National Library of Energy BETA

Sample records for heating plant gas

  1. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  2. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  3. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  4. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most...

  5. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    SciTech Connect (OSTI)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers.

  6. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  7. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  8. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  9. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  10. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Environmental Management (EM)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: February 28, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 06/30/2014 3. Packaged Prototype Results: 02/28/2015 Budget: Total DOE $ to date: $305,396 Total future DOE $: $597,474 Target

  11. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Environmental Management (EM)

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: August 31, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 12/31/2014 3. Packaged Prototype Results: 04/01/2015 Budget: Total DOE $ to date: $629,730 Total future DOE $: $273,140 Target

  12. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  13. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009...

  14. ,"Natural Gas Plant Liquids Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"06301979" ,"Release...

  15. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  16. Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 View All Maps Addthis

  17. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr...

  18. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  19. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  20. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information...

  1. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration,...

  2. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State...

  3. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

  4. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and...

  5. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in...

  6. Reduce Natural Gas Use in Your Industrial Process Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance. PDF icon Reduce Natural Gas Use in Your Industrial Process Heating Systems (September 2007) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired

  7. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  8. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  9. Trash-fired boiler cuts plant's gas use 30%

    SciTech Connect (OSTI)

    Watson, F

    1983-06-27

    A Minneapolis bottling plant will burn trash in a 450-horsepower boiler/incinerator to reduce natural gas consumption 30% and eliminate the costs of hauling and disposing of trash. Combined with a CA1500 heat-recovery system installed in 1982, the project will have a two-year payback. The system is clean enough that even old tires can be burned and still meet air pollution regulations. (DCK)

  10. Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy

    Energy Savers [EERE]

    Gas Heat Pump For Building Space Heating Low-Cost Gas Heat Pump For Building Space Heating Credit: Stone Mountain Technologies Credit: Stone Mountain Technologies Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: $903,000 Cost Share: $232,294 Project Term: 3/1/2013 - 2/28/2015 Funding Opportunity: Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies 2012

  11. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Residential Sector - Fact Sheet, 2013 | Department of Energy Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Southwest Gas Corporation, in collaboration with IntelliChoice Energy and Oak Ridge National Laboratory, will develop hardware and software for engine and system controls for a

  12. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) on their newly-constructed homes. Rebates of...

  13. Mapping Geothermal Heat Flow and Existing Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping Geothermal Heat Flow and Existing Plants Mapping Geothermal Heat Flow and Existing Plants October 22, 2014 - 5:36pm Addthis Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Geothermal power is a growing

  14. Ohio Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,211 33,031 344,073 1981-2014 Total Liquids Extracted (Thousand Barrels) 118 1,367 24,411 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 155 2,116 33,332 1981

  15. Florida Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 1967-2014 Total Liquids Extracted (Thousand Barrels) 173 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 0 0 233 1968

  16. Illinois Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 164 5,393 294 1967-2014 Total Liquids Extracted (Thousand Barrels) 24 231 40 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 31 345 1,043 0 0 47 1967

  17. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion to Electricity | Department of Energy Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy. PDF icon lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program Automotive Waste

  18. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient ...

  19. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  20. Mississippi Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 215,951 218,840 126,859 6,865 4,527 5,633 1967-2014 Total Liquids Extracted (Thousand Barrels) 12,591 12,618 7,732 377 359 365 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,354 18,405 11,221 486 466 495 1967

  1. Montana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 12,415 12,391 11,185 12,727 14,575 14,751 1967-2014 Total Liquids Extracted (Thousand Barrels) 1,409 989 927 1,115 1,235 1,254 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,853 1,367 1,252 1,491 1,645 1,670 1967

  2. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  3. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  4. Michigan Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 23,819 22,405 21,518 21,243 21,416 18,654 1967-2014 Total Liquids Extracted (Thousand Barrels) 2,409 2,207 2,132 2,046 2,005 1,593 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 2,334 2,943 2,465 2,480 2,345 1,922 1967

  5. Utah Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 412,639 454,832 490,233 535,365 448,687 419,773 1967-2014 Total Liquids Extracted (Thousand Barrels) 6,527 7,648 10,805 11,441 11,279 13,343 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 8,489 9,978 14,910 15,637 15,409 18,652 1967

  6. Wyoming Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,507,142 1,642,190 1,634,364 1,614,320 1,517,876 1,526,746 1967-2014 Total Liquids Extracted (Thousand Barrels) 64,581 63,857 66,839 70,737 52,999 54,933 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 93,796 92,777 97,588 102,549 74,409 76,943 1967

  7. Oklahoma Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,112,510 1,110,236 1,218,855 1,310,331 1,377,119 1,696,107 1967-2014 Total Liquids Extracted (Thousand Barrels) 77,140 83,174 91,963 96,237 98,976 117,057 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 112,891 120,631 134,032 139,928 142,595 169,864 1967

  8. Pennsylvania Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 22,364 56,162 131,959 236,817 396,726 301,514 1967-2014 Total Liquids Extracted (Thousand Barrels) 975 3,421 6,721 8,882 15,496 27,903 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,295 4,578 8,931 12,003 20,936 39,989 1967

  9. Colorado Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,233,260 1,434,003 1,507,467 1,464,261 1,373,046 1,495,360 1967-2014 Total Liquids Extracted (Thousand Barrels) 47,705 57,924 63,075 57,379 51,978 60,850 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 67,607 82,637 90,801 82,042 87,513 85,198 1967

  10. Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 370,670 341,778 322,944 259,565 190,503 191,034 1967-2014 Total Liquids Extracted (Thousand Barrels) 18,863 18,424 18,098 14,844 10,900 11,611 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 26,948 26,251 25,804 21,220 15,446 16,515 1967

  11. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  12. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  13. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Environmental Management (EM)

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  14. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  15. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance PDF icon deer11_meisner.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  16. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the

  17. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 (Conference) | SciTech Connect GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Citation Details In-Document Search Title: GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions

  18. Louisiana Offshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade...

  19. Natural Gas Plant Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Liquids contained in Total Natural Gas Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 8,557 9,809 10,825 10,777 11,943 15,029 1979-2014 Alabama 55 68 68 55 51 59 1979-2014 Alaska 299 288 288 288 288 241 1979-2014 Arkansas 2 2 3 3 4 5 1979-2014 California 129 114 94 99 102 112 1979-2014 Coastal Region Onshore 10 11 12

  20. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf...

  1. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  2. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  3. PECO Energy (Gas)- Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Smart Natural Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furna...

  4. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  5. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  6. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  7. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  8. ,"Nebraska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnem.xls" ...

  9. ,"Oregon Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusorm.xls" ...

  10. ,"Wisconsin Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswim.xls" ...

  11. ,"Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvam.xls" ...

  12. ,"Utah Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusutm.xls" ...

  13. ,"Ohio Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusohm.xls" ...

  14. ,"Tennessee Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustnm.xls" ...

  15. ,"Washington Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswam.xls" ...

  16. ,"Nevada Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnvm.xls" ...

  17. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusokm.xls" ...

  18. ,"Wyoming Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswym.xls" ...

  19. ,"Vermont Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvtm.xls" ...

  20. ,"Texas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustxm.xls" ...

