Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heating Rate Profiles in Galaxy Clusters  

E-Print Network [OSTI]

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

2

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

3

Status of the Broadband Heating Rate Profile (BBHRP) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Status of the Broadband Heating Rate Profile (BBHRP) VAP Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Heck, Patrick University of Wisconsin Rutan, David Analytical Services & Materials, Inc.

4

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

5

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

6

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

7

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

8

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

9

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

10

Recent Developments on the Broadband Heating Rate Profile Value-Added Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Developments on the Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia R. T. Cederwall and S. C. Xie Los Alamos National Laboratory Los Alamos, New Mexico J. A. Ogren National Oceanic and Atmospheric Administration

11

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

12

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

13

ARM - Measurement - Radiative heating rate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

14

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect (OSTI)

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

15

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

16

.Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding  

E-Print Network [OSTI]

l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J process parameters such as the voltage profiles, heat generation patterns and temperature profiles with equivalent slag, electrode and other geometrical variable; Calcu- 0 lations show that the heat generation

Eagar, Thomas W.

17

The Broadband Heating Rate Profile (BBHRP) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

brown-97.pdf Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and...

18

Property:HeatRate | Open Energy Information  

Open Energy Info (EERE)

HeatRate HeatRate Jump to: navigation, search This is a property of type Number. Pages using the property "HeatRate" Showing 25 pages using this property. (previous 25) (next 25) A AES Mendota Biomass Facility + 17,873.6 + APS Biomass I Biomass Facility + 8,911 + Acme Landfill Biomass Facility + 12,916.67 + Adrian Energy Associates LLC Biomass Facility + 13,170.6 + Agrilectric Power Partners Ltd Biomass Facility + 17,327.1 + Al Turi Biomass Facility + 15,600.2 + Alabama Pine Pulp Biomass Facility + 15,826.23 + Albany Landfill Gas Utilization Project Biomass Facility + 11,913.9 + Altamont Gas Recovery Biomass Facility + 10,500 + American Canyon Power Plant Biomass Facility + 10,886.8 + American Ref-Fuel of Delaware Valley Biomass Facility + 18,674.9 +

19

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

20

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Profiles of heating in turbulent coronal magnetic loops  

E-Print Network [OSTI]

Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

2007-02-28T23:59:59.000Z

22

Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler  

Science Journals Connector (OSTI)

Abstract In this paper, systematic experimental investigation on the heat flux distribution inside the furnace of a 300MW CFB boiler was presented. Detailed experimental setup and measurement techniques were presented and a finite element method approach was applied to determine the heat flux. The heat flux profile on the rear wall along the horizontal direction shows a significant imbalance at different boiler loads. As a result of the non-uniform layout of the heating surfaces, which is the essential reason, as well as the imbalance and deviation of the temperature field, solid suspension density and solid flow rate, the central section of the furnace possesses higher heat flux distribution compared to the side sections. The heat flux is also found to increase with the increasing boiler load and decrease as the height increases. Heat flux near the roof, where the solid suspension density is rather small, is found to decrease remarkably revealing less heat absorption in this area. In addition, an empirical model of heat transfer coefficient is revised using the average data at different boiler loads. A mechanism heat transfer model based on the membrane water-wall configuration is proposed and validated with the heat flux profile obtained from the measurement. The model provides good accuracy for correlating 85% of the data within 10%.

Ruiqing Zhang; Hairui Yang; Nan Hu; Junfu Lu; Yuxin Wu

2013-01-01T23:59:59.000Z

23

Microbase Cloud Products and Associated Heating Rates in the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific J. H. Mather and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington...

24

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1992-03-17T23:59:59.000Z

25

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1993-02-04T23:59:59.000Z

26

Tables for solution of the heat-conduction equation with a time-dependent heating rate  

E-Print Network [OSTI]

Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

Bergles A. E.

1962-01-01T23:59:59.000Z

27

Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches for Heating in a Mediterranean Lizard  

E-Print Network [OSTI]

369 Influence of Heat Transmission Mode on Heating Rates and on the Selection of Patches for Heating in a Mediterranean Lizard Josabel Belliure* Luis M. Carrascal Department of Evolutionary Ecology´ Gutie´rrez Abascal 2, 28006 Madrid, Spain Accepted 6/6/02 ABSTRACT Heliothermy (heat gain by radiation

Carrascal, Luis M.

28

Solar Heating Rates: The Importance of Spherical Geometry  

Science Journals Connector (OSTI)

A crucial component of any GCM is a scheme for calculating atmospheric heating rates. Since a detailed treatment of all processes involved is time consuming, many approximations are usually made. An approximation used in virtually all GCM ...

D. J. Lary; M. Balluch

1993-12-01T23:59:59.000Z

29

Inverse bremsstrahlung heating rate for dense plasmas in laser fields  

SciTech Connect (OSTI)

We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (? = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (? = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ? 410{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter ? = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India)] [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)] [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

2013-07-15T23:59:59.000Z

30

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification Explores...

31

Prediction of the heat release rate of wood  

SciTech Connect (OSTI)

A model for the heat release rate of wood during flaming combustion was developed during this research. It includes the effects of char shrinkage, multiple chemical components, adsorbed moisture, internal convective cooling and the variation of the thermophysical and thermochemical properties with temperature and the mass retention fraction of the char. It does not include char oxidation or diffusion of moisture and volatile pyrolysis products toward the rear surface. It calculates the time to ignition, mass burning rate, heat release rate, heat of combustion, heat of gasification and depth of char. An important part of this research was the determination of the thermochemical and thermophysical properties required by the model. An apparatus was developed for determining the kinetic parameters and the heat of combustion of the volatiles under conditions similar to those in the interior of a flaming slab of wood. Data were obtained on each of the four major chemical components present in Douglas fir. Thermal diffusivity measurements on Douglas fir and its char yielded an average value of 2.1 {times} 10{sup {minus}7} s{sup 2}/s which was nearly independent of temperature and mass retention fraction of the char for temperature sup to 500{degree}C and for mass-retention fractions above 0.30.

Parker, W.J.

1988-01-01T23:59:59.000Z

32

Project Profile: Dual-Purpose Heat Transfer Fluids for CSP  

Broader source: Energy.gov [DOE]

Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in heat transfer applications and thermal energy storage.

33

Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity of Radiative Fluxes and Heating Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San Diego La Jolla, California G. M. McFarquhar University of Illinois at Urbana-Champaign Urbana, Illinois D. L. Mitchell Desert Research Institute Reno, Nevada Introduction A single-column model (SCM) is used to examine the sensitivity of basic quantities such as atmospheric radiative heating rates and surface and top of atmosphere (TOA) radiative fluxes to various parameter- izations of clouds and cloud microphysics. The SCM was run at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites using forcing data derived from forecast products. The forecast

34

Standby Rates for Combined Heat and Power Systems  

SciTech Connect (OSTI)

Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

2014-02-01T23:59:59.000Z

35

A critical evaluation of the use of the profile model in calculating mineral weathering rates  

Science Journals Connector (OSTI)

The PROFILE model is used extensively in the European Critical Loads programme as an aid to international negotiations on SO2 emission abatement. PROFILE calculates the rates of cation release by mineral weatheri...

Mark E. Hodson; Simon J. Langan; M. Jeff Wilson

1997-08-01T23:59:59.000Z

36

a critical evaluation of the use of the PROFILE model in calculating mineral weathering rates  

Science Journals Connector (OSTI)

The PROFILE model is used extensively in the European Critical Loads programme as an aid to international negotiations on SO2 emission abatement. PROFILE calculates the rates of cation release by mineral weatheri...

MARK E. HODSON; SIMON J. LANGAN; M. JEFF WILSON

1997-08-01T23:59:59.000Z

37

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage...

38

Property:Heat Recovery Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search This is a property of type Number. Pages using the property "Heat Recovery Rating" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + 300,000 + Distributed Generation Study/615 kW Waukesha Packaged System + 2,500,000 + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + 46,105 + Distributed Generation Study/Arrow Linen + 3,000,000 + Distributed Generation Study/Dakota Station (Minnegasco) + 290,000 + Distributed Generation Study/Elgin Community College + 11,200,000 + Distributed Generation Study/Emerling Farm + 2,000,000 + Distributed Generation Study/Floyd Bennett + 230,000 + Distributed Generation Study/Harbec Plastics + 3,750,000 + Distributed Generation Study/Hudson Valley Community College + 32,500,000 +

39

Project Profile: High Operating Temperature Liquid Metal Heat...  

Broader source: Energy.gov (indexed) [DOE]

investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800C. By allowing higher...

40

Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids  

Broader source: Energy.gov [DOE]

The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

42

High rate heating driven decomposition of energetic materials: Diagnostics evaluation  

SciTech Connect (OSTI)

Combustion of energetic materials involves processes in both gas and condensed phases and is governed by coupled thermal, physical, and chemical phenomena. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of three general chemical reaction regimes: (1) initial condensed-phase decomposition, (2) subsequent interaction of decomposition products with the remaining condensed phase, and (3) gas-phase reaction of decomposition products to form the ultimate combustion products. The first two regimes are the least understood and most difficult to study, particularly the initial condensed-phase decomposition. The basic difficulty in studying condensed phase phenomena has been the inability to probe directly chemistry in the condensed phase under isothermal condition and with the spatial and temporal resolution needed at higher temperatures and reaction rates. Thin-film samples provide a means to study condensed-phase chemistry at isothermal conditions and with microsecond temporal resolution. We are developing an experiment system that employs rapidly heated thin- film samples and multiple diagnostics to examine condensed-phase chemistry and monitor evolved gas species. Results from our initial work have been encouraging. Thin-film samples of several energetic materials have been prepared and appear to be representative of bulk materials. Furthermore, preliminary experiments indicate that all the use of these samples with two chemical diagnostic techniques, time-of- flight mass spectrometry (TOFMS) and time-resolved infrared spectral photography (TRISP), is viable. 5 refs., 8 figs.

Trott, W.M.; Renlund, A.M.; Erickson, K.L.; Skocypec, R.D.

1991-01-01T23:59:59.000Z

43

High rate heating driven decomposition of energetic materials: Diagnostics evaluation  

SciTech Connect (OSTI)

Combustion of energetic materials involves processes in both gas and condensed phases and is governed by coupled thermal, physical, and chemical phenomena. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of three general chemical reaction regimes: (1) initial condensed-phase decomposition, (2) subsequent interaction of decomposition products with the remaining condensed phase, and (3) gas-phase reaction of decomposition products to form the ultimate combustion products. The first two regimes are the least understood and most difficult to study, particularly the initial condensed-phase decomposition. The basic difficulty in studying condensed phase phenomena has been the inability to probe directly chemistry in the condensed phase under isothermal condition and with the spatial and temporal resolution needed at higher temperatures and reaction rates. Thin-film samples provide a means to study condensed-phase chemistry at isothermal conditions and with microsecond temporal resolution. We are developing an experiment system that employs rapidly heated thin- film samples and multiple diagnostics to examine condensed-phase chemistry and monitor evolved gas species. Results from our initial work have been encouraging. Thin-film samples of several energetic materials have been prepared and appear to be representative of bulk materials. Furthermore, preliminary experiments indicate that all the use of these samples with two chemical diagnostic techniques, time-of- flight mass spectrometry (TOFMS) and time-resolved infrared spectral photography (TRISP), is viable. 5 refs., 8 figs.

Trott, W.M.; Renlund, A.M.; Erickson, K.L.; Skocypec, R.D.

1991-12-01T23:59:59.000Z

44

Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating  

E-Print Network [OSTI]

The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

P. C. H. Martens

2008-04-14T23:59:59.000Z

45

Heat resistance and outgrowth of clostridium perfringens spores as affected by the type of heating medium, and heating and cooling rates in ground pork  

E-Print Network [OSTI]

) and cured ground pork (CGP) at 75C. The effect of the heating rate on HR, germination and outgrowth of C. perfringens spores in CGP was determined by increasing the temperature from 20 to 75C at a rate of 4, 8, and 12C/h prior to heating and holding at 75...

