Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

2

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

3

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

4

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

5

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

6

Heat Generation by Heat Pump for LNG Plants.  

E-Print Network [OSTI]

?? Abstract The LNG production plant processing natural gas from the Snřhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally with… (more)

Moe, Bjřrn Kristian

2011-01-01T23:59:59.000Z

7

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

8

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

9

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

10

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

11

,"Colorado Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","112014","1152013" ,"Release...

12

Natural Gas Processing Plant- Sulfur (New Mexico)  

Broader source: Energy.gov [DOE]

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

13

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

14

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

SciTech Connect (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

15

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

16

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

17

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

18

Heat Hyperbolic Diffusion in Planck Gas  

E-Print Network [OSTI]

In this paper we investigate the diffusion of the thermal pulse in Planck Gas. We show that the Fourier diffusion equation gives the speed of diffusion, v > c and breaks the causality of the thermal processes in Planck gas .For hyperbolic heat transport v

Miroslaw Kozlowski; Janina Marciak-Kozlowska

2006-07-06T23:59:59.000Z

19

Heat conductivity of a pion gas  

E-Print Network [OSTI]

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

20

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network [OSTI]

#12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

Oak Ridge National Laboratory

22

Residential gas-fired sorption heat Test and technology evaluation  

E-Print Network [OSTI]

..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

23

Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

2007-01-01T23:59:59.000Z

24

Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

25

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

26

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

27

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network [OSTI]

from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

28

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

29

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect (OSTI)

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

30

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

31

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

32

Assessment of gas-side fouling in cement plants  

SciTech Connect (OSTI)

The purpose of this study is to provide an assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 400 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 ..mu..m in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling. Particulate transport mechanisms which appear to be of greatest importance include laminar and turbulent mass transfer, thermophoresis, electrophoresis, and inertial impaction. Chemical reaction mechanisms of particular importance include the deposition of alkali sulfates, alkali chlorides, spurrite, calcium carbonate, and calcium sulfate. At sufficiently low temperatures, sulfuric acid and water can condense on heat exchanger surfaces which can cause corrosion and also attract particulates in the flow. The deleterious effects of gas-side fouling in cement plants are due to: (1) increased capital costs; (2) increased maintenance costs; (3) loss of production; and (4) energy losses. A conservative order-of-magnitude analysis shows that the cost of gas-side fouling in US cement plants is $0.24 billion annually.

Marner, W.J.

1982-09-01T23:59:59.000Z

33

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

34

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

35

Gas plants, new fields spark production rise  

SciTech Connect (OSTI)

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

36

Working on new gas turbine cycle for heat pump drive  

E-Print Network [OSTI]

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

37

Increasing interest in the gas engine heat pump  

SciTech Connect (OSTI)

Increasing primary-energy prices and the availability of untapped heat sources have sparked interest in using a high-efficiency natural gas-driven engine as the power source in a heatpump system. This approach is being studied using a 37-kW Waukesha gas engine; one recently completed installation at Schiedam, Netherlands, extracts heat from a nearby waterway and utilizes the gas engine's waste heat as well.

Not Available

1980-10-01T23:59:59.000Z

38

Water Extraction from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

39

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents [OSTI]

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

40

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

Powell, S. H.; Hamrick, J. T.

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"New Mexico Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Consumed",1,"Monthly","12015","1152013"...

42

,"New York Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Consumed",1,"Monthly","102014","1152013" ,"Release...

43

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

44

Southwest Gas Corporation- Combined Heat and Power Program  

Broader source: Energy.gov [DOE]

Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on...

45

Alabama Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)FuelLiquids,

46

Kansas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuelProved

47

Kentucky Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (NumberProved58,899

48

Louisiana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel2,208,920 2,175,026

49

Michigan Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb2008 2009 2010 2011

50

Mississippi Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008 2009 2010 2011

51

Montana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption

52

Colorado Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)FuelProved2008

53

Pennsylvania Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029Cubic Feet) YearFuel Consumption2008 2009

54

California Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 (Million Cubic Feet)Liquids,

55

Method for cleaning sinter plant gas emissions  

SciTech Connect (OSTI)

A method for cleaning sinter plant gas emissions using a wet electrostatic precipitator system having separate recirculating wash liquor loops for the high voltage precipitator section and the pre-scrubber section. The system is operated with acidic washing liquor to avoid scaling and deposition of solids within the system.

Herman, S.T.; Jassund, S.A.; Mazer, M.R.

1981-03-17T23:59:59.000Z

56

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

57

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

58

Pinch Application- Heat Pump Study in a Food Plant  

E-Print Network [OSTI]

was to appropriatly place and size the heat pump system in a food plant. A change in the process configuration was recommended as a result of this study to increase the heat pump profitability and to improve the product quality....

Chao, Y. T.; Tripathi, P.

59

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY  

E-Print Network [OSTI]

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY Yu.M. Aliev1 , I an interest in mechanisms of electron heating and power deposition in the plasma main- tained by radio parameters. Due to the large value of the mean free path (MFP) the main mechanism of electron heating turns

Kaganovich, Igor

60

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat exchanger for fuel cell power plant reformer  

DOE Patents [OSTI]

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

62

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network [OSTI]

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

63

Selection guidelines for central heat plant controls. Final report  

SciTech Connect (OSTI)

The operation and control of Central Heating Plants (CHPs) are important factors in maintaining the readiness of U.S. Army installations. Aging CHPs often experience increased interruptions, maintenance difficulties, and inefficient operation. As fuel costs increase, there is a growing need to take advantage of new, emerging control technologies. Microprocessor-based controls can provide opportunities for increased reliability, enhanced safety, better performance monitoring, and cost reduction. However, upgraded control systems cannot compensate for a boiler in poor mechanical condition. Any proposed control systems upgrade must be preceded by a mechanical assessment of the boiler. These CHP control guidelines can help installation personnel develop budgetary-cost proposals to upgrade gas/oil-fired boiler controls for gas/oil-fired steam or high temperature hot water (HTHW) systems. These general guidelines provide basic information to evaluate the feasibility of upgrading boiler control systems, and a methodology for developing budget proposals. Judgement is required to develop designs for specific unit and site characteristics, boiler safety codes, and local regulatory requirements. These guidelines do not eliminate the need for competent professional engineers to finalize assessments of existing conditions, to develop a plant control system design that meets existing and new requirements, and to evaluate alternative contractor proposals.

Warner, S.R.; Lin, M.C.; Schandche, G.W.

1994-11-01T23:59:59.000Z

64

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

65

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED� COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

66

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

67

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

68

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

2013-07-02T23:59:59.000Z

69

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Environmental Management (EM)

will build on system concepts and technical solutions developed for an 11-ton packaged natural gas heat pump. Residential Multi-Function Gas Heat Pump More Documents &...

70

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

2012-08-07T23:59:59.000Z

71

Plant physiology Heat of combustion, degree of reduction  

E-Print Network [OSTI]

Plant physiology Heat of combustion, degree of reduction and carbon content: 3 interrelated methods coefficient between heat of combustion and degree of reduction may vary according to the chemical composition parameters in consequence. construction cost / growth yield / heat of combustion / elemental analysis

Paris-Sud XI, Université de

72

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

73

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

74

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

75

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

76

Measurement and analysis of gas turbine blade endwall heat transfer  

E-Print Network [OSTI]

the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

Lee, Joon Ho

2001-01-01T23:59:59.000Z

77

Method of coverning the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.-H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

78

Method of governing the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

79

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents [OSTI]

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

80

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-Cost Gas Heat Pump for Building Space Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for

82

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

83

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Estimates for Natural GasNatural Gas--Fired Power PlantsFired Power Plants · 2007: Rubin, et al., Energy utilities again looking to natural gas combined cycle (NGCC) plants for new or replacement capacity

84

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

85

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

86

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents [OSTI]

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

87

Mobile power plants : waste body heat recovery  

E-Print Network [OSTI]

Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to ...

Gibbons, Jonathan S. (Jonathan Scott), 1979-

2004-01-01T23:59:59.000Z

88

Sour gas injection for use with in situ heat treatment  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

Fowler, Thomas David (Houston, TX)

2009-11-03T23:59:59.000Z

89

Simplified method for determining heat of combustion of natural gas  

SciTech Connect (OSTI)

A simplified technique for determination of the heat of combustion of natural gas has been developed. It is a variation of the previously developed technique wherein the carrier air, in which the test sample was burnt, was oxygen enriched to adjust the mole fraction of oxygen in the combustion product gases up to that in the carrier air. The new technique eliminates the need for oxygen enrichment of the experimental mixtures and natural gas samples and has been found to predict their heats of combustion to an uncertainty of the order of 1 percent.

Singh, J.J.; Chegini, H.; Mall, G.H.