  1. ,"Pennsylvania Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuspam.xls" ...

  2. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Energy Savers [EERE]

    Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research & Development Authority - Albany, NY -- Stony Brook University - Stony Brook, NY -- Oak Ridge National Laboratory - Oak Ridge, TN -- National Grid - Washington, DC -- Applied Thermodynamic Apparatus (ATA) - Ann Arbor, MI -- Fala Technologies - Kingston, NY -- LoDolce - Saugerties, NY DOE Funding: $750,000 Cost Share:

  3. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines |

    Office of Environmental Management (EM)

    Department of Energy Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack designed thermoelectric engine to achieve high power density and reduced system weight and volume PDF icon deer11_lagrandeur.pdf More Documents & Publications TEG On-Vehicle Performance & Model Validation Thermoelectric Generator Performance for Passenger Vehicles

  4. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector

    Energy Savers [EERE]

    Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial fa- cilities to single family homes. The market for heat pumps is

  5. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  6. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  7. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  8. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  9. Sour gas injection for use with in situ heat treatment

    DOE Patents [OSTI]

    Fowler, Thomas David (Houston, TX)

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  10. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. New York Natural Gas Lease and Plant Fuel Consumption (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Plant Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  13. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  14. ,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  15. ,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  16. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  17. Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  18. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  19. West Virginia Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extracted in West Virginia (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

  20. ,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million...

  1. ,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million...

  2. ,"California--State Offshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million...

  3. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect (OSTI)

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

  4. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  5. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Togore, Sam; Turhollow Jr, Anthony F

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  6. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    96 Created on: 2242016 5:55:04 PM Table 26. Natural gas home customer-weighted heating ... 1,392 803 2015 1,285 1,239 1,313 1,256 814 2016 1,090 1,094 1,213 1,290 824 % Diff (normal ...

  7. How Gas Turbine Power Plants Work | Department of Energy

    Energy Savers [EERE]

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion

  8. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  9. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  10. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  11. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  12. Table 17. Estimated natural gas plant liquids and dry natural gas content of tot

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014" "million barrels and billion cubic feet" ,"Total Wet Natural Gas Proved Reserves",,,,"Estimated content of proved reserves" " State and Subdivision",,2014,,,"Natural Gas Plant Liquids",,"Dry Natural Gas" ,,"billion cubic feet",,,"million barrels",,"billion cubic feet"

  13. The NuGas{sup TM} Concept - Combining a Nuclear Power Plant with a Gas-Fired Plant

    SciTech Connect (OSTI)

    Willson, Paul; Smith, Alistair

    2007-07-01

    Nuclear power plants produce low carbon emissions and stable, low cost electricity. Combined cycle gas-fired power plants are cheap and quick to build and have very flexible operation. If you could combine these two technologies, you could have an ideal base-load power plant. (authors)

  14. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  15. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  16. Assessment and remediation at former manufactured gas plants

    SciTech Connect (OSTI)

    Mehan, D.G.

    1995-12-01

    Over 1,000 former Manufactured Gas Plants (MGP) have been identified in the United States. Gal Plants were used to produce gas for lighting and heating from coal and oil from the mid-1800s until the 1950s. Former MGP sites are typically impacted by a variety of compounds that do not collectively lend themselves to {open_quotes}standard{close_quotes} assessment and remedial solutions. These compounds include the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylene, a variety of semi-volatile organic compound, and inorganic compounds (iron and cyanide). The assessment of former MGP sites is complicated because many former sites are now located in developed and industrialized areas. MGP wastes and by-products were typically disposed on-site. Many modern buildings are now located over former MGP sites. Standard assessment tools such as augering and drilling tend to encounter former structures, making their use difficult and ineffective. Assessment by excavation and geophysical methods allows the acquisition of only shallow data. The remediation of impacted soils and ground water at former MGP sites poses significant challenges due to the differing characteristics of the typical MGP compounds. For example, soil vapor extraction and ground water treatment may decrease VOC concentrations, yet be ineffective on the inorganic and PAH compounds. Because of the variety of typical MGP associated wastes, risk assessment is a vital tool in assessing and selecting the appropriate remedial strategies. Several states have aggressively adopted clean-up programs that rely on risk assessment to determine the appropriate remedial strategy at former MGP sites. At numerous sites, no further action is employed because of the VOCs have attenuated over time, the PAH and inorganic compounds are relatively immobile, ground water contamination plumes are limited, and risk assessment indicates acceptable risks.

  17. Diagnosis system to improve heat rate in fossil power plants

    SciTech Connect (OSTI)

    Arroyo-Figueroa, G.; Villavicencio R., A.

    1996-05-01

    Today fossil fuel power plants is showing a trend toward full automation. This increases the difficulty for human operators to follow in detail the progress of power plants, and also limit the contribution of human operators to diagnostic task. Therefore, automated and intelligent fault diagnostic systems have been intensively investigated. Despite several successful examples of diagnostic systems, often called expert systems, the development task of a diagnostic system still remains empiric and is unique for each system. This paper discusses the design of a Diagnostic System to improve Heat Rate for fossil fuel power plant. The approach is characterized as an fault tree diagnostic system. The prototype of this system has showed the benefits and the feasibility of using this system to diagnose equipment in power plants.

  18. Texas Offshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - No...

  19. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  20. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in...

  1. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas...

  2. Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Texas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  3. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  6. Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  7. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. Oklahoma Natural Gas Plant Liquids Production Extracted in Kansas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Kansas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Kansas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  10. West Virginia Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. New Mexico Natural Gas Plant Liquids Production Extracted in...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Mexico (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Gulf Of Mexico Natural Gas Plant Liquids Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

  15. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. New Mexico Natural Gas Plant Liquids Production Extracted in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  20. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  1. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  2. Pennsylvania-Ohio Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) 51,023 5,826 2013-2014 Total Liquids Extracted (Thousand Barrels) 1,201 248 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 346

  3. Florida-Florida Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 2014-2014 Total Liquids Extracted (Thousand Barrels) 173 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 233 2014

  4. Illinois-Illinois Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2014 View History Natural Gas Processed (Million Cubic Feet) 294 2014-2014 Total Liquids Extracted (Thousand Barrels) 40 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 47 2014

  5. Natural gas inventories heading to record levels at start of winter heating season

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas inventories heading to record levels at start of winter heating season U.S. natural gas inventories are expected to be at record levels to start the winter heating season. In its new forecast, the U.S. Energy Information Administration said the amount of natural gas stored underground should total almost 4 trillion cubic feet by the beginning of November, reflecting record high natural gas production. Inventories could go even higher if heating demand is not strong during October

  6. Heating and cooling gas-gun targets: nuts and bolts

    SciTech Connect (OSTI)

    Gustavsen, Richard L; Bartram, Brian D; Gehr, Russell J; Bucholtz, Scott M

    2009-01-01

    The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

  7. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, D.D.; Conrad, B.L.; Gleixner, R.A.

    1998-06-02

    An improved method and apparatus for producing flexible fibers of superconducting material includes a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through a downwardly directed nozzle where it is subjected to a high velocity of a heated gas which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by directing them against a collection filter. 10 figs.

