of Refrigerators & Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulations Of Refrigerators & Regulations February 8, 2011 - 9:29am Addthis Jesse Lee White House Director of Online Affairs Editor's Note: This entry has been cross-posted from...

465

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network [OSTI]

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

466

International Refrigeration: Proposed Penalty (2012-CE-1510)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that International Refrigeration Products failed to certify a various room air conditioners as compliant with the applicable energy conservation standards.

467

ARI delegation to Japan on Alternative Refrigerants  

SciTech Connect (OSTI)

Researchers from ARI member companies spoke at the International Conference on Alternative Refrigerants in Tokyo and visited several Japanese organizations for the purpose of exchanging information on alternative refrigerants. The specific purpose of the meetings was to review the methods being utilized to screen alternatives to CFCs and HCFCs: materials compatibility screening methods, lubricant testing techniques, as well as flammability studies. A list of papers presented at the conference is included.

Not Available

1993-02-01T23:59:59.000Z

468

Combined cold compressor/ejector helium refrigerator  

DOE Patents [OSTI]

A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

Brown, D.P.

1984-06-05T23:59:59.000Z

469

Combined cold compressor/ejector helium refrigerator  

DOE Patents [OSTI]

A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

Brown, Donald P. (Southold, NY)

1985-01-01T23:59:59.000Z

470

Frostless heat pump having thermal expansion valves  

DOE Patents [OSTI]

A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

2002-10-22T23:59:59.000Z

471

Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report  

SciTech Connect (OSTI)

This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

Kauffman, R.

1993-04-01T23:59:59.000Z

472

E-Print Network 3.0 - active magnetic refrigerator Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: : The Perspectives of Patient and Public Health Organizations Aerosols Air Conditioning and Refrigeration... : Refrigerant Alternatives for Chillers Koichi Watanabe,...

473

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

474

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

475

Fully portable, highly flexible dilution refrigerator systems for neutron scattering  

E-Print Network [OSTI]

775 Fully portable, highly flexible dilution refrigerator systems for neutron scattering P. A systems developed specifically for neutron scattering environ- ments. The refrigerators are completely relatively recently however, the lowest temperatures available in almost all neutron scattering laboratories

Boyer, Edmond

476

adiabatic demagnetization refrigerator: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refrigeration, steam... Zuo, Z.; Hu, W. 2006-01-01 287 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

477

Could You Save Money on Your Refrigerator? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy...

478

Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)  

SciTech Connect (OSTI)

This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

Deru, M.

2011-02-01T23:59:59.000Z

479

Electrocaloric devices based on thini-film heat switches  

SciTech Connect (OSTI)

We describe a new approach to refrigeration and electrical generation that exploits the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of these thin-film heat engines can be at least as high as that of current thermoelectric devices. Advanced heat switches would enable thin-film heat engines to outperform conventional vaporcompression devices.

Epstein, Richard I [Los Alamos National Laboratory; Malloy, Kevin J [UNM

2009-01-01T23:59:59.000Z

480

Control and optimal operation of simple heat pump cycles  

E-Print Network [OSTI]

Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

Skogestad, Sigurd

Note: This page contains sample records for the topic "heating refrigeration freezers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microcomputer Software for Refrigerant Property and Cycle Analysis Calculations  

E-Print Network [OSTI]

the thermodynamic properties of ten fluorocarbon refrigerants, (Rll, R12, R13, R14, R22, R23, Rl13, Rl14, R500, R502) and ammonia in the sub-cooled, saturation, 2-phase, and superheat regions. In the sec tions which follow, the theoretical basis... for each fluorocarbon refrigerant, represent curve fits to existing tabular property data. For both ammonia and the fluorocarbon refrigerants, the equations for the following four basic properties of refrigerants are used. - Liquid density as a...

Bierschenk, J. L.; Strohl, S. T.; Schmidt, P. S.

482

Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2  

E-Print Network [OSTI]

1 Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2: +33 2 23 23 42 97 Fax: +33 2 23 23 40 51 ABSTRACT This article presents a Heat Pump for Simultaneous heat pump i in is isentropic mec mechanical nof without frosting o out r refrigerant S sublimation sc

Paris-Sud XI, Université de

483

The effect of alternate defrost strategies on the reverse-cycle defrost of an air-source heat pump  

E-Print Network [OSTI]

with and understanding of my questions and ideas. Thanks also to my family and friends for their support and help svhile I svorked on this project. Finally, I would like to acknowledge the American Society oi' Heating, Refrigerating, and Air-Conditioning Engineers... . . 21 Psychrometric Room Temperature Control Characteristics during a Frosting, 'Defrosting Test 3. 3 4. 3 4. 10 4. 11 Refrigerant Circuit Arrangement of the Outdoor Coil Heat Pump System Schematic Refrigerant Line Temperature Probe . Indoor...