Marquez Gonzalez, Mayra

2009-05-15T23:59:59.000Z

46

Method of calculation of heat generation rates for DWPF glass. Revision 1  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1992-03-17T23:59:59.000Z

47

Method of calculation of heat generation rates for DWPF glass. Revision 2  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1993-02-04T23:59:59.000Z

48

Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid  

Science Journals Connector (OSTI)

This research investigated the effect of aspect ratios (evaporator length to inner diameter of capillary tube), inclination angles, and concentrations of silver nanofluid on the heat transfer rate of a closed-loo...

S. Wannapakhe; S. Rittidech; B. Bubphachot

2009-06-01T23:59:59.000Z

49

Fabrication and heating rate study of microscopic surface electrode ion traps  

E-Print Network [OSTI]

We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.

N. Daniilidis; S. Narayanan; S. A. Mller; R. Clark; T. E. Lee; P. J. Leek; A. Wallraff; St. Schulz; F. Schmidt-Kaler; H. Hffner

2010-09-15T23:59:59.000Z

50

Journal of Thermal Biology 33 (2008) 711 Physiological and behavioral control of heating and cooling rates  

E-Print Network [OSTI]

; Cooling rate; Heating rate; Physiological thermoregulation; Rubber boa; Temperature 1. Introduction Body temperature greatly impacts the ecology, behavior, and physiology of reptiles (Huey, 1982; Peterson, 1987; Peterson et al., 1993). Consequently, many species of reptiles thermoregulate to maintain body temperatures

Dorcas, Michael E.

51

Effect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent  

E-Print Network [OSTI]

Effect of Turbulence Fluctuations on Surface Heating Rate in Hypersonic Turbulent Boundary Layers) of reacting hypersonic turbulent boundary layers at conditions typical of reen- try vehicles. Surface heat in designing hypersonic vehicles is to predict aerothermo- dynamic heating. When the boundary layer

Martín, Pino

52

Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade  

SciTech Connect (OSTI)

A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

Falabella, S.

1988-05-11T23:59:59.000Z

53

Evidence for thermalization of surface-desorbed molecules at heating rates of 108  

E-Print Network [OSTI]

Evidence for thermalization of surface-desorbed molecules at heating rates of 108 K/s C. R of aniline-d7 from a single-crystal surface 0001 of sapphire Al2O3 at a heating rate on the order of 108 K.e., pulsed heating of the sapphire surface on the nanosecond time scale leads to thermal desorption and rapid

Zare, Richard N.

54

ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsCloud Properties and Radiative Heating Rates for ProductsCloud Properties and Radiative Heating Rates for TWP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP 2002.01.01 - 2012.02.08 Site(s) TWP General Description A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote

55

Characteristic Count Rate Profiles for a Rotating Modulator Gamma-Ray Imager  

E-Print Network [OSTI]

Rotating modulation is a technique for indirect imaging in the hard x-ray and soft gamma-ray energy bands, which may offer an advantage over coded aperture imaging at high energies. A rotating modulator (RM) consists of a single mask of co-planar parallel slats typically spaced equidistance apart, suspended above an array of circular non-imaging detectors. The mask rotates, temporally modulating the transmitted image of the object scene. The measured count rate profiles of each detector are folded modulo the mask rotational period, and the object scene is reconstructed using pre-determined characteristic modulation profiles. The use of Monte Carlo simulation to derive the characteristic count rate profiles is accurate but computationally expensive; an analytic approach is preferred for its speed of computation. We present both the standard and a new advanced characteristic formula describing the modulation pattern of the RM; the latter is a more robust description of the instrument response developed as part ...

Budden, Brent S; Case, Gary L; Cherry, Michael L

2011-01-01T23:59:59.000Z

56

Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate  

Science Journals Connector (OSTI)

Abstract Based on constructal theory, generalized constructal optimization of a solidification heat transfer process of slab continuous casting is carried out by taking a complex function as optimization objective. The complex function is composed of the functions of the heat loss rate and surface temperature gradient of the slab subjected to the constraints of shell thickness, surface temperature and liquid core length of the slab. For the specified total water flow rate, the optimal construct of the water distribution in the secondary cooling zone is obtained. Comparing the optimal results with the initial ones, it is shown that the complex function, the functions of the heat loss rate and the surface temperature gradient after optimization are decreased by 35.04%, 2.14% and 59.48%, respectively. Therefore, the scheme of the optimal construct of the water distribution reduces the heat loss rate and surface temperature gradient of the slab simultaneously, that is, improves its energy retention and quality simultaneously. The optimization results obtained in this paper can provide some guidelines for parameter designs and dynamic operations of the solidification heat transfer process of slab continuous casting.

Huijun Feng; Lingen Chen; Zhihui Xie; Zemin Ding; Fengrui Sun

2014-01-01T23:59:59.000Z

57

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification  

Broader source: Energy.gov [DOE]

Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

58

Investigation of the effects of heating rate on coking of shale during retorting  

SciTech Connect (OSTI)

The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

Guffey, F.D.; Hunter, D.E.

1988-02-01T23:59:59.000Z

59

Modification of divertor heat and article flux profiles with applied 3D fields in NSTX H-mode plasmas  

SciTech Connect (OSTI)

Externally imposed non-axisymmetric magnetic perurbations are observed to alter divertor heat and particle flux profiles in the National Spherical Torus Experiment (NSTX). The divertor profiles are foud to have a modust level of multiple local peaks, characteristic of strike poimt splitting or the "magnetis lob" structure, even before the application of the 3D fields in some (but not all) NSTX discharges. This is thought to be due to the intrinsic error fields. The applied 3D fields augmented the intrinsic strike point splitting, making the ampliture of local peaks, and valleys larger in the divertor profile and striations at the divertor surface brighter. The measured heat flux profile shows that the radial location and spacing of the strations are qualitativel consistent witth a vacuum field tracing calcultion. 3D field application did not change the peak divertor heat and particle fluxes at the toroidal location of measurement. Spatial characteristics of the observed patterns are also reported in the paper.

Ahn, Joon-Wook [Oak Ridge National Laboratory (ORNL); Canik, John [ORNL; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Maingi, Rajesh [ORNL; Battaglia, D. J. [Oak Ridge National Laboratory (ORNL)

2010-04-01T23:59:59.000Z

60

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

62

The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers  

SciTech Connect (OSTI)

The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

2014-03-01T23:59:59.000Z

63

Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions  

Science Journals Connector (OSTI)

Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density ?nl? of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to ?nl??Eeff1/2. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum systemHe, Ne, or Arwith the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200??K<~Eeff<~400??K, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeffheating rates for the alkali-metal atoms Li through Cs as a function of the effective trap depth, the column density of the trap, and the species in the background gas. The predictions of our model are in good agreement with the experimental data of Myatt for heating rates in high-density 87Rb-atom magnetic traps at JILA, including the effect of the rf shield and the composition of the background gas. It is shown that collisions with atoms from the Oort cloud also contribute to the heating rate. For 85Rb the calculated heating rate is below the experimentally observed value at JILA, supporting the idea that inelastic collisions in the trap are the major source of heating.

H. C. W. Beijerinck

2000-11-15T23:59:59.000Z

64

Photo-heating and supernova feedback amplify each other's effect on the cosmic star formation rate  

E-Print Network [OSTI]

Photo-heating associated with reionisation and kinetic feedback from core-collapse supernovae have previously been shown to suppress the high-redshift cosmic star formation rate. Here we investigate the interplay between photo-heating and supernova feedback using a set of cosmological, smoothed particle hydrodynamics simulations. We show that photo-heating and supernova feedback mutually amplify each other's ability to suppress the star formation rate. Our results demonstrate the importance of the simultaneous, non-independent inclusion of these two processes in models of galaxy formation to estimate the strength of the total negative feedback they exert. They may therefore be of particular relevance to semi-analytic models in which the effects of photo-heating and supernova feedback are implicitly assumed to act independently of each other.

Andreas H. Pawlik; Joop Schaye

2008-12-15T23:59:59.000Z

65

Inverse bremsstrahlung heating rate in xenon clusters in the eikonal approximation  

SciTech Connect (OSTI)

We report inverse bremsstrahlung (IB) heating rates in the eikonal approximation (EA). The present analysis is performed using the plasma-screened Rogers and Debye potentials for Xe clusters with two different charge states (6 and 10). We compare the eikonal results with the first Born approximation (FBA) and classical-simulation (CL-sim) (Moll et al., Phys. Plasmas 19, 033303 (2012)) calculations for clusters in infrared light. Calculations have been performed for the field strength of 2.6 Multiplication-Sign 10{sup 8} V/cm. We find that compared to the FBA and CL-sim methods, the IB heating rate in the EA is less sensitive to the choice of the two potentials considered here. The present EA calculation shows that the influence of the inner structure of atomic ion on the heating rate is more prominent for the smaller ion charge (Xe{sup 6+}). In the case of low laser field approximation based on the elastic transport cross sections, it is seen that in contrast to the FBA and classical methods, the heating rate predicted by the EA does not deviate much all over the range of mean kinetic energy of electrons (20-500 eV) considered here for both the charge states of xenon (Xe{sup 6+} and Xe{sup 10+}). Furthermore, for the Rogers potential, EA is found to be in closer agreement with the classical method than the FBA. We also compare the results of the IB heating rate using the present and low-field approximation approaches to the above three methods and observe that the magnitudes of the IB heating rate calculated in the low field approximation are, in general, higher than the corresponding values predicted by the present approach for both the electron-ion potentials.

Dey, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math, 711202 West Bengal (India)

2013-03-15T23:59:59.000Z

66

:MEASUREMENTS OF ELECTRON CYCLOlRON HEATING RATES J. D. Barter, J. C. Sprott, K. L. Wong  

E-Print Network [OSTI]

53706 ABSTRACT Electron cyclotron heating rates have been measured for plasmas in a toroidal octupole Energy Corrrrnission. #12;2 Electron cyclotron heating has been a standard technique for producing hot:MEASUREMENTS OF ELECTRON CYCLOlRON HEATING RATES by J. D. Barter, J. C. Sprott, K. L. Wong Jillle

Sprott, Julien Clinton

67

Heat Balance Analysis to Validate the Heat Dissipation Rate of a Man-Made Lake as a Heat Rejection  

E-Print Network [OSTI]

. In addition, the analysis is to identify the most dominant variables for enhancing the lake dissipation rate and hence provide cost-effective measures to enhance the power plant efficiency. The case study power plant has 900 MW of power capacity with five...

Song, L.; Hayes, T.; Dawson, M.

2011-01-01T23:59:59.000Z

68

Heat-rate improvements obtained by retubing condensers with new, enhanced tube types  

SciTech Connect (OSTI)

Significant fuel savings can be achieved at power plants by retubing the condensers with enhanced tubes. Because of the higher overall heat-transfer coefficient, the exhaust steam is condensed at a lower pressure and the plant efficiency is therefore increased or plant heat rate is reduced. Only the spirally indented type of enhanced tube is currently being used in the U.S. and most other countries; however, different types of enhanced tubes have been proposed for power-plant condensers, each with their own set of attributes. This paper determines what attributes and their magnitudes of enhanced tubes lead to the most energy savings as measured by reduction of the plant heat rate. The particular attributes considered are the inside and outside enhancement levels, the inside efficiency index (inside enhancement level divided by pressure-drop increase), and the enhanced-tube fouling-rate multiplier. Two particular condensers were selected because all necessary information were known from previous heat-rate studies such as the condenser geometry, the circulating-water pump and system information, and the low-pressure turbine characteristics. These are {open_quotes}real-world{close_quotes} condensers and therefore the finding will be representative for many other condenser-retubing applications. However, the authors strongly recommend that an economic evaluation be performed at each site to determine the energy savings and payback time. This generic investigation showed that the outside enhancement level is the most important attribute, and a value of about 1.5 can lead to heat-rate savings of about 20 to 40 Btu/kW-hr. Increasing the inside enhancement is less effective because of the increased pressure drop that leads to a reduction of the coolant flow rate and velocity.