1987-04-01T23:59:59.000Z

90

Low-pressure-ratio regenerative exhaust-heated gas turbine  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

91

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect (OSTI)

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

92

Wireless Critical Process Control in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

Savazzi, Stefano

93

IMPLEMENTATION OF MPC ON A DEETHANIZER AT KARST GAS PLANT  

E-Print Network [OSTI]

predictive control (MPC) is implemented on several distillation columns at the K°arstø gas processing plant and Prediction Tool for Identification and Control Keywords: Model based control, distillation columnsIMPLEMENTATION OF MPC ON A DEETHANIZER AT K°ARST� GAS PLANT Elvira Marie B. Aske , , Stig Strand

Skogestad, Sigurd

94

Alabama Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases (Billion2009

95

Alabama Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases

96

Iowa Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb3,151,8872009 2010 2011

97

Iowa Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb3,151,8872009 2010

98

Kansas Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 2010 2011

99

Kansas Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 2010

100

Kentucky Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (Billion Cubic2009 2010

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kentucky Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (Billion Cubic2009

102

Louisiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009 2010 2011

103

Louisiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009 2010

104

Maine Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342Cubic

105

Maine Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-14 Dec-14

106

Maryland Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0

107

Maryland Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14 Oct-14

108

Massachusetts Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89

109

Massachusetts Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-14 Oct-14 Nov-14

110

Michigan Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet)3,174Feet)Sales2009

111

Michigan Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0

112

Minnesota Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay 20032009

113

Minnesota Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay

114

Mississippi Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15ThousandExtensionsSales (Billion2009

115

Mississippi Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15ThousandExtensionsSales

116

Missouri Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 0 2011

117

Missouri Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 0 2011Sep-14

118

Montana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413New

119

Montana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14 Oct-14 Nov-14

120

Colorado Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47Extensions (BillionSales

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Colorado Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47Extensions (BillionSalesSep-14

122

Connecticut Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel2009 2010 2011

123

Connecticut Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel2009 2010

124

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010 2011

125

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010

126

Florida Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec.AdjustmentsDecreasesSales2009

127

Florida Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633

128

Georgia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4 50.987.193.52009 2010

129

Georgia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4 50.987.193.52009

130

Hawaii Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 19992009 2010 2011

131

Hawaii Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 19992009 2010

132

Idaho Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1Thousand

133

Idaho Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1ThousandSep-14 Oct-14

134

Illinois Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million

135

Illinois Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-14 Nov-14 Dec-14

136

Indiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707 58,6938 8

137

Indiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707 58,6938

138

Pennsylvania Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports ofCubic17Feet)Sales2009

139

California Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves,835Feet)(Million2009

140

Nevada Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry Natural Gas

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nevada Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry Natural GasSep-14

142

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

143

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect (OSTI)

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

144

Report number ex. Ris-R-1234(EN) 1 Local CHP Plants between the Natural Gas and  

E-Print Network [OSTI]

Report number ex. Risø-R-1234(EN) 1 Local CHP Plants between the Natural Gas and Electricity combined heat and power (CHP) plants in Denmark constitute an important part of the national energy significantly to the electricity production. CHP is, together with the wind power, the almost exclusive

145

Central solar heating plants with seasonal storage in mines  

SciTech Connect (OSTI)

The solar assisted heat supply of building offers a great technical potential for the substitution of fossil energy sources. Central solar Heating Plants with Seasonal Storage (CSHPSS) supply 100 and more buildings and reach a solar fraction of 50% or more of the total load with far less specific heat costs [$/kWh{sub solar}] compared to small domestic hot water systems (DHW) for single-family houses. However, the construction of seasonal storage is too expensive. At the Ruhu University Bochum the use of mines for a seasonal storage of low temperature heat is examined in cooperation with industrial partners. The use of available storage volumes may lead to a decrease of investment costs. Additional geothermal heat gains can be obtained from the warm surrounding rock; therefore a high efficiency can be achieved.

Eikmeier, B.; Mohr, M.; Unger, H.

1999-07-01T23:59:59.000Z

146

A Heating Model for the Millennium Gas Run  

E-Print Network [OSTI]

The comparison between observations of galaxy clusters thermo-dynamical properties and theoretical predictions suggests that non-gravitational heating needs to be added into the models. We implement an internally self-consistent heating scheme into GADGET-2 for the third (and fourth) run of the Millennium gas project (Pearce et al. in preparation), a set of four hydrodynamical cosmological simulations with N=2(5x10^8) particles and with the same volume (L=500 h-1 Mpc) and structures as the the N-body Millennium Simulation (Springel et al. 2005). Our aim is to reproduce the observed thermo-dynamical properties of galaxy clusters.

L. Gazzola; F. R. Pearce

2006-11-22T23:59:59.000Z

147

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

148

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

149

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

150

Aging management guideline for commercial nuclear power plants - heat exchangers  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

1994-06-01T23:59:59.000Z

151

Effect of plants on sunspace passive solar heating  

SciTech Connect (OSTI)

The effect of plants on sunspace thermal performance is investigated, based on experiments done in Los Alamos using two test rooms with attached sunspaces, which were essentially identical except for the presence of plants in one. Performance is related to plant transpiration, evaporation from the soil, condensation on the glazing and the absorbtance of solar energy by the lightweight leaves. Performance effects have been quantified by measurements of auxiliary heat consumption in the test rooms and analyzed by means of energy balance calculations. A method for estimating the transpiration rate is presented.

Best, E.D.; McFarland, R.D.

1985-01-01T23:59:59.000Z

152

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VII Melanie Montgomery Ole Hede Larsen Elsam ­ Fynsværket Fælleskemikerne December 2002. #12;CORROSION INVESTIGATIONS.................................................................................................... 6 3.1. Measured corrosion attack on the fireside

153

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network [OSTI]

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

154

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network [OSTI]

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

155

Optimal Maintenance Scheduling of a Gas Engine Power Plant  

E-Print Network [OSTI]

to carry out preventive maintenance at regular intervals19 . The maintenance schedule affects many short1 Optimal Maintenance Scheduling of a Gas Engine Power Plant using Generalized Disjunctive with parallel units. Gas engines are shutdown according to a regular maintenance plan that limits the number

Grossmann, Ignacio E.

156

KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM  

SciTech Connect (OSTI)

Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

L.E. Demick

2010-09-01T23:59:59.000Z

157

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

Dayan, J.

2011-01-01T23:59:59.000Z

158

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

SciTech Connect (OSTI)

A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

2013-08-14T23:59:59.000Z

159

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents [OSTI]

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

160

Technology Data for Electricity and Heat Generating Plants  

E-Print Network [OSTI]

.................................................................................63 13 Centralised Biogas Plants

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, March 1, 1980-January 31, 1984. Volume IV  

SciTech Connect (OSTI)

This volume contains the following: discussion of cost estimating methodology, detailed cost estimates of Hudson No. 2 retrofit, intermediate thermal plant (Kearny No. 12) and local heater plants; transmission and distribution cost estimate; landfill gas cost estimate; staged development scenarios; economic evaluation; fuel use impact; air quality impact; and alternatives to district heating.

Not Available

1984-01-31T23:59:59.000Z

162

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network [OSTI]

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate% · Natural Gas-fired Power Plant: Adv. 7F Gas Turbine Capacity Factor 75% · Cost Basis: 2007$, constant 7

163

Kansas-Kansas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1 3256,268

164

Kansas-Oklahoma Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1

165

Kansas-Texas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1142 141 121

166

Kentucky-Kentucky Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicleThousand60,941 67,568

167

Michigan-Michigan Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 2011 2012

168

Mississippi-Mississippi Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 0 2011 2012

169

Montana-Montana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 1861,185 11,206

170

Montana-Wyoming Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 1861,185785 656

171

Natural Gas Plant Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 20024.95 4.96 4.93 5.53Natural Gas

172

Colorado-Colorado Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283,507,467 1,460,433

173

Colorado-Kansas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283,507,467 1,460,43378

174

Colorado-Utah Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283,507,467

175

Gulf of Mexico Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle0perLiquids,2008

176

Pennsylvania-Pennsylvania Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029Cubic(Dollars per Thousand Cubic 0 0Cubic2011

177

Arkansas-Arkansas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008 2009 2010 2011 2011 2012

178

Renewable Energy: Plants in Your Gas Tank  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy DieselRenewablePlants in

179

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

180

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer  

E-Print Network [OSTI]

Modern gas turbine engines require higher turbine-entry gas temperature to improve their thermal efficiency and thereby their performance. A major accompanying concern is the heat-up of the turbine components which are already subject to high...

Narzary, Diganta P.

2010-10-12T23:59:59.000Z

182

Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors  

E-Print Network [OSTI]

A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

Waterland, A. F.

1984-01-01T23:59:59.000Z

183

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

184

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services,...

185

Control of temperature and heat flux in a combustor using coal-derived gas of varying heat content. [Patent application  

SciTech Connect (OSTI)

The present invention is directed to a fuel-air control system for a combustor in which coal-derived gas of varying heat content is used. To maintain the temperature in the combustor at an essentially constant value the fuel-to-air ratio is adjusted by using a temperature actuated variable pressure regulator in the gas feed line to compensate for the variability of the heat content of the gas. The velocity of the products of combustion is maintained at an essentially constant flow rate by controlling the mass flow of the air and fuel through linked valves on the gas and air feed lines.

Loth, J.L.; Nakaishi, C.V.; Carpenter, L.K.; Bird, J.D.

