Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

2

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

3

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

4

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect (OSTI)

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

5

PERFORMANCE OF DIESEL ENGINE USING BLENDED CRUDE JATROPHA OIL  

E-Print Network [OSTI]

renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its

Kamarul Azhar Kamarudin; Nor Shahida; Akma Mohd Sazali; Ahmad Jais Alimin

2009-01-01T23:59:59.000Z

6

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

7

Diesel Generator Fuel Oil, Diesel Generator Lubricating Oil, and Diesel Generator Starting Air Requirements"  

E-Print Network [OSTI]

(ISTS) and adds requirements for DG Lubricating Oil, and DG Starting Air. The proposed changes will assure that required quality and quantity of DG Fuel Oil is maintained and also will assure that sufficient DG Lubricating Oil and DG Starting Air is maintained. This proposed amendment imposes limits on DG support system parameters to ensure the DGs will be able to perform their design function. This proposed amendment also brings the current TS on DG Fuel Oil into alignment with the ISTS. This amendment is modeled after the ISTS, Section 3.8.3. This amendment also incorporates into the FCS TS improvements to ISTS Sections 3.8.3 and 5.5 consistent with those provided in Technical Specification Task Force (TSTF) travelers TSTF-254, Rev. 2 and TSTF-374, Rev. 0. FCS also requests approval of reduction in commitments with respect to the FCS Quality Assurance (QA) Program associated with this License Amendment Request. This License Amendment Request adds a Surveillance [Table 3-5, Item 9c] stating that the DG Fuel Oil Properties are required to be verified within limits in accordance with the Diesel Fuel Oil Testing Program. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days.

Omaha Public; Power Distrct

1979-01-01T23:59:59.000Z

8

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

9

Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

10

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

11

Analysis of experimental performance investigation on kirloskar single cylinder diesel engine using mustard seed oil and diesel blend.  

E-Print Network [OSTI]

??This research work is focused on the mustard oil based bio diesel which is important renewable and alternative fuel in future. Mustard oil, is a… (more)

Ram Rattan

2013-01-01T23:59:59.000Z

12

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

13

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

14

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect (OSTI)

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

15

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

16

Capture of Heat Energy from Diesel Engine Exhaust  

SciTech Connect (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

17

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

18

Straight Vegetable Oil as a Diesel Fuel?  

SciTech Connect (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

19

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

SciTech Connect (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

20

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network [OSTI]

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

22

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

23

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 1995 337 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

24

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

25

Low heat rejection diesel ceramic coupon tests  

SciTech Connect (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia: (1) PSZ-TS and (2) PSZ-MS and silicon nitride (GTE WESGO SNW-1000 and Norton NT-154). Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}S{sup {minus}1}. Room temperature tests showed that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. 6 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1990-01-01T23:59:59.000Z

26

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

27

Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS  

E-Print Network [OSTI]

Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

Md. Nurun Nabi; S. M. Najmul Hoque

28

Zone heated diesel particulate filter electrical connection  

DOE Patents [OSTI]

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

29

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation...

30

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil price

31

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil

32

Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts  

E-Print Network [OSTI]

02FCC-140 Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts Kalyana transfer in modeling the performance of diesel oxidation catalysts. Many modeling studies have assumed experimental measurements of CO and hydrocarbon oxidation in diesel exhaust re- veal that actual mass

Tennessee, University of

33

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration (EIA)heating

34

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

35

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

36

Weathered Diesel oil as a sorptive phase for hydrophobic organic compounds in aquifer materials  

E-Print Network [OSTI]

The sorptive properties of weathered diesel oil were investigated by conducting miscible displacement experiments with three hydrophobic organic compounds (HOCs), acenapthene, fluorene, and dibenzothiophene, as tracers in columns containing aquifer...

Hudson, Rondall James

1994-01-01T23:59:59.000Z

37

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

38

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

1984-01-01T23:59:59.000Z

39

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

40

Tips For Residential Heating Oil Tank Owners  

E-Print Network [OSTI]

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential heating oil prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5, 2014heating

42

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,5,heating

43

Galib, “Biodiesel from jatropha oil as an alternative fuel for diesel engine  

E-Print Network [OSTI]

Abstract — The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

44

State heating oil and propane program  

SciTech Connect (OSTI)

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-01-01T23:59:59.000Z

45

Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel  

E-Print Network [OSTI]

Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO) biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0 % ethanol (wt%), 1.0 % potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

Oguntola J Alamu; Ezra A Adeleke; Nurudeen O. Adekunle; Salam O; Oguntola J Alamu; Ezra A Adeleke; Nurudeen O Adekunle; Salam O Ismaila

46

JATROPHA OIL AS AN ALTERNATIVE FUEL FOR DIESEL ENGINE  

E-Print Network [OSTI]

investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

47

DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS  

E-Print Network [OSTI]

a seasonal mismatch exists between the wind resource and the conventional electric load. The heating system1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama consists of dispatchable electric space heating units, with integrated thermal storage, functioning

Massachusetts at Amherst, University of

48

No. 2 heating oil/propane program  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

49

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect (OSTI)

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

50

Residential heating oil price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil price

51

Residential heating oil price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil price9,

52

Residential heating oil price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil

53

Residential heating oil prices decline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheatingheating oil

54

Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program  

SciTech Connect (OSTI)

The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

Frankenfeld, J.W.; Taylor, W.F.

1980-11-01T23:59:59.000Z

55

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheatingheating oil

56

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price decreases The

57

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price decreases The6,

58

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price decreases The6,05,

59

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price decreases

60

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price decreasesheating

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil price

62

Residential heating oil price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oilheating

63

Residential heating oil prices available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating

64

Residential heating oil prices decline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheatingheating

65

Residential heating oil prices decline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil

66

Residential heating oil prices decline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil price

67

Residential heating oil prices decline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil pricepropane

68

Residential heating oil prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil

69

Residential heating oil prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5, 2014

70

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,

71

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3, 2014

72

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,

73

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,5, 2014

74

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,5, 20144,

75

Residential heating oil prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,5,

76

Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control  

E-Print Network [OSTI]

1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

Brown, Alan

77

Natural Oils - The Next Generation of Diesel Engine Lubricants?  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014Vehicles »Oils -

78

Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Williamson, Weldon S. (Malibu, CA); Gonze, Eugene V. (Pinckney, MI)

2008-12-30T23:59:59.000Z

79

Evaluation of Brayton and Rankine alternatives for diesel waste heat exploitation  

SciTech Connect (OSTI)

A diesel engine may produce exhaust-gas thermal energy in excess of that needed for turbocharging. Alternatives for exploitation of the energy by producing work may be direct expansion through a gas turbine (completing a Brayton cycle that begins with the engine's compression and combustion), or transfer of heat into a Rankine cycle. It is demonstrated that either alternative may have a domain in which it is superior in work done, or in exhaust volume per unit mass of diesel exhaust. Computation models are developed and demonstrated for finding the boundaries along which the Rankine and Brayton alternatives have equal merit in either work or exhaust volume.

Woodward, J.B. (Univ. of Michigan, Ann Arbor, MI (United States). Naval Architecture and Marine Engineering)

1994-01-01T23:59:59.000Z

80

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

82

Diesel Engine Oil Technology Insights and Opportunities | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |in

83

Emissions characteristics of modern oil heating equipment  

SciTech Connect (OSTI)

Over the last 10 years there have been some very interesting developments in oil heating. These include higher static pressure burners, air atomizing nozzles, low firing rate nozzles, low heat loss combustion chambers and condensing boilers and furnaces. The current data base on the emissions characteristics of oil-fired residential heating equipment is based primarily on data taken in the 1970's. The objective of the work described in this report is to evaluate the effects of recent developments in oil-fired equipment on emissions. Detailed emissions measurements have been made on a number of currently available residential oil burners and whole systems selected to represent recent development trends. Some additional data was taken with equipment which is in the prototype stage. These units are a prevaporizing burner and a retention head burner modified with an air atomizing nozzle. Measurements include No{sub x}, smoke numbers, CO, gas phase hydrocarbon emissions and particulate mass emission rates. Emissions of smoke, CO and hydrocarbons were found to be significantly greater under cyclic operation for all burners tested. Generally, particulate emission rates were found to be 3 to 4 times greater in cyclic operation than in steady state. Air atomized burners were found to be capable of operation at much lower excess air levels than pressure atomized burners without producing significant amounts of smoke. As burner performance is improved, either through air atomization or prevaporization of the fuel, there appears to be a general trend towards producing CO at lower smoke levels as excess air is decreased. The criteria of adjusting burners for trace smoke may need to be abandoned for advanced burners and replaced with an adjustment for specific excess air levels. 17 refs., 15 figs., 6 tabs.