Rabas, T.J. [Argonne National Lab., IL (United States); Taborek, J. [Consulting Services, Virginia Beach, VA (United States)

1995-01-01T23:59:59.000Z

69

Heat-affected zone and ablation rate of copper ablated with femtosecond laser  

SciTech Connect (OSTI)

We describe the experimental and molecular dynamics simulation study of crystalline copper (Cu) ablation using femtosecond lasers. This study is focused on the heat-affected zone after femtosecond laser ablation and the laser ablation rate. As a result of the x-ray diffraction measurement on the ablated surface, the crystallinity of the surface is partially changed from a crystal structure into an amorphous one. At the laser fluences below the ablation threshold, the entire laser energy coupled to the Cu target is absorbed, while during the fluence regime over the threshold fluence, the ablation rate depends on the absorption coefficient, and the residual energy which is not used for the ablation, is left in the Cu substrate. The heat-affected zone at the fluences below the threshold is estimated to be greater than that over the threshold fluence. In addition, the laser ablation of Cu is theoretically investigated by a two-temperature model and molecular dynamics (MD) simulation to explain the heat-affected zone and ablation rate. The MD simulation takes into account the electron temperature and thermal diffusion length calculated by the two-temperature model. Variation in the lattice temperature with time and depth is calculated by the MD simulation coupled with the two-temperature model. The experimental ablation rate and the heat-affected zone are theoretically well explained.

Hirayama, Yoichi; Obara, Minoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

2005-03-15T23:59:59.000Z

70

Development of an On-Line Expert System: Heat Rate Degradation Expert System Advisor  

E-Print Network [OSTI]

An on-line expert system for fossil-fueled power plants, the "Heat Rate Degradation Expert System Advisor," is being developed. This expert system will operate on a microcomputer and will interface with existing plant data acquisition and/or thermal...

Sopocy, D. M.; Henry, R. E.; Gehl, S.; Divakaruni, S. M.

71

Particle loading rates for HVAC filters, heat exchangers, and ducts Nomenclature  

E-Print Network [OSTI]

Particle loading rates for HVAC filters, heat exchangers, and ducts Nomenclature Afl surface area of floor (m2 ) bf fraction of bypass flow around the filter (dimensionless) Cout outdoor concentration on the filter per volume of air (mg/lm m3 ) Mf,tot total mass deposited on the filter per month of operation (g

Siegel, Jeffrey

72

Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries  

SciTech Connect (OSTI)

Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

Baxamusa, S., E-mail: baxamusa1@llnl.gov; Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2014-03-28T23:59:59.000Z

73

Developing Anthropogenic Heating Profiles for Urban Areas Across the United States  

E-Print Network [OSTI]

and approximate state-wide fuel efficiency. Heat added by buildings take into account electricity (e.g., AC systems, appliances) and heating fuel usage. The building component relies on both population and climate, as heating and cooling degree days are proportional to the amount of heating fuel and electricity used

Hall, Sharon J.

74

Melting processes of oligomeric ? and ? isotactic polypropylene crystals at ultrafast heating rates  

SciTech Connect (OSTI)

The melting behaviors of ? (stable) and ? (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of ?- and ?-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for ?- and ?-iPP are significantly different. The apparent melting points of ?- and ?-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of ?-iPP crystal is always higher than that of ?-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect ?- and ?-iPP crystals are finally predicted and it shows a good agreement with experimental result.

Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)] [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)] [School of Material, Tianjin University, Tianjin 300072 (China)

2014-02-07T23:59:59.000Z

75

Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage  

Broader source: Energy.gov [DOE]

Los Alamos National Laboratory, under an ARRA CSP Award, is developing a thermally stable, working heat transfer fluid (HTF) that is integrated with chemical reactions as a methodology to store large amounts of latent heat.

76

An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations  

Science Journals Connector (OSTI)

The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvn waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvn wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvn waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

Steven R. Cranmer

2010-01-01T23:59:59.000Z

77

An Efficient Approximation of the Coronal Heating Rate for Use in Global Sun-Heliosphere Simulations  

E-Print Network [OSTI]

The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfven waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfven wave reflection equations. A key ingredient to the turbulent heating rate is the ratio of inward to outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating al...

Cranmer, Steven R

2009-01-01T23:59:59.000Z

78

Scaling and profiles of heat flux during partial detachment in DIII-D  

SciTech Connect (OSTI)

The authors examine the scaling of the peak divertor heat flux and total divertor plate power in partially detached divertor (PDD) discharges in DIII-D, as a function of input power and radiated power. The peak divertor heat flux in the attached plasma increases linearly with input power, but saturates in the detached cases. The total divertor plate power remains linear with input power in both the attached and detached plasmas. This is consistent with the fact that the heat flux peak is reduced from the attached case but other areas receive increased radiant heating from the detached plasma. The divertor plate radiant heating is linear with input power because the total radiated power from the entire plasma is a linear function of input power in both attached and detached plasma. In the private flux region, radiated heat flux absorbed on the target plate calculated from bolometer data is enough to account for the measured plate heating. Approximately half of the overall plate heating power in detached plasma is due to absorbed radiation. By mapping the divertor heat flux before and during the PDD to flux coordinates, and comparing with a flux mapping of inserted bolometer and tangential TV data, they have verified that the radiated power is emitted from the same flux surfaces on which heat flux is reduced.

Lasnier, C.J.; Hill, D.N.; Allen, S.L.; Fenstermacher, M.E.; Porter, G.D. [Lawrence Livermore National Lab., CA (United States); Leonard, A.W.; Petrie, T.W. [General Atomics, San Diego, CA (United States); Watkins, J.G. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

79

Density Profile and Diffusion Coefficient During IBW Heating in the HT-7 Superconducting Tokamak  

Science Journals Connector (OSTI)

The electron density coefficient was studied during IBW heating in the HT-7 tokamak. The frequency of IBW was 30 MHz...

J. Xu; X. Gao; H. Q. Liu; Y. F. Cheng

2003-07-01T23:59:59.000Z

80

Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

Broader source: Energy.gov [DOE]

Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs).

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides  

Broader source: Energy.gov [DOE]

General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

82

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network [OSTI]

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Romain Dubessy; Thomas Coudreau; Luca Guidoni

2008-12-17T23:59:59.000Z

83

Trade-offs between NO{sub x} heat rate and opacity at Morgantown Unit 2  

SciTech Connect (OSTI)

In work carried out at Morgantown Unit 2, PEPCO and Lehigh University developed techniques for optimizing the operation of an ABB-CE LNCFS III low NO{sub x} firing system. Because of marginal ESP capacity, the ability to reduce NO{sub x} is limited by opacity excursions at this unit. Using a parametric boiler testing approach, and guided by neural network techniques for analysis of the data, control settings were identified which minimize the full load heat rate as a function of the target NO{sub x} level, subject to a stack opacity constraint.

D`Agostini, M.; Walsh, R.; Eskenazi, D.; Levy, E. [Lehigh Univ., Bethlehem, PA (United States)] [and others

1996-05-01T23:59:59.000Z

84

Numerical study of the global axisymmetric circulation with varying heating and rotation rates  

SciTech Connect (OSTI)

A steady, axisymmetric model of the general circulation is developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. It is assumed that the axisymmetric flow may be modeled by making the Boussinesq and deep convection approximations. The three unknowns are assumed to satisfy appropriate spectral expansions, and the three equations are then rearranged into a Galerkin representation. The number of degrees of freedom retained in the expansions is restricted to eight waves or less, which places the model in the class of highly truncated spectral models. The motions are forced by a specified heating distribution and dissipated through an eddy mixing coefficient formulation. The axisymmetric circulation is tested for stability to quasi-geostrophic disturbances. The orignial set of five primitive equations is reduced to a single equation governing the evolution of quasi-geostrophic potential vorticity. This equation is linearized about the axisymmetric state, and the stability of the disturbances is found by examining the eigenvalues associated with each disturbance. The application of the Boussinesq, deep convection, and quasi-geostrophic assumptions limits the ranges of the heating and rotation rates. For values not too far from typical atmospheric values, the model produces a stability boundary separating Rossby and Hadley flow.

Henderson, H.W.

1982-01-01T23:59:59.000Z

85

Measuring the shock-heating rate in the winds of O stars using X-ray line spectra  

Science Journals Connector (OSTI)

......College, Department of Physics and Astronomy, Swarthmore...Iowa, Department of Physics and Astronomy, Iowa...Technology, Department of Physics and Space Sciences...determine the shock-heating rate due to instabilities...plasma systematically passes through the temperature......

David H. Cohen; Zequn Li; Kenneth G. Gayley; Stanley P. Owocki; Jon O. Sundqvist; Vronique Petit; Maurice A. Leutenegger

2014-01-01T23:59:59.000Z

86

Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

Broader source: Energy.gov [DOE]

General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power...

87

Design of chemical reactors of the heat exchanger type  

E-Print Network [OSTI]

Operating Profile - Example I 23 , 53 Heat Rate Comparison - Example I Operating Profile - Example 2 Operating Profile - Example 3 Operating Profile - Example 4 Equations (113) and (114) at 790 Reactor Profile - Exan piss 5 and 6 Heat of Reaction.... simple inathematical function of time. While his work was a step forward, it is not directly applicable to the problem of reactor design. Hougen and Watsor. (3), and recently Fair and Rase (4), illustra- ted an exact non-machine method of reactor...

McBeth, Lloyd Theodore

2012-06-07T23:59:59.000Z

88

Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Exploring the Disconnect Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems M. Hoeschele and E. Weitzel Alliance for Residential Building Innovation (ARBI) May 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

89

Spectral effects on the transmittance, solar heat gain, and performance rating of glazing systems  

Science Journals Connector (OSTI)

This study investigates the potential changes in Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT) ratings of vertical or tilted glazing systems that would result from a deliberate change in the reference spectrum used as Spectral Weighting Function (SWF). This SWF is necessary to evaluate broadband-average optical properties from their spectral values, and obtain the desired rating of such bulk properties. The \\{SWFs\\} currently specified by rating institutions in Europe and North America for SHGC and VT are now outdated, and their inadequacies are discussed. Six potential replacements, which have been recently adopted by ASTM are described, including three direct irradiance spectra and three global irradiance spectrum incident on tilted surfaces of various tilts (20, 37 and 90). Some of these spectra have been tailored for use in building energy applications, including Building-Integrated Photovoltaics (BIPV). The effect of tilt on the U-factor and hence SHGC of glazing systems used for skylights on roofs is discussed, using a representative dataset of 37 glazing system specimens. The spectral effects on SHGC induced by a change in the current North American SWF are also obtained for this dataset, and show small to moderate deviations from current ratings (?2% to +7% for windows, and ?3% to +11% for skylights). The variations in VT are within 2% for most glazing systems. To remove the current inconsistency in the \\{SWFs\\} used for SHGC and VT, it is recommended that a single SWF be used for both properties. For improved accuracy and reliance on active standards, it is also recommended that the SWF for SHGC and VT be either one of the two recent ASTM G197-08 global irradiance spectra, depending on application (incidence on a vertical surface for window applications, and incidence on a 20-tilted surface for skylight applications). No change in colorimetric calculations (based on the D65 illuminant) is recommended, however.

Christian A. Gueymard; William C. duPont

2009-01-01T23:59:59.000Z

90

Profiling Retail Web Site Functionalities and Conversion Rates: A Cluster Analysis  

Science Journals Connector (OSTI)

A Web site's conversion rate (the proportion of visitors who complete a desired action) is an important competitive metric. Web retailers invest significant effort in managing functionalities that can attract and convert visitors. Retailers' decisions ... Keywords: Cluster Analysis, Conversion Rates, E-Commerce, Web Performance Metrics, Web Retailing, Web Site Functionalities

Anteneh Ayanso; Reena Yoogalingam

2009-09-01T23:59:59.000Z

91

Performance of Heat Pump Water Heaters: Initial Findings of Draw Profile Effect on HPWH Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Performance of Heat Pump Water Heaters Performance of Heat Pump Water Heaters © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Evaluation Overview  2000-2002 Evaluated 20 installations with CL&P  Product had problems; not ready for prime time (average COPs of 1.67 was not the problem)  New batch of heaters available, including:  GE's GeoSpring Hybrid (50 gal)  A.O.Smith's Voltex Hybrid (60 & 80 gal)  Stiebel-Eltron's Accelera 300 (80 gal)  Evaluating 14 installations for National Grid, NSTAR, & Cape Light Compact. © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved.