Schliesing, John Steven

1988-01-01T23:59:59.000Z

484

Minimal universal quantum heat machine  

E-Print Network [OSTI]

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

485

Toxicity Data to Determine Refrigerant Concentration Limits  

SciTech Connect (OSTI)

This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

Calm, James M.

2000-09-30T23:59:59.000Z

486

Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options  

SciTech Connect (OSTI)

In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

2013-01-01T23:59:59.000Z

487

Control method for mixed refrigerant based natural gas liquefier  

DOE Patents [OSTI]

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

2003-01-01T23:59:59.000Z

488

Fast Nonconvex Model Predictive Control for Commercial Refrigeration  

E-Print Network [OSTI]

its capabil- ity to minimize the total cost of energy for a commercial refrigeration system while multi-zone refrigeration system, consisting of several cooling units that share a common compressor. This corresponds roughly to 2% of the entire electricity consumption in the country. Refrigerated goods constitute

489

Form Date 4/4/01 Refrigerant Service Order Form  

E-Print Network [OSTI]

Recovery Unit ID # : Added Lbs oz Lbs oz Lbs oz Startup Charge Net Refrigerant Added: Lbs oz Parts UsedForm Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type

Russell, Lynn

490

Feasibility of Solar-Assisted Refrigerated Transport in Australia  

E-Print Network [OSTI]

systems. Keywords: refrigeration, transport, photovoltaics, economics. 1 #12;B. Elliston, M. Dennis) modules to minimise the use of diesel generation in refrigerated transport. Sub- sequently, UK supermarket. This report investigates the merit of retrofitting a PV system to assist refrigerated trailers in Australian

491

Helium refrigeration considerations for cryomodule design  

SciTech Connect (OSTI)

Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

Ganni, V.; Knudsen, P. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States)

2014-01-29T23:59:59.000Z

492

Ground-Coupled Heat Pump Applications and Case Studies  

E-Print Network [OSTI]

The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

Braud, H. J.

1989-01-01T23:59:59.000Z

493

Determination of pool boiling Critical Heat Flux enhancement in nanofluids  

E-Print Network [OSTI]

Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

Truong, Bao H. (Bao Hoai)

2007-01-01T23:59:59.000Z

494

Energy effectiveness of simultaneous heat and mass exchange devices  

E-Print Network [OSTI]

Simultaneous heat and mass exchange devices such as cooling towers, humidifiers and dehumidifiers are widely used in the power generation, desalination, air conditioning, and refrigeration industries. For design and rating ...

Narayan, G. Prakash

2010-01-01T23:59:59.000Z

495

Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)  

SciTech Connect (OSTI)

Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned �¢����phase change�¢��� or �¢����two-phase�¢��� pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak�¢����a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems�¢����another environmental win. Project Activities - The ARCTIC project goal was to further develop an

Todd Salamon

2012-12-13T23:59:59.000Z

496

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-08-01T23:59:59.000Z

497

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-01-01T23:59:59.000Z

498

Covered Product Category: Refrigerated Beverage Vending Machines  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

499

Alternative Refrigerants for Building Air Conditioning  

E-Print Network [OSTI]

The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

Bivens, D. B.

1996-01-01T23:59:59.000Z

500

Retail refrigeration systems -- The use of ammonia and two-level secondary refrigeration  

SciTech Connect (OSTI)

The concept of a secondary refrigeration system for high-temperature use as investigated in 1991, and a design for a full high-temperature system was completed the following year. In late 1992, a supermarket chain commissioned a study of the feasibility of turning the design into a practical application and assisted the project in 1993 by commissioning a test facility for single-temperature secondary refrigeration at one of the company`s factory sites. Results and conclusions from this trial work pointed toward the need for a total secondary refrigeration system, including a low-temperature system for frozen food display cases, and the possibility of utilizing environmentally friendly ammonia as the primary refrigerant. Therefore, in late 1993/early 1994, a low-temperature system was developed and commissioned at the test facility. Full collaboration between the supermarket company and the contractor resulted in the funding of practical trial work and feasibility studies for both secondary refrigeration and a fully detailed proposal for the use of ammonia in a public retail environment. In May 1995, the first UK ammonia and two-level secondary refrigeration system began operation in a supermarket in Horsham, Sussex England.

Thomas, A.S. [Westward Refrigeration, Gloucester (United Kingdom)

1998-10-01T23:59:59.000Z