  8. Pennsylvania-Pennsylvania Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 131,959 226,544 159,840 194,075 2011-2014 Total Liquids Extracted (Thousand Barrels) 8,687 8,346 17,765 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 25,308

  9. South Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 30 25 21 1977

  10. Tennessee-Tennessee Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 6,200 6,304 5,721 5,000 2011-2014 Total Liquids Extracted (Thousand Barrels) 343 340 281 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 382 2014

  11. Michigan-Michigan Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 21,518 21,243 21,416 18,654 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,046 2,005 1,593 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,922 2014

  12. Mississippi-Mississippi Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 5,415 5,021 4,527 5,633 2011-2014 Total Liquids Extracted (Thousand Barrels) 350 359 365 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 495 2014

  13. Wyoming-Colorado Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 69,827 75,855 136,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 5,481 5,903 12,130 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 16,070

  14. Wyoming-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  15. Ohio-Ohio Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,211 32,760 344,073 2012-2014 Total Liquids Extracted (Thousand Barrels) 118 1,353 24,411 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 33,332 2014-2014

  16. Alaska Onshore Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,811,384 2,735,783 2013-2014 Total Liquids Extracted (Thousand Barrels) 17,670 15,724 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,434 2014

  17. Arkansas-Arkansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 5,611 6,872 7,781 8,058 2011-2014 Total Liquids Extracted (Thousand Barrels) 336 378 457 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 582 2014

  18. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  19. Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants

    SciTech Connect (OSTI)

    Rabas, T.J.; Panchal, C.B.; Stevens, H.C. )

    1990-02-01

    A preliminary design of the noncondensible gas removal system for a 10 mWe, land-based hybrid-cycle OTEC power plant has been developed and is presented herein. This gas removal system is very different from that used for conventional power plants because of the substantially larger and continuous noncondensible gas flow rates and lower condenser pressure levels which predicate the need for higher-efficiency components. Previous OTEC studies discussed the need for multiple high-efficiency compressors with intercoolers; however, no previous design effort was devoted to the details of the intercoolers, integration and optimization of the intercoolers with the compressors, and the practical design constraints and feasibility issues of these components. The resulting gas removal system design uses centrifugal (radial) compressors with matrix-type crossflow aluminum heat exchangers as intercoolers. Once-through boiling of ammonia is used as the heat sink for the cooling and condensing of the steam-gas mixture. A computerized calculation method was developed for the performance analysis and subsystem optimization. For a specific number of compressor units and the stream arrangement, the method is used to calculate the dimensions, speeds, power requirements, and costs of all the components.

  20. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  1. Natural Gas Plant Field Production: Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 101,809 102,880 100,283 106,269 103,071 104,629 1981-2015 PADD 1

  2. Natural Gas Plant Stocks of Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 6,491 6,324 6,877 6,774 5,691 4,837 1993-2015 PADD 1 260 192 186 222 215 218 1993-2015 East Coast 4 4 7 7 1993-2015 Appalachian No. 1 260 192 182 218 208 211 1993-2015

  3. Gulf of Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,317,031 1,002,608 1,000,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 60,320 49,143 52,331 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 87,478 70,292 75,648 2007

  4. U.S. Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Gulf of Mexico Alabama Alaska Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Louisiana Michigan Mississippi Montana Nebraska New Mexico North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History Natural Gas

  5. U.S. Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Processing Area: U.S. Alabama Alabama Onshore-Alabama Alabama Offshore-Alabama Alaska Alaska Onshore Arkansas Arkansas-Arkansas California California Onshore-California California Offshore-California Colorado Colorado-Colorado Colorado-Kansas Colorado-Utah Florida Florida-Florida Gulf of Mexico Gulf of Mexico-Alabama Gulf of Mexico-Louisiana Gulf of Mexico-Mississippi Gulf of Mexico-Texas Illinois Illinois-Illinois Kansas Kansas-Kansas Kansas-Oklahoma Kansas-Texas Kentucky

  6. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect (OSTI)

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  7. New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 209 214 209 232 221 209 217 192 208 196 1990's 222 205 223 233 234 247 299 273 262 255 2000's 333 279 290 272 274 271 295 306 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 321 1980's 332 346 322 319 290 236 360 579 815 737 1990's 768 703 843 763 777 696 760 596 667 699 2000's 563 594 548 603 590 569 566 538 486 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 1980's 95 99 85 74 57 65 57 50 56 60 1990's 58 59 60 57 69 79 85 80 57 61 2000's 61 62 49 67 74 83 89 100 95 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  10. Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 676 1980's 540 544 501 527 454 442 428 429 421 411 1990's 431 417 380 334 337 495 411 333 325 364 2000's 337 269 226 182 153 168 159 168 142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70 39 46 40 51 1990's 49 50 55 30 28 27 47 24 29 32 2000's 38 60 48 46 36 41 32 35 63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  12. California - Coastal Region Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 15 16 15 13 13 11 1990's 12 12 10 12 11 8 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 15 6 6 6 5 6 8 8 7 4 1990's 5 4 5 6 5 4 3 4 5 7 2000's 10 8 10 8 8 9 10 9 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. California Federal Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 3 2 15 17 21 25 1990's 18 16 20 25 21 25 23 14 12 4 2000's 4 9 8 8 8 8 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. California State Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 1 2 6 2 2 2 3 1990's 2 1 1 1 1 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. California--Coastal Region Onshore Natural Gas Plant Liquids, Expected

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 14 15 15 13 13 11 1990's 12 11 9 10 9 7 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 10 2010's 11 12 18 13 12

  18. Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13 18 11 10 10 9 9 5 6 1990's 5 5 4 4 2 2 1 3 4 4 2000's 4 5 5 5 5 3 4 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  19. Greenhouse gas emissions from landfill leachate treatment plants: A

    Office of Scientific and Technical Information (OSTI)

    comparison of young and aged landfill (Journal Article) | SciTech Connect Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill Citation Details In-Document Search Title: Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill Highlights: * Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup -1}. * Fresh leachate owned extremely low ORP and high organic

  20. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 35 30 19 31 21 13 1990's 0 14 9 0 3 2 3 7 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel

  1. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption

  2. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 506 516 501 488 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee Natural Gas Plant Processing NGPL

  3. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2010's 8 11 11 11 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  4. Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 51 58 64 2010's 63 66 71 53 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  5. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  6. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  7. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. New Mexico Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 769,783 737,187 795,069 777,099 746,010 802,343 1967-2014 Total Liquids Extracted (Thousand Barrels) 64,965 62,965 61,857 57,949 59,475 61,295 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 94,840 91,963 90,291 84,562 86,795 88,894 1967

  9. North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 87,977 91,539 112,206 208,598 270,001 337,490 1967-2014 Total Liquids Extracted (Thousand Barrels) 7,852 8,842 10,199 19,186 26,000 36,276 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 10,140 11,381 14,182 26,114 36,840 50,590 1967

  10. U.S. Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Natural Gas Processed (Million Cubic Feet) 16,267,757 16,566,883 17,538,026 17,884,427 19,754,802 1967-2014 Total Liquids Extracted (Thousand Barrels) 749,095 792,481 873,563 937,591 1,124,416 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,066,366 1,134,473 1,250,012

  11. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, Douglas D.; Conrad, Barry L.; Gleixner, Richard A.