92

Coal plasticity at high heating rates and temperatures. Final technical progress report  

SciTech Connect (OSTI)

Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1995-05-01T23:59:59.000Z

93

Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements  

E-Print Network [OSTI]

the heat release of combustible wall linings during full-scale room fire tests, William Parker, Huggett to the release of heat, the combustion process consumes oxygen. As part of his work on the ASTM E 84 tunnel test released per unit mass of material consumed (i.e., the specific heat of combustion), varied greatly

Womeldorf, Carole

94

Differential rates for district heating and the influence on the optimal retrofit strategy for multi-family buildings  

Science Journals Connector (OSTI)

When renovating existing multi-family buildings it is very important to implement the best retrofit strategy possible in order to minimize the remaining life-cycle cost for the building. If the building is heated with district heating this strategy of course changes due to the energy rate used by the utility. It is also very important for the utility that the consumer is encouraged to save energy when there is a need for it, i.e. during peak load conditions. Our paper shows that an accurate cost differential rate provides all these facilities.

Stig-Inge Gustafsson; Bjrn G. Karlsson; Bertil H. Sjholm

1987-01-01T23:59:59.000Z

95

Shut-down dose rate analyses for the ITER electron cyclotron-heating upper launcher  

Science Journals Connector (OSTI)

Abstract The electron cyclotron resonance heating upper launcher (ECHUL) is going to be installed in the upper port of the ITER tokamak thermonuclear fusion reactor for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). The paper reports the latest neutronic modeling and analyses which have been performed for the ITER reference front steering launcher design. It focuses on the port accessibility after reactor shut-down for which dose rate (SDDR) distributions on a fine regular mesh grid were calculated. The results are compared to those obtained for the ITER Dummy Upper Port. The calculations showed that the heterogeneous ECHUL design gives rise to enhanced radiation streaming as compared to the homogenous dummy upper port. Therefore the used launcher geometry was upgraded to a more recent development stage. The inter-comparison shows a significant improvement of the launchers shielding properties but also the necessity to further upgrade the shielding performance. Furthermore, the analysis for the homogenous dummy upper port, which represents optimal shielding inside the launcher, demonstrates that the shielding upgrade also needs to include the launcher's environment.

Bastian Weinhorst; Arkady Serikov; Ulrich Fischer; Lei Lu; Peter Spaeh; Dirk Strauss

2014-01-01T23:59:59.000Z

96

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

97

Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile  

DOE Patents [OSTI]

A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

Leung, Ka-Ngo (Hercules, CA); Gordon, Keith C. (Berkeley, CA); Kippenham, Dean O. (Castro Valley, CA); Purgalis, Peter (San Francisco, CA); Moussa, David (San Francisco, CA); Williams, Malcom D. (Danville, CA); Wilde, Stephen B. (Pleasant Hill, CA); West, Mark W. (Albany, CA)

1989-01-01T23:59:59.000Z

98

Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia  

SciTech Connect (OSTI)

Ground-based radar and lidar observations obtained at the Department of Energys Atmospheric Radiation Measurement Programs Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

2013-05-22T23:59:59.000Z

99

HELIOS: A helium line-ratio spectral-monitoring diagnostic used to generate high resolution profiles near the ion cyclotron resonant heating antenna on TEXTOR  

SciTech Connect (OSTI)

Radial profiles of electron temperature and density are measured at high spatial ({approx}1 mm) and temporal ( Greater-Than-Or-Slanted-Equal-To 10 {mu}s) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars ( Less-Than-Or-Equivalent-To 20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

Unterberg, E. A.; Fehling, D. H.; Klepper, C. C.; Hillis, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Schmitz, O. [Insitut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, D-52428 Juelich (Germany); Stoschus, H. [Insitut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, D-52428 Juelich (Germany); Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Munoz-Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Van Wassenhove, G. [LPP-ERM/KMS, Association EURATOM-Belgian State, B-1000 Brussels (Belgium)

2012-10-15T23:59:59.000Z

100

Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range  

E-Print Network [OSTI]

We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K to room temperature (295 K) in a single ...

Chiaverini, John

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Broader source: Energy.gov [DOE]

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

102

Activation, Heating and Exposure Rates for Mo?99 Experiments with 25?Disk Targets  

SciTech Connect (OSTI)

An MCNPX model of the 25-disk target assembly inside the vacuum cube inside the shielded box was prepared. This was used to calculate heating and photon and neutron fluxes throughout the model. Production rates for photonuclear reaction products were calculated using the photon fluxes and ENDF/B-VII cross sections. Measured isomer to ground state yield ratios were used where available. Where not available the new correlation between spin deficit and isomer to ground state yield ratios presented at AccApp'11 was used. The photonuclear production rates and neutron fluxes were input to CINDER2008 for transmutation calculations. A cross section update file was used to supply (n,n') reactions missing from CINDER2008 libraries. Decay photon spectra produced by CINDER2008 were then used to calculate exposure rates using the MCNPX model. Two electron beam irradiations were evaluated. The first was for a thermal test at 15 MeV with 1300 {micro}A incident on one target end and the second was for a production test at 35 MeV with 350 {micro}A incident on both target ends (700 {micro}A total current on target). For the thermal test 1, 2, 3, 4, 5 and 6 h irradiation times were simulated, each followed by decay time steps out to 42 days. For the production test 6, 12, 18, 24, 30 and 36 h irradiation times were simulated followed by the same decay periods. For all simulations beam FWHMs in x and y were both assumed to be 6 mm. Simulations were run for Mo-100 enriched and natural Mo targets for both tests. It is planned that thermal test will be run for 4 h with natural target disks and production test will be run for 24 h with enriched target disks. Results for these two simulations only are presented in this report. Other results can be made available upon request. Post irradiation exposure rates were calculated at 30 cm distances from left, right, front and back of the following configurations: (1) Shielded box with everything in it (beam pipes, cooling pipes, vacuum cube, target housing weldment and target assembly), (2) Shielded box with everything in it except the target assembly, (3) Shielded box with nothing in it, (4) Target assembly taken outside of shielded box, (5) Target disks in cradle (target assembly with thermocouple weldment and flange removed), (6) Empty cradle, and (7) Target disks alone. Decay photon spectra from the CINDER2008 calculations were used as sources for the exposure rate calculations in the same model used for the flux calculations with beam on. As components were removed to simulate the seven cases considered the material compositions were changed to air and their respective sources were turned off. The MCNPX model geometry is plotted in Figure 1. The left and right detector locations for cases 1, 2 and 3 were 30 cm from the shielded box walls and 30 cm from the beam pipe openings in the left and right sides of the model (they are not in the beam line). A zoomed in plot of the target assembly alone is in Figure 2. Exposure rates for the seven cases are plotted as a function of time after irradiation in Figures 3, 4 and 5. To aid in comparison between the cases, all of these figures have been plotted using the same scale. Figures 3 and 4 are respectively the thermal and production test results for cases 1 through 6. Figure 5 includes case 7 results for both. Differences between cases 1 and 2 for both tests are not statistically significant showing that activation of components other than the target assembly, many of which are also shielding the target assembly, dominates exposure rates outside the shielded box. Case 3 shows the contribution from activation of the shield box itself. In front where shielded box wall is thickest box activation accounts for essentially all of the exposure rate outside. Differences between cases 4 and 5 are also minimal, showing that the contribution to target assembly exposure rates from the thermocouple flange and weldment are small compared to the target disks and cradle. From the numerical results the contribution is about 1%. Results for case 6, the cradle itself, are ini

Kelsey, Charles T. IV [Los Alamos National Laboratory

2012-05-09T23:59:59.000Z

103

forth through the heat exchangers, thereby phasing the rates at which heat is absorbed and rejected from  

E-Print Network [OSTI]

Conditions Charge Pressure (psia) Firing Rate (KBTUH) Frequency (Hz) Power Piston Stroke (in.) Displacer the earlier analysis; these results are shown in Fig. 4. Working Fluid Charge Pressure (psia) Power Level (k was measured as the total enthalpy gain of the refrigerant across the compres- sor. Table 2 shows the range

Oak Ridge National Laboratory

104

SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils  

SciTech Connect (OSTI)

Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

Hufnagel, Todd C.

2014-06-09T23:59:59.000Z

105

Feasibility Study of a Multi-Purpose Computer Program for Optimizing Heat Rates in Power Cycles  

E-Print Network [OSTI]

and future needs of the power industry follows. The discussion is restricted to steam turbine cycles of fossil or nuclear power plants, although some ECC's can be employed to a wider range of applications, such as analysis of different heat sources... and future needs of the power industry follows. The discussion is restricted to steam turbine cycles of fossil or nuclear power plants, although some ECC's can be employed to a wider range of applications, such as analysis of different heat sources...

Menuchin, Y.; Singh, K. P.; Hirota, N.

1981-01-01T23:59:59.000Z

106

Heat Transfer Modeling and Use of Distributed Temperature Measurements to Predict Rate  

E-Print Network [OSTI]

to demonstrate the application of the methodology of rate estimation proposed. Fluid flow rates for steady and transient cases were successfully estimated within engineering accuracy for all three cases. In all three cases, in addition to the traditional downhole...

Hashmi, Gibran Mushtaq

2014-07-08T23:59:59.000Z

107

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

108

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

109

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

110

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

111

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

SciTech Connect (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

112

The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water  

SciTech Connect (OSTI)

Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

George A. Young; Nathan Lewis

2003-04-05T23:59:59.000Z

113

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network [OSTI]

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

114

Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725C. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 0.1 m/s and 1220 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

2011-01-11T23:59:59.000Z

115

Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids  

Broader source: Energy.gov [DOE]

The University of Arizona along with partners at Arizona State University and Georgia Institute of Technology, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of halide salts with oxy-halide additives as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures greater than 800C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall system cost.

116

Sideband cooling an ion to the quantum ground state in a Penning trap with very low heating rate  

E-Print Network [OSTI]

We report the laser cooling of a single $^{40}\\text{Ca}^+$ ion in a Penning trap to the motional ground state in one dimension. Cooling is performed in the strong binding limit on the 729-nm electric quadrupole $S_{1/2}\\leftrightarrow D_{5/2}$ transition, broadened by a quench laser coupling the $D_{5/2}$ and $P_{3/2}$ levels. We find the final phonon number to be $\\bar{n}=0.014\\pm0.009$. We measure the heating rate of the trap to be very low with $\\dot{\\bar{n}}=2.5\\pm 0.3\\textrm{s}^{-1}$ and a scaled spectral noise density of $\\omega S_{E}(\\omega)\\sim1.6^{-8}\\textrm{V}^2\\textrm{m}^{-2}\\textrm{Hz}^{-1}\\textrm{s}^{-1}$, which is consistent with the large ion-electrode distance. We perform Rabi oscillations on the sideband-cooled ion and observe a coherence time of $0.7\\pm 0.1\\textrm{ms}$, noting that the practical performance is currently limited by the intensity noise of the probe laser.

J. F. Goodwin; G. Stutter; R. C. Thompson; D. M. Segal

2014-07-23T23:59:59.000Z

117

Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front  

Science Journals Connector (OSTI)

In situ measurements associated with the passage of a kata cold front over the United Kingdom on 29 November 2011 are used to initialize a Lagrangian parcel model for the purpose of calculating rates of diabatic heating and cooling associated with ...

C. Dearden; P. J. Connolly; G. Lloyd; J. Crosier; K. N. Bower; T. W. Choularton; G. Vaughan

2014-09-01T23:59:59.000Z

118

Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses  

SciTech Connect (OSTI)

Accumulation of thermal energies by highly repeated irradiation of femtosecond laser pulses inside a glass induces the heat-modification whose volume is much larger than that of the photoexcited region. It has been proposed that the heat-modification occurs in the region in which the temperature had overcome a threshold temperature during exposure of laser pulses. In order to understand the mechanism of the heat-modification, we investigated the temperature distribution during laser exposure and the threshold temperature by analyzing the volume of the modification based on a thermal diffusion model. We found that the threshold temperature becomes lower with increasing laser exposure time. The dependence of the threshold temperature on the laser exposure time was explained by the deformation mechanism based on the temperature-dependent viscosity and viscoelastic behavior of a glass under a stress loading by thermal expansion. The deformation mechanism also could simulate a tear-drop shape of a heat-modification by simultaneous double-beams' irradiation and the distribution of birefringence in a heat-modification. The mechanism proposed in this study means that the temperature-dependence of the viscosity of a glass should be essential for predicting and controlling the heat-modification.