Krajewski, R.; Celebi, Y.; Coughlan, R.; Butcher, T.; McDonald, R.J.

1990-07-01T23:59:59.000Z

84

Oil Extraction Factory Crude Oil Heating System Design  

E-Print Network [OSTI]

Abstract:-The design of general process is divided into: according to the original material and the data were based on the calculated; calculate the joint station dewatering tank and the sewage tank capacity; then its thermodynamic calculation, hydraulic calculation, selection of pump in heating furnace and to determine the types and quantity of the last of the pipelines; the permitted maximum, minimum throughput and stop lose time to carry out a series of process calculation, also made the hot oil pipeline thermal stress compensation calculation. Keywords:-calculate; hydraulic; pipeline;minimum throughput I.

Dai Qiushi; Pan Yi; Yang Shuangchun

85

Heating Oil Reserve | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearingsHeating Oil Reserve

86

Residential heating oil prices virtually unchanged  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating oil5,3,5,heating4

87

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

88

Oil production response to in situ electrical resistance heating  

E-Print Network [OSTI]

of the electric power through electrical resistance heating with a very small electromagnetic power absorption component. The oil viscosity decreases as the temperature increases thus stimulating oil production. DEDICATION I would like to dedicate this thesis... PROFILE FOR CASE S-2 INTRODUCTION Oil production can be stimulated by applying electrical power to the formation. The electrical power causes a temperature increase that reduces oil viscosity, resulting in increased oil production rates. Electrical...

McDougal, Fred William

1987-01-01T23:59:59.000Z

89

Northeast Home Heating Oil Reserve - Online Bidding System |...  

Broader source: Energy.gov (indexed) [DOE]

program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this...

90

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster… (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

91

Diesel particulate filter regeneration via resistive surface heating  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V; Ament, Frank

2013-10-08T23:59:59.000Z

92

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy

93

Diesel Cycle: Since we use a Closed System, the work and heat transfers are calculated from changes in internal energy u  

E-Print Network [OSTI]

Diesel Cycle: Since we use a Closed System, the work and heat transfers are calculated from changes of Diesels (and therefore potential th) are likely to be much higher, because rather than worrying about pre-ignition, we are counting on self-ignition! 1 #12;On top of that, Diesel cycles have no throttling losses, so

94

Proceedings of the 1998 oil heat technology conference  

SciTech Connect (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

95

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |inGrowth

96

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |inGrowthTechnology

97

Exhaust Heat Recovery for Rural Alaskan Diesel Generators | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010Energy

98

Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine  

E-Print Network [OSTI]

Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

99

Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes  

SciTech Connect (OSTI)

The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.

Splitter, Derek A [ORNL; Hendricks, Terry Lee [Sandia National Laboratories (SNL); Ghandhi, Jaal B [University of Wisconsin

2014-01-01T23:59:59.000Z

100

Heating of Oil Well by Hot Water Circulation  

E-Print Network [OSTI]

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Energy Savers [EERE]

Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast...

102

Effect of translucence of engineering ceramics on heat transfer in diesel engines  

SciTech Connect (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

1992-04-01T23:59:59.000Z

103

Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report  

SciTech Connect (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

1992-04-01T23:59:59.000Z

104

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

SciTech Connect (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

105

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

106

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

107

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL AND ITS BLENDS  

E-Print Network [OSTI]

Increasing oil prices, and global warming activates the research and development of substitute energy resources to maintain economic development. The methyl esters of vegetable oil, known as biodiesel are becoming popular because of their low ecological effect and potential as a green substitute for compression ignition engine. The main objective of this study is to investigate the performance of neem oil methyl ester on a single cylinder, four stroke, direct injection, and 8 HP capacity diesel engine. The Experimental research has been performed to analyze the performance of different blends 20 % (BD20), 50 % (BD50), and 100 % (BD100) of neem oil biodiesel. Biodiesel, when compared to conventional diesel fuel, results showed that the brake specific fuel consumption and brake specific energy consumption are higher and brake thermal efficiency less during testing of engine. The brake specific energy consumption is increased by 0.60 % to 8.25 % and brake thermal efficiency decreased by 0.57 % to 7.62 % at 12 kg engine brake load as compared to diesel fuel. When the fuel consumption of biodiesel is compared to diesel fuel it observed that the fuel consumption was increased by 2.5 % to 19.5 % than that of diesel fuel for B20, B50 and B100 bends at 12 kg engine brake load. It is observed that the performance of biodiesel blends is less as compared to plain diesel and during testing of diesel engine run normally for all engine loads. It is investigated that the neem oil biodiesel 20 % blend showed very close performance when compared to plain diesel and hence can be used as an alternative fuel for conventional diesel in the future.

Rob Res; Dharmendra Yadav; Nitin Shrivastava; Vipin Shrivastava

108

Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel  

E-Print Network [OSTI]

non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has

Tsair-wang Chung; Kuan-ting Liu; Mai-tzu Chen

109

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect (OSTI)

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the authors resolve the heat of combustion into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g. 13 refs.

Burnham, A.K.; Crawford, P.C.; Carley, J.F.

1982-07-01T23:59:59.000Z

110

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect (OSTI)

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the heat of combustion was resolved into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g.

Burnham, A.K.; Carley, J.F.; Crawford, P.C.

1982-07-01T23:59:59.000Z

111

PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.  

SciTech Connect (OSTI)

The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

MCDONALD,R.J.

1999-04-01T23:59:59.000Z

112

The stimulation of heavy oil reservoirs with electrical resistance heating  

E-Print Network [OSTI]

. Equations for r? and P, were written using regression analysis. The calculation procedure is as follows: (1) calculate r?, (2) calculate the skin factor, s??, (3) calculate the heated oil production rate, q, ?, and (4) calculate the downhole power... of various heavy oils at 113 'F Fig. 23 ? Effect of CH, on the viscosity of various heavy oils at 171 'F Fig. 24 - Viscosity/pressure relationship for the recombined field sample Fig. 25 ? Smoothed viscosity/pressure relationship for the recombined...

Baylor, Blake Allen

1990-01-01T23:59:59.000Z

113

International Journal of Mechanical & Mechatronics IJMME-IJENS Vol: 10 No: 03 1 BIODIESEL FROM JATROPHA OIL AS AN ALTERNATIVE FUEL FOR DIESEL ENGINE  

E-Print Network [OSTI]

Abstract—The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

114

Development of a Waste Heat Recovery System for Light Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and...

115

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

SciTech Connect (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

116

Bio-Heating Oil Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

117

Bio-Heating Oil Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

118

Design of Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Design of Crude Oil Pre-heat Trains G.T.Po]Jey B.L.Yeap D.I.Wilson M.H.Panjeh Shahi Pinchtechnology.com Dept of Chern. Engng. Dept. of Chern. Engng. University of Cambridge University of Tehran Pre-heat trains differ from most other heat... recovery networks in a number of important ways. Combination offactors gives rise to the need for a design procedure specific to pre heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat...

Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

119

PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE  

SciTech Connect (OSTI)

The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

1998-04-01T23:59:59.000Z

120

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network [OSTI]

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

122

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network [OSTI]

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

123

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

124

Galib, “Biodiesel from jatropha oil as an alternative fuel for diesel engine  

E-Print Network [OSTI]

investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

125

Studies on Characterization of raw Jatropha oil and its biodiesels with relevance of diesel  

E-Print Network [OSTI]

biodiesel produced from jatropha oil by transesterification process represents one of the most promising

V. B. Shambhu; T. K. Bhattacharya; L. K. Nayak; S. Das

2013-01-01T23:59:59.000Z

126

Proceedings of the 1993 oil heat technology conference and workshop  

SciTech Connect (OSTI)

This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1993-09-01T23:59:59.000Z

127

Oil  

E-Print Network [OSTI]

Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

unknown authors

128

LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.  

SciTech Connect (OSTI)

This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

BATEY, J.E.; MCDONALD, R.J.

2005-06-01T23:59:59.000Z

129

Proceedings of the 1991 Oil Heat Technology Conference and Workshop  

SciTech Connect (OSTI)

This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1992-07-01T23:59:59.000Z

130

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

131

Emerging Heat Exchanger Technologies for the Mitigation of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Over the last three years ESDU have been working with engineers from oil companies and the companies that serve them in order to produce a guide describing the current state of knowledge on fouling in pre-heat trains and ways in which it can...

Polley, G. T.; Pugh, S. J.; King, D. C.

132

Update: World average retail gasoline and diesel prices. Crude oil falls, but consumer taxes rise  

SciTech Connect (OSTI)

Crude oil prices plunged to five year lows late in 1993. However, examination of consumer petroleum product prices around the world reveals that consumers in many countries did not enjoy a consequent drop.

Not Available

1994-03-21T23:59:59.000Z

133

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

134

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

135

State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

136

State Heating Oil and Propane Program, 1990--1991 heating season  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

137

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

138

Countries Distillate Heating Oil (No. 2 Heating Oil and Gasoil) Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes) Date

139

Countries Distillate Heating Oil (No. 2 Heating Oil and Gasoil) Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes) Dateexcluding

140

Countries Distillate Heating Oil (No. 2 Heating Oil and Gasoil) Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

142

Comparative Experimental Investigation of Combustion, Performance and Emission in a Single Cylinder Thermal Barrier Coated Diesel Engine using Diesel and Neem Biodiesel  

E-Print Network [OSTI]

Abstract- The use of methyl esters of vegetable oil known as biodiesel are increasingly popular because of their low impact on environment, green alternate fuel and most interestingly it's use in engines does not require major modification in the engine hardware. Use of biodiesel as sole fuel in conventional direct injection diesel engine results in combustion problems, hence it is proposed to use the biodiesel in low heat rejection (LHR) diesel engines with its significance characteristics of higher operating temperature, maximum heat release, higher brake thermal efficiency (BTE) and ability to handle the lower calorific value (CV) fuel. In this work biodiesel from Neem oil called as Neem oil methyl ester (NOME) was used as sole fuel in conventional diesel engine and LHR direct injection (Dl) diesel engine. The low heat rejection engine was developed with uniform ceramic coating of combustion chamber (includes piston crown, cylinder head, valves and cylinder liner) by partially stabilized /zirconia (PSZ) of 0.5 mm thickness. The experimental investigation was carried out in a single cylinder water-cooled LHR direct injection diesel engine. In this investigation, the combustion, performance and emission analysis were carried out in a diesel and biodiesel fueled conventional and LHR engine under identical operating conditions. The test result of biodiesel fueled LHR engine was quite identical to that of the conventional diesel engine. The brake thermal efficiency (BTE) of LHR engine with biodiesel is decreased marginally than LHR engine operated with diesel. Carbon monoxide (CO) and Hydrocarbon (HC) emission levels are decreased. The results of this comparative experimental investigation reveals that, some of the drawbacks of

M C Navindgi; Dr. Maheswar Dutta; Dr. B. Sudheer Prem Kumar

143

Advanced oil burner for residential heating -- development report  

SciTech Connect (OSTI)

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

144

Analysis of Smoke of Diesel Engine by Using Biodiesel as Fuel  

E-Print Network [OSTI]

Abstract- This study represents the analysis of smoke of biodiesel by using smoke tester. In this article biodiesel is taken as a fuel instead of diesel and quantity of emitted pollutants HC and CO is evaluated by taking different quantity of biodiesel at different load. This work shows how use of biodiesel will affect the emission of pollutants. Diesel Engine is compression ignition engine and use diesel as fuel, in this engine alternative fuel can be used. One alternate fuel is biodiesel. Biodiesel can be used in pure form or may be blended with petroleum diesel at any concentration in most injection pump diesel engines and also can be used in Vehicle, Railway, and Aircraft as heating oil.

Gayatri Kushwah; Methanol

145

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applications |Fuels |

146

administered diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection Diesel Engine Using Pongamia Oil CiteSeer Summary: Abstract The use of biodiesel, the methyl esters of vegetable oils are becoming popular due to their low...

147

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect (OSTI)

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

148

Renewable Diesel  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

149

Impact of Lube-oil Phosphorus on Diesel Oxidation Catalysts | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITofDepartmentofEnergy

150

Design of oil consumption measuring system to determine the effects of evolving oil sump composition over time on diesel engine performance and emissions  

E-Print Network [OSTI]

The automotive industry is currently struggling because of the increasingly stricter emissions standards that will take effect in the near future. Diesel engine emissions are of particular interest because they are still ...

Ortiz-Soto, Elliott (Elliott A.)

2006-01-01T23:59:59.000Z

151

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

152

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect (OSTI)

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

153

Comparison of Heating Methods for In-Situ Oil Shale Extraction  

E-Print Network [OSTI]

Oil shales are lamellar, non-porous, impermeable hydrocarbon bearing rocks that contain organic matter called kerogen which, when heated at pyrolysis temperature of approximately 600-800 ?, thermo-chemically decomposes to liberate hydrocarbons...

Hazra, Kaushik Gaurav

2014-04-29T23:59:59.000Z

154

Development of a Waste Heat Recovery System for Light Duty Diesel Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow

155

Advanced diesel-oil fuel-processor development. Final report, 16 October 1984-21 May 1986  

SciTech Connect (OSTI)

The Westinghouse R and D Center has been conducting a fuel-processing program for Army phosphoric-acid fuel-cell (PAFC) systems, with the objective of an advanced system that uses diesel fuels and does not require an external water source. An autothermal reforming approach is followed, and six design variations proposed. Analyses and experimental tests have been performed and indicate this is a viable technical approach. However, the diesel-fuel-cell system is estimated to be considerably heavier than its methanol-fuel counterpart, which will limit its use for mobile and portable-power applications.

Murray, A.P.

1986-06-01T23:59:59.000Z

156

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect (OSTI)

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

NONE

1998-11-01T23:59:59.000Z

157

No. 2 heating oil/propane program. Final report, 1992/93  

SciTech Connect (OSTI)

During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1993-05-01T23:59:59.000Z

158

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

159

Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010

160

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

State of Maine residential heating oil survey: 1994--1995 Season summary  

SciTech Connect (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

162

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition  

SciTech Connect (OSTI)

Detailed exhaust emission data have been taken from a Cummins N-14 single cylinder research engine in which the oil consumption was varied by different engine modifications. Low sulfur fuel was used, and oil consumption was varied by modifying the intake valve stem seals, the exhaust valve stem seals, the oil control ring and combinations of these modifications. Detailed measurements of exhaust gas particle size distributions and chemical composition were made for the various oil consumption configurations for a range of engine loads and speeds. The particulate mass was measured with TEOM and traditional gravimetric filter methods. Filter data for EC/OC, sulfates and trace metals have been taken and analyzed. The trace metals in the particulate mass serve as the basis for assessing oil consumption at the different operating conditions. The data indicate that the oil consumption for the steady state testing done here was approximately an order of magnitude below oil consumption values cited in the literature. We did measure changes in the details of the chemical composition of the particulate for the different engine operating conditions, but it did not correlate with changes in the oil consumption. Furthermore, the data indicate that the particle size distribution is not strongly impacted by low level oil consumption variations observed in this work.

