Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

2

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

3

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

4

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

5

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

6

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

7

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

8

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

9

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

10

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

11

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

12

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

13

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

14

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

15

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

16

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

17

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

18

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

19

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

20

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

22

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

23

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

24

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

25

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

26

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

27

Heating Oil and Propane Update  

Annual Energy Outlook 2012 (EIA)

to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No....

28

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

29

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

30

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bioc

31

Diacylglycerol Oil, 2nd EditionChapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

32

heating oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Home; Browse by Tag; Most Popular Tags. ... High heating oil prices discourage heating oil supply contracts for the ...

33

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

34

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

35

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

36

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we ...

37

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic...

38

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal ...

39

DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchase Heating Oil for the Northeast Home Heating Oil Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans residing in the Northeast region of the country. Due to the modest volume of heating oil expected to be purchased with the available funds, no impact on market prices is expected. In 2007 a 35,000 barrel sale was conducted to raise funds necessary to award new long-term storage contracts to fill NEHHOR to its authorized

40

Crude Oil, Heating Oil, and Propane Market Outlook 2001  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2001/02. It was given by Doug MacIntyre at the 2001 State Heating Oil and Propane Program Conference held in Wilmington, DE on August 13, 2001.

Information Center

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Crude Oil, Heating Oil, and Propane Market Outlook 2003  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2003/04. It was given at the 2003 State Heating Oil and Propane Program Conference held in Asheville, NC on August 11, 2003.

Information Center

2003-04-01T23:59:59.000Z

42

Crude Oil, Heating Oil, and Propane Market Outlook  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2002/03. It was given at the 2002 State Heating Oil and Propane Program Conference held in Kennebunkport, ME on August 12, 2002.

Information Center

2002-08-21T23:59:59.000Z

43

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

44

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

45

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

46

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

47

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

48

State heating oil and propane program  

SciTech Connect

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-01-01T23:59:59.000Z

49

Heating Oil Imports Strong in 2001  

Gasoline and Diesel Fuel Update (EIA)

Notes: Although total distillate imports have been unusually strong this winter, heating oil (high-sulfur distillate) imports have grown by a proportionately greater amount. As...

50

Residential heating oil prices virtually unchanged  

Gasoline and Diesel Fuel Update (EIA)

to 3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

51

EIA projects record winter household heating oil prices in the ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; states; ... Heating oil prices largely reflect crude oil prices.

52

U.S. Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices for the last four winters, with this year’s prices shown through January 24, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Although heating oil prices for consumers started this winter at similar levels to those in 1997, they already rose nearly 20 cents per gallon through mid-January. With the continuing upward pressure from crude

53

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International...

54

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

assistance related to oil, and the cost of defending oil21 April 2008 Keywords: Oil importing cost Motor fuel socialexample, if the oil defense cost per gallon is proportional

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

55

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

56

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

57

Insulated dipole antennas for heating oil shale  

Science Conference Proceedings (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

58

Heating Oil Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

he directed then-Energy Secretary Bill Richardson to establish a two million barrel home heating oil component of the Strategic Petroleum Reserve in the Northeast. The intent was...

59

Indirect heating pyrolysis of oil shale  

DOE Patents (OSTI)

Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

Jones, Jr., John B. (Grand Junction, CO); Reeves, Adam A. (Grand Junction, CO)

1978-09-26T23:59:59.000Z

60

No. 2 heating oil/propane program  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

the use of Persian Gulf oil for motor vehicles. UCD-ITS-RR-use of Persian Gulf oil for motor vehicles Mark A. Delucchiof Persian Gulf oil by motor vehicles speci?cally, both in

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

62

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

on US dependence on foreign oil when he testi?ed that US dependence on foreign oil is not to reduce militaryincrease in oil prices, at a minimum because foreign demand

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

63

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

recessn.html), and crude oil price histories are from thea long history of estimates of the military costs of oil usehistory: Received 7 May 2007 Accepted 3 March 2008 Available online 21 April 2008 Keywords: Oil

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

64

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

defense spending to the quantity of oil imports. Annuala result, the price and quantity of oil in the world marketdefense cost at todays quantity of oil will be greater than

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

65

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Montgomery, W.D. , 1982. Oil Prices, Energy Security, andPaik, I.K. , 2004. Oil price shocks and the macroeconomy:the United States from Oil Price Shocks? CRS 91-438E.

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

66

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

70% of the worlds proven oil reserves, and the Persian Gulfto the largest proven oil reserves in the world (Jointthe regions huge reserves of oil, and that as a result US

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

67

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

68

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

69

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

70

Industrial Uses of Vegetable OilsChapter 5 Biofuels for Home Heating Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 5 Biofuels for Home Heating Oils Processing eChapters Processing Press Downloadable pdf of Chapter 5 Biofuels for Home Heating Oils from the book ...

71

New York Home Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a little slower and spread out over time compared to spot prices. Wholesale prices increased over 50 cents from January 17 to January 24, while retail increased 44 cents in New York. Diesel prices are showing a similar pattern to residential home heating oil prices, and are indicating that home heating oil prices may not have peaked yet, although spot prices are dropping. Diesel prices in New England and the Mid-Atlantic increased 30-40 cents January 24 over the prior week, and another 13-15 cents January 31. Spot prices plummeted January 31, closing at 82 cents per gallon, indicating the worst part of the crisis may be over, but it is still a

72

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

total social cost of importing oil in transportation alsoin transportation. In their analysis of the social cost of

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

73

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

74

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

75

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

last week to 3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

76

Residential heating oil prices increase  

Gasoline and Diesel Fuel Update (EIA)

last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

77

national average for heating oil  

U.S. Energy Information Administration (EIA)

Propane Missouri North Dakota X South Dakota TOTAL List of States included on Winter Heating Fuels Survey (SHOPP) Release date: January 2012 22.00 24.00. Author: MRO

78

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

79

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

80

Connecticut Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.967: 3.925: 3.945: 3.943: 3.943 ...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Maine Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.569: 3.575: 3.559: 3.561: 3.559 ...

82

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington,...

83

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

84

Heating oil prices rise due to winter demand and crude oil prices ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

85

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

State Energy Offices State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and noted in the file sent to EIA. Q2: When is this data due to EIA each week? The EIA-877 "Winter Heating Fuels Telephone Survey" will begin the first Monday in October. Data should be submitted to EIA as soon as they are available but no later than noon on Tuesday of each week. Data collection

86

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

87

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

88

HEATING OF OIL WELL BY HOT WATER CIRCULATION  

E-Print Network (OSTI)

HEATING OF OIL WELL BY HOT WATER CIRCULATION Mladen Jurak Department of Mathematics University.prnic@ina.hr Abstract When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solu- tions to this problem is heating of oil well by hot water

Rogina, Mladen

89

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

90

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

91

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

92

Iowa Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

93

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

94

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

95

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

96

North Carolina Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

97

Indiana Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

98

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

99

Hydrogen Removal From Heating Oil of a Parabolic Trough ...  

Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life of the Trough and its Components A Method to Selectively Remove & Measure Hydrogen Gas from ...

100

Heat Treatment of Oil Country Goods and Tubular Products  

Science Conference Proceedings (OSTI)

Scope, Sponsored by HTS and the Houston Chapter of ASM, this symposium would focus an all aspects of heat treatment related to oil pipe, tube, drill bits,...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Heating Oil Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Heating Oil Outlook Conclusion. Distillate stocks are likely to be higher than last year, but still relatively low Prices likely to average a little lower than last ...

102

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

103

North Carolina Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

104

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

105

Massachusetts Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

106

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

107

New Hampshire Weekly Heating Oil and Propane Prices ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

108

Exploiting Domain Knowledge to Forecast Heating Oil Consumption  

Science Conference Proceedings (OSTI)

The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster

George F. Corliss; Tsuginosuke Sakauchi; Steven R. Vitullo; Ronald H. Brown

2011-01-01T23:59:59.000Z

109

Pennsylvania Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

110

Heating Oil and Propane Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

However, EIA does publish spot prices for heating oil and propane throughout the year which can be accessed by clicking here. In addition, ...

111

New York Home Heating Oil Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

112

Northeast Home Heating Oil Reserve now focuses on New England ...  

U.S. Energy Information Administration (EIA)

The Northeast Home Heating Oil Reserve (NHHOR) will be reduced to one million barrels, half its original size, as the stockpile's holdings are converted to ultra-low ...

113

Vermont Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

114

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

115

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

116

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

117

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

118

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

119

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Heating Oil: 4.392: 4.402: 4.380: 4.312: 4.314: 4.289: 1990-2013: Wholesale Heating Oil : Residential Propane: 2.902: 2.920: 2.931: 2.928: 2.933: 2.935 ...

120

Heating of Oil Well by Hot Water Circulation  

E-Print Network (OSTI)

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

122

Northeast Home Heating Oil Reserve - Online Bidding System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Heating Oil Reserve » Northeast Services » Petroleum Reserves » Heating Oil Reserve » Northeast Home Heating Oil Reserve - Online Bidding System Northeast Home Heating Oil Reserve - Online Bidding System The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this system and give us your views. You must register to use the system to practice or to participate in an actual emergency sale. Registration assures that you will receive e-mail alerts of sales or other pertinent news. You will also have the opportunity to establish a user ID and password to submit bids. If you establish a user ID, you will receive a temporary password by

123

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

124

Bio-Heating Oil Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.03/gallon Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

125

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

Science Conference Proceedings (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

126

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

127

Sulfur content of heating oil to be reduced in northeastern states ...  

U.S. Energy Information Administration (EIA)

Also, the Northeast Home Heating Oil Reserve has switched to ULSD. The Northeast is the largest regional consumer of heating oil in the United States.

128

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inTO PROTECT THE USE OF PERSIAN-GULF OIL FOR MOTORTHE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES 15.1 UNITED

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

129

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

of crude oil includes all transportation costs and fees updid not produce or consume oil); the cost of defending theDivision, The External Costs of Oil Used in Transportation,

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

130

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

77% of the world's proven oil reserves. Saudi Arabia, Iraq,the largest proven oil reserves in the world. For example,on the regions oil reserves (Joint Chiefs of Staff,

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

131

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

132

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

... March 2003 Price Spike August 2003 Price Spike Quarterly World Oil Demand Growth from Previous Year Overview of Market Fundamentals Tight balance in global ...