Shimizu, Masahiro; Miura, Kiyotaka; Hirao, Kazuyuki [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan); Sakakura, Masaaki; Shimotsuma, Yasuhiko [Innovative Collaboration Center, Kyoto University, Kyoto 615-8520 (Japan); Ohnishi, Masatoshi [Qualtec Co., Ltd., 4-230 Sanbocho, Sakai-ku, Sakai-shi, Osaka 590-0906 (Japan); Nakaya, Takayuki [NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 8-22 Shinden 3-Chome, Adachi-ku, Tokyo 123-8511 (Japan)

2010-10-15T23:59:59.000Z

119

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network [OSTI]

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

120

Four-mode Bose-Hubbard model with two greatly differing tunneling rates as a model for the Josephson oscillation of heat  

SciTech Connect (OSTI)

As a model for mesoscopic quantum systems in thermal contact, we consider a four-mode Bose-Hubbard model with two greatly differing tunneling rates. By a series of Holstein-Primakoff transformations, we show that the low-frequency dynamics of this system consists in general of two slow Josephson oscillations, rather than the single slow mode predicted by linear Bogoliubov theory. We identify the second slow Josephson oscillation as a heat exchange mode analogous to second sound.

Strzys, M. P.; Anglin, J. R. [OPTIMAS Research Center and Fachbereich Physik, Technische Universitaet Kaiserslautern, D-67653 Kaiserslautern (Germany)

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Union Light, Heat & Power Co | Open Energy Information  

Open Energy Info (EERE)

Union Light, Heat & Power Co Union Light, Heat & Power Co Jump to: navigation, search Name Union Light, Heat & Power Co Place Kentucky Utility Id 19446 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Union Light, Heat & Power Co (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

122

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network [OSTI]

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

123

Determination of size-specific U-factors and solar heat gain coefficients from rated values at established sizes -- A simplified approach  

SciTech Connect (OSTI)

Organizations such as the National Fenestration Rating Council (NFRC) in the United States and the Canadian Standards Association in Canada have done a vast amount of work to develop standardized procedures for rating the thermal performance of window systems. These procedures provide an excellent means of comparing one window product to another. One limitation to the use of the information produced in these rating procedures is that the data are produced through measurement or simulation for a fixed window size. To use these data in building energy computer simulations, the U-factor and solar heat gain coefficient (SHGC) data need to be available for the actual window sizes used in a building. The window labeling information provided through the window rating procedures in the US and Canada is not enough to calculate size-specific U-factor or SHGC values. Using minimal information that is provided from the rating procedures and making a few simplifying assumptions will allow for /an approximation of the size-specific U-factor and SHGC values. The work presented in this paper outlines a simplified approach to determining size-specific U-factor and SHGC values.

Baker, J.A. [WestLab, Waterloo, Ontario (Canada); Henry, R. [CANMET/Natural Resources, Ottawa, Ontario (Canada)

1997-12-31T23:59:59.000Z

124

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

125

Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows  

Science Journals Connector (OSTI)

...manner predicted by the stream power law, despite the observation...their profiles are well fit by power-law plots of drainage area...S. Department of Energy, Bonneville Power Administration, Report DOE/BP-02246-5...

Jonathan D. Stock; David R. Montgomery; Brian D. Collins; William E. Dietrich; Leonard Sklar

126

Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger  

Science Journals Connector (OSTI)

Abstract The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24h drain water flow rate schedules and one shorter schedule representing a three minute shower. The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Jrgen Wallin; Joachim Claesson

2014-01-01T23:59:59.000Z

127

Project Profile: Deep Eutectic Salt Formulations Suitable as...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics...

128

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

129

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

130

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

131

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

132

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

133

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

134

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

135

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

136

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

137

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

138

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

139

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

140

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

142

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

143

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

144

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

145

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

146

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

147

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

148

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

149

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

150

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

151

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

152

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

153

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

154

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

155

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

156

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

157

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

158

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

159

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

160

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

162

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

163

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

164

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

165

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

166

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

167

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

168

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

169

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

170

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

171

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

172

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

173

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

174

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

175

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

176

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

177

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

178

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

179

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

180

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

182

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

183

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

184

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

185

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

186

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

187

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

188

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

189

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

190

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

191

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

192

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

193

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

194

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

195

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

196

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

197

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

198

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

199

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

200

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

202

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

203

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

204

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

205

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

206

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

207

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

208

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

209

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

210

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

211

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

212

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

213

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

214

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

215

Measuring mass-loss rates and constraining shock physics using X-ray line profiles of O stars from the Chandra archive  

Science Journals Connector (OSTI)

......Measuring mass-loss rates and constraining shock physics using X-ray line...sight lines that pass through the densest...wind mass-loss rate, we tabulated...low mass-loss rates: (1) the line...missing some crucial physics; (2) processes......

David H. Cohen; Emma E. Wollman; Maurice A. Leutenegger; Jon O. Sundqvist; Alex W. Fullerton; Janos Zsarg; Stanley P. Owocki

2014-01-01T23:59:59.000Z

216

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network [OSTI]

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of (more)

Chen, Heng

2010-01-01T23:59:59.000Z

217

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

218

Plant Energy Profiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Profiler Pumping System Assessment Tool Process Heating Assessment and Survey Tool Steam System Modeler Advanced Manufacturing Home Key Activities Research &...

219

Determination of vertical profiles of aerosol extinction, single scatter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

220

Building Blocks of Tropical Diabatic Heating  

SciTech Connect (OSTI)

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400hpa and a cooling peak near 700hPa and convective heating with a heating maximum near 700hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top (bottom) heavy large scale heating profiles associated with excess of stratiform (convective) heating evolve towards a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

Hagos, Samson M.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

222

Effect of the plasma production rate on the implosion dynamics of cylindrical wire/fiber arrays with a profiled linear mass  

SciTech Connect (OSTI)

Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot{sub m} for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R{sub 0} = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot{sub m} approx. 0.095 0.015 ?g/(cm{sup 2} ns)

Aleksandrov, V. V.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)] [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2013-10-15T23:59:59.000Z

223

Enhanced Joule Heating in Umbral Dots  

E-Print Network [OSTI]

We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.

Chandan Joshi; Lokesh Bharti; S. N. A. Jaaffrey

2007-05-08T23:59:59.000Z

224

Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models  

SciTech Connect (OSTI)

We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

Houze, Jr., Robert A. [University of Washington Dept. of Atmospheric Sciences

2013-11-13T23:59:59.000Z

225

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

226

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

227

A correlated K-distribution model of the heating rates for H[sub 2]O and a molecular mixture in the 0-2500 cm[sup [minus]1] wavelength region in the atmosphere between 0 and 60 km  

SciTech Connect (OSTI)

For this report a prototype infrared radiative transfer model using a correlated k-distribution technique to calculate the transmission between atmospheric levels has been used to calculate the radiative fluxes and heating rates for H[sub 2]O and a mixture of the major molecular absorbers in the atmosphere between 0 and 60 km. The mixture consists of H[sub 2]O, CO[sub 2], O[sub 3], CH[sub 4], and N[sub 2]O. The wave number range considered is 0-2500 cm[sup [minus]1]. The use of the k-distribution method allows 25 cm[sup [minus]1] wave number bins to produce fluxes and heating rates which are within ten percent of the results of detailed line by line calculations.

Grossman, A S; Grant, K E

1992-11-16T23:59:59.000Z

228

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

229

Midwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

230

Northwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

231

Pacific Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

232

Northeast Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

233

Analysis of the behavior of an experimental absorption heat transformer for water purification for different mass flux rates in the generator  

Science Journals Connector (OSTI)

In the present study, first and second laws of thermodynamics have been used to analyse the performance of an experimental absorption heat transformer for water purification. Irreversibilities, coefficients of performance (COP) and exergy coefficients of performance (ECOP) were determined as function of the mass flow of hot water supplied to the generator and as function of the overall thermal specific energy consumption (OSTEC) parameter defined in this paper. The results showed that the system irreversibilities increase meanwhile the coefficients of performance and the exergy coefficient of performance decrease with an increment of the mass flow of hot water supplied to the generator. Also it was shown that the system performance is better when the production of purified water increases due to the increment of the heat recycled to the generator and evaporator.

Armando Huicochea; Wilfrido Rivera; Hiram Martnez; Javier Siqueiros; Erasmo Cadenas

2013-01-01T23:59:59.000Z

234

Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models  

SciTech Connect (OSTI)

This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends

Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

2013-03-14T23:59:59.000Z

235

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

236

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

237

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

238

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

239

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

240

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area  

E-Print Network [OSTI]

rates of rocks- to-fluid heat transfer, and thereby thesurface for heat transfer to injected fluids circulating influids, and thereby increase the overall rate of heat transfer

Pruess, K.

2011-01-01T23:59:59.000Z

242

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

243

Spring 2014 Heat Transfer -1  

E-Print Network [OSTI]

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

244

Sustainable Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH |  

Open Energy Info (EERE)

Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH Jump to: navigation, search Name Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH) Place Hamburg, Schleswig-Holstein, Germany Sector Solar Product Engineering company involved in the project development, design and construction of solar thermal, PV and biogas power plants. References Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH) is a company located in Hamburg, Schleswig-Holstein, Germany .

245

Near-field heat transfer between a nanoparticle and a rough surface  

E-Print Network [OSTI]

In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

Svend-Age Biehs; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

246

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

247

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

248

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

249

Mid-Atlantic Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

250

Feedback Heating by Cosmic Rays in Clusters of Galaxies  

E-Print Network [OSTI]

Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed AGN-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point toward a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic-ray pressure support, but none have built successful models in which cosmic-ray heating is significant. Here we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic-rays, which are injected into the ICM through diffusion or the shredding of the bubbles by Rayleigh-Taylor or Kelvin-Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P_c/P_g heating is a very attractive alternative to mechanical heating, and may become particularly compelling if GLAST detects the gamma-ray signature of cosmic-rays in clusters.

Fulai Guo; S. Peng OH

2007-06-09T23:59:59.000Z

251

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

252

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

253

IEA Heat Pump Workshop November 8, 2011  

E-Print Network [OSTI]

Responsible load growth a goal Residential rates low-- $0.01/kWh Sales of air source Heat Pumps a goal #12IEA Heat Pump Workshop November 8, 2011 Atlanta, Georgia #12;Heat Pump Reliability And Installer.3 Million customers 1.1 million residential customers #12;How did Alabama Power Company get into Heat Pump

Oak Ridge National Laboratory

254

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy Savers [EERE]

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

255

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces .  

E-Print Network [OSTI]

??Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were (more)

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

256

STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS  

E-Print Network [OSTI]

STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.3 Air Side Heat Transfer Rates . . . . . . . . . . . . . . . . . . 43 3.5.4 Fluid Side Heat

257

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

258

Harbec Plastics: 750kW CHP Application - Project Profile | Department...  

Broader source: Energy.gov (indexed) [DOE]

Application - Project Profile This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy...

259

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

260

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

262

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

263

Application Study of a Single House Horizontal Heating System  

E-Print Network [OSTI]

It is imperative to get new heating systems into the market and implement rate structures with heat meters for the purpose of energy conservation and environmental protection. Based on analysis of current heating technology, this paper analyzes...

Hang, Y.; Ying, D.

2006-01-01T23:59:59.000Z

264

Plasma Edge Cooling during rf Heating  

Science Journals Connector (OSTI)

A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using rf power to modify the edge plasma temperature profile is discussed. This concept is based on spectroscopic measurements on PLT (Princeton Large Torus) during ohmic heating and ATC (Adiabatic Toroidal Compressor) during rf heating.