1981-06-03T23:59:59.000Z

186

Superconductor fiber elongation with a heated injected gas  

DOE Patents [OSTI]

An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

Zeigler, Douglas D. (Atwater, OH); Conrad, Barry L. (Alliance, OH); Gleixner, Richard A. (North Canton, OH)

2001-01-16T23:59:59.000Z

187

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

SciTech Connect (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

188

FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Gas Hydrates? What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy Resource Are Gas Hydrates a Potential Energy Source? How Big Is the...

189

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings  

E-Print Network [OSTI]

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

Hayden, Nancy J.

190

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

191

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

generation: 50% of electricity from central grid natural gas plantsgeneration: 100% of electricity from central grid natural gas plantselectricity comes from central station natural-gas- fired combined cycle generation, and the other half comes from natural-gas-fired single cycle plants. •

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

192

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network [OSTI]

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

193

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

194

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

195

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

E-Print Network [OSTI]

1 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume contended the gas-fired plants would slow Norway's dependence on imported electricity from Denmark, which 81-71 in favor of building Norway's first natural gas-fired power plant.1 As a result Bondevik

196

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Brayton-cycle gas turbine topping . • , • . . • , , • -Effect of Brayton Cycle. Gas Turbine Topping on the Grossof either Brayton-cycle gas turbines or Rankine-cycle steam

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

197

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

198

LCV-Gas utilization in CHP plants with dual-fuel engines  

SciTech Connect (OSTI)

The utilization of LCV-gases has been increased during the last years, especially in decentralized CHP plants from local power and heat distributors or industry works. Compared with the standard natural gas delivered by the main grid LCV gases are cheaper, wherefore it is possible to decrease energy costs. LCV gases are coming from local natural gas fields or a wide range of technical origins (e. g. steel production, gasification processes, biological processes). Therefore the composition of LCV gases could differ. The basis of this gases are normally methane or combinations of hydrogen and carbon monoxide together with quite large quantities of inert gases. The utilization of LCV gases in internal combustion engines requires high demands on the engine technique and the engine control system. A lot of items must to be considered when designing engines for every special purpose, especially in comparison to utilization of standard natural gas. The combustion system of dual-fuel engines as developed by B+V Industrietechnik GmbH (formerly Blohm + Voss Industrie GmbH) offers a lot of advantages for the utilization of LCV gases. There are two basic possibilities to supply the gases to the engine, one on low pressure level and the other one on high pressure level. The energy content of the pilot fuel injection is much higher than the corresponding value of a spark ignition system. Thus, gases with very low lower heating values and high contents of inert gases can be inflamed stable without problems. This engine type allows a LCV gas utilization with high electrical and thermal efficiencies. As an example for the utilization of a LCV gas the CHP engine plant for Hoogovens Ijmuiden in Holland, one of the largest European steel production companies, is presented.

Mohr, H.

1998-07-01T23:59:59.000Z

199

Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives  

Broader source: Energy.gov [DOE]

Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

200

Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov  

E-Print Network [OSTI]

Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov Department be considered as an effective way of the reduction of heat transfer to the surface in this area [1 the viscous layer is blown completely off the surface, and heat transfer is zero. The effect of injecting

Riabov, Vladimir V.

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION  

E-Print Network [OSTI]

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer

Riabov, Vladimir V.

202

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey  

E-Print Network [OSTI]

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey EXPERIMENTAL TURBINE AERO-HEAT TRANSFER STUDIES IN ROTATING RESEARCH FACILITIES Cengiz Camci Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering The Pennsylvania State University 233

Camci, Cengiz

203

Remote Measurement of Heat Flux from Power Plant Cooling Lakes  

SciTech Connect (OSTI)

Laboratory experiments have demonstrated a correlation between the rate of heat loss q? from an experimental fluid to the air above and the standard deviation ? of the thermal variability in images of the fluid surface. These experimental results imply that q? can be derived directly from thermal imagery by computing ?. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q? and ? when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between ? and q? of 0.45 and 0.76, respectively. Values of q? computed from a function of ? and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q? (0.84 and 0.89). This research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Bollinger, J.

2013-01-01T23:59:59.000Z

204

Flammability of selected heat resistant alloys in oxygen gas mixtures  

SciTech Connect (OSTI)

Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

Zawierucha, R.; McIlroy, K.; Million, J.F. [Praxair, Inc., Tonawanda, NY (United States)

1995-12-31T23:59:59.000Z

205

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect (OSTI)

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian S. [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory; Hill, Thomas R. [Los Alamos National Laboratory; Macarthur, Duncan W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin E. [Los Alamos National Laboratory; Sheppard, Gregory A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

2008-06-13T23:59:59.000Z

206

CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer  

SciTech Connect (OSTI)

In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

207

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Generator (Waste Heat 1) - TEG 1 (preliminary assembly and testing) - TEG 2 (Bi-Te modules) - TEG 3 (Skutterudite and Bi-Te modules) * Develop Cost-Effective TEG (Waste Heat...

208

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

209

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

210

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

211

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

212

Two-tank working gas storage system for heat engine  

DOE Patents [OSTI]

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

213

Using heat demand prediction to optimise Virtual Power Plant production capacity  

E-Print Network [OSTI]

1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker is really produced by the fleet of micro- generators. When using micro Combined Heat and Power micro distributed electricity generation (micro-generation e.g. solar cells, micro Combined Heat and Power (micro

Al Hanbali, Ahmad

214

ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT  

E-Print Network [OSTI]

ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT D. Henderson, L, decay heat and waste disposal calculations of the ARIES-AT design are performed to evaluate the safety directly into a higher initial decay heat for these structures than for the well-protected steel

California at San Diego, University of

215

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

216

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

217

Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel ConsumptionPlant

218

Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant Fuel

219

Illinois Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant Fuel

220

Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0WithdrawalsPlant Liquids

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

222

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect (OSTI)

This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

2008-06-01T23:59:59.000Z

223

A Partial Load Model for a Local Combined Heat and Power Plant  

E-Print Network [OSTI]

A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg and power (CHP) plants constitute a not insignificant share of the power production in Denmark, particularly using data from a typical local CHP plant and the years 2003 through 2006 are simulated to assess

224

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

225

District heating from electric-generating plants and municipal incinerators: local planner's assessment guide  

SciTech Connect (OSTI)

This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

Pferdehirt, W.; Kron, N. Jr.

1980-11-01T23:59:59.000Z

226

International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and  

E-Print Network [OSTI]

2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

Jaehne, Bernd

227

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

228

Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant  

SciTech Connect (OSTI)

Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

Faletti, D.W.

1981-03-01T23:59:59.000Z

229

Grid-region heat transfer in a gas solid fluidized bed  

SciTech Connect (OSTI)

The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

Wang, R.C.

1986-01-01T23:59:59.000Z

230

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

THE BECKETT SYSTEM RECOVERY AND UTILIZATION OF LOW GRADE WASTE HEAT FROM FLUE GAS Wilfred R. Henderson Blenkhorn & Sawle Ltd. St. Catharines, Ontario Joseph F. DeBiase John Deere WeIland I%rks WeIland, Ontario ABSTRACT The Beckett Heat Recovery...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

231

Enhanced convective and film boiling heat transfer by surface gas injection  

SciTech Connect (OSTI)

Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

1992-04-01T23:59:59.000Z

232

Enhanced convective and film boiling heat transfer by surface gas injection  

SciTech Connect (OSTI)

Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

1992-04-01T23:59:59.000Z

233

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network [OSTI]

on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat... recovery that typically can save energy equivalent to 40% of the furnace firing rate. Previous attempts to recovery energy conven tionally on this type of furnace were unsuccessful due to fouling. The resolution of this fouling problem by using...

Kreeger, A. H.

234

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.  

E-Print Network [OSTI]

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall

Nicoud, Franck

235

Elevated freestream turbulence effects on heat transfer for a gas turbine vane  

E-Print Network [OSTI]

turbine airfoil, particularly for the first stage nozzle guide vane. For this study, augmentations. To incorporate all of the variables affecting boundary layer development on gas turbine airfoils, studies needElevated freestream turbulence effects on heat transfer for a gas turbine vane K.A. Thole a,*, R

Thole, Karen A.

236

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network [OSTI]

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

237

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

238

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network [OSTI]

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

239

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

240

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network [OSTI]

in this table were obtained from the 1983 Qas Rel~earch Inrtitute Baseline Projection Data Book. 4verage Resldentlal Gas Prlces ($/Wtu) (1982 do1 lars) New England Middle Atlantlc South Atlantlc East North Central West North Central East South Central... West South Central kuntaln #I Mountaln I2 Paclflc #I Paclf lc 12 The conservation factor may be exprerred as lABLEm Gas Research lnstltute Fuel lnflatlon Estlmates natural Gas 1- ~2 1983-1990 1990-ZMO Nc* England 1.7 2.1 Mlddle Atlantlc 2.1 2...

