Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we ...

2

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal ...

3

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

4

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

5

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

6

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

7

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

8

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

9

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

10

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

11

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

12

heating oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Home; Browse by Tag; Most Popular Tags. ... High heating oil prices discourage heating oil supply contracts for the ...

13

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

14

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

15

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

16

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

17

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

18

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

19

Heating oil prices rise due to winter demand and crude oil prices ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

20

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

22

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

23

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

24

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

25

Investigation of diesel soot mediated oils and additive package on wear.  

E-Print Network (OSTI)

??Contamination of lubricating oil by diesel soot is one of the major causes of increased engine wear. The diesel soot interacts with the engine oil… (more)

Balla, Santhosh Kumar.

2001-01-01T23:59:59.000Z

26

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

27

Gasoline and Diesel Fuel Update Data Revision Notice  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

28

Chinese tallow seed oil as a diesel fuel extender  

SciTech Connect

Chinese tallow and stillingia oil are products obtained from the seed of the unmerchantable, but high yielding Chinese tallow tree. Short-term diesel engine performance tests using mixtures 25%:75% and 50%:50% of Chinese tallow tree seed oil and tallow to diesel fuel gave engine power output, brake thermal efficiencies, and fuel consumption rates within 7% of those obtained using pure diesel fuel. Fuel property values of the extended fuels were found to be within limits proposed for diesel engines. 12 references.

Samson, W.D.; Vidrine, C.G.; Robbins, J.W.D.

1985-09-01T23:59:59.000Z

29

New York Home Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a little slower and spread out over time compared to spot prices. Wholesale prices increased over 50 cents from January 17 to January 24, while retail increased 44 cents in New York. Diesel prices are showing a similar pattern to residential home heating oil prices, and are indicating that home heating oil prices may not have peaked yet, although spot prices are dropping. Diesel prices in New England and the Mid-Atlantic increased 30-40 cents January 24 over the prior week, and another 13-15 cents January 31. Spot prices plummeted January 31, closing at 82 cents per gallon, indicating the worst part of the crisis may be over, but it is still a

30

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

31

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

32

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

33

Capture of Heat Energy from Diesel Engine Exhaust  

DOE Green Energy (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

34

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

35

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

36

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

37

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

38

Straight Vegetable Oil as a Diesel Fuel?  

DOE Green Energy (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

39

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

40

Does EIA have data on shale (or “tight oil ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

North American spot crude oil benchmarks likely diverging ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

42

What is the difference between crude oil, petroleum ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

43

Bakken crude oil price differential to WTI narrows over ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

44

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

45

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

46

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

47

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

48

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

49

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

50

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

51

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

52

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

53

Heating Oil and Propane Update  

Annual Energy Outlook 2012 (EIA)

to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No....

54

EIA: diesel prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

55

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

56

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

Science Conference Proceedings (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

57

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

58

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

59

Industrial Uses of Vegetable OilsChapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats Processing eChapters Processing Press Downloadable pdf of Chapter 4 Biodiesel: An Alternative Di

60

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia: (1) PSZ-TS and (2) PSZ-MS and silicon nitride (GTE WESGO SNW-1000 and Norton NT-154). Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}S{sup {minus}1}. Room temperature tests showed that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. 6 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

62

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

63

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia (PSZ-TS and PSZ-MS), silicon nitride (GTE WESGO SNW-1000 and Norton NT-154), and (Hexoloy SA) silicon carbide. Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}s{sup {minus}1}. Room temperature tests indicated that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. Elevated temperature strength comparisons showed no reduction in strength due to previous engine exposure. Hexoloy SA silicon carbide showed no reduction in fracture strength when tested at 700{degree}C. 4 refs., 12 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1991-01-01T23:59:59.000Z

64

Zone heated diesel particulate filter electrical connection  

DOE Patents (OSTI)

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

65

EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT  

DOE Green Energy (OSTI)

This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

Perez, Joseph

2000-08-20T23:59:59.000Z

66

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

67

Numerical Simulation of Flow Field in Diesel Centrifugal Gas-Oil Separator Basing on CFD  

Science Conference Proceedings (OSTI)

Aiming at the low efficiency problem of the traditional gas-oil separator, this paper put forward a centrifugal gas-oil separator. In order to identify out the interior fluid field character of centrifugal gas-oil separator, RANS equation, RNG k-e model ... Keywords: Diesel, Centrifugal Gas-oil Separator, Flow Field, Separation Efficiency

Zhiguo Zhao

2012-07-01T23:59:59.000Z

68

Recent gasoline and diesel prices track Brent and LLS, not WTI ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

69

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

70

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic...