S. Suckewer and R. J. Hawryluk

1978-06-19T23:59:59.000Z

265

Predictions of Alpha Heating in ITER L-mode and H-mode Plasmas  

SciTech Connect (OSTI)

Predictions of alpha heating in L-mode and H-mode DT plasmas in ITER are generated using the PTRANSP code. The baseline toroidal field of 5.3 T, plasma current ramped to 15 MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance, and electron cyclotron resonance are assumed to start half-way up the density ramp. The time evolution of plasma temperatures and, for some cases, toroidal rotation are predicted assuming GLF23 and boundary parameters. Significant toroidal rotation and flow-shearing rates are predicted by GLF23 even in the L-mode phase with low boundary temperatures, and the alpha heating power is predicted to be significant if the power threshold for the transition to H-mode is higher than the planned total heating power. The alpha heating is predicted to be 8-76 MW in L-mode at full density. External heating mixes with higher beam injection power have higher alpha heating power. Alternatively if the toroidal rotation is predicted assuming that the ratio of the momentum to thermal ion energy conductivity is 0.5, the flow-shearing rate is predicted to have insignificant effects on the GLF23- predicted temperatures, and alpha heating is predicted to be 8-20 MW. In H-mode plasmas the alpha heating is predicted to depend sensitively on the assumed pedestal temperatures. Cases with fusion gain greater than 10 are predicted to have alpha heating greater than 80 MW.

R.V. Budny

2011-01-06T23:59:59.000Z

266

Experimental study on heat transfer characteristics of internal heat exchangers for CO2 system under cooling condition  

Science Journals Connector (OSTI)

This paper presents the heat transfer characteristics of the internal heat exchanger (IHX) for CO2 heat pump system. The influence on the IHX length, the mass flow rate, the shape of IHX, the operating condition,...

Young Chul Kwon; Dae Hoon Kim; Jae Heon Lee

2009-03-01T23:59:59.000Z

267

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

268

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

269

User_TalentProfile  

Broader source: Energy.gov (indexed) [DOE]

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

270

Thermosolutal convection from a discrete heat and solute source in a vertical porous annulus  

E-Print Network [OSTI]

on the fluid flow and heat and mass transfer rates. The porous annulus is subject to heat and mass fluxes from, buoyancy ratio and radius ratio are investigated on the flow patterns, and heat and mass transfer rates and the rates of heat and mass transfer strongly depend on the location of the heat and solute source. Further

Lopez, John M.

271

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

272

Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation  

E-Print Network [OSTI]

Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical 2012; accepted 14 December 2012; published 31 January 2013. [1] Radiative heating profiles. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating

273

Application of release rate data to hazard load calculations  

Science Journals Connector (OSTI)

The author illustrates methods of applying heat, smoke and toxic gas release rate data to calculating fire hazard loading values.

Edwin E. Smith

1974-08-01T23:59:59.000Z

274

Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry  

E-Print Network [OSTI]

The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...

Gaskill, Travis

2012-02-14T23:59:59.000Z

275

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

276

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

277

Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe  

SciTech Connect (OSTI)

The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

1993-04-01T23:59:59.000Z

278

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

279

Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton  

E-Print Network [OSTI]

We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

Rocco Piffaretti; Jelle Kaastra

2006-02-16T23:59:59.000Z

280

Rates - WAPA-137 Rate Order  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

THEORY AND SIIVIULATION OF CYCIDTRON HEATING IN A LINEAR OCIUPOLE  

E-Print Network [OSTI]

conductivity model is used to calculate the cyclotron heating rate (electron or ion) in an arbitrary non been used to calculate the cyclotron heating rate for plasmas in various magnetic field configurations. This paper presents a method of calculating cyclotron heating rates that is based on integration of the local

Sprott, Julien Clinton

282

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

283

Heat Transfer at Small Grashof Numbers  

Science Journals Connector (OSTI)

...January 1957 research-article Heat Transfer at Small Grashof Numbers J. J...physical arguments suggest that the heat transfer from a body, immersed in a fluid...the problem is small. However, heat-transfer rates predicted in this fashion...

1957-01-01T23:59:59.000Z

284

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

285

AGN Heating through Cavities and Shocks  

E-Print Network [OSTI]

Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak shocks in M87 are used to argue that they can plausibly prevent gas close to the AGN from cooling. As the most significant heating mechanism at work closest to the AGN, shock heating probably plays a critical role in the feedback mechanism. Third, results are presented from a survey of AGN heating rates in nearby giant elliptical galaxies. With inactive systems included, the overall AGN heating rate is reasonably well matched to the total cooling rate for the sample. Thus, intermittent AGN outbursts are energetically capable of preventing the hot atmospheres of these galaxies from cooling and forming stars.

P. E. J. Nulsen; C. Jones; W. R. Forman; L. P. David; B. R. McNamara; D. A. Rafferty; L. Birzan; M. W. Wise

2006-11-04T23:59:59.000Z

286

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

287

Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

288

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Broader source: Energy.gov (indexed) [DOE]

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

289

Electron profile stiffness and critical gradient studies  

SciTech Connect (OSTI)

Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90095-7099 (United States); Holland, C. [University of California-San Diego, La Jolla, California 92093-0417 (United States); McKee, G. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

290

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

291

Process for forming retrograde profiles in silicon  

DOE Patents [OSTI]

A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, K.H.; Sigmon, T.W.

1996-10-15T23:59:59.000Z

292

Process for forming retrograde profiles in silicon  

DOE Patents [OSTI]

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

293

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents [OSTI]

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

Wilson, David Gordon (Winchester, MA)

2002-01-01T23:59:59.000Z

294

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents [OSTI]

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.

Wilson, D.G.

1993-11-09T23:59:59.000Z

295

Radiation Pressure Supported AGN Tori with Hard X-Ray and Stellar Heating  

E-Print Network [OSTI]

The dynamics and structure of toroidal obscuration around AGN remain uncertain and controversial. In this paper we extend earlier work on the dynamical role of infrared radiation pressure by adding the effects of two kinds of distributed heating: Compton-heating due to hard X-rays from the nucleus and local starlight heating. We find numerical solutions to the axisymmetric hydrostatic equilibrium, energy balance, and photon diffusion equations including these effects. Within the regime of typical parameters, the two different sources of additional heating have very similar effects: the density profile within the torus becomes shallower both radially and vertically, but for plausible heating rates, there is only minor change (relative to the source-free case) in the distribution of column density with solid angle. The most interesting consequence of distributed heating is that it selects out a relatively narrow range of parameters permitting an equilibrium, particularly $(L/L_E)/\\tau_T$. We discuss the implications of both the narrowness of the permitted range and its approximate coincidence with the range inferred from observations.

Jiming Shi; Julian H. Krolik

2008-02-13T23:59:59.000Z

296

NEUTRAL BEAM HEATING OF A REVERSED-FIELD PINCH IN THE MADISON  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPCD plasmas. Fast ion diffusion is crucial in driving a flatter heating profile to limit heat conduction- losses. Measured core T e is only possible with significant mid-radius...

297

Minimal universal quantum heat machine  

E-Print Network [OSTI]

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

298

Hybrid simulation of electron cyclotron resonance heating  

Science Journals Connector (OSTI)

Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

T. Ropponen; O. Tarvainen; P. Suominen; T.K. Koponen; T. Kalvas; H. Koivisto

2008-01-01T23:59:59.000Z

299

Heat transport through ion crystals  

E-Print Network [OSTI]

We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as `heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

Nahuel Freitas; Esteban Martinez; Juan Pablo Paz

2013-12-23T23:59:59.000Z

300

Efficiency Ratings for the Daiken AC (Americas), Inc.  

E-Print Network [OSTI]

Efficiency Ratings for the Daiken AC (Americas), Inc. Altherma Air-to-Water Source Heat Pump System Description Model No. Capacity (tons) Space Heating Space Cooling SEER Water Heating Efficiency (E.F.)1 CEC Listing Date Heating Combined Hydronic HSPF E.F. Split Altherma LT ERLQ036

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

302

LANSCE | News & Media | Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

303

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

304

Management's Discussion & Analysis Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

305

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

306

Proceedings of HT'03 2003 Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of HT'03 2003 Summer Heat Transfer Conference July 21­23, 2003, Las Vegas, Nevada, USA HT2003-47016 A NEW TECHNIQUE FOR HEAT FLUX DETERMINATION D.G. Walker Department of Mechanical@vt.edu ABSTRACT A new method for estimating heat fluxes from heating rate measurements and an approach to measure

Walker, D. Greg

307

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

308

Effective stress profiles and seepage flows beneath glaciers and ice sheets  

E-Print Network [OSTI]

stress for ice infiltration Qb Heat flux into glacier base Qf Heat produced by dissipation Qg GeothermalEffective stress profiles and seepage flows beneath glaciers and ice sheets Alan W. REMPEL spacing and the heat-flow regime. Considerations of thermodynamic equilibrium require that ice penetrates

Rempel, Alan W.

309

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

310

Heat transfer in channel flow of a micropolar fluid  

Science Journals Connector (OSTI)

The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present ... the temperature profile for flow of a micropolar fluid in a...

Renuka Rajagopalan; K. S. Bhatnagar

1969-10-01T23:59:59.000Z

311

Storage in Solar Process Heat Applications  

Science Journals Connector (OSTI)

Abstract The subject of this paper is the integration of solar energy into industrial heat supply systems focusing on the use of solar tanks. Within the framework of the project Solar Process Heat Standards funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) load profiles of electroplating processes were measured, a typical load profile was described and simulations were done regarding the dimensioning of the solar tank volume. Depending on the load profile and process temperature, either a large tank volume or a tank-less system leads to the highest solar yields. Furthermore, a new concept of hydraulic tank integration is presented. It facilitates the quick supply of high solar temperatures which are often demanded for solar process heat applications. State of the art tank integration makes the solar system thermally inert, while simulations and measurements have already proven a considerable advantage of the new alternative. Moreover four solar process heat applications are analyzed; three belong to the electroplating industry while the fourth uses solar energy for heating water in the food industry (193 570 m2). Especially two of the four solar process heat plants presented severe operating errors and a high optimizing potential. One solar plant was improved in order to facilitate the new storage concept. This modification ensures the possibility of shifting between the conventional storage integration and the innovative approach for a comparative evaluation.

Sebastian Schramm; Mario Adam

2014-01-01T23:59:59.000Z

312

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

313

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

314

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

315

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

316

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

317

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Central AC (15 SEER or greater): $35 Central AC (16 SEER or greater): $50 Heat Pump (15 SEER or greater): $250 Geothermal Heat Pump (19 EER or greater): $350 Provider Jones-Onslow EMC Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat pump, which does not have a SEER rating greater than 13, with a central AC, heat pump, or geothermal heat

318

Causal heat flow in Bianchi type-V universe  

E-Print Network [OSTI]

In this paper we investigate the role of causal heat transport in a spatially homogeneous, locally-rotationally symmetric Bianchi type-V cosmological model. In particular, the causal temperature profile of the cosmological fluid is obtained within the framework of extended irreversible thermodynamics. We demonstrate that relaxational effects can alter the temperature profile when the cosmological fluid is out of hydrostatic equilibrium.

M. Govender; S. Thirukkanesh

2014-04-11T23:59:59.000Z

319

Child and Family Poverty Saskatchewan Profile 2008  

E-Print Network [OSTI]

Child and Family Poverty Saskatchewan Profile 2008 Summary 19.9% of Saskatchewan's children under Saskatchewan's child poverty rate is the second· highest in the country, following only British Columbia.1% in Canada and 21.7% in Saskatchewan (Chart 1). Seventeen years later, in 2006, the national child poverty

Argerami, Martin

320

Heating and Ionization of the Primordial Intergalactic Medium by High Mass X-ray Binaries  

E-Print Network [OSTI]

We investigate the influence of High Mass X-ray Binaries on their high redshift environments. Using a one-dimensional radiative transfer code, we predict the ionization and temperature profiles surrounding a coeval stellar population, composed of main sequence stars and HMXBs, at various times after its formation. We consider both uniform density surroundings, and a cluster embedded in a 10^8 solar mass NFW halo. HMXBs in a constant density environment produce negligible enhanced ionization because of their high-energy SEDs and short lifetimes. In this case, HMXBs only marginally contribute to the local heating rate. For NFW profiles, radiation from main sequence stars cannot prevent the initially ionized volume from recombining since it is unable to penetrate the high density galactic core. However, HMXB photons stall recombinations behind the front, keeping it partially ionized for longer. The increased electron density in these partially ionized regions promotes further cooling, resulting in lower IGM temp...

Knevitt, Gillian; Power, Chris; Bolton, James

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING  

SciTech Connect (OSTI)

We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.