133

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

134

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

135

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

136

DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Storage Contracts for Northeast Home Heating Oil Reserve Awards Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation in Groton, CT for 400,000 barrels, and Global Companies LLC in Revere, MA for 250,000 barrels. The procurement was conducted by the Defense Logistics Agency (DLA Energy), acting as the agent for DOE. Acquisition of storage services for an additional 350,000 barrels is planned to complete the establishment of a

137

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

138

PADD 1 (East Coast) Heating Oil Stocks Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The East Coast (PADD 1) is the primary heating oil region, and it depends heavily on production from the Gulf Coast (PADD 3) as well. The biggest decline in U.S. stocks has taken place in the heating oil markets of PADD 1 (East Coast), which consumed 86 percent of the nation’s heating oil in 1998. It also is the region with the largest volume of heating oil stocks. PADD 1 was down over 8.4 million barrels on January 21 from the 5-year average stock level for end of January PADD 3, which supplies PADD 1, was down 4.6 million barrels from its 5-year January ending levels. During the week ending January 21, weather in New England was nearly 20% colder than normal for this time of year. This cold weather on top of low stocks was pushing prices up, with

139

Rhode Island Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 3.540: 3.534: 3.540: 3.515: 3.511: 3.514: 1990-2013

140

Northeast Home Heating Oil Reserve- Guidelines for Release  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Regional Residential Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

One of the first places where consumers are feeling the impact of this winters market pressures is in home heating oil prices. This chart shows prices through ...

142

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

143

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars ...  

U.S. Energy Information Administration (EIA)

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

144

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

145

PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.  

SciTech Connect

The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

MCDONALD,R.J.

1999-04-01T23:59:59.000Z

146

Vegetable oils: liquid coolants for solar heating and cooling applications  

DOE Green Energy (OSTI)

It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

Ingley, H A

1980-02-01T23:59:59.000Z

147

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

148

Bio-Heating Oil Tax Credit (Personal)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

149

PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE  

Science Conference Proceedings (OSTI)

The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

1998-04-01T23:59:59.000Z

150

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

151

Miser campaign boosts oil heat benefits  

SciTech Connect

The MISER oil burner campaign is discussed. The MISER is being promoted to homeowners as an efficient burner that saves them money. The MISER is being promated in the print media, radio, direct mail, service call giveaways, and home energy shows.

Watling, B.J.

1984-11-01T23:59:59.000Z

152

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

153

DOE Announces Award of a Contract to Repurchase Heating Oil for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Award of a Contract to Repurchase Heating Oil for the DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the Northeast Home Heating Oil Reserve (NEHHOR). The purchased oil is expected to be delivered to the Hess First Reserve terminal at Perth Amboy, NJ in New York Harbor later this week. The award resulted from a solicitation issued on June 23, 2008, to repurchase heating oil using $3 million in funds appropriated after the

154

Proceedings of the 1993 oil heat technology conference and workshop  

SciTech Connect

This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1993-09-01T23:59:59.000Z

155

Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand  

Reports and Publications (EIA)

Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

Elizabeth E. Campbell

2001-02-01T23:59:59.000Z

156

Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division  

SciTech Connect

Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

Volkov, E.L.

1981-01-01T23:59:59.000Z

157

Proceedings of the 1991 Oil Heat Technology Conference and Workshop  

Science Conference Proceedings (OSTI)

This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1992-07-01T23:59:59.000Z

158

Performance control strategies for oil-fired residential heating systems  

SciTech Connect

Results are reported of a study of control system options which can be used to improve the combustion performance of residential, oil-fired heating equipment. Two basic control modes were considered in this program. The first is service required'' signals in which an indication is provided when the flame quality or heat exchanger cleanliness have degraded to the point that a service call is required. The second control mode is excess-air trim'' in which the burner would essentially tune itself continuously for maximum efficiency. 35 refs., 67 figs., 2 tabs.

Butcher, T.

1990-07-01T23:59:59.000Z

159

Economics of shale oil production by radio frequency heating  

DOE Green Energy (OSTI)

A conceptual facility for the production of shale oil by radio frequency(rf) heating has been designed to evaluate the economic feasibility of this technique. In the proposed procedure, the shale is processed in situ without being rubbed or explosively fractured. Metal electrodes inserted in a set of vertical drill holes are energized by a group of rf oscillators. The holes bound a block of shale that is to be retorted. The electric field is developed in such a way that heating within the block is almost uniform, and heating outside the block is very low. Retorting of the shale results in a pressure buildup of the hydrocarbon fluids. The oil and gas move horizontally (parallel to bedding planes), then down the electrode holes to a collection manifold. The facility schedule is planned so that off-peak electric power from existing generating stations can be used to operate the oscillators. Thus, the cost of power and the capital requirements for the facility are held to a minimum. Oil production costs and capital requirements indicate that the proposed procedure is economically attractive. The two principal costs are purchase of electric power and mining operations. The largest capital requirement is oscillators and associated electrical equipment.

Mallon, R.G.

1980-05-07T23:59:59.000Z

160

DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accepts Bids for Northeast Home Heating Oil Stocks Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253 barrels Today's sale was the first held as part of the Department's initiative to convert the current 1,984,253-barrel heating oil reserve to cleaner burning ultra low sulfur distillate. Contracts for the heating oil will be executed upon final payment to DOE; final payment is required no later than

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

162

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

Aggregate home energy expenditures by U.S. households fell $12 billion in 2012 ... households spent $1,945 on heating, cooling, appliances, electronics, and lighting ...

163

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

164

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

165

Analysis of Heat Exchanger Network in Atmosphere-Vacuum Distillation of Crude Oil  

Science Conference Proceedings (OSTI)

Heat exchanger network (HEN) is constructed by hot streams which need cooling and some cold streams which need heating in the atmosphere-vacuum distillation process of crude oil. HEN synthesis technology of atmosphere-vacuum distillation of crude oil ... Keywords: energy saving, heat exchanger network, synthesis

Ge Yu-lin; Wang Ping; Shen Sheng-qiang

2011-02-01T23:59:59.000Z

166

DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Sale of Northeast Home Heating Oil Stocks Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague Energy Corp. 100,000 barrels Magellan New Haven Terminal, New Haven, CT Hess Corporation 300,000 barrels Morgan Stanley 450,000 barrels Today's sale was the second held as part of the Department's initiative to convert the 1,984,253 barrel heating oil reserve to cleaner burning

167

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

168

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-12-31T23:59:59.000Z

169

Emerging Heat Exchanger Technologies for the Mitigation of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Over the last three years ESDU have been working with engineers from oil companies and the companies that serve them in order to produce a guide describing the current state of knowledge on fouling in pre-heat trains and ways in which it can be mitigated. One result has been the identification and description of heat exchanger technologies that experience has shown to have a role to play in reducing fouling. This paper describes these developments. As shown elsewhere, the rate at which pre-heat train exchangers foul is controlled by fluid velocity and by wall temperature. Technologies which promote the heat transfer on the crude oil side of an exchanger are therefore favoured. (Note: promotion of the heat transfer on the hot side of the unit is not generally favoured, for this is likely to raise the wall temperature on the crude side). The working party identified three exchanger technologies that made use of this principle: helical baffles twisted tubes tube inserts. These technologies will be discussed in turn.

Polley, G. T.; Pugh, S. J.; King, D. C.

2002-04-01T23:59:59.000Z

170

New York Home Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

171

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

172

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network (OSTI)

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of (more)

Chen, Heng

2010-01-01T23:59:59.000Z

173

Advanced oil burner for residential heating -- development report  

SciTech Connect

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

174

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

175

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

176

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

177

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 2, Regional data. [Contains glossary  

SciTech Connect

Included here are data at the Census region and division level on consumption of and expenditures for the major fuels used in residential households - electricity, natural gas, fuel oil/kerosene, and liquefied petroleum gas (LPG). Data are also presented on wood consumption. Section 1 of this report contains data on the average amount of energy consumed per household for space heating in 1984 and the corresponding expenditures. Sections 2 through 7 summarize the energy consumption and expenditure patterns. Appendices A through D contain information on how the survey was conducted, estimates of the size of the housing unit in square feet and the quality of the data. Procedures for calculating relative standard errors (RSE) are located in Appendix C, Quality of the Data. Procedures for estimating the end-use statistics are located in Appendix D. Census and weather maps, and related publications are located in Appendices E through G.

Not Available

1987-05-13T23:59:59.000Z

178

State heating oil and propane program: Final technical report, 1991-92 heating season, Minnesota Department of Public Service  

SciTech Connect

This report summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1991-92 heating season. The semi-monthly phone surveys were conducted in cooperation with the U. S. Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel, prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail, price information over the course of the heating season.

1992-05-29T23:59:59.000Z

179

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

180

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 2.376: 2.405: 2.413: 2.449: 2.486: 2.489: 1990-2013:

182

Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model  

Reports and Publications (EIA)

The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

Information Center

2009-11-09T23:59:59.000Z

183

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon)  

U.S. Energy Information Administration (EIA)

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date

184

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

185

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Complete Fill of Northeast Home to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due no later than 9:00 a.m., August 31, 2011. Earlier this year, DOE sold its entire inventory of heating oil stocks with plans to replace it with cleaner burning ultra low sulfur distillate. New storage contracts were awarded in August 2011 for 650,000 barrels, and awards from this solicitation will complete the fill of the one million

186

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

187

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

1998-11-01T23:59:59.000Z

188

Qualifying Materials for Advanced Heat Transfer Application in Oil ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Corrosion and Corrosion Protection of Materials in the Oil and Gas Industry.

189

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

190

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

191

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

192

State Energy Price and Expenditure Estimates  

U.S. Energy Information Administration (EIA)

2010 Price and Expenditure Summary Tables. Table E1. Primary Energy, Electricity, ... Ranked by State, 2010 Rank Prices Expenditures Expenditures per Person State

193

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

194

Middle distillate price monitoring system. Interim validation report. [No. 2 heating oil  

SciTech Connect

The Middle Distillate Price Monitoring System collects data on prices and gross margins for No. 2 heating oil from a sample of refiners, resellers, and retailers. The data is used to evaluate the level of competition and the reasonableness of prices in the heating oil market. It is concluded that the data does not provide a basis for determining whether a market is competitive, and that there is serious doubt as to the accuracy of the information collected by the system. Some recommendations are given for improving the quality of the information. (DLC)

Hopelain, D.G.; Freedman, D.; Rice, T.H.; Veitch, J.G.; Finlay, A.