71

"Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f...

72

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

73

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...  

U.S. Energy Information Administration (EIA) Indexed Site

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons...

74

Crude oil movements from the Midwest to the Gulf Coast on the rise ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... the 5-year moving average is an average of 2005-2009 data; ... Crude oil movements from the Midwest ...

75

DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchase Heating Oil for the Northeast Home Heating Oil Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans residing in the Northeast region of the country. Due to the modest volume of heating oil expected to be purchased with the available funds, no impact on market prices is expected. In 2007 a 35,000 barrel sale was conducted to raise funds necessary to award new long-term storage contracts to fill NEHHOR to its authorized

76

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

77

Crude Oil, Heating Oil, and Propane Market Outlook 2001  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2001/02. It was given by Doug MacIntyre at the 2001 State Heating Oil and Propane Program Conference held in Wilmington, DE on August 13, 2001.

Information Center

2001-08-01T23:59:59.000Z

78

Crude Oil, Heating Oil, and Propane Market Outlook 2003  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2003/04. It was given at the 2003 State Heating Oil and Propane Program Conference held in Asheville, NC on August 11, 2003.

Information Center

2003-04-01T23:59:59.000Z

79

Crude Oil, Heating Oil, and Propane Market Outlook  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2002/03. It was given at the 2002 State Heating Oil and Propane Program Conference held in Kennebunkport, ME on August 12, 2002.

Information Center

2002-08-21T23:59:59.000Z

80

How do I compare heating fuels? - FAQ - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... What is the outlook for home heating fuel prices this winter? Last updated: June 5, 2013 .

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heavy-duty diesel engine oil aging effects on emissions.  

E-Print Network (OSTI)

??Diesel engines are highly reliable, durable and are used for wide range of applications with low fuel usage owing to its higher thermal efficiency compared… (more)

Dam, Mrinmoy.

2010-01-01T23:59:59.000Z

82

The impact of temperature in the fuel diesel - soy oil mixtures  

Science Conference Proceedings (OSTI)

In nowadays there are an increased number of cars and vehicles, which run on gasoline or diesel fuel. As a result of this are the production of air pollution and the need of imported oil as well. There is growing perceived economic and political need ... Keywords: biofuels, fuel temperature, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

83

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

84

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

85

Natural gas liquids play a greater role in oil and gas ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... topping 2 million barrels per day ... 2012. December; ...

86

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

87

Crude oil distillation and the definition of refinery capacity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

88

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

89

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

90

International Petroleum (Oil) Prices webpage provided by EIA  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

91

Energy Security - Oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

92

tight oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

93

Crude oils have different quality characteristics - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

94

State Ranking - Crude Oil Production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

95

oil reserves - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

96

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

97

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

98

Price difference between Brent and WTI crude oil narrowing - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

99

oil prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

100

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

102

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

103

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

104

State heating oil and propane program  

SciTech Connect

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-01-01T23:59:59.000Z

105

Heating Oil Imports Strong in 2001  

Gasoline and Diesel Fuel Update (EIA)

Notes: Although total distillate imports have been unusually strong this winter, heating oil (high-sulfur distillate) imports have grown by a proportionately greater amount. As...

106

Residential heating oil prices virtually unchanged  

Gasoline and Diesel Fuel Update (EIA)

to 3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

107

Household heating fuels vary across the country - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

108

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

109

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

110

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

111

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

342.8 W W 123.0 412.7 W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

112

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

116.7 W W W W 379.0 W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

113

EIA projects record winter household heating oil prices in the ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; states; ... Heating oil prices largely reflect crude oil prices.

114

U.S. Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices for the last four winters, with this yearÂ’s prices shown through January 24, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Although heating oil prices for consumers started this winter at similar levels to those in 1997, they already rose nearly 20 cents per gallon through mid-January. With the continuing upward pressure from crude

115

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International...