Urban, Andrea; Evans, Neal J. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Martel, Hugo [Departement de Physique, genie physique et optique, Universite Laval, Quebec, QC G1K 7P4 (Canada)

2010-02-20T23:59:59.000Z

322

Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures  

SciTech Connect (OSTI)

The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.

Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

2014-05-12T23:59:59.000Z

323

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

324

Project Profile: Thermochemical Heat Storage for CSP Based on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"Metal Oxide Based Thermochemical Energy Storage for Concentrated Solar Power - Thermodynamics and Parasitic Loads for Packed Bed Reactors," in Proceedings of 17th Annual Solar...

325

Thermohydraulic Simulation of Heat Exchanger Networks  

Science Journals Connector (OSTI)

The determination of network temperatures is carried out together with the evaluation of flow rates and pressures along the network, considering head losses in heat exchangers and associated piping. ... The HEN responsible to distribute cooling water in an industrial unit is composed by three heat exchangers in parallel. ... However, the cooling water distribution among the three exchangers presents a considerable unbalance, where heat exchanger E-101 receives much less cooling water than the design specification. ...

Viviane B. G. Tavares; Eduardo M. Queiroz; Andre? L. H. Costa

2010-04-26T23:59:59.000Z

326

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

327

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

328

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

329

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

330

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

331

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

332

Multifamily Individual Heating and Ventilation Systems, Lawrence...  

Energy Savers [EERE]

each apartment were much higher than the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 62.2 rate; an extensive system of ductwork, smoke and...

333

Effectiveness of heating patterns for electrical resistance heating  

E-Print Network [OSTI]

BLOCKS APPENDIX B: COMPUTER CODE, r-z ERH RESERVOIR SIMULATOR 39 41 43 45 50 54 VITA 147 LIST OF TABLES PAGE TABLE I: ACCURACY OF POWER CALCULATION TABLE 2: RESULTS OF PARAMETER STUDY TABLE 3: ELECTRODE DESIGN RESULTS TABLE 4: GENERAL TEST... Model 0. 6 0. 4 Radial Power Model 0. 2 0 1 10 r/rw 100 1000 Figure 6; Comparison of power dissipation profiles for radial power model and r-z power model. 14 The power dissipated as heat in this volume, P(r), is normalized by the total...

Maggard, James Bryan

2012-06-07T23:59:59.000Z

334

Efficient Ion Heating via Finite-Larmor-Radius Ion-Cyclotron Waves in a Plasma  

Science Journals Connector (OSTI)

Ion heating by externally launched ion Bernstein waves is investigated in the ACT-1 hydrogen plasma. Detailed measurements of wave absorption and of the ion temperature profiles have clearly identified various heating layers near the ion-cyclotron harmonics of deuteriumlike and tritiumlike ions. The observed bulk ion heating with heating quality factor of 10 eV/W.(1010 cm-3) and the power balance estimates suggest excellent overall efficiency for finite-Larmor-radius-ion-cyclotron-resonance-frequency heating.

M. Ono; G. A. Wurden; K. L. Wong

1984-01-02T23:59:59.000Z

335

Exergoeconomic evaluation on the optimum heating circuit system of Simav geothermal district heating system  

Science Journals Connector (OSTI)

Simav is one of the most important 15 geothermal areas in Turkey. It has several geothermal resources with the mass flow rate ranging from 35 to 72kg/s and temperature from 88 to 148C. Hence, these geothermal resources are available to use for several purposes, such as electricity generation, district heating, greenhouse heating, and balneological purposes. In Simav, the 5000 residences are heated by a district heating system in which these geothermal resources are used. Beside this, a greenhouse area of 225,000m2 is also heated by geothermal. In this study, the working conditions of the Simav geothermal district heating system have been optimized. In this paper, the main characteristics of the system have been presented and the impact of the parameters of heating circuit on the system are investigated by the means of energy, exergy, and life cycle cost (LCC) concepts. As a result, the optimum heating circuit has been determined as 60/49C.

Oguz Arslan; M.Arif Ozgur; Ramazan Kose; Abtullah Tugcu

2009-01-01T23:59:59.000Z

336

Heat pulse propagation in chaotic 3-dimensional magnetic fields  

E-Print Network [OSTI]

Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.

D. del-Castillo-Negrete; D. Blazevski

2014-09-10T23:59:59.000Z

337

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

338

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Power Producers & Combined Heat and Power 1,705,749,796 Emissions Sulfur Dioxide (short tons) 4,082,889 Nitrogen Oxide (short tons) 2,367,431 Carbon Dioxide (thousand...

339

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

43 Independent Power Producers & Combined Heat and Power 5,947,100 36 Emissions Sulfur Dioxide (short tons) 52 49 Nitrogen Oxide (short tons) 673 50 Carbon Dioxide (thousand metric...

340

Estimates of heat flow from Cenozoic seafloor using global depth and age data  

E-Print Network [OSTI]

-independent estimate of the total heat output of Cenozoic seafloor is 18.6 to 20.5 TW, which leads to a global output: Oceanic heat flow; Global heat budget; Subsidence rate 1. Introduction The total heat output of the EarthEstimates of heat flow from Cenozoic seafloor using global depth and age data Meng Wei , David

Sandwell, David T.

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rating Element  

Broader source: Energy.gov (indexed) [DOE]

Score Score Maturity Value Score Maturity Value Score A1 Cost Estimate H 7.5 1 7.5 0.0 0.0 A2 Cost Risk/Contingency Analysis P 3.0 1 3.0 0.0 0.0 A3 Funding Requirements/Profile H 7.5 1 7.5 0.0 0.0 A4 Independent Cost Estimate/Schedule Review P 3.0 N/A 0.0 0.0 0.0 A5 Life Cycle Cost P 3.0 1 3.0 0.0 0.0 A6 Forecast of Cost at Completion P 3.0 N/A 0.0 0.0 0.0 A7 Cost Estimate for Next Phase Work Scope P 3.0 5 15.0 0.0 0.0 Subtotal Cost 36.0 0.0 0.0 B1 Project Schedule H 7.5 1 7.5 0.0 0.0 B2 Major Milestones P 3.0 1 3.0 0.0 0.0 B3 Resource Loading P 3.0 1 3.0 0.0 0.0 B4 Critical Path Management H 7.5 1 7.5 0.0 0.0 B5 Schedule Risk/Contingency Analysis P 3.0 1 3.0 0.0 0.0 B6 Forecast of Schedule Completion P 3.0 N/A 0.0 0.0 0.0 B7 Schedule for Next Phase Work Scope P 3.0 5 15.0 0.0 0.0 Subtotal Schedule 39.0 0.0 0.0 C1 Systems Engineering H 3.1 3 9.2 0.0 0.0 C2 Alternatives Analysis H

342

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

343

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

344

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

345

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

346

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

347

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

348

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

349

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

350

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

351

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

352

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

353

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

354

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

355

AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS  

SciTech Connect (OSTI)

The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of {approx}1 and AD Reynolds numbers of {approx}20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.

Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Myers, Andrew [Physics Department, University of California, Berkeley, CA 94720 (United States); McKee, Christopher F., E-mail: psli@astron.berkeley.edu, E-mail: atmyers@berkeley.edu, E-mail: cmckee@berkeley.edu [Physics Department and Astronomy Department, University of California, Berkeley, CA 94720 (United States)

2012-11-20T23:59:59.000Z

356

Industrial SSP Partner Teaming Profile SWEPCO Intertape  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile Industrial Partner Intertape Polymer Group 1101 Eagle Springs Rd. Danville, VA 24540 Business: Specialized Polyolefin Plastic/Paper Products Mike Jones Manager of Engineering Phone: 434-797-8359 Email: mbjones@itape.com Service/Product Provider Southwestern Petroleum Corporation 534 N. Main St Fort Worth, TX 76164 Business: High Performance Lubricants Paul J. Dickerson Senior Vice President & COO Phone: 817-348-7275 Email: pjd@swepcousa.com Southwestern Petroleum Corporation (SWEPCO) captures "low-hanging fruit" with superior lubricants for Intertape Polymer Project Scope SWEPCO analyzed four problematic gear boxes at the Intertape Polymer Group facility in Danville, VA, which over-heated and tripped the circuit due to high amperage overload. SWEPCO implemented

357

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network [OSTI]

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

358

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the  

E-Print Network [OSTI]

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind C02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov scale. Since in steady state, the heating rate is essentially the same as the energy cascade rate

Ng, Chung-Sang

359

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

360

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Window Frames  

E-Print Network [OSTI]

1 Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer Arasteh and Dragan Curcija ABSTRACT Accurately analyzing heat transfer in window frame cavities radiation heat-transfer effects.) We examine three representative complex cavity cross-section profiles

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Transport in JET H-mode Plasmas with Beam and Ion Cyclotron Heating  

SciTech Connect (OSTI)

Ion Cyclotron (IC) Range of Frequency waves and neutral beam (NB) injection are planned for heating in ITER and other future tokamaks. It is important to understand transport in plasmas with NB and IC to plan, predict, and improve transport and confinement. Transport predictions require simulations of the heating profiles, and for this, accurate modeling of the IC and NB heating is needed.

R.V. Budny, et. al.

2012-07-13T23:59:59.000Z

362

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

363

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

364

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

365

Electron Cyclotron Heating in a Non-Uniform Magnetic Field  

E-Print Network [OSTI]

Electron Cyclotron Heating in a Non-Uniform Magnetic Field by J.e. Sprott December 1968 Presented pulse. IN1RODUCTION Most previous theories of electron cyclotron resonance heating have dealt primarily will outline a simple theoretical model which can be used to estimate the electron cyclotron heating rate

Sprott, Julien Clinton

366

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

367

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

368

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

369

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

370

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

371

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

372

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

373

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

374

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

375

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

376

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

377

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

378

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

379

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

380

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

382

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

383

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

384

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

385

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

386

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

387

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

388

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

389

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

390

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

391

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

392

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

393

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

394

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

395

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

396

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

397

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

398

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

399

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

400

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

402

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

403

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

404

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

405

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

406

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

407

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

408

ARM - Measurement - Sensible heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

409

ARM - Measurement - Latent heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

410

Cab Heating and Cooling  

SciTech Connect (OSTI)

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

411

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

412

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

413

Effects of heat stress on mammalian reproduction  

Science Journals Connector (OSTI)

...University of Florida, , PO Box 110910...combustion of fuel stuffs to achieve a high metabolic rate (i.e. heat...to changes in energy balance and nutrient...on conception rate of dairy cattle...Hereford cattle in Florida. J. Anim. Sci...University of Florida, PO Box 110910...

2009-01-01T23:59:59.000Z

414

Rates & Repayment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

415

COSMIC RAY HEATING OF THE WARM IONIZED MEDIUM  

SciTech Connect (OSTI)

Observations of line ratios in the Milky Way's warm ionized medium suggest that photoionization is not the only heating mechanism present. For the additional heating to explain the discrepancy, it would have to have a weaker dependence on the gas density than the cooling rate, {Lambda}n{sub e}{sup 2}. Reynolds et al. suggested turbulent dissipation or magnetic field reconnection as possible heating sources. We investigate here the viability of MHD-wave mediated cosmic ray heating as a supplemental heating source. This heating rate depends on the gas density only through its linear dependence on the Alfven speed, which goes as n{sub e}{sup -1/2}. We show that, scaled to appropriate values of cosmic ray energy density, cosmic ray heating can be significant. Furthermore, this heating is stable to perturbations. These results should also apply to warm ionized gas in other galaxies.

Wiener, Joshua; Peng Oh, S. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)] [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Zweibel, Ellen G. [Departments of Astronomy and Physics, and Center for Magnetic Self-Organization, University of Wisconsin-Madison, Madison, WI 53706 (United States)] [Departments of Astronomy and Physics, and Center for Magnetic Self-Organization, University of Wisconsin-Madison, Madison, WI 53706 (United States)

2013-04-10T23:59:59.000Z

416

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

417

Retrieval of Hydrometeor Profiles in Tropical Cyclones and Convection from Combined Radar and Radiometer Observations  

E-Print Network [OSTI]

of understanding the global energy and water cycles by providing four-dimensional distributions of latent heat- ing related to latent heating, ice water content (IWC) and liquid water content (LWC) have implications A retrieval algorithm is described to estimate vertical profiles of precipitation ice water content and liquid

Jiang, Haiyan

418

Thulium-170 heat source  

SciTech Connect (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

419

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

420

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT  

E-Print Network [OSTI]

transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

Kihm, IconKenneth David

422

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

423

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

424

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants  

Broader source: Energy.gov [DOE]

Terrafore, under the Thermal Storage FOA, is developing an economically feasible thermal energy storage (TES) system based on phase change materials (PCMs), for CSP plants.