1978-12-01T23:59:59.000Z

195

Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Pre-heat trains differ from most other heat recovery networks in a number of important ways. Combination of factors gives rise to the need for a design procedure specific to pre-heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat demand. We next observe that the heat recovery comes from streams a number of streams having similar temperature spans. Looking at typical Composite Curves (Figure 1) we observe that rather than the presence of a distinct and clear 'pinch point', the curves are close together over quite a large temperature region. Consideration of the process leads to the observation that the heating is undertaking in three distinct stages: storage to desalter, desalter to preflash and preflash to column. The operating temperature of both desalter and preflash can only be varied over a relatively small temperature span. Finally, we see that fouling is an important consideration. At the hot end of the train, this fouling is affected by velocity and by exchanger wall temperature. Consideration of fouling must be incorporated into the design procedure.

Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

2002-04-01T23:59:59.000Z

196

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

197

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

198

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

199

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

200

Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7 mm straight smooth tube  

SciTech Connect

Two-phase flow patterns and heat transfer characteristics of R410A-oil mixture flow boiling inside a straight smooth tube with the outside diameter of 7.0 mm were investigated experimentally. The experimental conditions include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.56 to 15.12 kW m{sup -2}, the inlet vapor quality from 0.2 to 0.7, nominal oil concentration from 0% to 5%. The test results show that the heat transfer coefficient of R410A-oil mixture increases with mass flux of refrigerant-oil mixture; the presence of oil enhances the heat transfer at the range of low and intermediate vapor qualities; there is a peak of local heat transfer coefficient at about 2-4% nominal oil concentration at higher vapor qualities, and the peak shifts to lower nominal oil concentration with the increasing of vapor qualities; higher nominal oil concentration gives more detrimental effect at high vapor qualities. The flow pattern map of R410A-oil mixture was developed based on refrigerant-oil mixture properties, and the observed flow patterns match well with the flow pattern map. New correlation to predict the local heat transfer of R410A-oil mixture flow boiling inside the straight smooth tube was developed based on flow patterns and local properties of refrigerant-oil mixture, and it agrees with 90% of the experiment data within the deviation of {+-}25%. (author)

Hu, Haitao; Ding, Guoliang; Wei, Wenjian; Wang, Zhence [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Wang, Kaijian [Fujitsu General Institute of Air-Conditioning Technology Limited, Kawasaki 213-8502 (Japan)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

202

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

203

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Middle East (% of total) Oil and Gas Extraction Petroleumand industry category Oil and Gas Extraction Petroleum andMiddle East (million $) Oil and Gas Extraction Petroleum and

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

204

Table 3.5 Consumer Expenditure Estimates for Energy by Source ...  

U.S. Energy Information Administration (EIA)

1972. 5,415 -26: 13,198 : 7,552: 1,682: 2,834 : 35,346 : ... 8 Asphalt and road oil, aviation gasoline, kerosene, ... "State Energy Data 2010: Prices and Expenditures"

205

Energy Expenditures | OpenEI  

Open Energy Info (EERE)

Expenditures Expenditures Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

206

Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems  

SciTech Connect

The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

2010-10-21T23:59:59.000Z

207

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

208

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

209

Release of gas from heated oil shale and from mixtures of dolomite and quartz  

DOE Green Energy (OSTI)

Experiments and calculations were performed to determine the amount of gas released from heated oil shale. It is known that kerogen, a component of oil shale, releases gas when heated. When the temperature is increased, the kerogen yields not only gas but char, a solid that reacts with steam and CO/sub 2/ (by-products of heated shale) to yield H/sub 2/ and CO. It was found that as much as 200 moles of CO and H/sub 2/ could be produced by the reaction of 1 kg of kerogen with steam at 1200/sup 0/C. Another of the gas-releasing components of oil shale, carbonate minerals, begins to decompose at 500/sup 0/C; decomposition is complete at about 700/sup 0/C after 1000 hr. The minerals begin to decompose at a lower temperature in steam. Reactions among carbonates and silicates resulted in the release of CO/sub 2/ even under high CO/sub 2/ pressure.

Taylor, R.W.

1976-01-12T23:59:59.000Z

210

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

1992-01-01T23:59:59.000Z

211

Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery  

Science Conference Proceedings (OSTI)

Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind ...

S. Guan; G. W. Reuter

1996-08-01T23:59:59.000Z

212

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

213

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

214

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE5-1e. Appliances1 Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone2 RSE Row Factors Fewer than 2,000 CDD and --

215

Capital expenditures of leading petroleum companies 1968-1982  

Science Conference Proceedings (OSTI)

A review of aggregate capital expenditures by 37 leading US petroleum companies from 1968 through 1982 examines data from several vantages, including capital expenditures by geographical and functional segment and in relation to sources of funds. The paper responds to a number of issues raised during and after the Arab oil embargo, when widespread public concern developed over the economic and security implications of US dependence on foreign energy supplies and over whether US petroelum companies were adequately using their profits to assure sufficient supplies. Contrary to the allegations made, this study finds that capital expenditures increased and were largely directed toward exploration and production in the US, with only a small proportion going to non-petroleum, non-energy purposes. 2 figures, 17 tables.

Gal, N.P.

1984-01-01T23:59:59.000Z

216

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of prices for domestic and imported oil. F IGURE 15-2.THE VALUE OF P ERSIAN -G ULF OIL IMPORTS , Source: Tables 4Middle East (% of total) Oil and Gas Extraction Petroleum

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

217

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

T ABLE 15-1. S OURCES OF CRUDE OIL AND PRODUCTS SUPPLIED IN55 F IGURE 15-1. M ONTHLY CRUDE OIL PRICES 1990-1991 ($/t depends on imports of crude oil and petroleum products in

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

218

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

defending: the use of oil by motor vehicles in the U. S. (THE USE OF PERSIAN-GULF OIL FOR MOTOR VEHICLES Report #15 inthe Use of Persian-Gulf Oil for Motor Vehicles (M. Delucchi

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

219

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

the cost of crude oil and the cost of the products is notare related to the amount and cost of oil imported from theDivision, The External Costs of Oil Used in Transportation,

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

220

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

on U.S. dependence on foreign oil: protecting againston U.S. dependence on foreign oil, that the cost of the 1991U.S. dependence on foreign oil is not to reduce military

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

OF P ERSIAN -G ULF OIL IMPORTS , Source: Tables 4 and 9.2005 Oil Price Spikes Recessions Began Sources: Hamilton (in the Persian gulf? Oil is the major source of energy for

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

222

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Bohi and W. D. Montgomery, Oil Prices, Energy Security, andand I. K. Paik, "Oil Price Shocks and the Macroeconomy: Whatto Worse: Impacts of the 1986 Oil Price Collapse, ENR90-08,

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

223

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of the world's proven oil reserves 2 , and the countries ofof the worlds proven oil reserves it typically has producedthe largest proven oil reserves in the world. For example,

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

224

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

of crude oil price histories (http://tonto.eia.doe.gov/dnav/Given the huge oil reserves and the history of instability

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

225

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

a result, the price and quantity of oil in the world marketdefense spending to the quantity of oil imports, whereas we

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

226

State of Maine residential heating oil survey: 1995--1996 season summary  

SciTech Connect

In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years` relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine`s prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other.

Elder, B.

1996-05-01T23:59:59.000Z

227

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

228

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

229

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

230

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

231

TAX EXPENDITURES RELATED TO THE PRODUCTION AND CONSUMPTION OF MOTOR FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

-miles of travel RECS = Residential Energy Consumption Survey SIC = standard industrial classification SOx = sulfur industries, or oil over other energy industries: virtually all major energy sources require large investments.......................24 18.5.1 Corporate income-tax expenditures for the oil industry

Delucchi, Mark

232

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

233

Vegetable oils: liquid coolants for solar heating and cooling applications. Semiannual report, September 29, 1978-March 31, 1979  

DOE Green Energy (OSTI)

As high temperature solar energy systems are developed for applications such as refrigeration, heating, cooking, electrical power generation, and industrial processes, the need for inexpensive, reliable heat transfer media (liquid coolants) will become more intense. At present petroleum distillates and synthetic coolants are being utilized for these purposes. Since the use of these substances represents a drain on our natural fuel resources, it has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. This research project was implemented for the purpose of researching such a use. During the conceptual phase of the study, it was recognized that very little data are readily available for predicting the results of using vegetable oils as liquid coolants in high temperature solar systems. Therefore, the major thrust of the project will be to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density and thermal conductivity will be determined over a range of temperatures for corn, soybean, peanut and cottonseed oil. ASTM standard methods will be used for these determinations. Boiling point data and viscosity data have been determined for each of the four oils selected. Chemical analyses have been performed on samples of each oil. The samples were collected before and after each boiling point experiment so that any changes in composition could be noted. The tests include iodine number, fatty acid, and moisture content determination.

Ingley, H A

1979-03-01T23:59:59.000Z

234

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

235

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

236

Small oil-fired heating equipment: The effects of fuel quality  

SciTech Connect

The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

Litzke, W.

1993-08-01T23:59:59.000Z

237

OpenEI - Water Heating  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm560 en Residential Energy Expenditures for Water Heating (2005) http:en.openei.orgdatasetsnode59

Provides total and average...

238

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

and petroleum products/ Petroleum wholesale trade TotalEast (% of total) Oil and Gas Extraction Petroleum andcoal products Petroleum and petroleum products/ Petroleum

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

239

SEDS CSV File Documentation: Price and Expenditure  

Gasoline and Diesel Fuel Update (EIA)

Prices and Expenditures Prices and Expenditures The State Energy Data System (SEDS) comma-separated value (CSV) files contain the price and expenditure estimates shown in the tables located on the SEDS website. There are three files that contain estimates for all states and years. Prices contains the price estimates for all states and Expenditures contains the expenditure estimates for all states. The third file, Adjusted Consumption for Expenditure Calculations contains adjusted consumption estimates used in calculating expenditures (see Appendix E below). Zip files are also available for the large data files. In addition, there is a CSV file for each state, named with the two-letter U.S. Postal Code listed in Appendix A, as well as a file for the United States.

240

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

OpenEI - Energy Expenditures  

Open Energy Info (EERE)

State Energy Data State Energy Data System (SEDS) Complete Dataset through 2009 http://en.openei.org/datasets/node/883 The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates.

License
Type of

242

Oil shale retorting: a correlation of selected infrared absorbance bands with process heating rates and oil yeild  

DOE Green Energy (OSTI)

The measured absorbance for specific infrared bands of Colorado shale oil is correlated with process oil yield and retorting rate. The results show excellent correlations using bands associated with olefinic groups (910, 990 and 1640 cm/sup -1/); analyses were carried out using both quantitative and qualitative infrared methods. No pretreatment of the crude shale oil is required. The results are encouraging enough that, with further development, the method may have potential use as an on-line monitoring technique for various retorting processes.