116

Review of Bio-oil Upgrading Technologies and Experimental Study on Emulsification of Bio-oil and Diesel  

Science Conference Proceedings (OSTI)

Pyrolysis oil (also called bio-oils) produced from biomass is a promising substitute for fossil fuels. However, bio-oil has many shortcomings, such as high viscosity, high oxygenate content, low stability and low heating value. Therefore, it is hard ... Keywords: Biomass, Fast Pyrolysis, Bio-oil, Upgrading, Emulsification

Qianqian Yin; Shurong Wang; Xinbao Li; Zuogang Guo; Yueling Gu

2010-11-01T23:59:59.000Z

117

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

118

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

119

Does EIA have data on U.S. oil refineries and their locations ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

120

Attributes of crude oil at U.S. refineries vary by region - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Refinery receipts of crude oil by rail, truck, and barge continue ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

122

Drop in U.S. gasoline prices reflects decline in crude oil costs ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

123

Gasoline prices rise due to increased crude oil costs - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

124

Rail deliveries of oil and petroleum products up 38% in first half ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

125

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

126

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

127

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

128

WTI-Brent crude oil price spread has reached unseen levels - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

129

3:2:1 Crack spreads based on WTI & LLS crude oils have diverged in ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... such as LLS, which compete with imported grades whose prices are linked to Brent prices. ...

130

New data show record growth in U.S. crude oil reserves and strong ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

131

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

132

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

133

Bio Diesel Oil of Mustard: Small Diesel a Renewable Alternative Fuel  

Science Conference Proceedings (OSTI)

This paper represents the mustard oil is a kind of renewable energy and alternative fuel of the future. In order to cope with the current situation of load shedding, and reduce dependence on imported fuels, the Bangladesh government to encourage the ... Keywords: Calorific Value, Ester Exchange Reaction, Keywords: Biodiesel, Mustard Oil, Pyrolysis, Viscosity

Liu Hongcong

2013-01-01T23:59:59.000Z

134

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

135

Heating costs for most households are forecast to rise from last ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

136

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

137

Insulated dipole antennas for heating oil shale  

Science Conference Proceedings (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

138

Heating Oil Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

he directed then-Energy Secretary Bill Richardson to establish a two million barrel home heating oil component of the Strategic Petroleum Reserve in the Northeast. The intent was...

139

The Biodiesel Handbook, 2nd EditionChapter 2 History of Vegetable Oil-Based Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 2 History of Vegetable Oil-Based Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters Press   Downloadable pdf of Chapter 2

140

Indirect heating pyrolysis of oil shale  

DOE Patents (OSTI)

Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

Jones, Jr., John B. (Grand Junction, CO); Reeves, Adam A. (Grand Junction, CO)

1978-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

No. 2 heating oil/propane program  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

142

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Fuel demand is affected mainly by economic conditions, and for heating oil, the weather. ... How do I calculate diesel fuel surcharges? How do I compare heating fuels?

143

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

144

Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program  

DOE Green Energy (OSTI)

The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

Frankenfeld, J.W.; Taylor, W.F.

1980-11-01T23:59:59.000Z

145

Industrial Uses of Vegetable OilsChapter 5 Biofuels for Home Heating Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 5 Biofuels for Home Heating Oils Processing eChapters Processing Press Downloadable pdf of Chapter 5 Biofuels for Home Heating Oils from the book ...

146

Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Williamson, Weldon S. (Malibu, CA); Gonze, Eugene V. (Pinckney, MI)

2008-12-30T23:59:59.000Z

147

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

last week to 3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

148

Residential heating oil prices increase  

Gasoline and Diesel Fuel Update (EIA)

last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

149

national average for heating oil  

U.S. Energy Information Administration (EIA)

Propane Missouri North Dakota X South Dakota TOTAL List of States included on Winter Heating Fuels Survey (SHOPP) Release date: January 2012 22.00 24.00. Author: MRO

150

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

151

Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels  

DOE Green Energy (OSTI)

The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

Not Available

1977-07-15T23:59:59.000Z

152

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

153

Connecticut Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.967: 3.925: 3.945: 3.943: 3.943 ...

154

Maine Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.569: 3.575: 3.559: 3.561: 3.559 ...

155

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington,...

156

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

157

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

State Energy Offices State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and noted in the file sent to EIA. Q2: When is this data due to EIA each week? The EIA-877 "Winter Heating Fuels Telephone Survey" will begin the first Monday in October. Data should be submitted to EIA as soon as they are available but no later than noon on Tuesday of each week. Data collection

158

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

159

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

160

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines  

DOE Green Energy (OSTI)

Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

Wiczynski, T.A.; Marolewski, T.A.