Stetter, J; Forster, N; Ghandhi, J; Foster, D

2003-08-24T23:59:59.000Z

163

Lower oil prices also cutting winter heating oil and propane bills  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshortHouseholdsValues

164

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

SciTech Connect (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

165

Bio-Oil Deployment in the Home Heating Market  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTofBio-Oil Deployment in the Home

166

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

167

Heat of combustion of Green River oil shale  

SciTech Connect (OSTI)

The authors derive simple equations for estimating the heat of combustion of raw shale by thermochemical estimates and by linear regression of experimental data. They find that the heat can be estimated well by an exothermic term that accounts for the combustion of organic matter and a constant that accounts for pyrite combustion, carbonate decomposition, and glass formation. The net contribution of reactions included in the constant is endothermic for the standard state products of bomb calorimetry. As a sample application, the authors perform an energy balance on a modified Fischer assay of average Green River shale by using one of our formulas for raw shale along with previously derived formulas for pyrolysis products.

Muehlbauer, M.J.; Burnham, A.K.

1984-04-01T23:59:59.000Z

168

Identifying Bio-Diesel Production Facility Locations for Home Heating Fuel Applications Within the Midwest Region of the United States.  

E-Print Network [OSTI]

?? Amid concerns of rising oil prices, interest into researching alternative renewable energy sources has increased in recent years. A great deal of research has… (more)

Schafer, Guy M.

2011-01-01T23:59:59.000Z

169

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

170

THE FINAL SERIES OF OILS TESTED AS A POTENTIAL SOLUTION TO THE GALVESTON FERRY  

E-Print Network [OSTI]

two other diesel engines that are used for auxiliary power generation, and none of those dieselDOT) began using an ultra-low sulfur diesel fuel, Texas Low Emission Diesel (TxLED), in all of its diesel manufacturer, ElectroMotive Diesels (EMD), with one exception. This unapproved oil contained zinc

Texas at Austin, University of

171

Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems  

SciTech Connect (OSTI)

The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

2010-10-21T23:59:59.000Z

172

Combustion of oil on water: an experimental program  

SciTech Connect (OSTI)

This study determined how well crude and fuel oils burn on water. Objectives were: (1) to measure the burning rates for several oils; (2) to determine whether adding heat improves the oils' combustibility; (3) to identify the conditions necessary to ignite fuels known to be difficult to ignite on ocean waters (e.g., diesel and Bunker C fuel oils); and (4) to evaluate the accuracy of an oil-burning model proposed by Thompson, Dawson, and Goodier (1979). Observations were made about how weathering and the thickness of the oil layer affect the combustion of crude and fuel oils. Nine oils commonly transported on the world's major waterways were tested. Burns were first conducted in Oklahoma under warm-weather conditions (approx. 30/sup 0/C) and later in Ohio under cold-weather conditions (approx. 0/sup 0/C to 10/sup 0/C).

None

1982-02-01T23:59:59.000Z

173

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

174

Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1  

SciTech Connect (OSTI)

In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

NONE

1998-06-01T23:59:59.000Z

175

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

176

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

177

State Heating Oil and Propane Program Expansion of Propane Data Collection  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState Heating Oil and

178

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

179

Driving Down Diesel Emissions  

E-Print Network [OSTI]

is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

Harley, Robert

2013-01-01T23:59:59.000Z

180

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cleaning Up Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

182

Demonstration Results From Greenhouse Heating with Liquified Wood  

SciTech Connect (OSTI)

A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 ���°F per min. for 35 min. to achieve the target 140 ���°F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 ���°F water temperature increase in 62 min. at a rate of 2.3 ���°F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 ���°F water temperature increase in 85 min. at a rate of 1.6 ���°F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and carbon monoxide at a ratio of 16.4. Neither the pine LBF nor the white oak LBF fuel showed any measureable methane emissions from the NTG boiler flue gas. These results indicate a viable potential for mildly upgraded bio-oil to become an alternative fuel source for greenhouse operations.

Steele, Philip; Parish, Don; Cooper, Jerome

2011-07-01T23:59:59.000Z

183

Fluid Mechanics -1 An oil is used in a heat exchanger. The internal geometry consists of many small diameter tubes of fixed length  

E-Print Network [OSTI]

Fluid Mechanics - 1 An oil is used in a heat exchanger. The internal geometry consists of many small diameter tubes of fixed length (mounted in a bundle as indicated in the sketch). The oil is pumped). Assume the steady flow of the oil through each small tube is in the laminar regime. It is proposed

Virginia Tech

184

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

185

SCALE UP OF Si/Si0.8Ge0.2 AND B4C/B9C SUPERLATTICES FOR HARVESTING OF WASTE HEAT IN DIESEL ENGINES  

SciTech Connect (OSTI)

Thermoelectric devices show significant promise for harvesting and recovery of waste heat from diesel engines, exhaust systems and industrial heat sources. While these devices convert a heat flow directly into electrical energy, cooling can be accomplished by the same device with application of a direct current (Peltier effect). Conversion efficiencies of bulk thermoelectric systems, however, are still too low for economical power conversion in diesel powered vehicles and heavy vehicles. Thermoelectric superlattice devices have demonstrated the potential for increased efficiencies and utilization of waste heat. Although reported efficiencies are well above 15%, fabrication costs are still too high for use in diesel engine systems. To realize this efficiency goal of {approx} 20% and power generation in the kWMW range, large quantities of superlattice materials are required. Additionally, if the figure of merit (ZT) of these superlattices can be increased to > 2, even less superlattice material will be required to generate electric power from heat in diesel engines. We report on development of and recent progress in scale up of Si/Si0.8Ge0.2 and B4C/B9C superlattices for thermoelectric applications, and particularly for fabrication of large quantities of these materials. We have scaled up the magnetron sputtering process to produce large quantities of Si/Si0.8Ge0.2 and B4 C/B9C superlattices with high ZT at low cost. Quantum well films with up to 1000 layers were deposited onto substrate areas as large as 0.5 m2 by magnetron sputtering. Initial studies showed that the power factor of these SL's was high enough to produce a ZT significantly greater than 1. Both p- and n-type superlattices were fabricated to form a complete thermoelectric power generating device. ZT measurements will be reported, and based on measured power factor of these materials, should be significantly greater than 1. These results are encouraging for the use of quantum well materials in thermoelectric power generation.

Martin, P; Olsen, L

2003-08-24T23:59:59.000Z

186

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect (OSTI)

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

187

automotive diesel power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. 9 Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel CiteSeer Summary: Short-term engine performance tests were carried out on test...

188

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

189

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

190

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

191

EXPERIMENTAL INVESTIGATION ON JATROPHA OIL AS A BIODIESEL FUEL WITH ANALYSIS OF ITS EMISSION  

E-Print Network [OSTI]

jatropha oil can be a good choice as a biodiesel for diesel engines. Experimental results have shown it as

unknown authors

192

Biodiesel Impact on Engine Lubricant Oil Dilution  

Broader source: Energy.gov (indexed) [DOE]

Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Biodiesel Impact on Engine Lubricant Oil Dilution Motivation * Modern diesel engines utilize...

193

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

194

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

195

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

196

Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology.  

E-Print Network [OSTI]

??Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning… (more)

Abuhabaya, Abdullah

2012-01-01T23:59:59.000Z

197

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

198

Identification of R&D Needs Relating to the Mitigation of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Identification of R&D needs relating to tbe mitigation of fouling in crude oil pre-heat trains G.T.Polley ESDU International pic Worrell & Price [1] (at a paper presented at the Industrial Energy Technology Conference organised by Texas A... - but not always flows through the tubes). The threshold occurs because of the existence of two competing processes: one promoting fouling, the other mitigating against it. Models for the prediction of this threshold have been derived from measurements...

Polley, G. T.; Pugh, S. J.