Evans, R.A.; Campbell, J.H.

1979-01-01T23:59:59.000Z

243

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

244

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

245

Table 3.6 Consumer Expenditure Estimates for Energy by End-Use ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil ... storage, imports and exports, production, prices, sales. Electricity. Sales, revenue and prices ... 1972: 6,223: 4,623: 13,034 ...

246

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

247

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

248

State energy price and expenditure report 1994  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

NONE

1997-06-01T23:59:59.000Z

249

State energy price and expenditure report 1992  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

1994-12-01T23:59:59.000Z

250

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes  

Science Conference Proceedings (OSTI)

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu. [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

2010-10-15T23:59:59.000Z

251

State energy price and expenditure report 1991  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

1993-09-01T23:59:59.000Z

252

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

253

State of Missouri: State Heating Oil and Propane Program (SHOPP). Final performance report, August 8, 1993--July 1, 1994  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program is to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1993 through April 1994, and (2) Collection of annual Bales volume data for residential propane for the period September 1, 1992 through August 31, 1993. This data was required for the first report only. (3) Due to extenuating circumstances surrounding propane stocks particularly in the Midwest and East Coast, additional surveys were requested by the EIA. The additional survey dates were April 4 and 18th for residential propane only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting option (PEDRO).

Buchanan, J.A.

1994-07-01T23:59:59.000Z

254

Purchasing a New Energy-Efficient Central Heating System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more this winter, on average, than last year, and those using propane can expect to pay $188 more. Households heating primarily with electricity can expect to pay an average of $89 more. That's a lot of money resulting solely from rising heating expenses. You may long for the "good old days," but when it comes to heating systems,

255

Purchasing a New Energy-Efficient Central Heating System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more this winter, on average, than last year, and those using propane can expect to pay $188 more. Households heating primarily with electricity can expect to pay an average of $89 more. That's a lot of money resulting solely from rising heating expenses. You may long for the "good old days," but when it comes to heating systems,

256

Solar energy and the oil refining industry  

DOE Green Energy (OSTI)

This paper surveys process heat requirements of the major petroleum refinery processes. Previous studies have overestimated requirements for process heat at high temperatures. About 22% of the process heat in a refinery is consumed below 550/sup 0/F; 62.5% is consumed between 550/sup 0/ and 1100/sup 0/F. A refinery gets about 40% of its total energy supply, and 50% of its process heat, from natural gas and fuel oil. Technological constraints limit the use of alternatives such as coal or solar energy to processes operating below 700/sup 0/F (about 25% of process heat requirements). Curtailments of natural gas supplies and advances in bottom of the barrel oil processing technology will produce strong incentives to develop alternatives to the burning of liquid fuels for low-temperature processes. Energy from coal or solar radiation is most appropriately generated at a central facility to heat a heat transfer fluid, which is then heat exchanged with the process medium. The same process could also produce steam. The cost of installing coal-burning equipment can be up to eight times the cost of the equivalent gas or oil-burning facility. The major obstacle ot the use of coal is environmental. An analysis of a central-receiver solar system, without storage, and sized to deliver a maximum of 25% of process heat needs, indicates that 4.1% of refinery fuel needs could be displaced. For the entire industry, this is equivalent to 57,000 BPD of fuel oil. If long-term cost goals are achieved, capital expenditures to realize these savings would amount to $6.5 billion.

May, E.K.

1980-03-01T23:59:59.000Z

257

State energy price and expenditure report, 1995  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

1998-08-01T23:59:59.000Z

258

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

259

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators...

260

Table F18: Coal Price and Expenditure Estimates and Imports ...  

U.S. Energy Information Administration (EIA)

Table F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Prices Expenditures Prices ...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

262

Table 7.9 Expenditures for Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010; 9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107 31131 Sugar Manufacturing 367 105 7 18 87 1 118 29 2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,408 698 17 Q 579 18 7 0 18 3115 Dairy Products 1,186 695 20 40 412 8 1 0 10 3116 Animal Slaughtering and Processing

263

State energy price and expenditure report 1993  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

1995-12-01T23:59:59.000Z

264

Oil and Gas Development in the United States in the Early 1990's ...  

U.S. Energy Information Administration (EIA)

oil and gas reserves, production, and exploration and development expenditures. The firm of Arthur Ander-sen and Company has compiled these disclosures for

265

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

266

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

heating or cooling degree-days are a measure of how cold or how hot a location is over a period of one ... To obtain the RSE percentage for any ...

267

The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000  

Science Conference Proceedings (OSTI)

This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to establish a heating oil component of the Strategic Petroleum Reserve in the Northeast, and 2 million barrels of heating oil are now stored in the reserve. Other possible policy options are outlined.

None

2000-11-01T23:59:59.000Z

268

An Experimental Investigaton of the Effect of Oil on Convective Heat Trasfer and Pressure Drop of a HFC-32/HRC-125 Mixture  

E-Print Network (OSTI)

The heat transfer coefficients and pressure drops of HCFC-22 and a 50% mass mixture of HFC-32/HFC-125 were experimentally measured under flow boiling conditions in a smooth tube. The refrigerants were flowed through an 8 mm diameter smooth tube at mass fluxes of 277, 434, 520 and 700 kg/sm^2. Heat fluxes were applied at values of 5100, 7100 and 11000 W/m^2. The heat transfer coefficients and pressure drops were measured at refrigerant qualities of 10, 15, 20, 25, 30, 40 and 60 percent. The refrigerants were examined at temperatures near 4C. Oil was added to the HFC-32/HFC-125 mixture in concentrations of 2.6% and 5.4%. Experiments were repeated with the oil laden refrigerant. The heat transfer coefficients for HCFC-22 increased with quality, mass flux and heat flux. The heat transfer coefficients for HFC-32/HFC-125 often decreased at low qualities and increased with quality at high qualities. The pressure drop increased with quality and mass flux for both refrigerants. The heat transfer had a minimal effect upon pressure drop. HFC-32/HFC-125 had a lower pressure drop than HCFC-22 for all conditions. The addition of oil increased the pressure drop. A pressure drop correlation and heat transfer correlation were developed for HFC-32/HFC-125.

McJimsey, Bert Ashford

1994-12-01T23:59:59.000Z

269

Annual Capital Expenditures Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Capital Expenditures Survey Annual Capital Expenditures Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Annual Capital Expenditures Survey Dataset Summary Description Provides national estimates of investment in new and used buildings and other structures, machinery, and equipment by U.S. nonfarm businesses with and without employees. Data are published by industry for companies with employees for NAICS 3-digit and selected 4-digit industries. Data on the amount of business expenditures for new plant and equipment and measures of the stock of existing facilities are critical to evaluate productivity growth, the ability of U.S. business to compete with foreign business, changes in industrial capacity, and measures of overall economic performance. In addition, ACES data provide industry analysts with capital expenditure data for market analysis, economic forecasting, identifying business opportunities and developing new and strategic plans. The ACES is an integral part of the Federal Government's effort to improve and supplement ongoing statistical programs. Private companies and organizations,, educators and students, and economic researchers use the survey results for analyzing and conducting impact evaluations on past and current economic performance, short-term economic forecasts, productivity, long-term economic growth, tax policy, capacity utilization, business fixed capital stocks and capital formation, domestic and international competitiveness trade policy, market research, and financial analysis.

270

Predicting the products of crude oil distillation columns.  

E-Print Network (OSTI)

??Crude oil distillation systems, consisting of crude oil distillation columns and the associated heat recovery systems, are highly energy intensive. Heat-integrated design of crude oil (more)

Liu, Jing

2012-01-01T23:59:59.000Z

271

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline, NBER Working Paper.2006. Chinas Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand, Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

272

Oil Price Shocks and Inflation  

E-Print Network (OSTI)

Oil prices have risen sharply over the last year, leading to concerns that we could see a repeat of the 1970s, when rising oil prices were accompanied by severe recessions and surging inflation. This Economic Letter examines the historical relationship between oil price shocks and inflation in light of some recent research and goes on to discuss what the recent jump in oil prices might mean for inflation in the future. Figure 1 Inflation and the relative price of oil The historical record Figure 1 plots the price of oil relative to the core personal consumption expenditures price index (PCEPI) together with the core PCEPI inflation

unknown authors

2005-01-01T23:59:59.000Z

273

A Review and Discussion of the Literature on Travel Time and Money Expenditures  

E-Print Network (OSTI)

Expenditure of Time and Money on Travel. Transport RoadExpenditure of Time and Money on Travel. Transp. Research6 I.2.4.2. Travel Money Expenditure ..

Chen, Cynthia; Mokhtarian, Patricia

2008-01-01T23:59:59.000Z

274

Consideration of Fouling During the Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Over the last five years significant progress has been made in the modelling of fouling in refinery pre-heat exchangers. In this paper we consider how such information can be exploited in the design of individual units and networks, and what information is still missing and how such data can be obtained.

Polley, G. T.; Pugh, S. J.; Wilson, D. I.