    2001-01-16

    An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

  12. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, Douglas D.; Conrad, Barry L.; Gleixner, Richard A.

    1998-06-02

    An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

  13. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  14. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy...

  15. PECO Energy (Gas)- Residential Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Residential Smart Natural Gas Efficiency Upgrade Program offers various incentives for installing energy efficient gas equipment in homes.  The program is available to PECO natural gas ...

  16. Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 4 5 6 8 6 9 10 11 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  17. Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas

  18. Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's 16 16 15 11 12 11 16 16 13 9 1990's 9 5 4 4 6 6 4 7 5 5 2000's 5 5 4 3 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  19. California--State Offshore Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 1 2 6 5 2 2 2 3 1990's 2 1 1 1 1 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. California--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  1. California Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    California (Million Cubic Feet) Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL

  2. California Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    California (Million Cubic Feet) Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,755 13,192 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  3. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,170 794 598 1970's 555 599 539 474 460 313 259 226 168 139 1980's 126 153 133 137 132 115 77 81 59 29 1990's 0 13 3 8 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous

  5. Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Lease and Plant Fuel Consumption (Million Cubic Feet) Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 440 326 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  6. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production,

  7. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production,

  8. Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous

  9. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 74 19 12 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  10. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","12/2015","1/15/1981" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel

  11. Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Extracted in Mississippi (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 495 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  12. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  13. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  14. Pennsylvania Natural Gas Plant Liquids Production Extracted in Pennsylvania

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Pennsylvania (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  15. Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Kansas (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Kansas

  16. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  17. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  18. Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Texas

  19. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  20. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  1. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  2. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  3. CO? Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2011-09-30

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO?, the development of retrofit, post-combustion CO? capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO? from plant flue gas with 95% captured CO? purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO?-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO?, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO? over N? and CO? permeance greater than 300 gas permeation units (GPU) targeted; - Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO? permeance than current commercial polycarbonate membranes; - Development and fabrication of membrane hollow fibers and modules from candidate polymers; - Development of a CO? capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and - Techno-economic evaluation of the "best" integrated CO? capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO? capture with 95% captured CO? purity.

  4. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  5. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  6. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect (OSTI)

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  7. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Mexico confirmed by drilling Studies links CH 4 , GH, ... Nankai field site, first offshore production test occurs in ... Evaluation of future gas hydrate development will be ...

  8. PECO Energy (Gas)- Commercial Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PECO offers financial incentives to its business and commercial gas customers to install energy efficient equipment. Incentives are available for energy efficient boilers, furnaces, and for fuel...

  9. ,"New Hampshire Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnhm.xls" ...

  10. ,"South Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcussdm.xls" ...

  11. ,"New Jersey Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnjm.xls" ...

  12. ,"Rhode Island Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusrim.xls" ...

  13. ,"South Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusscm.xls" ...

  14. ,"West Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswvm.xls" ...

  15. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusncm.xls" ...

  16. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusndm.xls" ...

  17. ,"New York Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnym.xls" ...

  18. The Natural gas Heat Pump and Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Distinctive Characteristics: * Single natural gas-driven device * Minimal electricity ... HVAC * 30-50% reduction in energy used * Minimal electricity Grid Independent * No ...

  19. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY Beaudoin, Y. C., Boswell, R., Dallimore, S. R., and Waite, W. (eds), 2014. Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates. United Nations Environment Programme, GRID-Arendal. © United Nations Environment Programme, 2014 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the

  20. Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Optimized CSP Supercritical CO2 Operation | Department of Energy a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon

  1. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  2. Illinois Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,725 13,657 13,425 1970's 14,165 13,520 13,346 13,534 13,821 12,785 12,477 13,310 13,173 13,484 1980's 13,340 13,264 11,741 12,843 11,687 11,436 9,259 6,662 61 81 1990's 81 100 100 86 80 77 64 200 70 55 2000's 42 35 47 48 49 46 47 48 42 31 2010's 345 1,043 0 0 47 - = No Data Reported; -- = Not

  3. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,125 1980's 2,081 2,285 2,393 2,650 2,660 2,610 2,671 2,509 2,339 2,270 1990's 2,305 2,237 2,162 2,211 2,151 2,269 2,337 2,376 2,262 2,257 2000's 2,479 2,318 2,368 2,192 2,466 2,723 2,913 3,158 3,148 3,432 2010's 3,983

  6. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 100,497 93,074 82,996 1970's 92,119 75,241 68,738 72,574 71,686 84,843 78,967 79,425 69,624 65,787 1980's 62,824 53,655 22,275 22,231 25,213 25,274 22,973 26,846 22,778 19,586 1990's 22,712 104,251 92,228 87,306 69,639 66,447 67,817 74,182 72,881 - = No Data Reported; -- = Not

  7. Florida Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Florida Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,010 1,723 1970's 1,829 180 2,144 2,886 3,369 9,170 13,865 13,534 17,436 15,954 1980's 15,740 12,478 10,453 8,269 6,631 5,471 4,802 3,884 3,584 3,551 1990's 2,831 1,893 2,563 2,557 1,789 1,630 1,649 1,563 1,523 1,557 2000's 1,354 1,159 855 771 618 495 485 132 22 0 2010's 0 0 0 0 233 - = No Data

  8. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 34,179 30,527 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908

  10. Tennessee Natural Gas Plant Liquids Production Extracted in Tennessee

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Extracted in Tennessee (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production Extracted in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee-Tennessee

  11. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 32,212 33,735 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  12. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  13. Michigan Natural Gas Plant Liquids Production Extracted in Michigan

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Extracted in Michigan (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production Extracted in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,922 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Michigan-Michigan

  14. Montana Natural Gas Plant Liquids Production Extracted in Montana (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Montana (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,340 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Montana

  15. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  16. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Colorado (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Colorado

  17. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  18. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Illinois (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,086 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-Illinois

  19. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  20. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  1. Pennsylvania Natural Gas Plant Liquids Production Extracted in West

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Virginia (Million Cubic Feet) West Virginia (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 14,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  2. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  3. Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Proved Reserves (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 4 5 5 3 2 4 5 5 1990's 3 8 8 8 8 7 7 9 8 10 2000's 7 7 9 10 10 12 14 22 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  4. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  5. Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 5 6 6 5 4 3 3 3 3 1990's 3 3 3 3 3 3 2 2 3 3 2000's 2 2 2 2 1 2 2 3 3 4 2010's 4 6 4 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 1 1 1 1 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 1 1 0 0 0 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  7. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 20 18 18 19 15 12 11 11 12 12 1990's 11 10 9 11 9 8 7 6 8 10 2000's 8 10 8 7 6 7 8 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural

  8. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  9. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 1980's 541 560 531 551 511 445 577 771 1,023 933 1990's 990 908 1,066 996 1,011 943 1,059 869 929 954 2000's 896 873 838 875 864 840 861 844 804 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  10. New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 43 1980's 44 45 42 40 41 38 34 44 43 43 1990's 46 47 53 58 60 59 75 75 74 74 2000's 77 77 75 76 73 70 68 66 64 65 2010's 63 62 58 60 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 47 1980's 61 68 71 69 73 74 69 67 52 59 1990's 60 56 64 55 55 53 48 47 48 53 2000's 54 57 47 45 43 49 55 58 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  12. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 583 1980's 604 631 745 829 769 826 857 781 765 654 1990's 657 628 629 643 652 674 684 685 698 749 2000's 734 694 695 686 790 839 892 949 1,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Colorado Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 170 1980's 183 195 174 173 142 155 127 142 162 191 1990's 152 181 193 190 210 243 254 244 235 277 2000's 288 298 329 325 362 386 382 452 612 722 2010's 879 925 705 762 813 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 177 1980's 194 204 186 183 155 173 148 166 181 209 1990's 169 197 226 214 248 273 287 264 260 303 2000's 316 345 396 395 465 484 478 559 716 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 11 10 9 8 9 8 8 9 10 1990's 10 12 13 14 15 18 17 21 18 19 2000's 21 22 23 24 26 26 26 27 38 48 2010's 58 63 57 52 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  18. Federal Offshore--California Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 10 12 16 19 1990's 13 11 15 20 17 21 19 10 8 0 2000's 1 1 0 0 0 0 0 0 1 1 2010's 1 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. Federal Offshore--California Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 1 1 1 1 1 1 1 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 6 5 12 17 36 34 36 29 26 21 1990's 21 26 34 34 25 27 27 27 21 24 2000's 27 25 28 17 13 9 9 4 7 0 2010's 0 0 35 41 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 2 2 4 4 5 5 4 4 1990's 4 5 6 6 5 5 6 6 4 5 2000's 5 4 5 3 3 2 2 1 1 0 2010's 0 0 7 7 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Florida Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  3. Kansas Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 387 407 300 441 422 370 437 459 342 327 1990's 311 426 442 378 396 367 336 263 331 355 2000's 303 300 261 245 267 218 204 194 175 162 2010's 195 192 174 138 186 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 402 1980's 389 409 302 443 424 373 440 462 345 329 1990's 313 428 444 380 398 369 338 271 334 358 2000's 306 302 263 248 271 224 209 198 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 26 24 14 17 20 20 19 19 18 18 1990's 17 26 27 27 29 29 31 24 28 30 2000's 28 26 25 22 22 19 18 18 18 16 2010's 16 16 15 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 16 1990's 25 24 32 26 39 43 46 48 54 69 2000's 56 72 66 66 72 70 105 89 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  8. Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 287 301 294 294 1990's 324 321 317 260 281 430 381 261 234 281 2000's 241 204 186 183 167 191 176 191 201 231 2010's 216 192 189 212 243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 52 38 40 40 39 1990's 45 44 49 42 43 68 65 41 37 45 2000's 41 35 35 33 31 29 28 30 27 26 2010's 25 23 24 29 26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 713 524 525 517 522 1990's 538 526 495 421 434 601 543 437 411 457 2000's 436 391 323 295 263 292 280 303 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  11. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 1980's 6 8 7 6 6 6 5 5 6 5 1990's 6 6 6 5 6 7 8 7 5 4 2000's 4 3 3 4 4 4 5 6 6 6 2010's 5 5 5 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  13. Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 39 38 32 33 29 28 29 30 30 28 1990's 33 33 36 34 34 58 48 31 29 37 2000's 32 23 23 20 20 20 19 18 15 15 2010's 15 14 16 20 17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 28 33 27 39 1990's 37 41 47 21 19 16 36 12 13 23 2000's 28 41 37 35 27 31 22 25 55 43 2010's 24 44 20 16 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 4 5 4 6 1990's 6 5 7 3 3 3 9 3 3 4 2000's 5 9 9 9 7 5 4 6 6 5 2010's 5 4 3 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  17. Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 363 382 350 331 337 1990's 295 329 295 309 309 239 245 389 370 427 2000's 515 486 511 364 423 416 399 369 321 302 2010's 341 355 405 335 399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54 47 51 48 49 1990's 46 51 48 52 52 37 42 71 68 80 2000's 93 91 94 70 81 61 67 69 53 61 2010's 66 57 61 49 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  19. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 579 1980's 572 580 564 568 597 580 566 569 572 549 1990's 556 577 599 608 608 616 655 655 631 649 2000's 688 655 657 593 627 597 615 637 654 701 2010's 734 773 854 920 1,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Michigan Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 102 93 91 99 77 62 77 90 82 79 1990's 66 54 52 44 43 38 48 45 43 42 2000's 32 41 42 44 44 36 36 50 58 43 2010's 48 38 26 27 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 1980's 112 102 97 105 84 67 88 111 99 97 1990's 81 72 68 57 54 45 53 50 51 48 2000's 35 43 47 48 48 39 42 55 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  2. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 12 12 11 10 10 8 9 8 8 8 1990's 6 6 6 5 5 5 5 4 4 4 2000's 4 4 3 3 3 3 2 3 3 2 2010's 3 2 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  3. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 1980's 33 25 35 50 48 39 38 34 36 38 1990's 48 35 53 55 51 48 52 34 31 57 2000's 104 32 28 33 29 31 41 32 92 55 2010's 68 68 55 51 59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 3 4 4 4 4 4 4 4 4 1990's 4 4 4 4 4 4 4 4 4 8 2000's 10 3 3 2 2 2 3 2 7 5 2010's 6 6 5 6 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 213 1980's 226 192 193 216 200 182 177 166 166 168 1990's 170 145 171 158 142 120 119 93 81 107 2000's 150 64 57 60 50 61 56 53 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  6. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 11 10 9 8 0 382 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 299 2010's 288 288 288 288 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 0 0 0 0 5 3 16 20 17 1990's 18 24 27 27 26 30 33 35 24 21 2000's 22 20 20 18 18 17 14 13 13 13 2010's 11 11 11 11 17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 1980's 11 10 9 8 19 383 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  9. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. California (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 107 1980's 109 73 146 139 128 124 118 109 1990's 101 87 94 98 86 88 89 92 71 97 2000's 100 75 95 101 121 135 130 126 113 129 2010's 114 94 99 102 112 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. California (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 7 6 12 12 12 12 11 9 1990's 9 8 10 9 8 9 9 8 7 8 2000's 8 8 10 10 10 11 11 11 11 11 2010's 10 10 10 11 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 111 1980's 120 79 152 134 130 123 113 1990's 105 92 99 104 92 92 92 95 72 98 2000's 101 76 95 101 122 137 132 126 113 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. ,"Natural Gas Plant Liquids Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982 966 7,077 4,709 6,270 6,646 7,646 1990's 637 188 268 352 467 468 451 508 405 405 2000's 441 653 890 504 490 433 509 404 470 489 2010's 529 423 622 797 871 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  15. Colorado Natural Gas Plant Liquids Production Extracted in Colorado

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Colorado (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,151 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Colorado

  16. Illinois Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Liquids Production Extracted in Illinois (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  17. Kansas Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Kansas (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,496 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Kansas

  18. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Kentucky (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-Kentucky