1993-03-01T23:59:59.000Z

162

The Biodiesel Handbook, 2nd EditionChapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS F4C73AF32C5BD3F02A46C8467BF15904 Press

163

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

164

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

165

HEATING OF OIL WELL BY HOT WATER CIRCULATION  

E-Print Network (OSTI)

HEATING OF OIL WELL BY HOT WATER CIRCULATION Mladen Jurak Department of Mathematics University.prnic@ina.hr Abstract When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solu- tions to this problem is heating of oil well by hot water

Rogina, Mladen

166

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

167

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

168

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network (OSTI)

1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

Borenstein, Severin

2008-01-01T23:59:59.000Z

169

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

170

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

171

Effect of translucence of engineering ceramics on heat transfer in diesel engines  

DOE Green Energy (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

1992-04-01T23:59:59.000Z

172

Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report  

DOE Green Energy (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

1992-04-01T23:59:59.000Z

173

Iowa Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

174

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

175

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

176

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

177

North Carolina Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

178

Indiana Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

179

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

180

Hydrogen Removal From Heating Oil of a Parabolic Trough ...  

Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life of the Trough and its Components A Method to Selectively Remove & Measure Hydrogen Gas from ...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat Treatment of Oil Country Goods and Tubular Products  

Science Conference Proceedings (OSTI)

Scope, Sponsored by HTS and the Houston Chapter of ASM, this symposium would focus an all aspects of heat treatment related to oil pipe, tube, drill bits, ...

182

Heating Oil Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Heating Oil Outlook Conclusion. Distillate stocks are likely to be higher than last year, but still relatively low Prices likely to average a little lower than last ...

183

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

184

North Carolina Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

185

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

186

Massachusetts Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

187

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

188

New Hampshire Weekly Heating Oil and Propane Prices ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

189

Exploiting Domain Knowledge to Forecast Heating Oil Consumption  

Science Conference Proceedings (OSTI)

The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster

George F. Corliss; Tsuginosuke Sakauchi; Steven R. Vitullo; Ronald H. Brown

2011-01-01T23:59:59.000Z

190

Pennsylvania Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

191

Heating Oil and Propane Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

However, EIA does publish spot prices for heating oil and propane throughout the year which can be accessed by clicking here. In addition, ...

192

New York Home Heating Oil Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

193

Northeast Home Heating Oil Reserve now focuses on New England ...  

U.S. Energy Information Administration (EIA)

The Northeast Home Heating Oil Reserve (NHHOR) will be reduced to one million barrels, half its original size, as the stockpile's holdings are converted to ultra-low ...

194

Vermont Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Weekly heating oil and ...

195

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

196

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

197

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

198

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

199

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Heating Oil: 4.392: 4.402: 4.380: 4.312: 4.314: 4.289: 1990-2013: Wholesale Heating Oil : Residential Propane: 2.902: 2.920: 2.931: 2.928: 2.933: 2.935 ...

200

Heating of Oil Well by Hot Water Circulation  

E-Print Network (OSTI)

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Northeast Home Heating Oil Reserve - Online Bidding System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Heating Oil Reserve » Northeast Services » Petroleum Reserves » Heating Oil Reserve » Northeast Home Heating Oil Reserve - Online Bidding System Northeast Home Heating Oil Reserve - Online Bidding System The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this system and give us your views. You must register to use the system to practice or to participate in an actual emergency sale. Registration assures that you will receive e-mail alerts of sales or other pertinent news. You will also have the opportunity to establish a user ID and password to submit bids. If you establish a user ID, you will receive a temporary password by

202

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

Reports and Publications (EIA)

Presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, discussing the impact of changing product specifications on U.S. gasoline and diesel fuel supply.

Information Center

2006-08-07T23:59:59.000Z

203

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

204

Bio-Heating Oil Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.03/gallon Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

205

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

Science Conference Proceedings (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

206

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

207

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

208

Sulfur content of heating oil to be reduced in northeastern states ...  

U.S. Energy Information Administration (EIA)

Also, the Northeast Home Heating Oil Reserve has switched to ULSD. The Northeast is the largest regional consumer of heating oil in the United States.

209

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

... March 2003 Price Spike August 2003 Price Spike Quarterly World Oil Demand Growth from Previous Year Overview of Market Fundamentals Tight balance in global ...