199

Development of Extraction Techniques for the Detection of Signature Lipids from Oil  

E-Print Network [OSTI]

has been shown previously in oil samples (Hallman, 2008)of signature lipids from oil Sharon Borglin, Olivia Mason, were combined with model oil samples and oil/diesel mixtures

Borglin, Sharon

2011-01-01T23:59:59.000Z

200

Models for the Prediction of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

Fouling has two significant effects upon pre-heat train performance. Firstly, any of layer of foulant on the heat transfer surface presents a resistance to heat transfer. This thermal resistance increases as the layer builds up, so fouling reduces...

Yeap, B. L.; Wilson, D. I.; Polley, G. T.

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera  

E-Print Network [OSTI]

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

Plotkin, Joshua B.

202

ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES  

E-Print Network [OSTI]

ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

Jagannatham, Aditya K.

203

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

, environmentally harmful, oil exploration and drilling. Technology Solar Fuel's proprietary technology converts wasteful thermal energy production. Solar Fuel has two patents filed and in process. Market Potential There are many potential markets for Solar Fuel, however, the beachhead target is the oil and gas in- dustry

Jawitz, James W.

204

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

205

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

1998-05-05T23:59:59.000Z

206

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

SciTech Connect (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

207

Diesel prices slightly increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDieselDiesel

208

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect (OSTI)

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

209

Oil Bypass Filter Technology Evaluation Tenth Quarterly Report January–March 2005  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation quarterly report (January– March 2005) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eleven INL fourcycle diesel-engine buses and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems. Eight of the buses and the six Tahoes are equipped with oil bypass filters from the puraDYN Corporation; the remaining three buses are equipped with oil bypass filters from Refined Global Solutions. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminates from the oil. During the January to March 2005 reporting quarter, the eleven diesel engine buses traveled 97,943 miles. As of March 31, 2005, the buses had accumulated 744,059 total test miles. During this quarter, four regularly scheduled 12,000-mile bus servicings were performed. The full-flow and bypass oil filters were changed and oil analysis samples were taken for the four buses. Bus 73446 had its oil changed due to a low total base number value. Bus 73450 had a major engine failure at the beginning of the quarter when one of its pushrods and valves were damaged. Buses 73432 and 73433 were removed from the bypass filter evaluation project and placed into the INL Diesel Engine Idling Wear-Rate Evaluation Test. While a total of nine oil changes on the INL buses occurred during the past 29 months, 53 oil changes have been avoided by using the oil bypass filters. The 53 avoided oil changes equates to 1,855 quarts (464 gallons) of new oil not consumed and 1,855 quarts of waste oil not generated. Therefore, over 85% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved a greater than 85% reduction in the amount of waste oil normally generated by the buses. The six Tahoe test vehicles traveled 40,700 miles, and as of March 31, 2005, the Tahoes had accumulated 231,428 total test miles.

Larry Ziker; James Francfort

2005-06-01T23:59:59.000Z

210

Electrical diesel particulate filter (DPF) regeneration  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

211

Diesel particles -a health hazard 1 Diesel particles  

E-Print Network [OSTI]

Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

212

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

213

Impact of External Heat-shielding Techniques on Shell Surface...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

External Heat-shielding Techniques on Shell Surface Temperatures and Dynamic Shell Thermal Deformation of Diesel Engine Emission Control Systems Impact of External Heat-shielding...

214

Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer  

E-Print Network [OSTI]

Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties ...

Xiao, Rong

215

Consideration of Fouling During the Design of Crude Oil Pre-Heat Trains  

E-Print Network [OSTI]

case study, based on network in Figure 6(a) Time Ihours R f EI, E4, E5, E6 Im 2 KW' R f E2,E3,E7,E8 Im 2 KW'\\ 0 0.0 0.0 1000 0.00155 0.00248 2000 0.0026 0.0042 3000 0.0033 0.0053 4000 0.00385 0.00616 5000 0.00425 0.0068 6000 0.0046 0... of Bound point bound Tempe rature Kerosene EI sheJi lower 20 ?C HGO E2 shell lower 30 ?C Naptha E3 shell lower 110 ?C Desalter feed E3 tube upper 135 ?C Gas oil E5 shell lower l50 ?C Residue E6 shell lower 170 ?C ._~- Gas oil PA E7 shell lower...

Polley, G. T.; Pugh, S. J.; Wilson, D. I.

216

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDieselDiesel

217

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

218

BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE  

E-Print Network [OSTI]

Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

219

EPA Diesel Update  

Broader source: Energy.gov (indexed) [DOE]

for US Introduction of Tier 2 Diesels - Dr. Gerhard Schmidt, VP Research and Advanced Engineering Ford, "Our target must be 50 state programs at LEV2Bin 5. ....the prognosis...

220

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

222

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

223

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

224

A Study of a Diesel Engine Based Micro-CHP System  

SciTech Connect (OSTI)

This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

2010-08-31T23:59:59.000Z

225

Ris Energy Report 2 Biodiesel is produced from vegetable oils that have been  

E-Print Network [OSTI]

6.2 Risø Energy Report 2 Biodiesel is produced from vegetable oils that have been chemically (canola) oil with methanol. Biodiesel can be burned directly in diesel engines. Robert Diesel himself, but it was not until the oil crisis of the 1970s that biofuels attracted serious interest. Biodiesel is reported

226

A Study of the Use of Jatropha Oil Blends in Boilers  

SciTech Connect (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

Krishna, C.R.

2010-10-01T23:59:59.000Z

227

E-Print Network 3.0 - automotive engine oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 14 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption...

228

DIESEL et CANCER Dominique Lafon  

E-Print Network [OSTI]

1/5 DIESEL et CANCER Dominique Lafon INERIS (*) De nombreuses questions se posent sur la toxicité des émissions des moteurs diesel. C'est un sujet qui a beaucoup préoccupé les scientifiques ces EMISSIONS DU DIESEL. Avant d'aborder la toxicité des émissions du diesel, un rappel de leur composition est

Boyer, Edmond

229

Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel  

E-Print Network [OSTI]

Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures

Pacheco, Jose Rafael

230

Getting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD BE FUELED BY VEGETABLE  

E-Print Network [OSTI]

determined other- wise. The world is now seriously revisiting Diesel's vision, driven by surging global oil- outrequiringsubstantialmodificationofexistingvehiclesorofthefueldistributioninfrastructure:secu- rity of supply (biofuels can be produced locally in sustainable systems), lowernetGHGemissions(biofuelsrecyclecarbondioxidethatwasextractedGetting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD

231

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel prices

232

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel

233

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices decrease

234

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices

235

Diesel prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDieselDiesel

236

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices

237

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel

238

Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October–December 2004  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation quarterly report (October–December 2004) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL; formerly Idaho National Engineering and Environmental Laboratory) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight INL four-cycle diesel-engine buses used to transport INL employees on various routes and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. This quarter, three additional buses were equipped with bypass filters from Refined Global Solutions. Oil bypass filters are reported to have an engine oil filtering capability of less than 1 micron. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminate from the oil. During the quarter, the eleven diesel engine buses traveled 62,188 miles, and as of January 3, 2005 the buses had accumulated 643,036 total test miles. Two buses had their engine oil changed this quarter. In one bus, the oil was changed due to its degraded quality as determined by a low total base number (<3.0 mg KOH/g). The other bus had high oxidation and nitration numbers (>30.0 Abs/cm). Although a total of six buses have had their oil changed during the last 26 months, by using the oil bypass filters the buses in the evaluation avoided 48 oil changes, which equates to 1,680 quarts (420 gallons) of new oil not consumed and 1,680 quarts of waste oil not generated. Therefore, over 80% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved over 80% reduction in the amount of waste oil normally generated. The six Tahoe test vehicles traveled 39,514 miles, and as of January 3, 2005 the Tahoes had accumulated 189,970 total test miles. The Tahoe filter test is in transition. To increase the rate of bypass filter oil flow on the Tahoes, puraDYN provided a larger orifice assembly, and these are being changed out as the Tahoes come in for regular service.