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect (OSTI)

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

242

Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)  

SciTech Connect (OSTI)

DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

J. K. Wright

2008-04-01T23:59:59.000Z

243

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

244

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect (OSTI)

This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

Tsai A, Banta L, Tucker D

2010-08-01T23:59:59.000Z

245

Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge  

SciTech Connect (OSTI)

We show experimental observations of collisionless electron heating by the combinations of the capacitive radio frequency (RF) bias power and the inductive power in low argon gas pressure RF biased inductively coupled plasma (ICP). With small RF bias powers in the ICP, the electron energy distribution (EED) evolved from bi-Maxwellian distribution to Maxwellian distribution by enhanced plasma bulk heating and the collisionless sheath heating was weak. In the capacitive RF bias dominant regime, however, high energy electrons by the RF bias were heated on the EEDs in the presence of the ICP. The collisionless heating mechanism of the high energy electrons transited from collisionless inductive heating to capacitive coupled collisionless heating by the electron bounce resonance in the RF biased ICP.

Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-12-10T23:59:59.000Z

246

Systems approach used in the Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

Rooks, W.A. Jr.

1982-01-01T23:59:59.000Z

247

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: II. THE ROLE OF COLLISIONS AND NON-LINEAR EFFECTS  

E-Print Network [OSTI]

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: II. THE ROLE OF COLLISIONS AND NON of electrons ( ) is large (comparable with discharge slab) and collisionless heating dominates Ohmic one. Being initially proposed for plasma heating in 1 , it was rst explored in gas discharge plasma for a capacitively

Kaganovich, Igor

248

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

249

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network [OSTI]

-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 passes to the atmosphere. The heated liquid moves through a closed circuit to tubular exchangers where its heat is transferred to a working fluid... are available, For sieve trays, mass transfer efficiency sources have been tabulated by Chan and Fair (1984), 267 ESL-IE-88-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 When only mass...

Fair, J. R.; Bravo, J. L.

250

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network [OSTI]

in the late 1930's of low-leakage high-pressure metallic recuperators resulted in the gradual demise of ceramic heat exchar~ers. This trend was given further impetus by the rapid fall in oil prices in the 1950's which further reduced the economic... recuperators. Metallic heat exchangers are ideally suited to handlir~ clean waste gases havir~ temperatures rar~ir~ from 300 deg. C to 1050 deg. C and for preheatir~ air up to 550 deg. C as well as low calorific gases to 450 deg. C. Operatir~ metallic...

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

251

Dual Heating and Cooling Sorption Heat Pump for a Food Plant  

E-Print Network [OSTI]

Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

Rockenfeller, U.; Dooley, B.

252

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect (OSTI)

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

253

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

254

Parallel Condensing System As A Heat Sink For Power Plants  

E-Print Network [OSTI]

Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

Akhtar, S. Z.

255

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

the exhaust steam in an indirect condenser and rejects heatSteam Feedwater Heaters* - Installed Cost of the Dry-Cooling Tower and Condenser* -steam feedwater heaters Feedwater (50BoK, 14.5 MPa) I nd irect condenser

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

256

Central Heating Plant site characterization report, Marine Corps Combat Development Command, Quantico, Virginia  

SciTech Connect (OSTI)

This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.

Not Available

1990-08-01T23:59:59.000Z

257

The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience  

SciTech Connect (OSTI)

At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

Strunk, J.

1996-12-31T23:59:59.000Z

258

Optimum Heat Power Cycles for Process Industrial Plants  

E-Print Network [OSTI]

Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

Waterland, A. F.

1982-01-01T23:59:59.000Z

259

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network [OSTI]

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power, a significant amount of excess power was produced using both gas turbine configurations. This excess power could

260

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer  

E-Print Network [OSTI]

MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

Meador, Charles Michael

2011-02-22T23:59:59.000Z

262

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

263

Renewable Fuel Heating Plant SyStem SpecificationS  

E-Print Network [OSTI]

with the new Research Support Facility) environmental impact Carbon offsets: The plant initially will offset 4.8 million pounds of CO2 (or 2,200 metric tonnes of carbon) each year TEAM Initiative & Executive Order 13423

264

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

265

THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER PLANTS*  

E-Print Network [OSTI]

THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER. The characterization of heat loads developed for ITER1 can be applied to power plants to better develop the operating, and heating type for the divertor and first wall (FW). A particular power plant design is used, referred

California at San Diego, University of

266

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network [OSTI]

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

267

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina Butler Tina-Butler.jpg TinaLaundry Tips:Natural Gas

268

District of Columbia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial Consumers by

269

District of Columbia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial Consumers bySep-14

270

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

SciTech Connect (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

271

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

272

Model operating permits for natural gas processing plants  

SciTech Connect (OSTI)

Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

273

Modelling of the dynamics of a low-speed gas-liquid heat engine  

SciTech Connect (OSTI)

This paper deals with the simulation model of a gas-liquid heat engine which is characterized by very low speeds (1-3 rpm) and relatively high torque. The engine operates according to the Minto Thermal Wheel' principle. It is based on the conversion of thermal energy from the heat source, through gas expansion, into mechanical work, by means of the fall of a mass of liquid. A prototype has already been constructed showing great ability to operate at very low temperature differences between the heat source and heat sink. This makes the engine quite suitable to the utilization of low temperature heat sources such as solar energy and waste heat. On the other hand, the number of moving parts is kept to a minimum, since the piston of traditional positive displacement engines (PDE) is now replaced simply by a mass of liquid. The mathematical model consists of applying the energy equation, in it time-derivative form, to representative engine control volumes, resulting in a set of linear ordinary differential equations. Their integration provides the time variation of pressure and temperature of the working fluid. The engine performance can thus be predicted as a function of engine operating conditions and geometric characteristics. In this paper, the engine dynamics (i.e., variable angular speed) have been taken into account, as well as heat losses in the engine structure. Results and further design considerations are discussed.

Cunha, C.M.P.; Parise, J.A.R. (Pontificia Univ. Catolica do Rio de Janeiro (Brazil))

1992-01-01T23:59:59.000Z

274

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

275

Couette flow regimes with heat transfer in rarefied gas  

SciTech Connect (OSTI)

Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

2013-06-15T23:59:59.000Z

276

Energy Accounting for District Heating and Cooling Plants  

E-Print Network [OSTI]

...2..?... St"""'. Pressure -psig Burner Pressure paig/B 2 0 Feed Water Temp _ Air temp. _ , Pull Load (.3) .(6. gf 7 Stack temp. __ lba. ata/ft 3 gas ..:.!i.QJ.6 7a/7b --L.1l!L Figure 11 '+/" COEFFIC.IEIlT OF PERFORMANCE CHILLER,L- 0 DATE...

Barrett, J. A.

1979-01-01T23:59:59.000Z

277

Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor  

SciTech Connect (OSTI)

A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

C. H. Oh; C. Davis; S. Sherman

2008-08-01T23:59:59.000Z

278

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network [OSTI]

Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

279

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season  

SciTech Connect (OSTI)

The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-11-01T23:59:59.000Z

280

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

282

Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much  

E-Print Network [OSTI]

exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

Skogestad, Sigurd

283

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

284

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect (OSTI)

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

285

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

SciTech Connect (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

2010-04-05T23:59:59.000Z

286

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

287

The heat transport system and plant design for the HYLIFE-2 fusion reactor  

SciTech Connect (OSTI)

HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs.

Hoffman, M.A.

1990-08-21T23:59:59.000Z

288

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network [OSTI]

combustor is classified as a nonhaz ardous waste similar to fly ash. As such, the sol ids may be disposed in a landfill after obtaining the appropriate permits. The waste solids are coal ash, calcium sulfate, cal cium oxide, and inerts, all ingredients...; a mix 0 clay, limestone, and fly ash is melted into clinker The recoverable waste heat streams from this proc shown in Figure 1. Both a traditional design integrated design are shown. II: W Z 2100? F o ...J

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

289

Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermal Heat Flow

290

Application of advanced Stirling engine technology to a commercial size gas-fired heat pump  

SciTech Connect (OSTI)

The Gas Research Institute sponsored work on the kinematic Stirling engine-driven heat pump, which offers practical improvements in the use of natural gas. Results from the first phase of the program led to the selection of a method of introducing low pressure natural gas into the V160 engine's combustor and testing of the ejector system. Further engine modifications will be needed as well as demonstrations of the performance and reliability of the units. The first phase found all developmental needs to be achievable, making the concept technically feasible. Computer projections based on the system performance of components indicate the gas-fired pump will work better than electric models and be economically feasible as well. 5 figures, 1 table.

Johansson, L.; Agno, J.; Wurm, J.

1985-08-01T23:59:59.000Z

291

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

292

Adding Environmental Gas Physics to the Semi-Analytic Method for Galaxy Formation: Gravitational Heating  

E-Print Network [OSTI]

We present results of an attempt to include more detailed gas physics motivated from hydrodynamical simulations within semi-analytic models (SAM) of galaxy formation, focusing on the role that environmental effects play. The main difference to previous SAMs is that we include 'gravitational' heating of the intra-cluster medium (ICM) by the net surplus of gravitational potential energy released from gas that has been stripped from infalling satellites. Gravitational heating appears to be an efficient heating source able to prevent cooling in environments corresponding to dark matter halos more massive than $\\sim 10^{13} $M$_{\\odot}$. The energy release by gravitational heating can match that by AGN-feedback in massive galaxies and can exceed it in the most massive ones. However, there is a fundamental difference in the way the two processes operate. Gravitational heating becomes important at late times, when the peak activity of AGNs is already over, and it is very mass dependent. This mass dependency and time behaviour gives the right trend to recover down-sizing in the star-formation rate of massive galaxies. Abridged...