210

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

211

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

212

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

213

DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Storage Contracts for Northeast Home Heating Oil Reserve Awards Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation in Groton, CT for 400,000 barrels, and Global Companies LLC in Revere, MA for 250,000 barrels. The procurement was conducted by the Defense Logistics Agency (DLA Energy), acting as the agent for DOE. Acquisition of storage services for an additional 350,000 barrels is planned to complete the establishment of a

214

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

215

PADD 1 (East Coast) Heating Oil Stocks Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The East Coast (PADD 1) is the primary heating oil region, and it depends heavily on production from the Gulf Coast (PADD 3) as well. The biggest decline in U.S. stocks has taken place in the heating oil markets of PADD 1 (East Coast), which consumed 86 percent of the nationÂ’s heating oil in 1998. It also is the region with the largest volume of heating oil stocks. PADD 1 was down over 8.4 million barrels on January 21 from the 5-year average stock level for end of January PADD 3, which supplies PADD 1, was down 4.6 million barrels from its 5-year January ending levels. During the week ending January 21, weather in New England was nearly 20% colder than normal for this time of year. This cold weather on top of low stocks was pushing prices up, with

216

Rhode Island Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 3.540: 3.534: 3.540: 3.515: 3.511: 3.514: 1990-2013

217

Northeast Home Heating Oil Reserve- Guidelines for Release  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or...

218

Regional Residential Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices through ...

219

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

220

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars ...  

U.S. Energy Information Administration (EIA)

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

222

PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.  

SciTech Connect

The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

MCDONALD,R.J.

1999-04-01T23:59:59.000Z

223

Vegetable oils: liquid coolants for solar heating and cooling applications  

DOE Green Energy (OSTI)

It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

Ingley, H A

1980-02-01T23:59:59.000Z

224

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

225

Bio-Heating Oil Tax Credit (Personal)  

Energy.gov (U.S. Department of Energy (DOE))

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

226

PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE  

Science Conference Proceedings (OSTI)

The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

1998-04-01T23:59:59.000Z

227

Kinetic modeling of the hydrotreatment of light cycle oil/diesel  

E-Print Network (OSTI)

A rigorous kinetic model of hydrodesulfurization (HDS) of complex mixtures such as light cycle oil (LCO) or diesel has been developed. An experimental setup was constructed to investigate the hydrotreatment of complex mixtures. The hydrodesulfurization of LCO on a commercial CoMo/Al2O3 (IMP) catalyst was investigated in a Robinson Mahoney perfectly mixed flow stationary basket reactor. An experimental investigation of the HDS of the dibenzothiophene (DBT) and substituted dibenzothiophenes in the LCO was carried out at temperatures between 290 and 330°C, space time for dibenzothiophene (W/F0 DBT) between 1000 and 6500 kgcat-h/kmol, and H2/HC molar ratio constant of 2.8. To avoid having to deal with a huge number of parameters in the model, a methodology based on structural contributions was applied. DENs and DENt are the denominators of the Hougen-Watson rate expressions for hydrodesulfurization of dibenzothiophene (DBT) and methyl-substituted dibenzothiophenes contained in the LCO. Both denominators comprise the concentration of all adsorbing species of the LCO multiplied by their adsorption equilibrium constants. The estimation of the denominators DENs and DENt was performed using the Levenberg-Marquardt algorithm and the results in terms of conversion for DBT, biphenyl and cyclohexylbenzene obtained in the hydrodesulfurization of the LCO. The evolution of DENs and DENt values with the composition was calculated for each LCO experiment. Structural contributions were taken from Vanrysselberghe and Froment for hydrogenolysis and hydrogenation of methyl-substituted dibenzothiophenes with a significant reduction in the number of parameters to be estimated in the HDS of the LCO. The multiplication factors, fsDBT, which are products of structural contributions for hydrogenolysis and hydrogenation of the mono- and dimethyl-dibenzothiophenes were also taken from Vanrysselberghe and Froment. These multiplication factors are based on experimental results with model components such as DBT, 4-Methyl dibenzothiophene and 4,6-Dimethyl dibenzothiophene. The results obtained in the modeling are in good agreement with the experimental data because the model reproduces very well the observed total conversions of DBT, conversions of DBT into biphenyl and conversions of DBT into cyclohexylbenzene as a function of temperature.

Castaneda-Lopez, Luis Carlos

2006-12-01T23:59:59.000Z

228

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

229

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

230

Miser campaign boosts oil heat benefits  

SciTech Connect

The MISER oil burner campaign is discussed. The MISER is being promoted to homeowners as an efficient burner that saves them money. The MISER is being promated in the print media, radio, direct mail, service call giveaways, and home energy shows.