Larry Zirker; James Francfort; Jordan Fielding

2005-02-01T23:59:59.000Z

239

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

240

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review  

E-Print Network [OSTI]

Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

Darunde Dhiraj S; Prof Deshmukh Mangesh M

242

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

SciTech Connect (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

243

Diesel Engine Alternatives  

SciTech Connect (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

244

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

245

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

246

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

247

Conversion of Furnace oil fired boiler to biomass(Gliricidia) fired (External/Internal) furnace boiler; NA.  

E-Print Network [OSTI]

?? In the present era, with the prevailing competition, the cost of production plays a vital role. As the price of petroleum oils, especially diesel… (more)

Channa Gaya Siriwardhana, Kahandawa Arachchilage

2010-01-01T23:59:59.000Z

248

Interactive coastal oil spill transport model  

E-Print Network [OSTI]

. 6 fuel oils, diesel or No. 2 fuel oils, and light petroleum products such as kerosenes or gasolines. Crude oils of different ge- ologic and geographic sources vary widely in composition. Thousands of individual compounds, mostly hydrocarbons... Composition (by Weight) of Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 16 IV Comparison of Solubilities for Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 17 V Biodegradation Rates of Crude Oils...

Thalasila, Nanda K.

1992-01-01T23:59:59.000Z

249

E-Print Network 3.0 - active oil producing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to making distillate- based fuels such as diesel and jet fuel. The cost of producing oil shale remains... and produce gasoline. The South African oil company Sasol later developed...

250

Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine  

E-Print Network [OSTI]

In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

2012-01-01T23:59:59.000Z

251

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

252

Optimizing Low Temperature Diesel Combustion  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filter Regenerations," SAE Paper 2007-01-3970, SAE Fall Powertrain and Fluids Systems Conference, Chicago, IL, Oct. 2007. * "Comprehensive Characterization of...

253

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDieselDiesel

254

Tailored Acicular Mullite Substrates for Multifunctional Diesel...  

Broader source: Energy.gov (indexed) [DOE]

"New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications," Proceedings of the 9th Diesel Engine Emissions Reduction Conference August 24-28, 2003,...

255

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

256

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

257

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

258

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

259

Experimental Investigation of Biodiesel Production from Waste Mustard Oil  

E-Print Network [OSTI]

The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines.

Rajat Subhra Samanta; Mukunda Kumar Das

260

JatroDiesel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown, Colorado:JatroDiesel Jump

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration (EIA)

262

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration

263

Diesel fuel component contribution to engine emissions and performance. Final report  

SciTech Connect (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

264

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

265

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles  

E-Print Network [OSTI]

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

Cohen, Ronald C.

266

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

267

diesel.vp  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575Diesel

268

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices

269

Diesel prices flat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel prices

270

Diesel prices flat nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel

271

Diesel prices increase nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel prices

272

Diesel prices rise slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel

273

Update on Diesel Exhaust Emission Control Technology and Regulations...  

Broader source: Energy.gov (indexed) [DOE]

Update on Diesel Exhaust Emission Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction...

274

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

275

Retrofit Diesel Emissions Control System Providing 50% NOxControl...  

Broader source: Energy.gov (indexed) [DOE]

Retrofit Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER)...

276

Alloy Foam Diesel Emissions Control School Bus Implementation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alloy Foam Diesel Emissions Control School Bus Implementation Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel...

277

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

278

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

279

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

280

Measurements of Diesel Truck Traffic Associated with Goods Movement  

E-Print Network [OSTI]

Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

Houston, Douglas; Krudysz, Margaret; Winer, Arthur

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

adicionado ao diesel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

282

automotive diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

283

adiabatic diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

284

advanced diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

285

adiabatic diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

286

advanced diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

287

An Accelerated Aging Method for Diesel Exhaust Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Diesel Aftertreatment Devices Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts...

288

Regulated Emissions from Diesel and Compressed Natural Gas Transit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

289

Value Analysis of Alternative Diesel Particulate Filter (DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

290

The 60% Efficient Diesel Engine: Probably, Possible, Or Just...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

291

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

292

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

293

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

294

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

295

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDieselDiesel

296

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel pricesDiesel

297

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel prices

298

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDiesel

299

Diesel prices slightly decrease nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDiesel

300

Opportunities for Biorenewables in Oil Refineries  

SciTech Connect (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

302

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

Minnesota, University of

303

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

304

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

305

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

306

Durability of Diesel Particulate Filters - Bench Studies on Cordierite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

307

Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices  

SciTech Connect (OSTI)

Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

NONE

1998-06-01T23:59:59.000Z

308

Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report  

SciTech Connect (OSTI)

This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

1998-05-01T23:59:59.000Z

309

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

310

DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance  

E-Print Network [OSTI]

DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

Ickert-Bond, Steffi

311

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

312

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

313

BMW Diesel - Engine Concepts for Efficient Dynamics  

Broader source: Energy.gov (indexed) [DOE]

"24 Hours of Nrburgring" 2001 - 2nd Gen. Common Rail (1600 bar) 2004 - Variable Twin Turbo - Diesel Particulate Filter of 2nd Gen. 1999 - First V8 Diesel Sedan in Premium...

314

The Economic and Environmental Aspects of Heat Exchanger Cleaning -- How FP&L Has Used the Newly Patented MCC Process to Clean Turbine Lube Oil Coolers to Maximize Efficiency and Minimize Waste  

E-Print Network [OSTI]

of efficient and timely cleaning of heat exchangers. There are great differences in the cleaning processes that are used to clean exchanger bundles in industry today. The cleaning of turbine lube oil coolers is a specialized case in point. A newly patented...

Wood, H. A. T.

315

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

316

Elastomer Compatibility Testing of Renewable Diesel Fuels  

SciTech Connect (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

317

Ethanol fuel for diesel tractors  

SciTech Connect (OSTI)

The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

da Cruz, J.M.

1981-01-01T23:59:59.000Z

318

Center for Diesel Research Potential Efficiency Improvement  

E-Print Network [OSTI]

Speed Histogram #12;Center for Diesel Research Results ­ Power Data Wasted power · Engine Hydraulic FanW Fan Power Histogram Fan Power Scatter Plot #12;Center for Diesel Research Results ­ Average AccessoryCenter for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid

Minnesota, University of

319

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDieselDiesel

320

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continueDiesel

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel prices

322

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel pricesDiesel

323

Diesel prices continue to fall  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices continue

324

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel prices

325

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDiesel

326

Diesel prices remain fairly stable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel pricesDiesel

327

Diesel prices see slight drop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices see

328

Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines  

SciTech Connect (OSTI)

Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

Wagner, G.L.; Peterson, C.L.

1982-01-01T23:59:59.000Z

329

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

330

Biodiesel and Other Renewable Diesel Fuels  

SciTech Connect (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

331

Countries Diesel Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany

332

Diesel fuel to dc power: Navy & Marine Corps Applications  

SciTech Connect (OSTI)

During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

1996-12-31T23:59:59.000Z

333

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

334

Experimental and Theoretical Investigations of Lube Oil Performance and Engine Friction.  