S. Khochfar; J. P. Ostriker

2007-04-18T23:59:59.000Z

293

Wireless channel characterization and modeling in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

Savazzi, Stefano

294

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

295

Initiation of long, free-standing Z-discharges by CO2 laser gas heating  

SciTech Connect (OSTI)

High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore they are considered as an interesting alternative for the final focus and beam transport in a heavy ion beam fusion reactor. At the GSI accelerator facility, 50 cm long, stable, free-standing discharge channels with currents in excess of 40 kA in 2 to 25 mbar ammonia (NH{sub 3}) gas are investigated for heavy ion beam transport studies. The discharges are initiated by a CO{sub 2} laser pulse along the channel axis before the discharge is triggered. Resonant absorption of the laser, tuned to the {nu}{sub 2} vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. This paper describes the laser-gas interaction and the discharge initiation mechanism. We report on the channel stability and evolution, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a hydrocode simulation.

Nieman, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D.H.H.; Yu, S.S.; Sharp, W.M.

2004-04-19T23:59:59.000Z

296

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network [OSTI]

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions countries it is already implemented for several years. #12;Slovak Centre of Biomass Use for Energy Slovakia

297

CORQUENCH: A model for gas sparging-enhanced melt-water, film boiling heat transfer  

SciTech Connect (OSTI)

A phenomenological model (CORQUENCH) has been developed to describe the gas-sparging enhanced film boiling heat transfer between a molten pool of corium and an overlying water layer. The model accounts for thermal radiation across the vapor film, bulk liquid subcooling, interfacial area enhancement due to sparging gas, and melt entrainment into the overlying water layer. In this paper, the modeling approach is described, and a comparison with the lead-Freon 11 and lead-water film boiling experiment data of Greene is made. Predictions are then made for the case of film boiling over corium in the presence of sparging concrete decomposition gases. 15 refs., 3 figs.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

298

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

299

The Greenhouse Gas Protocol Initiative: Allocation of Emissions...  

Open Energy Info (EERE)

Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of...

300

Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course  

SciTech Connect (OSTI)

This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

Not Available

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

302

Renewable Energy Plants in Your Gas Tank: From Photosynthesis...  

Energy Savers [EERE]

Subject Bioenergy Summary With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series...

303

Greenhouse Gas emissions from California Geothermal Power Plants  

SciTech Connect (OSTI)

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

2014-03-14T23:59:59.000Z

304

Greenhouse Gas emissions from California Geothermal Power Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

305

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

306

California - Coastal Region Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves (Million Barrels) Gas

307

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect (OSTI)

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

308

The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

2003-09-01T23:59:59.000Z

309

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

310

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

311

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect (OSTI)

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

312

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

SciTech Connect (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

313

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

Wayne Moe

2013-05-01T23:59:59.000Z

314

LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents [OSTI]

Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

Hall, M.N.

1996-04-30T23:59:59.000Z

315

Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents [OSTI]

Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

Hall, Mark N. (Richland, WA)

1996-01-01T23:59:59.000Z

316

Local heat flux and energy loss in a 2D vibrated granular gas  

E-Print Network [OSTI]

We performed event-driven simulations of a two-dimensional granular gas between two vibrating walls and directly measured the local heat flux and energy dissipation rate in the stationary state. Describing the local heat flux as a function of the coordinate x in the direction perpendicular to the driving walls, we use a generalization of Fourier's law, q_x(x) = kappa d_x T(x) + mu d_x rho(x), to relate the local heat flux to the local gradients of the temperature and density. This ansatz accounts for the fact that density gradients also generate heat flux, not only temperature gradients. The transport coefficients kappa and mu are assumed to be independent of x, and we check the validity of this assumption in the simulations. Both kappa and mu are determined for different system parameters, in particular, for a wide range of coefficients of restitution. We also compare our numerical results to existing hydrodynamic theories. Agreement is found for kappa for very small inelasticities only. Beyond this region, kappa and mu exhibit a striking non-monotonic behavior.

Olaf Herbst; Peter Müller; Annette Zippelius

2004-12-13T23:59:59.000Z

317

Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermalhydraulic and efficiency points of view.

C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

2006-08-01T23:59:59.000Z

318

Floating atomic central heating-and-power plant converted from a strategic submarine  

SciTech Connect (OSTI)

In accordance with {open_quotes}The Treaty on the Reduction of Strategic Offensive Arms{close_quotes} signed in July 1991, the operations envisages by {open_quotes}The Procedures for elimination of SSBN`s Launchers{close_quotes} should be accomplished at submarines of the second generation both by eliminating missile compartments together with launchers and by removal of launchers only from missile compartments. THe number of such ships could reach 30 units as has been forecasted for the year of 1998 inclusive. With regard to the fact that the remaining operation life of the main power plant equipment of a nuclear submarine decommissioned in accordance with the Treaty is about 50 per cent, potentially there is a possibility to convert them into floating atomic central heating-and-power plants. The latter variant envisaged in the {open_quotes}Procedures...{close_quotes} is preferable for developing a floating plant based on ships decommissioned from the Navy, since it permits to remove launchers without cutting and subsequent connection of main cables, pipelines and systems which provide the control of the main power plant, nuclear safety, radiological safety, damage control and fire safety of the floating plant. A submarine could be delivered for refitting into a floating plant only after accomplishing the works envisaged by the {open_quotes}Procedures...{close_quotes}.

Bilashenko, V.P.; Gorigledzhan, E.A.; Slonimsky, V.J. [Military Regiment Nl., Moscow (Russian Federation)

1993-12-31T23:59:59.000Z

319

Heating the bubbly gas of galaxy clusters with weak shocks and sound waves  

E-Print Network [OSTI]

Using hydrodynamic simulations and a technique to extract the rotational component of the velocity field, we show how bubbles of relativistic gas inflated by AGN jets in galaxy clusters act as a catalyst, transforming the energy carried by sound and shock waves to heat. The energy is stored in a vortex field around the bubbles which can subsequently be dissipated. The efficiency of this process is set mainly by the fraction of the cluster volume filled by (sub-)kpc scale filaments and bubbles of relativistic plasma.

S. Heinz; E. Churazov

2005-09-26T23:59:59.000Z

320

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect (OSTI)

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant  

SciTech Connect (OSTI)

This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

Brambley, M.R.; Weakley, S.A.

1990-09-01T23:59:59.000Z

322

Advanced combustion technologies for gas turbine power plants  

SciTech Connect (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

323

Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)Fuel Consumption

324

Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)Fuel

325

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)FuelLiquids, Proved

326

Texas Onshore Natural Gas Plant Liquids Production Extracted in Kansas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million Cubic

327

Texas Onshore-Kansas Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million Cubic2011 2012

328

Texas Onshore-New Mexico Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million Cubic2011 2012

329

Texas Onshore-Oklahoma Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million Cubic2011

330

Texas Onshore-Texas Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(Million

331

Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuel Consumption

332

Kansas Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuel

333

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuelProved Reserves

334

Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number ofFuel

335

Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number

336

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (NumberProved

337

Kentucky-West Virginia Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicleThousand60,941

338

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After898 701200973

339

Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370JapanLodging

340

Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370JapanLodging(Million

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel Consumption

342

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel

343

Louisiana Offshore Natural Gas Plant Liquids Production Extracted in  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,570 893,400

344

Louisiana Offshore-Louisiana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,570 893,400 2012

345

Louisiana Onshore Natural Gas Plant Liquids Production Extracted in  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,570 893,400Louisiana

346

Louisiana Onshore-Louisiana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,570

347

Louisiana Onshore-Texas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,5705,020 4,583 4,920

348

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,5705,02044

349

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084Dry18,749Barrels)

350

Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (MillionFuel

351

Michigan Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (MillionFuelLiquids

352

Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb

353

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear46 4722 35

354

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb MarFeet)

355

Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million CubicFuel

356

Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million CubicFuelLiquids

357

Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million

358

Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption (Million Cubic

359

Montana Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption (Million

360

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption (MillionProved

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Montana-North Dakota Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 1861,185

362

How Gas Turbine Power Plants Work | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,How Gas Turbine Power

363

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)Fuel Consumption

364

Colorado Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)Fuel

365

Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)FuelProved

366

Federal Offshore California Natural Gas Plant Liquids Production, Gaseous  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010NA NA NA

367

Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel Consumption (Million

368

Florida Natural Gas Plant Liquids Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel Consumption

369

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel ConsumptionProved

370

Gulf of Mexico-Alabama Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5

371

Gulf of Mexico-Louisiana Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,435 2012-2013 Total

372

Gulf of Mexico-Mississippi Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,435 2012-2013 Total1,618

373

Gulf of Mexico-Texas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,435 2012-2013

374

California Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643Elements) GasFuel

375

Pennsylvania-West Virginia Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029Cubic(Dollars per Thousand Cubic 0 0Cubic2011

376

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves (Million Barrels)

377

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves (Million

378

California Federal Offshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves,835Feet)(Million

379

California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 (Million Cubic Feet)Liquids, Proved

380

California Onshore-California Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 (Million0,515,162180,648 169,203 164,401

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

California State Offshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566

382

New Mexico-New Mexico Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet) DecadeFeet) Working Natural Gas795,069

383

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

384

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

385

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

386

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

387

South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18DecadeElements)SouthPlant

388

U.S. Total Imports Natural Gas Plant Processing  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector", (MillionDecadeDecadeDecreases (BillionPlant Processing Area:

389

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

390

Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980  

SciTech Connect (OSTI)

Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

Eby, R.J.