Watling, B.J.

1984-11-01T23:59:59.000Z

231

Part load operation and heat recovery optimization in cogeneration units with diesel engines  

Science Conference Proceedings (OSTI)

This paper investigates the optimization possibilities of different co-generation units with diesel engines — especially applied in small and middle-size biogas power plant installations. The first subject of the publication is the analysis of ...

Slawomir Smolen

2008-05-01T23:59:59.000Z

232

Design study of a two-phase turbine bottoming cycle. Final report. [Therminol 66 heated in diesel exhaust  

SciTech Connect

The use of a biphase turbine system to recover waste heat from diesel engines was examined and found to have many favorable attributes. Among these were low rpm, high torque, low heat exchanger cost, and simplicity. Several candidate working fluid combinations were tested at temperatures of interest. The contact heat exchanger concept was substantiated by large scale experiment. The program includes subscale tests of key hardware components of a biphase turbine bottoming system. These are the two-phase nozzle, two-phase turbine, and direct contact heat exchanger. A comprehensive cost analysis was completed. A three-year program leading to a full-size system field demonstration has been planned. Progress in the first year of this program and the effort started on the second year program are reported.

Studhalter, W R

1979-06-15T23:59:59.000Z

233

DOE Announces Award of a Contract to Repurchase Heating Oil for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Award of a Contract to Repurchase Heating Oil for the DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the Northeast Home Heating Oil Reserve (NEHHOR). The purchased oil is expected to be delivered to the Hess First Reserve terminal at Perth Amboy, NJ in New York Harbor later this week. The award resulted from a solicitation issued on June 23, 2008, to repurchase heating oil using $3 million in funds appropriated after the

234

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2012 (EIA)

FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage)...

235

Proceedings of the 1993 oil heat technology conference and workshop  

SciTech Connect

This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1993-09-01T23:59:59.000Z

236

Vehicle Technologies Office: 2002 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Medium-Duty Diesel Engine Shawn Whitacre National Renewable Energy Lab (PDF 356 KB) Natural Oils -- The Next Generation of Diesel Engine Lubricants? Joe Perez The...

237

Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand  

Reports and Publications (EIA)

Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

Elizabeth E. Campbell

2001-02-01T23:59:59.000Z

238

Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division  

SciTech Connect

Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

Volkov, E.L.

1981-01-01T23:59:59.000Z

239

Estimating Impacts of Diesel Fuel Reformulation with Vector-based...  

NLE Websites -- All DOE Office Websites (Extended Search)

On-road diesel fuel Volume, MBD 680.2 688.8 +1.3 Marginal cost, bbl 38.11 38.11 0.0 Home heating oil Volume, MBD 19.3 20.28 +5.0 Marginal cost, bbl 38.05 33.48 -12.0...

240

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. Such alternative fuels in use today consist of bio-alcohols (such as ethanol), hydrogen, biomass, and natural oil/fat derived fuels. However, in this study, the focus will be on the alternative fuel derived from natural oils and fats, namely biodiesel. The following study characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes a John Deere 4.5 liter 4 cylinder direct injection engine with exhaust gas recirculation (EGR), common rail fuel injection, and variable turbo-charging with conventional petroleum diesel to set a reference for comparison. The study then proceeds to characterize the differences in engine performance as a result of using biodiesel relative to conventional diesel. The results show that torque decreases with the use of biodiesel by about 10%. The evaluation of engine performance parameters shows that torque is decreased because of the lower heating value of biodiesel compared to conventional diesel. The insignificant difference between the other performance parameters shows that the ECM demands the same performance of the engine regardless of the fuel being combusted by the engine.

Esquivel, Jason

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

242

Proceedings of the 1991 Oil Heat Technology Conference and Workshop  

Science Conference Proceedings (OSTI)

This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1992-07-01T23:59:59.000Z

243

Performance control strategies for oil-fired residential heating systems  

SciTech Connect

Results are reported of a study of control system options which can be used to improve the combustion performance of residential, oil-fired heating equipment. Two basic control modes were considered in this program. The first is service required'' signals in which an indication is provided when the flame quality or heat exchanger cleanliness have degraded to the point that a service call is required. The second control mode is excess-air trim'' in which the burner would essentially tune itself continuously for maximum efficiency. 35 refs., 67 figs., 2 tabs.

Butcher, T.