E-Print Network [OSTI]

??The feasibility of using a motored small, single-cylinder 517 cc Hatz 1D50 diesel engine to evaluate lube oil performance and engine friction at conditions typical… (more)

Rohr, William Fredrick

2013-01-01T23:59:59.000Z

335

Effect of hydrous ethanol on crankcase oil dilution  

SciTech Connect (OSTI)

Adequate lubrication is of the utmost importance in internal combustion engines. Low temperature operation with low-proof alcohol may create some operational problems if alcohol and/or water accumulates in the crankcase oil. Condensates of unburned alcohol and water maybe blown into the crankcase oil with blowby gases. These condensates may form an emulsion with the crankcase oil that may restrict the supply of oil for adequate lubrication. Three engine tests were performed to identify the effect of low-proof ethanol fueling on crankcase oil dilution and degradation. The first test was hydrous ethanol carburetion in a 2.3 liter, 4 cylinder, 1974 Ford gasoline engine. The second test was a mixture of low-proof ethanol fumigation and normal diesel fuel injection (at reduced rate) in an Allis-Chalmers Model 2900 turbocharged diesel engine. The third test was also a mixture of ethanol fumigation and diesel injection in an Allis-Chalmers Mod2800 naturally aspirated diesel engine. Independent parameters of crankcase oil temperature, engine load and speed, percent of total energy in the form of ethyl alcohol and proof of the ethyl alcohol were considered and varied. After each test the oil was sampled for determination of flash point, fire points, water by centrifuge, water by distillation, and viscosity at room temperature. Results for the first test indicate that the use of ethanol of 130 proof or less may result in accumulation of water in the crankcase oil that may be harmful to the engine. In the second and third tests although there was a decrease in fire and flash points as well as in the viscosity of the oil, no appreciable amount of water or alcohol was detected in the crankcase oil. It is important to mention that there was a maximum alcohol fuel flow rate beyond which the diesel engine starts to knock or misfire.

Khalifa, G.A.

1985-01-01T23:59:59.000Z

336

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

SciTech Connect (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

337

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

SciTech Connect (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

338

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

339

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

340

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The California Demonstration Program for Control of PM from Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of PM from Diesel Backup Generators Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles...

342

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

Minnesota, University of

343

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

344

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

T. A. , (2001). Diesel engines: environmental impact andof a heavy-duty diesel engine to improve deNOx performanceOn-road heavy-duty diesel engine exhaust particulate matter

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

345

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network [OSTI]

EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

Tompkins, Brandon T.

2009-05-15T23:59:59.000Z

346

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

SciTech Connect (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

347

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

348

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

349

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect (OSTI)

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

350

Further improvement of conventional diesel NOx aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

351

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

352

Multicylinder Diesel Engine Design for HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

7 DEER Detroit August 12-16 Multicylinder Diesel Engine Design for HCCI operation William de Ojeda Phil Zoldak, Ral Espinoza, Raj Kumar, Chunyi Xia, Dan Cornelius International...

353

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES  

Broader source: Energy.gov (indexed) [DOE]

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES Thierry Leprince & Phil Roberts Extengine Transport Systems, LLC 1370 South Acacia Avenue Fullerton, CA - 92831 www.extengine.com...

354

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

x Sensors for Monitoring Diesel Emissions This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract...

355

Review of Diesel Emission Control Technology  

Broader source: Energy.gov (indexed) [DOE]

Diesel Emission Control Technology Tim Johnson August 2002 2 Outline * Introduction - Regulatory update and technology approaches * Ultrafines * Filters * NOx - LNC - SCR - LNT *...

356

Review of Emerging Diesel Emissions and Control  

Broader source: Energy.gov (indexed) [DOE]

Emerging Diesel Emissions and Control Tim Johnson DEER Conference Dearborn, MI August 4, 2009 2 Corning Incorporated Summary * Criteria pollutant regulatory efforts are focused on...

357

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

358

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

359

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

360

Staged direct injection diesel engine  

DOE Patents [OSTI]

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

362

The California Demonstration Program for Control of PM from Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Research and Technology EPA's AP-42 Emission Factors - Small Diesel SMALL DIESEL (< 600 hp) Emission Factor Emission Factor Emission Factor Emission (lbhp-hr) (g...

363

Microwave Regenerated DPF for Auxiliary Power Units and Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration...

364

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

365

Optimization of an Advanced Passive/Active Diesel Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

366

Low Temperature Combustion and Diesel Emission Reduction Research...  

Broader source: Energy.gov (indexed) [DOE]

Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

367

Advanced Diesel Common Rail Injection System for Future Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

368

Simplification of Diesel Emission Control System Packaging Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

369

Fuel Formulation Effects on Diesel Fuel Injection, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

370

Visualization of UHC Emissions for Low-Temperature Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER...

371

Emissions and Durability of Underground Mining Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given...

372

Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration DPF regeneration experiments verified the...

373

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

374

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

375

Measurement of diesel solid nanoparticle emissions using a catalytic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

376

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

377

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

378

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

379

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

380

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The California Demonstration Program for Control of PM from Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Backup Generators (BUGs) CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab...

382

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Technology, Dr. S. Diamond ** Plasma Science and Fusion Center, MIT ***Sloan Automobile Laboratory, MIT Diesel Plasmatron Reformers * Enhanced conversion of diesel fuel...

383

Modeling Combustion Control for High Power Diesel Mode Switching  

Broader source: Energy.gov (indexed) [DOE]

and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching P-20 Motivation * High power LTC-diesel mode operation * Transient...

384

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

385

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster...

386

EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...  

Broader source: Energy.gov (indexed) [DOE]

April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond Green Diesel, LLC for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April...

387

Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

System (EAS) for On- Highway Diesel Engines Highway Diesel Engines Haoran Hu Eaton Corporation August 22, 2006 2004 Eaton Corporation. All rights reserved. Agenda...

388

Diesel Soot Filter Characterization and Modeling for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Publications Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced...

389

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

390

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

391

Update on Diesel Exhaust Emission Control Technology and Regulations  

Broader source: Energy.gov (indexed) [DOE]

Control Technology and Regulations Tim Johnson August 2004 2 Diesel emission control technology is making significant progress * Diesel regulations are getting tighter in all...

392

Clean Diesel: The Progress, The Message, The Opportunity  

Broader source: Energy.gov (indexed) [DOE]

and are selling... and here's what people here's what people are saying are saying Image, Story Courtesy of Diesel Progress Washington Policymakers Have Seen the New Diesel...

393

Burning Modes and Oxidation Rates of Soot: Relevance to Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given...

394

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

395

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

396

Local Soot Loading Distribution in Cordierite Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

397

Modeling of Diesel Exhaust Systems: A methodology to better simulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

398

AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer...  

Energy Savers [EERE]

09 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports The Vehicle Technologies...

399

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

400

New Cordierite Diesel Particulate Filters for Catalyzed and Non...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CARB Verification of Catalyzed Diesel Particulate Filters for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

402

12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

403

Advances in Diesel Engine Technologies for European Passenger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

404

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

405

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

406

Combination of Diesel fuel system architectures and Ceria-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

407

Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

408

Improvement and Simplification of Diesel Particulate Filter System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

409

A New CFD Model for understanding and Managing Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CFD Model for understanding and Managing Diesel Particulate Filter Regeneration A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration...

410

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

411

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

412

Emission Performance of Modern Diesel Engines Fueled with Biodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

413

Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report  

SciTech Connect (OSTI)

Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

2006-03-01T23:59:59.000Z

414

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

SciTech Connect (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

415

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

416

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

417

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

418

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

419

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

420

Achieving High-Effiency Clean Ccombustion in Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

422

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

423

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

424

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and...

425

Hydrogen generation from plasmatron reformers and use for diesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003...

426

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov (indexed) [DOE]

R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

427

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

428

Multicylinder Diesel Engine for Low Temperature Combustion Operation...  

Broader source: Energy.gov (indexed) [DOE]

Multicylinder Diesel Engine for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low...

429

Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were...

430

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

431

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Diesel Engine Challenges New Feedstocks and Replacement Fuel Diesel Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

432

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor...

433

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel  

Broader source: Energy.gov (indexed) [DOE]

MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

434

Low Temperature Combustion and Diesel Emission Reduction Research |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartment of Energy and Diesel

435

Diesel Emission Control Technology in Review | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |in Review Diesel

436

European Diesel Engine Technology: An Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse EnvironmentalEstimatingin EGR Coolers |Diesel

437

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

SciTech Connect (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

438

Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. I  

E-Print Network [OSTI]

corrosion protection Diesel Diesel Diesel Unleaded gasoline Diesel Single-walled tanks Diesel 70A Diesel Transformer oil

2010-01-01T23:59:59.000Z

439

Geothermal energy and district heating in Ny-Ĺlesund, Svalbard .  