1980-12-01T23:59:59.000Z

391

Universal model for water costs of gas exchange by animals and plants  

E-Print Network [OSTI]

terrestrial animals and plants exchange O2 and CO2 with the atmosphere and thereby incur costs in the currency Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved March 30, 2010 (received for review), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model

392

Simulated coal gas MCFC power plant system verification. Final report  

SciTech Connect (OSTI)

The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

NONE

1998-07-30T23:59:59.000Z

393

Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations  

SciTech Connect (OSTI)

A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li/sub 17/Pb/sub 83/ coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li/sub 17/Pb/sub 83/ coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m/sup 3//s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented.

McDowell, M.W.; Murray, K.A.

1984-05-09T23:59:59.000Z

394

Ionization heating in rare-gas clusters under intense XUV laser pulses  

SciTech Connect (OSTI)

The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

Arbeiter, Mathias; Fennel, Thomas [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

2010-07-15T23:59:59.000Z

395

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

396

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

397

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network [OSTI]

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

398

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

399

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

400

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

SciTech Connect (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

402

Systematic method for the condition assessment of central heating plants in Air Force Logistics Command. Master's thesis  

SciTech Connect (OSTI)

Air Force Logistics Command (AFLC), facing decreasing funds and aging utility systems, needed a method to objectively rate its central heating plants. Such a rating system would be used to compare heating plants throughout the command to identify potential problem areas and prioritize major repair projects. This thesis used a Delphi questionnaire to gather opinions from heating plant experts in order to identify and prioritize components considered most critical to overall plant operation. In addition, the experts suggested measurements which could be used to evaluate component conditions. By combining expert opinions and reading from technical literature, component model rating schemes were developed for AFLC's steam and high temperature hot water plants. Based on measurements and observations of critical components in the plant, a score between 0 and 100 is assigned to each component (for example, condensate piping, deaerator, etc.), each plant subsystem (distribution system, water treatment system, etc.), and to the plant as a whole. These component model rating schemes and the resultant overall condition index scores will enable AFLC to focus their management attention and allocate needed resources to the plants in greatest need of repair.

Starmack, G.J.

1990-09-01T23:59:59.000Z

403

Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

Chang H. Oh; Eung Soo Kim; Steven Sherman

2008-04-01T23:59:59.000Z

404

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

405

A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC  

E-Print Network [OSTI]

5 Heat source plant ?Total capacity?26.3MW? Substation ? ? ? Total : 6 Substations Bleed-in Control Substation ? ? ? The chilled water delivery system Large heat source plant similar to a DHC plant ? Total refrigerator capacity 26.3 MW ? Chilled... water is supplied 6 substations - Department store - Hotel - Theater - Train station etc. ? Bleed-in Control ? Commonly equipped in the substations of DHC plants. ? This control maintains the return water temperature to the plant by controlling...

Matsushita, N.; Yoshida,H.

2014-01-01T23:59:59.000Z

406

Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works  

SciTech Connect (OSTI)

Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

1995-12-01T23:59:59.000Z

407

Dutch gas plant uses polymer process to treat aromatic-saturated water  

SciTech Connect (OSTI)

A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

NONE

1998-11-02T23:59:59.000Z

408

Critique of Hanford Waste Vitrification Plant off-gas sampling requirements  

SciTech Connect (OSTI)

Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

Goles, R.W.

1996-03-01T23:59:59.000Z

409

,"Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant+ Lease CondensatePlant Liquids,

410

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

411

Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant  

SciTech Connect (OSTI)

The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

Blanchat, T.K.; Allen, M.D.; Pilch, M.M. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

412

Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant  

E-Print Network [OSTI]

Abstract—The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

unknown authors

413

,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-DissolvedSummary"Gas,Plant Liquids,

414

Table 17. Estimated natural gas plant liquids and dry natural gas content of total wet natural gas proved reserves, 2013  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033Estimated natural gas

415

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents  

E-Print Network [OSTI]

energy from the environment (from air, water or soil) and uses this to heat the water of a central energy from the soil often a serious financial investment is needed, whereas a heatpump by itself countries, a substantial amount of domestic energy use during the winter season concerns heating. Often

Treur, Jan

416

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

417

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

418

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

419

Design study of a coal-fired thermionic (THX) topped power plant. Volume IV. Thermionic heat exchanger design and costing  

SciTech Connect (OSTI)

This volume deals with the details of how thermionic conversion works, and how it is used in a coal-fired furnace to achieve power plant efficiencies of 45%, and overall costs of 36.3 mills/kWh. A review of the fundamental technical aspects of thermionic conversion is given. The overall Thermionic Heat Exchanger (THX) design, the heat pipe design, and the interaction of the heat pipes with the furnace are presented. Also, the operational characteristics of thermionic converters are described. Details on the computer program used to perform the parametric study are given. The overall program flow is reviewed along with the specifics of how the THX subroutine designed the converter to match the conditions imposed. Also, input costs and variables effecting the THX's performance are detailed. The efficiencies of the various power plants studied are given as a function of the air preheat temperature, size of the power plant, and thermionic level of performance.

Dick, R.S.; Britt, E.J.

1980-10-15T23:59:59.000Z

420

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network [OSTI]

11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

Heperkan, H.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels  

E-Print Network [OSTI]

Single-phase convective heat transfer in microchannels: aand Newell, M. E. , 1967. Heat transfer in fully developed3 /s at 130 W. Water CGA Heat Transfer Coefficient, h (W/m 2

Tseng, H.; Pilon, L.; Warrier, G.

2006-01-01T23:59:59.000Z

422

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect (OSTI)

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ÂşF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

423

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

424

Comparison of heat pump system and boiler plant for one-family house : Heat sources in one-family house.  

E-Print Network [OSTI]

??The aim of this work is to look through, compare and choose the cheapest heat source for typical new Finnish one-family house. We will speak… (more)

Kaydalova, Natalia

2010-01-01T23:59:59.000Z

425

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

426

Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies  

E-Print Network [OSTI]

of Cooling Water in Production Area: 3.5MW (11942KBtu/h), 1unit Heat Discharge: 2.6MW (8872KBtu/h), 1unit Additional Operation with Screw Refrigeration Machine: 2.3MW (7847KBtu/h), 1unit Turbo Refrigerating Machine (1.41MW): 152m3/h (5398mf3/h), 2units... Production Area (North) Production Area (South) Water Treatment Plant 21Cells Unit (14.1MW) Turbo Refrigerating Machines (1.4MW, 2units/ 4.2MW,6units) Screw Refrigerating Machines (0.8MW, 2units) Iced-thermal Storage Tank (28.5GJ, 2units) HEX for Additional...

Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

2004-01-01T23:59:59.000Z

427

Proposed finding of no significant impact for the Sakakawea Medical Center coal-fired heating plant  

SciTech Connect (OSTI)

The Department of Energy (the Department) has prepared an environmental assessment (Assessment) (DOE/EA-0949) to identify and evaluate the potential environmental impacts of a proposed action at the Sakakawea Medical Center (the Center) in Hazen, North Dakota. The proposed action would replace the existing No. 2 fuel oil-fired boilers supplemented by electric reheat with a new coal-fired hot water heating plant, using funds provided from a grant under the Institutional Conservation Program. Based on the analysis in DOE/EA-0949, the Department has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (Finding).

Not Available

1994-07-01T23:59:59.000Z

428

Modeling reaction quench times in the waste heat boiler of a Claus plant  

SciTech Connect (OSTI)

At the high temperatures found in the modified Claus reaction furnace, the thermal decomposition and oxidation of H[sub 2]S yields large quantities of desirable products, gaseous hydrogen (H[sub 2]) and sulfur (S[sub 2]). However, as the temperature of the gas stream is lowered in the waste heat boiler (WHB) located downstream of the furnace, the reverse reaction occurs leading to reassociation of H[sub 2] and S[sub 2] molecules. To examine the reaction quenching capabilities of the WHB, a rigorous computer model was developed incorporating recently published intrinsic kinetic data. A sensitivity study performed with the model demonstrated that WHBs have a wide range of operation with gas mass flux in the tubes from 4 to 24 kg/(m[sup 2] [center dot] s). Most important, the model showed that is was possible to operate WHBs such that quench times could be decreased to 40 ms, which is a reduction by 60% compared to a base case scenario. Furthermore, hydrogen production could be increased by over 20% simply by reconfiguring the WHB tubes.