2001-05-01T23:59:59.000Z

275

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2% Ventilation (7) 2.4 2.4 0.5% Other (8) 9.3 0.4 12.6 2.0 15.0 88.8 113.2 22.0% Adjust to SEDS (9) 4.6 5.3 5.3 21.7 31.6 6.2% Total 108.2 21.0 1.6 22.3 2.8 47.6 0.2 357.8 513.8 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.8 billion) and motor gasoline other uses ($2.0 billion). 3) Includes furnace fans ($4.8 billion). 4) Includes color televisions ($14.2 billion). 5) Includes refrigerators ($24.1 billion) and freezers ($3.0

276

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8% Adjust to SEDS (5) 5.8 4.5 4.5 17.7 28.1 16.1% Total 29.3 8.4 1.3 3.7 1.5 14.9 0.1 130.0 174.5 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.4 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

277

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

278

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6% Adjust to SEDS (5) 6.2 5.2 5.2 0.6 12.0 6.7% Total 29.9 9.0 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.2 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

279

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet Cleaning (7) 0.6 11.0 11.6 2.7% Other (8) 2.7 0.3 7.7 1.2 9.2 27.3 39.2 9.1% Adjust to SEDS (9) 6.2 5.2 5.2 11.9 23.4 5.4% Total 86.0 22.3 0.9 18.5 1.8 43.5 0.1 301.6 431.2 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.6 billion) and motor gasoline other uses ($1.2 billion). 3) Includes furnace fans ($4.5 billion). 4) Includes refrigerators ($24.1 billion) and freezers ($2.8 billion). 5) Includes color televisions ($11.0

280

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4 9.1 2.2% Other (8) 2.9 0.3 8.9 1.4 10.6 54.1 67.6 16.3% Adjust to SEDS (9) 5.8 4.5 4.5 17.7 28.1 6.7% Total 80.6 23.3 1.3 19.4 2.1 46.1 0.2 289.3 416.2 100% Note(s): Source(s): Petroleum Electricity 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.4 billion). 3) Includes furnace fans ($4.6 billion). 4) Includes refrigerators ($22.6 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3% Ventilation (7) 16.6 16.6 3.6% Other (8) 4.8 0.4 10.6 1.7 12.7 69.8 87.4 19.1% Adjust to SEDS (9) 5.9 4.9 4.9 19.2 30.0 6.6% Total 94.6 21.9 1.5 20.6 2.5 46.4 0.2 316.3 457.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.7 billion). 3) Includes furnace fans ($4.7 billion). 4) Includes refrigerators ($22.3 billion) and freezers ($2.6 billion). 5) Includes color televisions ($12.0

282

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5% Adjust to SEDS (5) 5.9 4.9 4.9 19.2 30.0 15.2% Total 35.5 8.9 1.5 4.3 1.9 16.5 0.2 145.0 197.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.7 billion). 3) Coal average price is from AEO 2011 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

283

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5 25.5% Adjust to SEDS (5) 4.6 5.3 5.3 21.7 31.6 14.0% Total 42.2 9.4 1.6 4.9 2.2 18.0 0.2 164.8 225.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.2 billion) and motor gasoline other uses ($2.0 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

284

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

285

U.S. Uranium Expenditures, 2003-2010  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005

286

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

287

State of Maine residential heating oil survey: 1994--1995 Season summary  

Science Conference Proceedings (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

288

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

289

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

290

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

291

Table WF01. Average Consumer Prices and Expenditures for ...  

U.S. Energy Information Administration (EIA)

Heating Oil U.S. Average Consumption (gallons) 522.7 531.7 572.5 538.2 574.1 465.3 539.9 546.9 1.3 ... Wood 2,094 2,179 2,353 2,424 2,454 2,520 2,582 ...

292

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

293

Heating  

SciTech Connect

According to The Hydronics Institute, the surge in gas-fired boiler shipments brought about 3 years ago by high oil prices and the availability of natural gas after years of curtailment has almost competely subsided. Gas prices continue to escalate and the threat of decontrol by 1985 continues. Likewise, the Gas Appliance Manufacturers Association reports that shipments of gas-fired unit heaters, duct furnaces, and wall furnaces have also dropped as homeowners adopt a wait-and-see attitude toward conversion. However, the market for high- and ultra-high-efficiency furnaces appears to hold potential for expansion. Because of the rebounding home market, a steady replacement market, and increased sales for reasons of efficiency, GAMA expects the total (gas, oil, and electric) central furnace market to increase by 16% in 1983.

1983-04-04T23:59:59.000Z

294

State energy price and expenditure report 1984  

Science Conference Proceedings (OSTI)

The average price paid by US consumers for energy in 1984 was $8.43 per million Btu, down 0.5% from the 1983 average price of $8.47 per million Btu. While the average price changed very little, total expenditures rose 5% from $418 billion in 1983 to $438 billion in 1984 due to increased energy consumption. By energy source, prices showed the most change in petroleum and electricity: the average price paid for petroleum products fell from $7.79 per million Btu in 1983 to $7.62 per million Btu in 1984, and the average price paid for electricity increased from $18.62 per million Btu in 1983 to $19.29 per million Btu in 1984. Expenditures in 1984 hit record high levels for coal, natural gas, nuclear fuel, and electricity, but were 16% below the 1981 peak for petroleum.

Not Available

1986-12-04T23:59:59.000Z

295

wf01 - Energy_Expenditures.xlsx  

U.S. Energy Information Administration (EIA) Indexed Site

6-07 6-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 % Change Natural Gas Northeast Consumption (mcf**) 73.6 74.2 79.6 74.7 79.7 65.6 75.2 77.5 3.1 Price ($/mcf) 14.74 15.18 15.83 13.31 12.66 12.23 11.75 13.38 13.8 Expenditures ($) 1,085 1,127 1,260 994 1,010 802 883 1,036 17.3 Midwest Consumption (mcf) 74.5 78.2 80.8 78.6 80.1 65.4 77.5 77.9 0.5 Price ($/mcf) 11.06 11.40 11.47 9.44 9.23 8.96 8.23 9.15 11.2 Expenditures ($) 824 892 927 742 740 586 638 713 11.8 South Consumption (mcf) 45.3 44.8 47.0 53.4 49.5 41.1 46.6 47.5 1.9 Price ($/mcf) 13.57 14.19 14.08 11.52 11.03 11.47 10.69 11.78 10.3 Expenditures ($) 615 635 661 615 546 472 498 560 12.4 West Consumption (mcf) 46.4 48.1 46.2 47.7 47.2 47.6 46.9 46.5 -0.8 Price ($/mcf) 11.20 11.31 10.86 9.91 9.67 9.38 9.15 9.90 8.1 Expenditures ($) 520 544 502 473 457 447 429

296

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

297

State energy price and expenditure report, 1986  

SciTech Connect

The average price paid for energy in the United States in 1986 was $7.19 per million Btu, down significantly from the 1985 average of $8.42 per million Btu. While total energy consumption increased slightly to 74.3 quadrillion Btu from 1985 to 1986, expenditures fell from $445 billion to $381 billion. Energy expenditures per capita in 1986 were $1578, down significantly from the 1985 rate. In 1986, consumers used only 94 percent as much energy per person as they had in 1970, but they spent 3.9 times as much money per person on energy as they had in 1970. By state, energy expenditures per capita in 1986 ranged from the lowest rate of $1277 in New York to the highest of $3108 in Alaska. Of the major energy sources, electricity registered the highest price per million Btu ($19.00), followed by petroleum ($5.63), natural gas ($3.97), coal ($1.62), and nuclear fuel ($0.70). The price of electricity is relatively high because of significant costs for converting energy from various forms (e.g., fossil fuels, nuclear fuel, hydroelectric energy, and geothermal energy) into electricity, and additional, somewhat smaller costs for transmitting and distributing electricity to end users. In addition, electricity is a premium form of energy because of its flexibility and clean nature at energy consumers' sites.

Not Available

1988-10-28T23:59:59.000Z

298

Residential energy consumption and expenditures by end use for 1978, 1980, and 1981  

Science Conference Proceedings (OSTI)

The end-use estimates of the average household consumption and expenditures are statistical estimates based on the 1978, 1980, and 1981 Residential Enery Consumption Surveys (RECS) conducted by the Energy Information Administration (EIA) rather than on metered observations. The end-use estimates were obtained by developing a set of equations that predict the percentage of energy used for each broad end-use category. The equations were applied separately to each household and to each fuel. The resulting household end-use estimates were averaged to produce estimates of the average end-use consumption and expenditures on a national and regional basis. The accuracy and potential biases of these end-use estimates vary depending on the fuel type, on the year of the survey, and on the type of end use. The figures and tables presented show the amount and the type of energy cosumed, plus the cost of this energy. National averages are given as well as averages for various categories including region, size and age of dwelling, number of heating degree-days, and income. Some of the significant findings; energy trends by end use for all fuels used in the home for 1978, 1980, and 1981; and electricity consumption and expenditures and natural gas consumption and expenditures are discussed.

Johnson, M.

1984-12-01T23:59:59.000Z

299

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

300

Residential Energy Expenditures for Water Heating (2005) Provides...  

Open Energy Info (EERE)

the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data.

...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table C37. Total District Heat Consumption and Expenditures for ...  

U.S. Energy Information Administration (EIA)

HVAC Maintenance ..... 60 5,154 86 612 6,987 Energy Management and Control System (EMCS) ..... 18 2,782 158 320 3,636 Equipment Usage Reduced When ...

302

U.S. household winter natural gas heating expenditures ...  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, ... and 5% lower for electric ... variety of servicesdepending on factors such as their load pro ...

303

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP). Final report, August 9, 1991--August 8, 1992  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

1992-12-31T23:59:59.000Z

304

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

305

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

306

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

307

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

1 Expenditures include taxes where data are available. 5 In chained (2005) dollars. See "Chained Dollars" in Glossary. 2 Carbon dioxide emissions from energy consumption.

308

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003: Energy Source and Year: Building Characteristics

309

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

310

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

311

Does EIA have data on shale (or tight oil ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

312

North American spot crude oil benchmarks likely diverging ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

313

What is the difference between crude oil, petroleum ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

314

Bakken crude oil price differential to WTI narrows over ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

315

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

316

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Price Cap Cost Gas Heat Cap Cost Oil Heat Electric Share GasPrice Cap Cost Gas Heat Cap Cost Oil Heat 3. Summary of WorkEPRI [this study] Cap Cost Elec Heat Oil Price Income Gas

Wood, D.J.

2010-01-01T23:59:59.000Z

317

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

318

Residential Heating Oil Prices  

U.S. Energy Information Administration (EIA)

We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly.