1990-07-01T23:59:59.000Z

244

Economics of shale oil production by radio frequency heating  

DOE Green Energy (OSTI)

A conceptual facility for the production of shale oil by radio frequency(rf) heating has been designed to evaluate the economic feasibility of this technique. In the proposed procedure, the shale is processed in situ without being rubbed or explosively fractured. Metal electrodes inserted in a set of vertical drill holes are energized by a group of rf oscillators. The holes bound a block of shale that is to be retorted. The electric field is developed in such a way that heating within the block is almost uniform, and heating outside the block is very low. Retorting of the shale results in a pressure buildup of the hydrocarbon fluids. The oil and gas move horizontally (parallel to bedding planes), then down the electrode holes to a collection manifold. The facility schedule is planned so that off-peak electric power from existing generating stations can be used to operate the oscillators. Thus, the cost of power and the capital requirements for the facility are held to a minimum. Oil production costs and capital requirements indicate that the proposed procedure is economically attractive. The two principal costs are purchase of electric power and mining operations. The largest capital requirement is oscillators and associated electrical equipment.

Mallon, R.G.

1980-05-07T23:59:59.000Z

245

DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accepts Bids for Northeast Home Heating Oil Stocks Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253 barrels Today's sale was the first held as part of the Department's initiative to convert the current 1,984,253-barrel heating oil reserve to cleaner burning ultra low sulfur distillate. Contracts for the heating oil will be executed upon final payment to DOE; final payment is required no later than

246

The gas emissions variation of diesel engine from the combustion of used vegetable oils  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: biofuels, gas emissions, vegetable oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2009-02-01T23:59:59.000Z

247

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

248

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

249

Analysis of Heat Exchanger Network in Atmosphere-Vacuum Distillation of Crude Oil  

Science Conference Proceedings (OSTI)

Heat exchanger network (HEN) is constructed by hot streams which need cooling and some cold streams which need heating in the atmosphere-vacuum distillation process of crude oil. HEN synthesis technology of atmosphere-vacuum distillation of crude oil ... Keywords: energy saving, heat exchanger network, synthesis

Ge Yu-lin; Wang Ping; Shen Sheng-qiang

2011-02-01T23:59:59.000Z

250

DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Sale of Northeast Home Heating Oil Stocks Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague Energy Corp. 100,000 barrels Magellan New Haven Terminal, New Haven, CT Hess Corporation 300,000 barrels Morgan Stanley 450,000 barrels Today's sale was the second held as part of the Department's initiative to convert the 1,984,253 barrel heating oil reserve to cleaner burning

251

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

252

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-12-31T23:59:59.000Z

253

Emerging Heat Exchanger Technologies for the Mitigation of Fouling in Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Over the last three years ESDU have been working with engineers from oil companies and the companies that serve them in order to produce a guide describing the current state of knowledge on fouling in pre-heat trains and ways in which it can be mitigated. One result has been the identification and description of heat exchanger technologies that experience has shown to have a role to play in reducing fouling. This paper describes these developments. As shown elsewhere, the rate at which pre-heat train exchangers foul is controlled by fluid velocity and by wall temperature. Technologies which promote the heat transfer on the crude oil side of an exchanger are therefore favoured. (Note: promotion of the heat transfer on the hot side of the unit is not generally favoured, for this is likely to raise the wall temperature on the crude side). The working party identified three exchanger technologies that made use of this principle: • helical baffles • twisted tubes • tube inserts. These technologies will be discussed in turn.

Polley, G. T.; Pugh, S. J.; King, D. C.

2002-04-01T23:59:59.000Z

254

Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil  

Science Conference Proceedings (OSTI)

Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility with the petroleum-based diesel fuel (PBDF). Therefore, in this study, the prediction of the engine performance and exhaust emissions is carried ... Keywords: ANN, Biodiesel, Diesel engine, Emissions, Engine performance

Mustafa Canakci; Ahmet Necati Ozsezen; Erol Arcaklioglu; Ahmet Erdil

2009-07-01T23:59:59.000Z

255

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

256

New York Home Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

257

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

258

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

259

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network (OSTI)

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of… (more)

Chen, Heng

2010-01-01T23:59:59.000Z

260

Chapter 6: Experimental Studies on the Performance of Catalytically Hydrotreated Fast Pyrolysis oil in a Stationary Diesel Engine  

E-Print Network (OSTI)

, products obtained from hydrothermal upgrading, Fisher-Tropsch diesel from bio-based synthesis gas and bio by a Karl Fisher titration. For the Karl Fisher titrations a 787 KF Titrino device from Metrohm was used

Groningen, Rijksuniversiteit

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced oil burner for residential heating -- development report  

SciTech Connect

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

262

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

263

Design of oil consumption measuring system to determine the effects of evolving oil sump composition over time on diesel engine performance and emissions  

E-Print Network (OSTI)

The automotive industry is currently struggling because of the increasingly stricter emissions standards that will take effect in the near future. Diesel engine emissions are of particular interest because they are still ...