Nasato, L.V.; Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-01-01T23:59:59.000Z

429

Bubble columns for condensation at high concentrations of noncondensable gas: Heat-transfer model and experiments  

E-Print Network [OSTI]

Carrier gas based thermodynamic cycles are common in water desalination applications. These cycles often require condensation of water vapor out of the carrier gas stream. As the carrier gas is most likely a noncondensable ...

Narayan, G. Prakash

430

Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981  

SciTech Connect (OSTI)

Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

Eby, R.J.

1981-03-01T23:59:59.000Z

431

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

432

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

433

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

434

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

435

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

436

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICCHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICprocess Boeing solar receiver [5J Internal detail of Boeing solar receiver [5J . 2.4 Heat

Dayan, J.

2011-01-01T23:59:59.000Z

437

Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition  

E-Print Network [OSTI]

An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in $Au$ quasi-projectile sources formed in $Au+Au$ collisions at 35 A.MeV. The excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 5 A.MeV excitation energy. In the same energy range the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.

M. D'Agostino; F. Gulminelli; Ph. Chomaz; M. Bruno; F. Cannata; R. Bougault; N. Colonna; F. Gramegna; I. Iori; N. Le Neindre; G. V. Margagliotti; P. F. Mastinu; P. M. Milazzo; A. Moroni; G. Vannini

1999-06-07T23:59:59.000Z

438

Duplex Stirling gas-fired heat pump. Phase 2. Breadboard demonstration. Final report, May 1981-November 1982  

SciTech Connect (OSTI)

This program represents the first attempt to design, fabricate, and test a breadboard gas-fired duplex Stirling heat pump in a heating only mode. The system was designed to obtain a COP of 1.5 at an ambient temperature of 17F and have an output sufficient for an average residential home. The design methodology, detailed system description and test results for sub components and the entire system are discussed. Technical problems encountered in the program, and recommendations for further efforts are detailed.

Gedeon, D.; Penswick, B.; Beale, W.

1982-11-01T23:59:59.000Z

439

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

SciTech Connect (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

440

Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems  

SciTech Connect (OSTI)

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

2004-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketed Production (MMcf)"Plant

442

,"Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbed MethaneGas,Price (DollarsPlant

443

,"Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice (DollarsPlant

444

Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2per ThousandBarrels) Gas Plant

445

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYearWithdrawalsand Plant

446

Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYearand Plant

447

,"U.S. Total Exports Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in Nonproducing Reservoirs (MillionNatural Gas Plant

448

,"West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids, Expected Future Production

449

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

450

Design of compact intermediate heat exchangers for gas cooled fast reactors  

E-Print Network [OSTI]

Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

Gezelius, Knut, 1978-

2004-01-01T23:59:59.000Z

451

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

452

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs  

SciTech Connect (OSTI)

A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

2008-03-01T23:59:59.000Z

453

Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant  

E-Print Network [OSTI]

Heating Water Suuply Chilled Water Return Heating Water Return To User New System ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 attract attention due..., R6 450 1, 1 ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3 (one office building and one building with hotel rooms and leisure facilities) since November...

Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

454

RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.  

SciTech Connect (OSTI)

Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

JOE,J.

2007-07-08T23:59:59.000Z

455

Realities of verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants  

SciTech Connect (OSTI)

Over a two and one-half year period beginning in 1981, representatives of six countries (United States, United Kingdom, Federal Republic of Germany, Australia, The Netherlands, and Japan) and the inspectorate organizations of the International Atomic Energy Agency and EURATOM developed and agreed to a technically sound approach for verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants. This effort, known as the Hexapartite Safeguards Project (HSP), led to the first international concensus on techniques and requirements for effective verification of the absence of weapons-grade nuclear materials production. Since that agreement, research and development has continued on the radiation detection technology-based technique that technically confirms the HSP goal is achievable. However, the realities of achieving the HSP goal of effective technical verification have not yet been fully attained. Issues such as design and operating conditions unique to each gas centrifuge plant, concern about the potential for sensitive technology disclosures, and on-site support requirements have hindered full implementation and operator support of the HSP agreement. In future arms control treaties that may limit or monitor fissile material production, the negotiators must recognize and account for the realities and practicalities in verifying the absence of HEU production. This paper will describe the experiences and realities of trying to achieve the goal of developing and implementing an effective approach for verifying the absence of HEU production. 3 figs.

Swindle, D.W.

1990-03-01T23:59:59.000Z

456

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect (OSTI)

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

457

Integrated flue gas processing method  

SciTech Connect (OSTI)

A system and process for flue gas processing to remove both gaseous contaminants such as sulfur dioxide and particulate matter such as flyash integrates spray scrubbing apparatus and wet electrostatic precipitation apparatus and provides for the advantageous extraction and utilization of heat present in the flue gas which is being processed. The integrated system and process utilizes a spray scrubbing tower into which the flue gas is introduced and into which aqueous alkali slurry is introduced as spray for sulfur dioxide removal therein. The flue gas leaves the tower moisture laden and enters a wet electrostatic precipitator which includes a heat exchanger where flyash and entrained droplets in the flue gas are removed by electrostatic precipitation and heat is removed from the flue gas. The cleaned flue gas exits from the precipitator and discharges into a stack. The heat removed from the flue gas finds use in the system or otherwise in the steam generation plant. The wet electrostatic precipitator of the integrated system and process includes a portion constructed as a cross flow heat exchanger with flue gas saturated with water vapor moving vertically upwards inside tubes arranged in a staggered pattern and ambient air being pulled horizontally across the outside of those tubes to cool the tube walls and thereby remove heat from the flue gas and cause condensation of water vapor on the inside wall surfaces. The condensate washes the electrostatically collected flyash particles down from the inside tube walls. The heat that is extracted from the saturated flue gas in the wet electrostatic precipitator heat exchanger may be utilized in several different ways, including: (1) for flue gas reheat after the wet electrostatic precipitator; (2) for preheating of combustion air to the steam generator boiler; and, (3) for heating of buildings.

Bakke, E.; Willett, H.P.

1982-12-21T23:59:59.000Z

458

Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

Not Available

2010-12-01T23:59:59.000Z

459

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

460

Industrial Plant Objectives and Cogeneration System Development  

E-Print Network [OSTI]

HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles... more power than that avail able due to plant he t demands may provide an economically viable option. Gas Turbine and Combined Cycles Gas turbine cycles provide the opportunity to generate a larger power output per unit of heat 39~ required...

Kovacik, J. M.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

UBC vehicles to run on natural gas by fallEighteen UBC vehicles operated by the Department of Physical Plant will  

E-Print Network [OSTI]

of Physical Plant will be running on compressed natural gas instead of gasoline by theend of September to bum compressed natural gas instead of gasoline is a fairly simpleoneand willbe carried out by a B

Farrell, Anthony P.

462

Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000  

SciTech Connect (OSTI)

A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

Prythero, T.; Meyer, R. T.

1980-09-01T23:59:59.000Z

463

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network [OSTI]

C. A . • 11 Resistance Thermometer for Heat Transfera thin film resistance thermometer. A separate analysis isa thin-film resistance thermometer was used [2-12]. This

Heperkan, H.

2013-01-01T23:59:59.000Z

464

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

465

CO{sub 2} Capture Membrane Process for Power Plant Flue Gas  

SciTech Connect (OSTI)

Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ď?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ď?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ď?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ď?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ď?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

Lora Toy; Atish Kataria; Raghubir Gupta

2011-09-30T23:59:59.000Z

466

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

to lower the carbon intensity of the power generationelectricity grid carbon-intensities are considered: •importance of grid carbon intensity. Natural-gas-fired CHP

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

467

Gas injection to inhibit migration during an in situ heat treatment process  

DOE Patents [OSTI]

Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

2010-11-30T23:59:59.000Z

468

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

SciTech Connect (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

469

Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy  

E-Print Network [OSTI]

We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 $\\mu$m, [NII] 122, 205 $\\mu$m, [OI] 63, 145 $\\mu$m, and [OIII] 88 $\\mu$m. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ ratio, varies from a mean of 3.5$\\times$10$^{-3}$ in the centre up to 8$\\times$10$^{-3}$ at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ but constant ([CII]+[OI]63)/$F_{\\mathrm{PAH}}$ with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$. Resolving details on physical scales of ~0.6 kpc, a p...