  19. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  20. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  1. Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50 63 71 69 96 88 87 1990's 14 14 16 20 36 32 37 39 40 42 2000's 43 40 37 17 18 12 8 5 0 0 2010's 0 0 127 202 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  2. Ohio Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 20 23 29 41 67 68 50 44 46 1990's 58 49 72 95 104 94 85 83 78 78 2000's 78 86 72 68 58 29 5 9 0 0 2010's 0 0 155 2,116 33,332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  3. Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 158 171 148 171 205 191 218 1990's 156 159 341 235 116 181 217 253 222 274 2000's 208 272 251 343 395 483 549 495 575 599 2010's 881 963 2,529 9,200 11,602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  4. Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Extracted in Ohio (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania-Ohio

  5. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 14 16 15 18 24 27 27 28 38 35 1990's 35 34 32 32 34 37 44 49 40 45 2000's 55 54 55 52 52 50 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  6. Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Extracted in Arkansas (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 582 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Arkansas-Arkansas Natural

  7. New Mexico Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 465 1980's 478 496 475 495 462 395 514 708 926 863 1990's 915 840 994 925 946 881 998 814 876 896 2000's 804 794 779 824 805 781 804 788 726 715 2010's 764 776 662 679 789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. North Dakota Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 1980's 42 52 53 54 57 59 53 53 40 48 1990's 50 47 54 46 46 44 40 40 41 46 2000's 47 50 41 40 39 45 51 54 51 104 2010's 157 193 297 466 540 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Florida Natural Gas Plant Liquids Production Extracted in Florida (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquids Production Extracted in Florida (Million Cubic Feet) Florida Natural Gas Plant Liquids Production Extracted in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Florida-Florida

  11. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  12. West Virginia Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Liquids, Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 74 1980's 97 84 78 90 79 86 87 86 92 99 1990's 85 102 96 107 93 61 60 70 71 72 2000's 104 105 98 67 84 84 109 114 97 108 2010's 122 140 199 320 1,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Plants in Your Gas Tank: From Photosynthesis to Ethanol

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  14. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  15. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  16. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  17. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  18. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  19. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system,...

  20. Ex Parte Communication Gas Heat SPVU Question | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 20150210SPVU Ex Parte Memo021015 More Documents & Publications Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo AHRIAdvocate Ex Parte Memo 2.5.15 ...

  1. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  2. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  3. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  4. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  5. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory South Table Mountain Site, Golden, CO | Department of Energy 3-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the

  6. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  7. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  8. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  9. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 1 1 1 1 0 0 0 0 0 2000's 0 0 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Florida Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 5 4 3 2 2 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. Lower 48 States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,191 1980's 5,187 5,478 5,611 6,280 6,121 6,109 6,348 6,327 6,448 6,000 1990's 5,944 5,860 5,878 5,709 5,722 5,896 6,179 6,001 5,868 6,112 2000's 6,596 6,190 6,243 5,857 6,338 6,551 6,795 7,323 7,530 8,258 2010's 9,521 10,537 10,489 11,655 14,788 - = No Data

  13. Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Proved Reserves (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,592 1980's 6,717 7,058 7,212 7,893 7,624 7,561 7,784 7,729 7,837 7,389 1990's 7,246 7,104 7,104 6,901 6,869 7,093 7,486 7,342 7,204 7,515 2000's 8,068 7,588 7,589 7,072 7,559 7,813 8,134 8,818 8,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  15. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  16. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 36,638 36,707 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  18. Alaska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 188 1970's 264 99 749 986 1,097 1,244 1,229 1,321 954 701 1980's 483 529 468 440 2,849 6,703 4,206 19,590 23,240 19,932 1990's 21,476 28,440 32,004 32,257 30,945 35,052 38,453 41,535 40,120 38,412 2000's 39,324 36,149 34,706 33,316 33,044 27,956 24,638 26,332 24,337 22,925 2010's 20,835 21,554 21,470 20,679

  19. Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 486 582 - = No Data Reported; -- = Not Applicable; NA =

  20. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,844 4,379 4,198 3,944 3,378 24 17 1990's 109 132 98 106 101 90 75 80 84 83 2000's 73 60 66 58 63 56 45 45 48 41 2010's 4,559 4,917 4,896 4,917 288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  1. Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,995 4,136 4,142 3,831 4,365 3,896 4,141 1990's 3,212 3,343 3,096 3,282 3,367 3,337 3,011 2,674 3,073 2,912 2000's 2,455 2,587 2,445 2,798 2,419 2,318 2,363 2,076 1,982 1,686 2010's 1,684 1,303 1,174 1,071 1,152 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 855 830 641 591 385 298 280 1990's 621 708 573 538 463 399 382 372 363 638 2000's 786 722 758 251 895 1,018 1,138 1,196 1,140 1,150 2010's 1,155 1,042 1,111 1,103 1,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 486 466 495 - = No Data Reported; -- =

  4. Montana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Montana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 744 744 705 1970's 3,032 750 839 918 857 831 761 630 503 776 1980's 890 818 940 1,049 1,069 1,189 1,086 1,058 1,072 1,095 1990's 1,091 1,055 907 741 631 597 576 409 410 435 2000's 272 470 575 615 634 1,149 1,422 1,576 1,622 1,853 2010's 1,367 1,252 1,491 1,645 1,670 - = No Data Reported; -- = Not Applicable;

  5. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,399 20,875 19,415 15,118 19,180 18,418 21,396 1990's 33,316 32,940 38,892 36,826 36,310 36,455 63,850 45,982 41,926 39,345 2000's 41,863 39,501 38,973 37,620 42,601 35,508 33,435 35,600 36,571 36,827 2010's 35,289 38,331 37,195 33,121 35,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412

  7. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  8. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,952 55,724 57,270 1970's 58,926 55,914 56,376 61,647 62,860 60,008 52,087 55,238 61,868 71,559 1980's 74,434 80,401 85,934 90,772 98,307 99,933 100,305 99,170 103,302 94,889 1990's 96,698 101,851 104,609 101,962 101,564 94,930 100,379 96,830 92,785 93,308 2000's 96,787 88,885 81,287 74,745 84,355 87,404

  10. Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 12,003 20,936 39,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,732 2,754 2,715 6,514 8,701 8,919 9,615 1990's 9,146 9,141 8,745 9,285 9,951 8,492 8,549 8,141 7,985 7,880 2000's 8,276 5,436 4,534 4,481 3,370 3,914 3,739 2,779 2,206 1,573 2010's 1,616 3,063 3,031 5,996 4,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,662 7,715 7,699 7,105 8,780 8,408 8,521 1990's 7,958 7,809 8,008 7,096 6,388 4,287 4,520 4,796 4,511 4,212 2000's 3,572 2,893 2,781 2,568 2,760 2,875 2,475 2,540 2,318 2,611 2010's 2,370 2,253 2,417 2,834 2,361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,057 5,060 5,243 4,406 5,715 5,541 6,591 1990's 8,455 9,081 12,233 11,863 12,482 13,560 14,894 12,435 12,200 12,863 2000's 13,064 13,871 15,904 15,927 17,093 15,641 16,347 16,218 18,613 21,288 2010's 25,090 28,265 29,383 25,806 30,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,852 7,425 6,782 5,878 7,250 7,034 8,734 1990's 1,466 1,338 1,315 1,241 167 145 125 113 129 147 2000's 157 127 124 112 102 286 796 671 83 0 2010's 0 0 0 0 272 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  15. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,430 25,873 27,297 25,616 28,804 29,357 29,665 1990's 22,499 30,800 26,312 36,294 28,988 28,510 30,444 26,205 20,921 19,321 2000's 16,664 10,928 11,723 9,706 6,460 8,100 7,541 5,439 2,331 2,126 2010's 2,102 2,246 2,268 2,189 1,983 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,106 2,855 2,920 2,809 3,355 3,326 3,679 1990's 3,204 3,391 3,290 3,316 3,272 3,199 2,262 2,710 2,344 2,209 2000's 2,505 2,342 2,186 1,361 723 281 315 309 283 698 2010's 810 1,153 1,812 3,429 6,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 27,935 25,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  19. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect (OSTI)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  20. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  1. Development of a gas-fired absorption heat pump

    SciTech Connect (OSTI)

    Ohuchi, Y.