E-Print Network [OSTI]

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ĺlesund. The current energy supply in Ny-Ĺlesund is a diesel generator,… (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

440

Fuel oil and kerosene sales 1995  

SciTech Connect (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method  

E-Print Network [OSTI]

Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

Chen, Haijie

2008-01-01T23:59:59.000Z

442

Oil shale retorting method and apparatus  

SciTech Connect (OSTI)

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

443

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

444

Residential Heating Oil Weekly Heating Oil and Propane Prices (October -  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet) Year

445

Wholesale Heating Oil Weekly Heating Oil and Propane Prices (October -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign salesWestern Hemisphere4 Paul

446

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: VolumeIComplaints -Land Recordof

447

Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

2010-01-01T23:59:59.000Z

448

Diesel Brewing | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska:Dickinson County isDiesel

449

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel prices

450

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps Develop Di-JiaDianneDiesel

451

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue to

452

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices continue

453

Diesel prices continue to decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDiesel prices

454

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to increase

455

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue to

456

Diesel prices continue to rise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continue

457

Renewable Diesel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy Diesel Fuels: Status

458

Sandia National Laboratories: Diesel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure, Not ChemistryDiesel

459

Diesel Reforming for Solid Oxide Fuel Cell Application  

SciTech Connect (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

460

Diesel Locomotive Fueling Problem (LFP) in Railroad Operations  

E-Print Network [OSTI]

Chapter 2 Diesel Locomotive Fueling Problem (LFP) in Railroad Operations Bodhibrata Nag Katta G their operating costs low. About 75% of transport by railroads in the world is based on diesel locomotives by diesel locomotives. One of the major compo- nents in the operating cost of diesel powered rail transport

Murty, Katta G.

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network [OSTI]

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

462

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

463

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

464

Heating Oil and Propane Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL SecretaryHazmat workFAQs for Respondents Q1:

465

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oilheating

466

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating

467

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheatingheating

468

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B

469

Heating Oil and Propane Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHas DrivingData

470

Heating Oil and Propane Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHas

471

Heating Oil and Propane Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPP

472

Heating Oil and Propane Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMaps of

473

Heating Oil and Propane Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMaps

474

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.  

E-Print Network [OSTI]

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

475

Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice  

E-Print Network [OSTI]

McDonald JD: Inhaled diesel emissions alter atheroscleroticinduced by inhalation of diesel exhaust. AtherosclerosisA, Sandstrom T, Newby DE: Diesel exhaust inhalation causes

2013-01-01T23:59:59.000Z

476

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

Scora, George Alexander

2011-01-01T23:59:59.000Z

477

High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel...

478

USED MINERAL-BASED CRANKCASE OIL  

E-Print Network [OSTI]

based crankcase oil vary depending on the brand and type of oil, whether gasoline or diesel fuel was used, the mechanical condition of the engine that the oil came from, and the amount of use between oil changes. Used oil is not naturally found in the environment. What happens to used mineral-based crankcase oil when it enters the environment? q Used mineral-based crankcase oil enters the air through the exhaust system during engine use. q It may enter water or soil when disposed of improperly. q The hydrocarbon components of the oil generally stick to the soil surface. q Some hydrocarbons evaporate into the air very quickly, and others evaporate more slowly. q Hydrocarbon components of the oil that enter surface water bind to small particles in the water and eventually settle to the bottom. q Hydrocarbons from used mineral-based crankcase oil may build up in shellfish or other organisms. q Some metals in used mineral-based crankcase oil dissolve in water and move through the s

Used Mineral-Based Crankcase

479

Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report  

SciTech Connect (OSTI)

This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

Zirker, L.R.; Francfort, J.E.

2003-01-31T23:59:59.000Z

480

Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report  

SciTech Connect (OSTI)

This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

Laurence R. Zirker; James E. Francfort

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Suffolk County Department of Health Services  

E-Print Network [OSTI]

or #6 fuel oil or diesel, used solely for on-site heating or intermittent stationary power production

482

Effect of dietary baobab oil on the hepatic ?-9 desaturase in the rat.  

E-Print Network [OSTI]

baobab seed oil (BO) or heated baobab oil (HBO) or a mixture of palm and sun- flower oils (MO). HeatEffect of dietary baobab oil on the hepatic ?-9 desaturase in the rat. JP Blond A Andrianaivo- seille Cedex 13, France) Refined baobab seed oil is consumed by the Mal- agasy population (inhabitants

Boyer, Edmond

483

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...  

Broader source: Energy.gov (indexed) [DOE]

Properties Affecting Fuel Economy and Engine Wear Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Engine Lubricants: Trends and Challenges...

484

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

fuels: close to home, large supply compatible with petroleum infrastructure some chemistry differences * OUTLINE OF TALK - 2006 vision - Advanced characterization - down to...

485

Natural Oils - The Next Generation of Diesel Engine Lubricants? |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy - ThirdDepartment of

486

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network [OSTI]

are conventional air conditioning and heat pump, given thein heat pump alternative Dummy for oil forced air choiceair choice Dummy for electric baseboard choice Dummy for heat pump

Wood, D.J.

2010-01-01T23:59:59.000Z

487

The effect of air charge temperature on performance, ignition delay and exhaust emissions of diesel engines using w/o emulsions as fuel  

SciTech Connect (OSTI)

Most of the work performed on the use of water/oil emulsions in diesel engines showed that increasing the water content in the emulsified fuel was effective in reducing NO/sub x/ and soot emissions. Unfortunately, the increase in water content in the emulsified fuel also increases the ignition delay and may cause diesel knock. One way to reduce the ignition delay is to increase the air charge temperature. In this study, the effect of increasing the air charge temperature on ignition delay, performance and exhaust emissions was investigated. The experiments were conducted on a CLR diesel engine using base-line diesel fuel number2 and stabilized macro-emulsions containing 15 percent, 30 percent and 45 percent water by volume.

Afify, E.M.; Korah, N.S.; Dickey, D.W.

1987-01-01T23:59:59.000Z

488

Calor de combustăo de Blendas do tipo diesel/biodiesel e diesel/bio-óleo.  

E-Print Network [OSTI]

??Dissertaçăo (mestrado)—Universidade de Brasília, Instituto de Química, 2009. O programa brasileiro de biocombustíveis prevę a adiçăo de 2% de biocombustíveis em diesel até 2008 e… (more)

Andrade, Rômulo Davi Albuquerque

2009-01-01T23:59:59.000Z

489

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

490

Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method  

DOE Patents [OSTI]

A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

Phelps, Amanda C. (Malibu, CA); Kirby, Kevin K. (Calabasas Hills, CA); Gregoire, Daniel J. (Thousand Oaks, CA)

2012-02-14T23:59:59.000Z

491

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

492

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

493

BMW Diesel Engines - Dynamic, Efficient and Clean  

Broader source: Energy.gov (indexed) [DOE]

about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

494

An improved visualization of diesel particulate filter/  

E-Print Network [OSTI]

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

495

French perspective on diesel engines & emissions  

Broader source: Energy.gov (indexed) [DOE]

smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

496

Modeling deposit formation in diesel injector nozzle  

E-Print Network [OSTI]

Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

Sudhiesh Kumar, Chintoo

2009-01-01T23:59:59.000Z

497

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

Saskatchewan has introduced a mandate for inclusion of 2% renewable content in the average annual diesel fuel pool for fuel distributors beginning July 1, 2012. In order to allow industry to fully...

498

Business Case for Light-Duty Diesels  

Broader source: Energy.gov (indexed) [DOE]

Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

499

Optimization and heat and water integration for biodiesel production  

E-Print Network [OSTI]

1 Optimization and heat and water integration for biodiesel production from cooking oil generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies is to simultaneously optimize and heat integrate the production of biodiesel from each of the different oil sources

Grossmann, Ignacio E.

500

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z