425

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

426

Optimizing PT Arun LNG main heat exchanger  

SciTech Connect (OSTI)

The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

Irawan, B. [PT Arun NGL Co., Sumatra (Indonesia)

1995-12-01T23:59:59.000Z

427

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network [OSTI]

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

428

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

429

Suppression MHD instabilities by IBW heating in HT-7 Tokamak  

E-Print Network [OSTI]

In HT-7 tokamak, the m= 2/1 tearing mode can be effectively suppressed by the ion bernstein wave (IBW) when the location of power deposition is near the q=2 rational surface. Off-axis electron heating and greatly increase of electron density was observed, in the meantime, the particle confinement appears to be improved with the increased of the central line averaged electron density and the drop of Da emission. Induced large ne gradients and pressures were spatially correlated with the IBW deposition profile by theoretical calculation >. It is suggested that off-axis IBW heating modifies the electron pressure profile, and so the current density profile could be redistributed resulting in the suppression of the magnetohydrodynamics (MHD) instability. It provides an integrated way for making combined effects on both the stabilization of tearing modes and controlling of pressure profile.

C. M. Qin; Y. P. Zhao; X. J. Zhang; P. Xu; Y. Yang; the HT-7 team

2010-01-20T23:59:59.000Z

430

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

431

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation ...

Henley, D B; Pittard, J M

2003-01-01T23:59:59.000Z

432

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

433

Wound tube heat exchanger  

DOE Patents [OSTI]

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

434

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

435

Dynamics of heat transfer between nano systems  

E-Print Network [OSTI]

We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

Svend-Age Biehs; Girish S. Agarwal

2012-10-18T23:59:59.000Z

436

Cryogenic heat exchanger with turbulent flows  

Science Journals Connector (OSTI)

An evaporator-type cryogenic heat exchanger is designed and built for introducing fluidsolid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N2and He gases from room temperatures. We present first the experimental results of various parameters which characterize the heat exchanger (efficiency, number of transfer units, heat exchange coefficient, etc) as a function of the mass flow rate of the gas to be cooled. An analysis of the NuRe diagram is also presented. All experiments were conducted with N2gas. The scope of this tool is readily extended to research purposes.

Jay Amrit; Christelle Douay; Francis Dubois; Grard Defresne

2012-01-01T23:59:59.000Z

437

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

438

PSNC Energy (Gas) - Green Building Rate Discount | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PSNC Energy (Gas) - Green Building Rate Discount PSNC Energy (Gas) - Green Building Rate Discount PSNC Energy (Gas) - Green Building Rate Discount < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State North Carolina Program Type Utility Rate Discount Rebate Amount $0.05 discount/therm Provider PSNC Energy This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) certification or equivalent. To qualify, the customer must be on the Rate 125. Qualifying customers pay $.05 per therm

439

Project Cost Profile Spreadsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

440

HEATING 7. 1 user's manual  

SciTech Connect (OSTI)

HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Expert Meeting Report: Exploring the Disconnect Between Rated and Field  

Broader source: Energy.gov (indexed) [DOE]

Exploring the Disconnect Between Rated and Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional

442

Texas Crop Profile: Potatoes  

E-Print Network [OSTI]

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

443

Surface-induced heating of cold polar molecules  

E-Print Network [OSTI]

We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite temperature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed by transition rates that depend on both temperature and position. Analytical and numerical methods are used to investigate the heating of several relevant molecules near various surfaces. We determine the critical distances at which the surface itself becomes the dominant source of heating and we investigate the transition between the long-range and short-range behaviour of the heating rates. A simple formula is presented that can be used to estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating depends on the thickness and composition of the surface.

Stefan Yoshi Buhmann; M. R. Tarbutt; Stefan Scheel; E. A. Hinds

2008-06-18T23:59:59.000Z

444

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

445

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

446

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

447

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

448

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

449

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

450

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

451

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

452

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

453

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

454

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

455

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

456

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

457

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

458

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

459

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

460

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

462

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

463

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

464

Solar Models and NACRE thermonuclear reaction rates  

E-Print Network [OSTI]

Using the most recent updated physics, calibrated solar models have been computed with the new thermonuclear reaction rates of NACRE, the recently available European compilation. Comparisons with models computed with the reaction rates of Caughlan & Fowler (\\cite{cf88}) and of Adelberger et al. (\\cite{a98}) are made for global structure, expected neutrinos fluxes, chemical composition and sound speed profiles, helioseismological properties of p-modes and g-modes.

P. Morel; B. Pichon; J. Provost; G. Berthomieu

1999-07-27T23:59:59.000Z

465

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

466

Ductless Heat Pumps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

467

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

468

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

469

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

470

CYCLOTRON HEATING NFR THE MULTIPOLE B = 0 AXIS J. C. Sprott  

E-Print Network [OSTI]

CYCLOTRON HEATING NFR THE MULTIPOLE B = 0 AXIS by J. C. Sprott November 1973 PLP 536 Plasma Studies of the author and major professor. #12;Ion and Electron Cyclotron heating rates in multipoles are generally = 0 axis in a multipole. The average cyclotron heating rate is given by d--= dt where TIB G 0 = TI

Sprott, Julien Clinton

471

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

472

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

473

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

474

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

475

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

476

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

yvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

477

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

478

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

479

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

480

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

Note: This page contains sample records for the topic "heating rate profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

482

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

483

Ausra Inc Formerly Solar Heat and Power Pty Ltd SHP | Open Energy  

Open Energy Info (EERE)

Inc Formerly Solar Heat and Power Pty Ltd SHP Inc Formerly Solar Heat and Power Pty Ltd SHP Jump to: navigation, search Name Ausra Inc (Formerly Solar Heat and Power Pty Ltd (SHP)) Place Palo Alto, California Zip 94303 Sector Solar Product US-based solar thermal electrical generation (STEG) company owned by AREVA Group. References Ausra Inc (Formerly Solar Heat and Power Pty Ltd (SHP))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ausra Inc (Formerly Solar Heat and Power Pty Ltd (SHP)) is a company located in Palo Alto, California . References ↑ "Ausra Inc (Formerly Solar Heat and Power Pty Ltd (SHP))" Retrieved from "http://en.openei.org/w/index.php?title=Ausra_Inc_Formerly_Solar_Heat_and_Power_Pty_Ltd_SHP&oldid=342438

484

Statistical analysis of variations in impurity ion heating at reconnection events in the Madison Symmetric Torus  

SciTech Connect (OSTI)

The connection between impurity ion heating and other physical processes in the plasma is evaluated by studying variations in the amount of ion heating at reconnection events in the Madison Symmetric Torus (MST). Correlation of the change in ion temperature with individual tearing mode amplitudes indicates that the edge-resonant modes are better predictors for the amount of global ion heating than the core-resonant modes. There is also a strong correlation between ion heating and current profile relaxation. Simultaneous measurements of the ion temperature at different toroidal locations reveal, for the first time, a toroidal asymmetry to the ion heating in MST. These results present challenges for existing heating theories and suggest a stronger connection between edge-resonant tearing modes, current profile relaxation, and ion heating than has been previously thought.

Cartolano, M. S.; Craig, D., E-mail: darren.craig@wheaton.edu [Wheaton College, Wheaton, Illinois 60187 (United States); Den Hartog, D. J.; Kumar, S. T. A.; Nornberg, M. D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States) [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States)

2014-01-15T23:59:59.000Z

485

Low-threshold absolute parametric decay instabilities in experiments on electron cyclotron resonance heating in tokamaks  

Science Journals Connector (OSTI)

We have analyzed experimental conditions for the excitation of absolute parametric decay instabilities accompanying the electron cyclotron resonance heating (ECRH) of plasma at the second ... profile of the plasm...

E. Z. Gusakov; A. Yu. Popov

2011-10-01T23:59:59.000Z

486

An experimental and theoretical study of radiative and conductive heat transfer in nongray semitransparent media  

E-Print Network [OSTI]

One dimensional temperature profiles and heat fluxes within a slab of molten glass were measured experimentally. The glass slab was contained in a platinum foil lined ceramic tray inside a high temperature furnace. An ...

Eryou, N. Dennis

1969-01-01T23:59:59.000Z

487

Thermal regimes in a primary fluid heated by solar energy in a linear collector  

Science Journals Connector (OSTI)

The steady-state heat transfer equation has been solved for the determination of temperature profiles in a diathermic oil flowing through a linear boiler placed on the focal line of cylindrical parabolic solar...

O. Barra; M. Conti; L. Correra; R. Visentin; E. Pugliese Caratelli

488

On the feasibility of electron cyclotron heating of overcritical plasma in a magnetic mirror trap  

Science Journals Connector (OSTI)

The feasibility of matching electromagnetic radiation in the electron cyclotron frequency range to a dense plasma in ... profile shows promise for the implementation of efficient cyclotron heating at plasma densi...

A. V. Vodopyanov; S. V. Golubev; E. D. Gospodchikov

2012-06-01T23:59:59.000Z

489

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents [OSTI]

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

490

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

491

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

492

On the Heating of the Solar Corona and the Acceleration of the Low-Speed Solar Wind by Acoustic Waves Generated in Corona  

E-Print Network [OSTI]

We investigate possibilities of solar coronal heating by acoustic waves generated not at the photosphere but in the corona, aiming at heating in the mid- to low-latitude corona where the low-speed wind is expected to come from. Acoustic waves of period tau ~ 100s are triggered by chromospheric reconnection, one model of small scale magnetic reconnection events recently proposed by Sturrock. These waves having a finite amplitude eventually form shocks to shape sawtooth waves (N-waves), and directly heat the surrounding corona by dissipation of their wave energy. Outward propagation of the N-waves is treated based on the weak shock theory, so that the heating rate can be evaluated consistently with physical properties of the background coronal plasma without setting a dissipation length in an ad hoc manner. We construct coronal structures from the upper chromosphere to the outside of 1AU for various inputs of the acoustic waves having a range of energy flux of F_{w,0} = (1-20) times 10^5 erg cm^{-2} s^{-1} and a period of tau = 60-300s. The heating by the N-wave dissipation effectively works in the inner corona and we find that the waves of F_{w,0} >= 2 times 10^5 erg cm^{-2} s^{-1} and tau >= 60s could maintain peak coronal temperature, T_{max} > 10^6 K. The model could also reproduce the density profile observed in the streamer region. However, due to its short dissipation length, the location of T_{max} is closer to the surface than the observation, and the resultant flow velocity of the solar wind is lower than the observed profile of the low-speed wind. The cooperations with other heating and acceleration sources with the larger dissipation length are inevitable to reproduce the real solar corona.

Takeru Ken Suzuki

2002-06-14T23:59:59.000Z

493

Utility Rate Discounts | Open Energy Information  

Open Energy Info (EERE)

Discounts Discounts Jump to: navigation, search A few electric utilities offer rate discounts to encourage residential energy efficiency. For homes that meet certain energy efficiency criteria, such as those established by the federal Energy Star program, the owner or tenant is awarded a percentage discount on each month’s electric bill. [1] Contents 1 Utility Rate Discount Incentives 2 References Utility Rate Discount Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Cleco Power - Power Miser New Home Program (Louisiana) Utility Rate Discount Louisiana Residential Building Insulation Central Air conditioners Clothes Washers Comprehensive Measures/Whole Building Doors Duct/Air sealing Furnaces Heat pumps

494

Magnetars as cooling neutron stars with internal heating  

E-Print Network [OSTI]

We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.

A. D. Kaminker; D. G. Yakovlev; A. Y. Potekhin; N. Shibazaki; P. S. Shternin; O. Y. Gnedin

2006-05-18T23:59:59.000Z

495

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the