    1985-01-01

    A new absorbent-refrigerant pair suitable for heat pump heating and air-cooled cooling has been developed. Water has been selected as the refrigerant, mainly from the viewpoint of high cycle efficiency and safety, while a 1:1 mixture of lithium bromide (LiBr) and zinc chloride (ZnCl/sub 2/) by weight has been chosen as the absorbent in view of its higher solubility and affinity for water. Based on thermodynamic analysis with experimental data on properties, the new absorbent solution will give a heating COP of 1.57 and a cooling COP of 1.00 as gross values of double-effect absorption cycles, including a boiler efficiency of 80%. As a result of an experimental investigation on corrosiveness and corrosion inhibitors, promising equipment materials and inhibitors have been discovered. Prototypical units of 3.5kw (1-ton) and 35kw (10-ton) have been installed and are undergoing demonstration testing in the laboratory.

  2. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  3. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. EIA-816, Monthly Natural Gas Plant Liquids Report Page 1 U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    EIA-816, Monthly Natural Gas Plant Liquids Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS

  5. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  6. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  7. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009...

  8. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  9. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  10. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  11. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 7,133 7,675 7,044 - =

  12. Michigan Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's

  13. North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381

  14. Utah Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,633 3,266 3,412 1970's 1,493 3,822 3,382 3,489 3,958 3,659 4,032 4,524 3,570 3,950 1980's 4,075 5,219 3,930 4,180 4,259 3,874 10,139 12,396 21,237 18,302 1990's 17,579 14,392 11,851 13,300 13,780 13,679 10,970 17,872 11,801 11,407 2000's 12,795 11,379 3,352 3,404 3,381 2,815 2,911 2,729 3,280 8,489 2010's

  15. California Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) California Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056

  16. Colorado Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180

  17. Kansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,480 29,042 35,813 1970's 38,843 39,741 40,738 43,909 43,416 42,763 40,975 41,971 45,582 45,640 1980's 39,130 36,653 23,023 28,561 29,707 28,964 27,050 28,397 29,800 30,273 1990's 29,642 41,848 42,733 44,014 46,936 47,442 47,996 38,224 45,801 48,107 2000's 44,200 38,517 39,196 34,724 34,573 31,521 30,726

  18. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684

  19. West Virginia Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 14,150 6,024 8,439 1970's 11,062 10,939 9,411 9,428 9,605 9,258 8,284 8,504 8,518 7,973 1980's 8,786 9,060 7,086 7,505 8,638 9,590 8,681 8,830 9,839 10,121 1990's 9,108 9,745 9,436 10,830 10,901 7,396 7,093 7,179 7,337 7,334 2000's 10,398 11,094 9,960 7,226 7,656 7,675 8,017 8,071 8,391 8,786 2010's

  20. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,993 11,390 12,540 1970's 12,863 12,802 16,228 16,093 14,072 13,224 14,669 15,625 14,363 14,056 1980's 13,582 15,160 15,482 19,668 29,169 31,871 25,819 24,827 29,434 29,247 1990's 28,591 31,470 31,378 29,118 33,486 36,058 48,254 49,333 44,358 50,639 2000's 65,085 65,740 74,387 69,817 70,831 67,563 67,435

  1. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Whitaker, Jr., James; Garner, James R; Whitaker, Michael; Lockwood, Dunbar; Gilligan, Kimberly V; Younkin, James R; Hooper, David A; Henkel, James J; Krichinsky, Alan M

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  2. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  3. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  4. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12...

  5. Thermodynamic analysis of a possible CO{sub 2}-laser plant included in a heat engine cycle

    SciTech Connect (OSTI)

    Bisio, G.; Rubatto, G.

    1998-07-01

    In these last years, several plants have been realized in some industrialized countries to recover pressure exergy from various fluids. That has been done by means of suitable turbines in particular for blast-furnace top gas and natural gas. Various papers have examined the topic, considering pros and cons. High-power CO{sub 2}-lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future different kinds of metal surface treatments will probably become routine practice with laser units. The industries benefiting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Both degradation and cooling problems may be alleviated by allowing the gas to flow through the laser tube and by reducing its pressure outside this tube. Thus, a thermodynamic analysis on high-power CO{sub 2}-lasers with particular reference to a possible energy recovery is justified. In previous papers the critical examination of the concept of efficiency has led one of the present authors to the definition of an operational domain in which the process can be achieved. This domain is confined by regions of no entropy production (upper limit) and no useful effects (lower limit). On the basis of these concepts and of what has been done for pressure exergy recovery from other fluids, exergy investigations and an analysis of losses are performed for a cyclic process including a high performance CO2 laser. Thermodynamic analysis of flow processes in a CO{sub 2}-laser plant shows that the inclusion of a turbine in this plant allows us to recover the most part of the exergy necessary for the compressor; in addition, the water consumption for the refrigeration in the heat exchanger is reduced.

  6. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinhoe, Martyn T; Ianakiev, Kiril; Marlow, Johnna B

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  7. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  8. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Btu Content at Plant Inlets for Processing Plants in the United States, 2009 Minimum Annual Btu Content Maximum Annual Btu Content Average Annual Btu Content Alaska 850 1071 985...

  9. Synthesis Gas Demonstration Plant, Baskett, Kentucky: environmental report

    SciTech Connect (OSTI)

    1980-01-01

    A summary of the potential environmental impacts of the construction and operation of the proposed plant is presented. The construction and operation of the plant are discussed in detail.