Hughes, T M; Schirm, M R P; Parkin, T J; De Looze, I; Wilson, C D; Bendo, G J; Baes, M; Fritz, J; Boselli, A; Cooray, A; Cormier, D; Karczewski, O ?; Lebouteiller, V; Lu, N; Madden, S C; Spinoglio, L; Viaene, S

2014-01-01T23:59:59.000Z

470

Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney  

E-Print Network [OSTI]

1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood title: Extinction limits in excess enthalpy burners To be published in Proceedings of the Combustion-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D

471

The (safety-related) heat exchangers aging management guideline for commercial nuclear power plants, and developments since 1994  

SciTech Connect (OSTI)

The US Department of Energy (DOE), in cooperation with the Electric Power Research Institute (EPRI) and US nuclear power plant utilities, is preparing a series of aging management guidelines (AMGs) for commodity types of components (e.g., heat exchangers, electrical cable and terminations, pumps). Commodities are included in this series based on their importance to continued nuclear plant operation and license renewal. The AMGs contain a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance and surveillance practices that can be combined to create an effective aging management program. Each AMG is intended for use by the systems engineers and plant maintenance staff (i.e., an AMG is intended to be a hands-on technical document rather than a licensing document). The heat exchangers AMG, published in June 1994, includes the following information of interest to nondestructive examination (NDE) personnel: aging mechanisms determined to be non-significant for all applications; aging mechanisms determined to be significant for some applications; effective conventional programs for managing aging; and effective unconventional programs for managing aging. Since the AMG on heat exchangers was published four years ago, a brief review has been conducted to identify emerging regulatory issues, if any. The results of this review and lessons learned from the collective set of AMGs are presented.

Clauss, J.M.

1998-08-01T23:59:59.000Z

472

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

473

High freestream turbulence levels have been shown to greatly augment the heat transfer along a gas turbine airfoil, particularly for the first stage  

E-Print Network [OSTI]

along a gas turbine airfoil, particularly for the first stage nozzle guide vane. For this study of the variables affecting boundary layer development on gas turbine airfoils, studies need to be performed, augmentations in convective heat transfer have been measured for a first stage turbine vane in the stagna- tion

Thole, Karen A.

474

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect (OSTI)

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

475

The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

476

INTERNAL FORCED iquid or gas flow through pipes or ducts is commonly used in heating and  

E-Print Network [OSTI]

to flow by a fan or pump through a flow section that is sufficiently long to accomplish the desired heat. Then the logarithmic mean temperature difference and the rate of heat loss from the air become Tln 15.2°C Q · hAs Tln (13.5 W/m2 °C)(6.4 m2 )( 15.2°C) 1313 W Therefore, air will lose heat at a rate of 1313 W as it flows

Ghajar, Afshin J.

477

Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant  

SciTech Connect (OSTI)

The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

1997-02-01T23:59:59.000Z

478

A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report  

SciTech Connect (OSTI)

Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

1997-11-01T23:59:59.000Z

479

Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . 46 C. Computational procedure . . . . . . . . . . . . . . . . . . . 48 1. Solver settings and grid for URANS study . . . . . . . 48 2. LES study . . . . . . . . . . . . . . . . . . . . . . . . 52 D. Results... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1. Orthogonal decomposition URANS . . . . . . . . . . . 59 2. Orthogonal decomposition LES . . . . . . . . . . . . . 62 E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 V OPTIMIZING TURBULENT HEAT TRANSFER USING...

Schwaenen, Markus

2012-07-16T23:59:59.000Z

480

Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985  

SciTech Connect (OSTI)

The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

Monahan, R.E.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating plant gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Validation of ANS-5. 1 as the decay heat standard at the Savannah River Plant  

SciTech Connect (OSTI)

The Savannah River Laboratory (SRL) is upgrading the methods used to predict the post shutdown decay heat of the Savannah River reactors by implementing procedures based on the ANS Decay Heat Power in Light Water Reactors standard. This approach takes advantage of the large volume of research used in developing the standard and establishes compatibility with the nuclear industry. To qualify the decay heat standard for use, a series of comparisons were made between detailed decay heat calculations performed using the SHIELD code system and results obtained from the standard.

Apperson, Jr, C E

1982-01-01T23:59:59.000Z

482

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network [OSTI]

brown-coal fired boilers with low efficiency. The special furnace design ensures that woody biofuel authorities CHP Planning issues Transport companies District Heating Sustainable communities Utilities Solar

483

Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions  

SciTech Connect (OSTI)

In this work, we are interested in the estimation of CO{sub 2} and H{sub 2}S heats of absorption in aqueous solutions of alkanolamine: monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). Two methods can be used to calculate the heat release during the absorption phenomenon. The easier which consists of applying the integration of the Gibbs-Helmholtz expression remains inaccurate. The second one, more rigorous, evaluates the heat transfer through an internal energy balance for an open system. The balance expression contains partial molar enthalpies of species in the liquid phase which are calculated from the electrolyte nonrandom-two-liquid (NRTL) excess Gibbs energy model. The calculations carried out in this method can be considered as predictive regarding the NRTL model because its interaction parameters were previously and solely fitted on vapor-liquid equilibrium (VLE) data and not on experimental heat of absorption data. The comparison between both methods and experimental data for the three alkanolamines shows the contribution of this rigorous calculation to better estimate both properties (i.e., solubility and heat) and its usefulness to improve processes. Heats of absorption calculated with the second method can be used in addition to VLE data to fit NRTL parameters. This procedure leads to less-correlated parameters and allows extrapolating the model with more confidence. 63 refs., 10 figs., 6 tabs.

Emilie Blanchon le Bouhelec; Pascal Mougin; Alain Barreau; Roland Solimando [Institut Francais du Petrole, Rueil-Malmaison (France). Departement Thermodynamique et Modelisation Moleculaire

2007-08-15T23:59:59.000Z

484

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network [OSTI]

Energy's patented technology produces a clean-burning by-product from the widest variety of processed-efficient technology represented by the coal-substitute technology. The same technology will be deployed by DIGGDigital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital

Columbia University

485

409g Implementation of Coordinator Mpc on a Large-Scale Gas Plant Elvira M. B Aske, Dept. of Chemical Engineering, Norwegian Univ of Sci & Tech (NTNU),  

E-Print Network [OSTI]

constraints. Most of the distillation columns at the Kårstø gas plant have already MPC installed with two409g Implementation of Coordinator Mpc on a Large-Scale Gas Plant Elvira M. B Aske, Dept is not necessary. The key issue is to identify the active "bottleneck" constraint and a coordinator MPC based

Skogestad, Sigurd

486

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network [OSTI]

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data...

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

487

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program (Arizona)  

Broader source: Energy.gov [DOE]

'''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a...

488

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

for out-of-state coal generation, then clearly the GHGElectricity Generation (TWh/a) Natural Gas Coal Natural Gascoal becomes the marginal fuel. Note that the marginal generation

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

489

Local heat transfer and film effectiveness of a film cooled gas turbine blade tip  

E-Print Network [OSTI]

Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

Adewusi, Adedapo Oluyomi

1999-01-01T23:59:59.000Z

490

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network [OSTI]

c v is the solid or liquid heat capacity at constant volume,heat capacities and might be slightly retrograde. Retrograde liquid-

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

491

A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report  

SciTech Connect (OSTI)

A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and economic analyses, energy savings and waste reduction predictions, evaluation of environmental effects, and outline issues concerning manufacturing, marketing, and financing. Combustion Tec, Owens Corning, and GTI will all take active roles in defining this Plan. During Phase I, the first three objectives were addressed and completed along with the design component of the fourth objective. In Phase II, the fabrication component of the fourth objective was completed along with objectives five and six. Results of the Phase I work were reported in the Phase I Final Report and are summarized in this Final Technical Report. Work for Phase II was divided in four specific Tasks. Results of the Phase II work were reported in the Phase II Final Report and are also summarized in this Final Technical Report. No Phase III Final Report was prepared, so this Final Technical Report presents the results of Phase III commercial demonstration efforts. A description of each Task in Phases I, II, and III is presented in this report.

Abbasi, H.

2004-01-01T23:59:59.000Z

492

Application of an Industrial Heat Pump to a Specialty Chemical Plant  

E-Print Network [OSTI]

This paper presents the results of a heat pump study conducted by TENSA Services and sponsored by the U.S. Department of Energy. In the previous phase of this project, a heat pump potential was identified through a rigorous pinch analysis...

Tripathi, P. C.; Chao, P.

493

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

494

Chapter 19. Heat Engines and Refrigerators That's not smoke. It's clouds  

E-Print Network [OSTI]

the cooling towers around a large power plant. The power plant is generating electricity by turning heat Addison-Wesley. · Ideal-Gas Refrigerators · The Limits of Efficiency · The Carnot Cycle #12;Chapter 19. Refrigerator B. Thermal motor C. Heat engine D. Carnot cycle E. Otto processor #12;The area enclosed within a pV

Dhamala, Mukesh

495

Sinterable ceramic powders from laser heated gas phase reactions and rapidly solidified ceramic materials : annual report.  

E-Print Network [OSTI]

CO[subscript 2] lasers have been employed to heat reactant gases to synthesize Si, Si[subscript 3] N[subscript 4] and SiC powders. The powders are small, uniform in size, nonagglomerated, highly pure and of controlled ...

Haggerty, John Scarseth

1984-01-01T23:59:59.000Z

496

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network [OSTI]

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

497

Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger  

SciTech Connect (OSTI)

Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

Bragg-Sitton, S.M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Godfroy, T.J. [Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2004-02-04T23:59:59.000Z

498

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

Anne Trehu; Peter Kannberg

2011-06-30T23:59:59.000Z

499

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for appar