319

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

320

Expenditures on Children by Families | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Expenditures on Children by Families Expenditures on Children by Families Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Expenditures on Children by Families Dataset Summary Description This dataset provides expenditures on Children by Families provides estimates of the cost of raising children from birth through age 17 for major budgetary components. Tags {children,families,expenditures,cost,budget,household,income,single-parent,husband-wife} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 2012 Publisher Food and Nutrition Service, Department of Agriculture Contact Name Contact Email Mark.Lino@cnpp.usda.gov

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EXPENDITURES General Fund Expenditures-2.0 % Page 12 NON-GENERAL FUND REVENUES  

E-Print Network (OSTI)

Key to revenue trend indicators: ?NEUTRAL ? = Variance of-1 % to +2 % compared to projections. ?POSITIVE ? = Positive variance of>+2 % compared to projections. ?WARNING ? = Negative variance of-1 % to-4 % compared to projections. ?NEGATIVE ? = Negative variance of>-4 % compared to projections. 1 First Quarter 2013- May 2013CITY FINANCIAL OVERVIEW EXECUTIVE SUMMARY Total General Fund revenue receipts for the first quarter of 2013, in the amount of $4,175,309, are above the projection by $172,955, or 4.3%. Total General Fund expenditures, in the amount of $4,508,707, are below the projection by $92,764, or 2.0%. Street Fund revenue receipts for the first quarter of 2013, including transfers in, total $511,302 and are $3,654, or 0.7%, above the projection. Street Fund expenditures, including transfers out, total $460,168 and are $19,734, or 4.1%, below the projection. Surface Water Utility Fund (SWM) revenue receipts for the first quarter of 2013 totaling $114,495 are $42,761, or 59.6%, above the projection. SWM expenditures total $691,401 and are $90,757, or 15.1%, above the projection. Real Estate Excise Tax (REET) revenue receipts for the first quarter of 2013 totaling $231,011 are $7,274, or 3.3%, ahead of the projection and

unknown authors

2013-01-01T23:59:59.000Z

322

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

323

Current developments in oil shale research at the Laramie Energy Research Center. [Review of studies in 4 areas: concurrent gasification and retorting; high pressure retorting; abnormal heating rate of interior of large blocks of oil shale; and in-situ combustion  

DOE Green Energy (OSTI)

Current oil shale research being conducted at the Laramie Energy Research Center is many faceted, and some of the recent developments in these areas are presented. Concurrent gasification and retorting of oil shale where the effects of operating pressure and amounts of oxygen and water injection on quality and quantity of gas and oil produced is being studied. This work has resulted in off gas with heating values varying from 50 to 1,300 Btu/ft/sup 3/ and oil recovery of up to 80 vol percent of Fischer assay. The effects of retorting atmosphere, pressure, and external heating rate are being studied in a high pressure batch retort. Results from this work indicate that a nitrogen atmosphere decreases oil yield slightly while a hydrogen atmosphere increases the oil yield significantly. Large blocks of oil shale are being retorted in a 150-ton aboveground retort to study the abnormal heating rate of the interior of the blocks. This could be caused by an oxidation exotherm similar to that found in limited DTA studies. Some early results from the Rock Springs site 9 in-situ experiment are also presented. This is the fifth in-situ combustion experiment and is being performed in a 40-foot-thick oil shale bed having an average Fischer assay of 23 gallons per ton.

Jacobson, I.A. Jr.; Burwell, E.L.; Harak, A.E.; Long, A.; Wise, R.L.

1976-01-01T23:59:59.000Z

324

Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump  

E-Print Network (OSTI)

A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard AM cooling rating conditions (95F outdoor dry bulb and 80167 OF indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity. and the unit was tested for several days at the same 95F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. Our short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of our unit Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

1996-01-01T23:59:59.000Z

325

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

326

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

327

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

Consumption per Capita: Energy Expenditures 1: Energy ... 2009. 94,559,407 [R] 308 : 1,061,220 [R] ... 2 Carbon dioxide emissions from energy consumption. See Table 11.1.

328

Commercial Buildings Energy Consumption and Expenditures 1992 - Publication  

U.S. Energy Information Administration (EIA) Indexed Site

and Expenditures > Publication and Tables and Expenditures > Publication and Tables 1992 Consumption & Expenditures Publication and Tables Figure ES1. Energy Consumption in Commercial Buildings by Energy Sources, 1992 Separater Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader . If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Separater Bar Full Report - Commercial Buildings Energy Consumption and Expenditures, 1992 (file size 1.07 MB) pages: 214 Selected Sections Main Text - requires Adobe Acrobat Reader (file size 193,634 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background

329

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

330

Naval petroleum and oil shale reserves: Annual report of operations, FY 1987  

SciTech Connect

Production and reserves, development and exploration, revenues and expenditures, sales, environment and safety, and litigation are discussed for naval petroleum reserves numbers one through three and for naval oil shale reserves. 28 figs., 21 tabs. (ACT)

Not Available

1987-01-01T23:59:59.000Z

331

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

332

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

333

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

334

A GM-Based Profitable Duration Prediction Model for Chinese Crude Oil Main Production District  

Science Conference Proceedings (OSTI)

In this paper, a grey model (GM) based profitable duration forecasting approach is proposed for Chinese crude oil main production district. In this methodology, the forecasting functions on electricity expenditure and crude oil sales revenue are first ... Keywords: GM, china, crude oil, forecasting, profitable duration

Jinlou Zhao; Yuzhen Han; Lixia Ke

2007-05-01T23:59:59.000Z

335

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

336

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

337

Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices  

Science Conference Proceedings (OSTI)

Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

NONE

1998-06-01T23:59:59.000Z

338

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

339

Process and apparatus for oil shale retorting  

SciTech Connect

A process and apparatus are disclosed for the continuoua steady state retorting of ground oil shale in the absence of air. Retorting is accomplished by countercurrently contacting heated spent oil shale with fresh ground oil shale in a vessel from which air is excluded. The spent oil shale is heated by combustion of its carbonaceous residue to form a hot heat transfer medium which, when contacted with fresh oil shale in the retorting process, provides the energy for the recovery of hydrocarbons. (auth)

Frick, G.W.

1974-01-01T23:59:59.000Z

340

Crude oil movements from the Midwest to the Gulf Coast on the rise ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... the 5-year moving average is an average of 2005-2009 data; ... Crude oil movements from the Midwest ...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Identification of R&D Needs Relating to the Mitigation of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Worrell & Price (at a paper presented at the Industrial Energy Technology Conference organised by Texas A&M University and held in Houston in May 2001) examined the potential of over 50 emerging energy efficient technologies covering a range of industries. In terms of projected implemented fuel savings achievable by the year 2015, minimisation of fouling in crude oil systems was found to be the second most significant of the technologies considered. It yielded a potential fuel saving of 123 TBtu (130 PJ) in the USA. The next step proposed for the development of the technology was R&D. Over the last year ESDU International, with support from the UK Government's Energy Best Practice Scheme, have been examining how these R&D needs can be identified and met.

Polley, G. T.; Pugh, S. J.

2002-04-01T23:59:59.000Z

342

Energy News: The Structure of Fuel Oil Use in US Households.  

U.S. Energy Information Administration (EIA)

Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, ... home heating oil prices in the Northeast and New England, ...

343

Note on R&D expenditures and fixed capital formation  

Science Conference Proceedings (OSTI)

In this paper we deal with the fixed capital nature of the means of production and labour employed in research and development which generate scientific and technological knowledge. We argue that these R&D current expenditures typically have the ... Keywords: Capital, Innovation, Research

Mario Marchi; Maurizio Rocchi

2010-11-01T23:59:59.000Z

344

ORIGINAL PAPER Differential sperm expenditure by male sailfin mollies,  

E-Print Network (OSTI)

Introduction It is increasingly evident that sperm production is costly to males (Dewsbury 1982; Nakatsuru expected outcome of costly sperm production is differential control of sperm production and expenditure strategies that reduce costs associated with spermatogenesis. This is especially true when males

Gabor, Caitlin - Department of Biology, Texas State University

345

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

346

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

347

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

PAD District level net receipts includes implied net ... Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil ...

348

Crude oil distillation and the definition of refinery capacity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

349

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

350

Australia Energy Data, Statistics and Analysis - Oil, Gas ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil ... where gas processing facilities will have production capacity of 700 Bcf ... Offshore Technology Platts Oilgram News ...

351

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

352

International Petroleum (Oil) Prices webpage provided by EIA  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

353

Novel Welding Challenges in Harsh Oil & Gas Environments  

Science Conference Proceedings (OSTI)

Unconventional oil (Oil Shale) applications- To accelerate the maturation process , ICP (in-situ conversion process) requires heating the subsurface to around...

354

Energy Security - Oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

355

tight oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

356

Crude oils have different quality characteristics - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

357

State Ranking - Crude Oil Production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

358

oil reserves - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

359

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

360

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Price difference between Brent and WTI crude oil narrowing - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

362

oil prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

363

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

364

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

365

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

366

How do I compare heating fuels? - FAQ - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... What is the outlook for home heating fuel prices this winter? Last updated: June 5, 2013 .

367

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

368

Green Pricing Program Marketing Expenditures: Finding the Right Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

449 449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller Prepared under Task No. SAO9.3003 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

369

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

370

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

371

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

372

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

373

Heating Degree Day Data Applied to Residential Heating Energy Consumption  

Science Conference Proceedings (OSTI)

Site-specific total electric energy and heating oil consumption for individual residences show a very high correlation with National Weather Service airport temperature data when transformed to heating degree days. Correlations of regional total ...

Robert G. Quayle; Henry F. Diaz

1980-03-01T23:59:59.000Z

374

Oil Price Uncertainty and Industrial Production Karl Pinnoy  

E-Print Network (OSTI)

improvements in GDP per unit of energy use. However, for those series, where oil price volatility is signi one would expect, based on trend improvements in GDP per unit of energy use. However, for those series, P. and L. Kilian (2009). "How Sensitive Are Consumer Expenditures to Retail Energy Prices

Maurer, Frank

375

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

376

Household heating fuels vary across the country - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

377

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

378

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

the carbon, oil, and gas from the shale are combusted; andceases t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

Persoff, P.