  10. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  11. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel | Department of Energy One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August 25, 2015 - 3:08pm Addthis A worker drives a material handling train powered by hydrogen fuel cells at the BMW plant in Greer, South Carolina. The plant is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. A worker drives a material

  12. Experimental investigation on impingement heat transfer of gas-solid suspension flow

    SciTech Connect (OSTI)

    Yokomine, Takenhiko; Shimizu, Akihiko

    1999-07-01

    This paper aims to demonstrate experimentally the heat transfer performance of dense gas-solid suspension impinging jet for diverter cooling of the fusion power reactor. Prior to the experimental study, a tentative goal of 20 kW/m{sup 2}K was set as the heat transfer coefficient based on the expected temperature level of both coolant and diverter plate materials. Figure A-1 summarizes the results of experiments, where H/D is non-dimensional space between nozzle exit and impingement plate. The ranges of examined nozzle Reynolds number Re{sub N} and thermal loading ratio {Gamma}{sub th} were 5.5 x 10{sup 4} {<=} Re{sub N} {<=} 2.4 x 10{sup 5} and 0 {<=} {Gamma}{sub th} {<=} 8.55, respectively. When the glassy-carbon (G-C) particles with 26{micro}m in diameter were used, the maximum heat transfer coefficient could not reach the target value because the solid flow rate was restricted by the crucial erosion damage of test plate and a strong vibration observed in the test line. On the other hand, in the case that the fine graphite particles (10{micro}m in diameter) were used, the maximum heat transfer coefficient of 20 kW/m{sup 2}K was obtained at relatively dilute condition of solid loading ratio, which is considered to be due to the additive production of turbulence by particles' wake. Furthermore, the following consideration can be obtained. (1) Changing the particle from hard glassy carbon to soft and fine graphite is effective not only for anti-erosion but also for heat transfer enhancement by increasing heat capacity. (2) Turbulence augmentation by particles is also important for heat transfer enhancement in addition to the increased heat capacity. However, increasing the solid loading is likely to lead to the saturation of heat transfer enhancement effect, on the contrary, to the attenuation of turbulence. (3) If soft and fine particle, like graphite of 10{micro}m diameter employed in present study, is used as suspended particle in coolant for anti-erosion, the cooling by the gas-solid suspension impinging jet will be able to correspond to the thermal heat flux on the diverter plate when the nozzle Reynolds number is 1.5 x 10{sup 5} and thermal loading ratio is only 3. Provided that fine particles is used, however, some additional difficulties may be occurred, such as handling of powder and thermophoresis adhesion on the heat transfer surface.

  13. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  14. File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf ...

    Open Energy Info (EERE)

    oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this...

  15. Control Scheme Modifications Increase Efficiency of Steam Generation System at Exxon Mobil Gas Plant

    SciTech Connect (OSTI)

    2002-01-01

    This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

  16. Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  18. Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  19. Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  20. Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  2. Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  3. Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  4. Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  5. Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  6. Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  7. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu)...

  8. Ohio-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2013 View History Natural Gas Processed (Million Cubic Feet) 271 2013-2013 Total Liquids Extracted (Thousand Barrels) 14 2013-2013

  9. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded...

  10. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  11. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 - = No Data Reported; -- = Not Applicable; NA = Not

  13. District of Columbia Heat Content of Natural Gas Deliveries to Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BTU per Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,025 1,021 1,014 1,014 1,025 1,034 1,037 1,043 1,041 1,047 1,048 2014 1,041 1,035 1,031 1,038 1,035 1,038 1,038 1,038 1,039 1,041 1,044 1,043 2015 1,045 1,047 1,046 1,044 1,044 1,040 1,037 1,036 1,035 1,045 1,039 1,044 - = No Data Reported; --

  14. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 1,023 1,021 1,020 1,018 1,017 2015 1,017 1,026 1,029 1,026 1,049 1,027 1,027 1,026 1,026 1,028 1,027 1,026 - = No Data Reported; -- = Not Applicable;

  17. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 - = No Data Reported; -- = Not Applicable; NA = Not

  18. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages:

  19. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 - = No Data Reported; -- = Not Applicable;

  20. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 1,025 1,027 1,025 1,028 1,025 2015 1,033 1,034 1,035 1,036 1,044 1,039 1,040 1,042 1,039 1,037 1,035 1,031 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  6. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 - = No Data Reported; -- = Not Applicable;

  7. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 1,039 1,023 1,016 1,025 1,027 2015 1,033 1,035 1,030 1,025 1,022 1,020 1,020 1,018 1,019 1,026 1,025 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 - = No Data Reported; -- = Not

  12. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Theoretical Design of a Thermosyphon for Efficient Process Heat Removal from Next Generation Nuclear Plant (NGNP) for Production of Hydrogen

    SciTech Connect (OSTI)

    Piyush Sabharwall; Fred Gunnerson; Akira Tokuhiro; Vivek Utgiker; Kevan Weaver; Steven Sherman

    2007-10-01

    The work reported here is the preliminary analysis of two-phase Thermosyphon heat transfer performance with various alkali metals. Thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are required to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000oC) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose for selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900oC, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHE’s) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.

  14. Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR 2015 Project Peer Review Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 Integrated Biorefinery Peer Review Joseph Bradford - Project Director Gerson Santos-Leon - Principal Investigator Abengoa Bioenergy 1 Abengoa Bioenergy Biomass of Kansas Corporate Headquarters - St. Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New Mexico, Illinois, Indiana, Spain, France, Netherlands and Brazil 2 Goal

  15. Reduce Natural Gas Use in Your Industrial Process Heating Systems. Industrial Technologies Program (ITP) (Trifold Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Natural Gas Use in Your Industrial Process Heating Systems Industrial Technologies Program DOE/GO-102007-2413 September 2007 A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy invests in a

  16. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average...

  17. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  18. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  19. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  20. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |

    Office of Environmental Management (EM)

    Department of Energy DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove

  1. South Dakota-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 21 2014

  2. Texas Onshore-New Mexico Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 View History Natural Gas Processed (Million Cubic Feet) 29,056 869 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,262 90 2012-2013

  3. California Offshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) NA 381 2013-2014 Total Liquids Extracted (Thousand Barrels) NA 8 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 9 2014

  4. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  5. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  6. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  7. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  8. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average...

  9. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  10. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  11. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a reducing

  12. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  13. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  14. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  15. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect (OSTI)

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  16. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  17. Pennsylvania-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 10,273 236,886 101,613 2012-2014 Total Liquids Extracted (Thousand Barrels) 195 7,150 9,890 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 14,335

  18. Louisiana Offshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 151,301 99,910 94,790 2012-2014 Total Liquids Extracted (Thousand Barrels) 3,378 2,694 2,454 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,100 3,585 2012

  19. West Virginia-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 116,955 189,278 315,229 867,111 2011-2014 Total Liquids Extracted (Thousand Barrels) 8,010 14,195 41,116 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 57,582 2014

  20. Texas Onshore-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 57,971 63,053 144,573 112,694 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,727 5,881 5,145...

  1. California Onshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 180,648 169,203 164,401 162,413 2011-2014 Total Liquids Extracted (Thousand Barrels) 9,923 10,641 9,597 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 12,755 13,192

  2. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  3. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  4. Robustness analysis of an air heating plant and control law by using polynomial chaos

    SciTech Connect (OSTI)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.; Balthazar, José M.; Rosa, Suélia S. R. F. de

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  5. Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOE Patents [OSTI]

    Hall, Mark N. (Richland, WA)

    1996-01-01

    Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

  6. LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOE Patents [OSTI]

    Hall, M.N.

    1996-04-30

    Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

  7. ,"New Mexico Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  8. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  9. ,"Alaska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  10. ,"Arizona Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  11. ,"Arkansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  12. ,"California Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  13. ,"Colorado Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  14. ,"Connecticut Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  15. ,"Delaware Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  16. ,"Florida Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  17. ,"Georgia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  18. ,"Hawaii Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  19. ,"Idaho Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  20. ,"Illinois Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File