2011-01-01T23:59:59.000Z

379

System for increasing corona inception voltage of insulating oils  

DOE Patents (OSTI)

The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

Rohwein, Gerald J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

380

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

382

Wholesale Heating Oil Weekly Heating Oil and Propane Prices (October -  

U.S. Energy Information Administration (EIA) Indexed Site

2.990 3.042 3.150 3.152 3.137 3.074 2013-2013 2.990 3.042 3.150 3.152 3.137 3.074 2013-2013 East Coast (PADD 1) 2.977 3.044 3.151 3.159 3.168 3.107 2013-2013 New England (PADD 1A) 3.012 3.084 3.194 3.205 3.222 3.166 2013-2013 Connecticut 3.001 3.074 3.187 3.198 3.207 3.143 2013-2013 Maine 3.006 3.074 3.179 3.181 3.202 3.158 2013-2013 Massachusetts 3.018 3.092 3.200 3.215 3.229 3.161 2013-2013 New Hampshire 3.003 3.076 3.200 3.216 3.247 3.238 2013-2013 Rhode Island 2.970 3.038 3.147 3.150 3.171 3.113 2013-2013 Vermont 3.115 3.190 3.301 3.309 3.334 3.274 2013-2013 Central Atlantic (PADD 1B) 2.964 3.030 3.135 3.144 3.149 3.084 2013-2013 Delaware 2.916 3.101 3.207 3.087 3.103 3.130 2013-2013 Maryland 2.920 2.992 3.109 3.099 3.111 3.047 2013-2013

383

Residential Heating Oil Weekly Heating Oil and Propane Prices (October -  

U.S. Energy Information Administration (EIA) Indexed Site

3.815 3.822 3.888 3.917 3.956 3.952 1990-2013 3.815 3.822 3.888 3.917 3.956 3.952 1990-2013 East Coast (PADD 1) 3.817 3.825 3.891 3.920 3.960 3.956 1990-2013 New England (PADD 1A) 3.766 3.773 3.840 3.865 3.918 3.921 1990-2013 Connecticut 3.943 3.943 4.038 4.064 4.119 4.104 1990-2013 Maine 3.559 3.558 3.584 3.626 3.658 3.688 1990-2013 Massachusetts 3.813 3.822 3.896 3.897 3.963 3.971 1990-2013 New Hampshire 3.619 3.621 3.671 3.718 3.787 3.793 1990-2013 Rhode Island 3.835 3.875 3.925 3.949 4.0 3.992 1990-2013 Vermont 3.575 3.575 3.682 3.710 3.734 3.716 1990-2013 Central Atlantic (PADD 1B) 3.859 3.867 3.933 3.965 3.996 3.987 1990-2013 Delaware 3.668 3.667 3.728 3.774 3.786 3.802 1990-2013 District of Columbia 4.402 4.426 4.461 4.580 4.581 4.573 1990-2013

384

Oil shale retorting method and apparatus  

SciTech Connect

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

385

Heating Oil Propane Natural Gas  

E-Print Network (OSTI)

NYSERDAs mission- help New York meet its energy goals: reducing energy consumption, promoting the use of renewable energy sources, and protecting the environment. Energy R&DPurpose: Support policy-relevant research to enhance understanding of energyrelated environmental issuesAir Quality and Health Effects Chain of accountability. Each box represents a link between regulatory action and human health response to air pollution. Arrows connecting the linksNew York State Primary Consumption of Energy for Electric Generation,

Ellen Burkhard Ph. D; Cord Wood

2013-01-01T23:59:59.000Z

386

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

New England includes: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. Mid-Atlantic includes: Delaware, District of Columbia, Maryland, New Jersey, New...

387

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

388

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018 1,982 2019 1,973 2020 1,963 2021 1,961 2022 1,964 2023 1,962 2024 1,959 2025 1,957 2026 1,959 2027 1,960 2028 1,953 2029 1,938 2030 1,932 2031 1,937 2032 1,946 2033 1,956 2034 1,967 2035 1,978 Source(s): Average Expenditure EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2, p. 3-

389

PPT Slide  

Gasoline and Diesel Fuel Update (EIA)

The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a...

390

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

391

Table CE3-3e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Electric Air-Conditioning Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli-

392

Table CE3-1e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Dollars per Household4,a Electric Air-Conditioning Expenditures per Household ... per Household4 2001 Cooling Degree-Days per Household Total U.S. Households ...

393

Table AP4. Total Expenditures for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

and Lighting Table AP4. Total Expenditures for Home Appliances and Lighting by Fuels Used, 2005 Billion Dollars U.S. Households (millions) Electricity

394

Table AC7. Average Expenditures for Air-Conditioning by Equipment ...  

U.S. Energy Information Administration (EIA)

Central System 5 Table AC7. Average Expenditures for Air-Conditioning by Equipment Type, 2005 Dollars per Household Type of Air-Conditioning Equipment

395

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

and new and old communications technologies). The first fourchanges in new communications technology on personal vehiclePV items on old communications technology expenditures. The

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

396

Table 3.6 Consumer Expenditure Estimates for Energy by End ...  

U.S. Energy Information Administration (EIA)

1999. 31,577 : 11,397 : 93,482: ... Expenditures include taxes where data are ... includes fuel ethanol blended into motor gasoline that is not ...

397

U.S. household expenditures for gasoline account for nearly 4% of ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, ... a rise in average gasoline prices has led to higher overall household gasoline expenditures.

398

Caloric expenditure and substrate utilization in underwater treadmill running versus land-based treadmill running.  

E-Print Network (OSTI)

??The objective of this study is to compare the caloric expenditure and oxidative sources of underwater treadmill running and land-based treadmill running at maximal and (more)

Schaal, Courtney

2009-01-01T23:59:59.000Z

399

Table CE5-5.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-5.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household Demographics RSE Column Factor:

400

Table CE5-6.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-6.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

402

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

403

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

404

Oil in Tennessee  

Science Conference Proceedings (OSTI)

Oil is the single most dominant force in the ''energy outlook'' and will continue to be throughout the foreseeable generations. Tennesseans now spend about $10 billion annually to satisfy energy needs; nearly half of that is for oil-based products. Most of the petroleum products sold are in the form of motor fuel, but a third of these products are made up of other categories, such as aviation and jet fuels, heating fuels, and lubricants. Baseline industry data is supplied.

Lamp, R.; Forester, C. (ed.)

1987-01-01T23:59:59.000Z

405

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

406

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

407

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

408

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

409

EIA Outlook for U.S. Heating Fuels  

U.S. Energy Information Administration (EIA)

EIA Outlook for U.S. Heating Fuels State Heating Oil and Propane Program Conference North Falmouth, Massachusetts Laurie Falter Industry Economist

410

Liquid Metal Heat Exchanger for Geologic Deposits - Energy ...  

Researchers at ORNL developed a down-well heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract ...

411

The Economic and Environmental Aspects of Heat Exchanger Cleaning -- How FP&L Has Used the Newly Patented MCC Process to Clean Turbine Lube Oil Coolers to Maximize Efficiency and Minimize Waste  

E-Print Network (OSTI)

The fouling of heat exchangers of all types can affect a company's bottom line. Today, with better operational record keeping and the development of new research and modeling, we are beginning to get a better understanding of the importance of efficient and timely cleaning of heat exchangers. There are great differences in the cleaning processes that are used to clean exchanger bundles in industry today. The cleaning of turbine lube oil coolers is a specialized case in point. A newly patented process developed in Ohio has been tried in Florida at FP&L with significant results. Cleaning efficiencies of 92% are 30% greater than those achieved with high-pressure washing. Using a constantly filtered solvent and 1000 gpm flow rates form up to 180 nozzles this new process eliminates or reduces wastewater generation by 85%. The process appears to offer significant advantages in the power, petroleum, and petrochemical industries.

Wood, H. A. T.

1999-05-01T23:59:59.000Z

412

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

Science Conference Proceedings (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

413

Multiphase flow analysis of oil shale retorting  

DOE Green Energy (OSTI)

Several multiphase phenomena occur during oil shale retorting. An analysis is presented of two of these processes including condensation of oil shale vapor and oscillations of pressure in oil shale blocks through cracked bedding planes. Energy conservation equations for oil shale retorting, which include the effects associated with condensation of oil, are derived on the basis of two phase flow theory. It is suggested that an effective heat capacity associated with the latent heat of condensation should be included in the modeling of simulated modified in-situ oil shale retorting. A pressure propagation equation for fast transients in oil shale cracks has been derived and examined in view of existing experimental data. For slow processes, a limiting solution for maximum pressure in oil shale rocks has been obtained. Generation of high pressures in rocks by thermal or other means may lead to rock fracture which may be taken advantage of in modified in-situ oil shale processing.

Gidaspow, D.; Lyczkowski, R.W.

1978-09-18T23:59:59.000Z

414

Torpid Phenomena and Pump Oils  

Science Conference Proceedings (OSTI)

The spasmodic fluctuations of pressure which were formerly prevalent in condensation pumps when operated with oil fillings are less often encountered today because high-gradient heaters have been generally adopted to counter this propensity. High-gradient heating

Kenneth Hickman

1972-01-01T23:59:59.000Z

415

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

416

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

417

Does EIA have data on U.S. oil refineries and their locations ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

418

Attributes of crude oil at U.S. refineries vary by region - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

419

Refinery receipts of crude oil by rail, truck, and barge continue ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

420

Drop in U.S. gasoline prices reflects decline in crude oil costs ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gasoline prices rise due to increased crude oil costs - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

422

Rail deliveries of oil and petroleum products up 38% in first half ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

423

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

424

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

425

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

426

WTI-Brent crude oil price spread has reached unseen levels - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

427

3:2:1 Crack spreads based on WTI & LLS crude oils have diverged in ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... such as LLS, which compete with imported grades whose prices are linked to Brent prices. ...

428

New data show record growth in U.S. crude oil reserves and strong ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

429

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

430

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

431

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

or 48 percent, more this winter in fuel expenditures. Households heating primarily with heating oil can expect to pay, on average, 378, or 32 percent, more this winter....

432

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and...

433

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

434

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Annual Report, data on motor fuel use available online at /and diesel fuel used by motor vehicles. We recommend thatanalyses of the social cost of motor vehicle use in the US.

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

435

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

national security. Energy Policy 20, 10891096. Hamilton,Delucchi, J.J. Murphy / Energy Policy 36 (2008) 22532264alternative fuels/engines. Energy Policy 32, 727. Parry,

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

436

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Notes: To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. Because of rounding, data may ...

437

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Defense Information, Washington, DC August 1 /www. cdi.org/Research Service, Washington, DC, June 16. /www.fas.org/sgp/for the Future, Washington, DC. Boyd, R. , Chermak, J.M. ,

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

438

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

war (which Ravenal estimates cost $1050 billion in 1991of motor vehicle estimate total costs), and because one mustand deaths), and estimate the economic cost of the Iraq War

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

439

Making Sense of Oil Stamp Saving Schemes  

E-Print Network (OSTI)

or part for one's oil bill. In this paper, we explore why this is. After ruling out high costs associated with more conventional savings vehicles (such as bank accounts) and the notion that oil stamps serve some purpose other than saving for heating oil...

Brutscher, Philipp-Bastian

2012-01-23T23:59:59.000Z

440

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

DOE Green Energy (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

442

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

443

Solar retorting of oil shale  

DOE Patents (OSTI)

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

444

Heating costs for most households are forecast to rise from last ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

445

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

446

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9 14.7 128.2 306.7 1985 105.4 48.8 22.6 176.8 90.0 24.0 12.6 126.6 303.4 1986 106.9 44.2 18.1 169.2 90.5 20.7 9.1 120.2 289.4 1987 108.2 40.9 18.0 167.1 88.7 19.8 9.2 117.7 284.7 1988 110.3 41.8 18.0 170.1 89.9 20.4 8.2 118.5 288.7 1989 110.2 42.9 19.7 172.8 91.5 20.5 8.4 120.4 293.2 1990 110.9 39.0 18.2 168.2 92.9 19.4 9.2 121.5 289.7 1991 113.7 39.2 17.0 169.9 93.9 19.5 7.7 121.1 291.0

447

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

and 0.024 for districtheatingHowever,asincomeisnotobserveditseffectcannotbeanalysed. Wuetal.(2004)examinethedemandforspaceheatinginArmenia,Moldova,and Kyrgyz Republic using household survey data. In these countries... andinsomeregionsincomesarenotsufficientto affordspaceheatingfromdistrictheatingsystemsmakingthesesystemsunviable. We analyse electricity, gas and overall energy spending for a large sample of households in Great Britain. We discern inflection points and discuss...

Jamasb, Tooraj; Meier, H

448

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage ... households spent $1,945 on heating, cooling, appliances, electronics, and ...

449

Oil-shale utilization at Morgantown, WV  

Science Conference Proceedings (OSTI)

Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

1982-01-01T23:59:59.000Z

450

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

451

Oil degradation during oil shale retorting. [Effects on oil yields from powdered shale  

DOE Green Energy (OSTI)

Recent experimental data demonstrating the effects of varied thermal histories on oil yield from powdered Colorado shale are reviewed. Losses in overall yield resulting from interruption of a rapid heating schedule with an isothermal holding period are directly related to the amounts of oil that are produced during the holding period. These amounts are also correlated with the inert gas flow rates required to raise the yields to the assay value. The results show that degradation of oil outside the shale particles is the major determinant of oil yield from powdered shale. Maximum thermal degradation rates are calculated from these data and compared with pyrolysis rates for petroleum fractions.

Raley, J.H.; Braun, R.L.

1976-05-24T23:59:59.000Z

452

Energy Policy and Economics 021 "Dynamics of the Oil Transition  

E-Print Network (OSTI)

are produced, primarily from coal [16]. Oil shale is only produced in minor quantities around the world rejected) and often cleaned of impurities such as heavy metals and sulfur before use. Oil shale from which oil is naturally created [13]. Oil shale must be heated in the absence of oxygen to 300

Kammen, Daniel M.

453

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

454

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

455

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

456

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network (OSTI)

1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

Borenstein, Severin

2008-01-01T23:59:59.000Z

457

Table SH9. Average Expenditures for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

458

U.S. household winter natural gas heating expenditures expected to ...  

U.S. Energy Information Administration (EIA)

LDCs typically buy the natural gas commodity using a variety of servicesdepending on factors such as their load profile/customer mix, geographic location, ...

459

Review of Bio-oil Upgrading Technologies and Experimental Study on Emulsification of Bio-oil and Diesel  

Science Conference Proceedings (OSTI)

Pyrolysis oil (also called bio-oils) produced from biomass is a promising substitute for fossil fuels. However, bio-oil has many shortcomings, such as high viscosity, high oxygenate content, low stability and low heating value. Therefore, it is hard ... Keywords: Biomass, Fast Pyrolysis, Bio-oil, Upgrading, Emulsification

Qianqian Yin; Shurong Wang; Xinbao Li; Zuogang Guo; Yueling Gu

2010-11-01T23:59:59.000Z

460

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

is, an increase in the price of non-PV goods/services leadsimpact of a change in PV capital prices on expenditures forof Alt. 1, Table 5.4. PV own-price elasticities have also

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U ...  

U.S. Energy Information Administration (EIA)

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region

462

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

463

Social and cultural factors as a determinate of ICT expenditures: an empirical study  

Science Conference Proceedings (OSTI)

Information and communication technologies (ICT) have come to hold an important place in strategies for promoting economic growth and development in developing countries. It is known that ICT expenditures as a percent of GDP vary between countries. An ...

Larry Allen; Vivek Natarajan; Donald Price

2012-12-01T23:59:59.000Z

464

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

charges Gasoline and motor oil Vehicle maintenance andtown lodging Gasoline and motor oil Vehicle finance chargeshere). Gasoline and Motor Oil (T2): Gasoline, diesel fuel,

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

465

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Fuel demand is affected mainly by economic conditions, and for heating oil, the weather. ... How do I calculate diesel fuel surcharges? How do I compare heating fuels?

466

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

467

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

468

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

469

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

470

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

471

Bio-oil fractionation and condensation  

DOE Patents (OSTI)

A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

Brown, Robert C; Jones, Samuel T; Pollard, Anthony

2013-07-02T23:59:59.000Z

472

General model of oil shale pyrolysis  

DOE Green Energy (OSTI)

A mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking and cracking, and evolution of H/sub 2/ and CH/sub 4/ from char. Oil is treated in eleven boiling-point fractions in order to treat the competition between oil coking and evaporation, and to evaluate the effect of oil cracking on the boiling point distribution of the oil. The kinetics and product yields calculated by the model are compared to experimental results for pyrolysis conditions ranging from isothermal fluid-bed to high-pressure slow-heating-rate retorting.

Burnham, A.K.; Braun, R.L.

1983-11-01T23:59:59.000Z

473

Consumer Natural Gas Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: Mild weather has minimized residential gas consumption over most of the past 3 winters. Unlike heating oil, average increases in natural gas prices last winter were small....

474

Spot Distillate & Crude Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

WTI crude oil price rose about $17 per barrel or 40 cents per gallon from its low point in mid ... New York Harbor spot heating oil had risen about 42 cents ...

475

Natural gas liquids play a greater role in oil and gas ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... topping 2 million barrels per day ... 2012. December; ...

476

1997 Consumption and Expenditures Tables - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

heating or cooling degree-days are a measure of how cold or how hot a location is over ... To obtain the RSE percentage for any table cell, multiply ...

477

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents (OSTI)

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

478

Economic feasibility of geothermal district heating: a case study  

DOE Green Energy (OSTI)

The application of a computerized methodology developed at Brookhaven National Laboratory (BNL) to an assessment of the economic feasibility of district heating in Reno, Nevada is described. To apply this methodology, assumptions concerning the characteristics of the heat load served, the price of competing fuels, and alternate forms of district heat utility ownership are combined with data describing the geothermal resource. Using these inputs along with engineering costs for geothermal field development and pipe installation, the methodology generates detailed engineering and economic descriptors of several proposed district heating systems. The impact of alternate construction expenditure schedules, retrofit costs, and system size on the unit cost of district heat is examined.

Reisman, A.; Peterson, E.

1981-12-01T23:59:59.000Z

479

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

480

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

Note: This page contains sample records for the topic "heating oil expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

482

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

483

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

Wood, D.J.

2010-01-01T23:59:59.000Z

484

Enhanced oil recovery system  

DOE Patents (OSTI)

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

485

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

486

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

487

Corrosion in the Oil and Gas Industry - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Qualifying Materials for Advanced Heat Transfer Application in Oil and Gas Industry: Scott Nguyen1; Damodaran Raghu2; Kumar Sridharan3;...

488

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

489

Heat pipe dynamics. Final report, April 30, 1981. [Uses of heat pipe, especially in solar collector  

DOE Green Energy (OSTI)

A heat-pipe flat plate solar collector is constructed like a typical flat plate collector with the exception that individual heat pipes are attached to the collector surface to transfer collected heat via a phase change from collector surface into an attached jacket containing a phase change material. The efficiency of such a collector was measured roughly. Also briefly described are: a heat-pipe heat exchanger, heat-pipe heat exchanger freeze proofing, heat-pipe attic ventilation, transfer of light bulb heat via a heat pipe to heat water, heat recovery via heat pipe, cooling of oil in engines and transmissions via heat pipe, a tracking reflector, automatic sun tracker, single-stroke vacuum pump for heat-pipe manufacture, and heat pipe heat transfer from rock bed. (LEW)

Norman, R.M. Sr.

1981-01-01T23:59:59.000Z

490

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

491

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

492

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

493

Wrought Superalloy Heat Treatment  

Science Conference Proceedings (OSTI)

Table 5   Effect of heat treatment on the properties of A-286...tensile strength Elongation % Reduction in area, % MPa ksi MPa ksi Life, h Elongation, % Reduction in area, % 980 °C (1800 °F) for 1 h, oil quench (OQ)

494

The cost of dying on Medicare: an analysis of expenditure data  

E-Print Network (OSTI)

Roughly one third of Medicare expenditures are made on behalf of beneficiaries in their terminal year, though only five percent of the Medicare-covered population dies annually. Per-capita spending on decedents is as much as six times the level of spending on survivors. The demographic, technological and political trends that will determine the future path of spending on terminal-year beneficiaries have important implications for the fiscal well-being of the Medicare program, and by extension, the American taxpayer. Coming to an understanding of the moving parts that will control the path of the cost of dying on Medicare is vital for careful consideration of Medicare??s future, and for any discussions about further reform of the program. Analysis of expenditures in the terminal year must be made while keeping in mind the fact that major expenditures are often made in surviving years. The spike in spending in the terminal period rightly focuses attention to expenditures near death, but also we should proceed in its analysis keeping in mind that it is not the only spell of elevated medical spending for a typical individual. Given those cautions, however, the cost of dying on Medicare stands as an important area of economic inquiry and policy consideration. As total Medicare expenditures top a quarter trillion dollars, the third of that spending which covers treatments in beneficiaries?? terminal years ought to be understood more fully than it is currently.

House, Donald Reed

2005-08-01T23:59:59.000Z

495

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

496

Oil shale combustion/retorting  

SciTech Connect

The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

Not Available

1983-05-01T23:59:59.000Z

497

EIA Outlook for U.S. Heating Fuels  

Reports and Publications (EIA)

This presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, outlined EIA's current forecast for U.S. crude oil, distillate, propane and gasoline supply, demand, and markets over the coming winter season.

Information Center

2006-08-07T23:59:59.000Z

498

Microsoft Word - Highlights.docx  

Annual Energy Outlook 2012 (EIA)

and Winter Fuels Outlook EIA projects average household expenditures for heating oil and natural gas will increase by 19 percent and 15 percent, respectively, this winter...

499

Reverse combustion oil-shale retorting  

DOE Green Energy (OSTI)

Oil shale was retorted in a laboratory retort with the flame front and gas flow moving concurrently and countercurrently. Results indicate countercurrent flow produced a lower oil yield and a higher heating value of the retort gas than concurrent flow. Energy recovery from the oil shale was essentially the same when the retorting was done with either concurrent or countercurrent flame and gas movement. Laboratory results are compared with large scale retorts operated under similar conditions.

Jacobson, I.A. Jr.; Dockter, L.

1979-06-01T23:59:59.000Z

500

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z