Ortiz-Soto, Elliott (Elliott A.)

2006-01-01T23:59:59.000Z

264

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

265

State heating oil and propane program: Final technical report, 1991-92 heating season, Minnesota Department of Public Service  

SciTech Connect

This report summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1991-92 heating season. The semi-monthly phone surveys were conducted in cooperation with the U. S. Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel, prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail, price information over the course of the heating season.

1992-05-29T23:59:59.000Z

266

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

267

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

268

U.S. Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 2.376: 2.405: 2.413: 2.449: 2.486: 2.489: 1990-2013:

269

Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model  

Reports and Publications (EIA)

The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

Information Center

2009-11-09T23:59:59.000Z

270

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon)  

U.S. Energy Information Administration (EIA)

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date

271

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

272

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Complete Fill of Northeast Home to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due no later than 9:00 a.m., August 31, 2011. Earlier this year, DOE sold its entire inventory of heating oil stocks with plans to replace it with cleaner burning ultra low sulfur distillate. New storage contracts were awarded in August 2011 for 650,000 barrels, and awards from this solicitation will complete the fill of the one million

273

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

1998-11-01T23:59:59.000Z

274

Qualifying Materials for Advanced Heat Transfer Application in Oil ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Corrosion and Corrosion Protection of Materials in the Oil and Gas Industry.

275

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

276

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

277

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

278

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition  

DOE Green Energy (OSTI)

Detailed exhaust emission data have been taken from a Cummins N-14 single cylinder research engine in which the oil consumption was varied by different engine modifications. Low sulfur fuel was used, and oil consumption was varied by modifying the intake valve stem seals, the exhaust valve stem seals, the oil control ring and combinations of these modifications. Detailed measurements of exhaust gas particle size distributions and chemical composition were made for the various oil consumption configurations for a range of engine loads and speeds. The particulate mass was measured with TEOM and traditional gravimetric filter methods. Filter data for EC/OC, sulfates and trace metals have been taken and analyzed. The trace metals in the particulate mass serve as the basis for assessing oil consumption at the different operating conditions. The data indicate that the oil consumption for the steady state testing done here was approximately an order of magnitude below oil consumption values cited in the literature. We did measure changes in the details of the chemical composition of the particulate for the different engine operating conditions, but it did not correlate with changes in the oil consumption. Furthermore, the data indicate that the particle size distribution is not strongly impacted by low level oil consumption variations observed in this work.

Stetter, J; Forster, N; Ghandhi, J; Foster, D

2003-08-24T23:59:59.000Z

279

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

280

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

State of Maine residential heating oil survey: 1994--1995 Season summary  

Science Conference Proceedings (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

282

Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock  

E-Print Network (OSTI)

Increasing fuel prices, stricter government policies, and technological developments made it possible to seek for renewable alternatives, called biofuels, to petroleum fuel. Biodiesel, a biofuel that is produced from chemically mixing animal fat, vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean oil alone cannot meet such a huge demand on biofuel production. Hence, it is important to identify and get more information about other feedstocks, specifically on its effects on the performance and exhaust emissions of diesel engines. The purpose of this study is to investigate the performance and emissions of two diesel engines operating on different biodiesel fuels (i.e. canola oil, sunflower oil, safflower oil, peanut oil, and chicken fat) and compare them to the performance and emissions when the engine is operated on soybean oil-based biodiesel and petroleum-based diesel. Results indicated that an engine operating on biodiesel generates a little less power and torque at any given speed than one running on diesel. Such power and torque loss were attributed to the biodiesel's lower energy content. The lower heating value (energy content) of biodiesel can be reflected in the specific fuel consumption, i.e., to generate the same power, more biodiesel is needed. The reduction in torque and power of less than 10% indicates that in some cases biodiesel has better combustion than diesel. Unfortunately, the high efficiency of combustion may give rise to increased combustion temperature which may lead to higher exhaust emissions. The gradual decrease in the total hydrocarbon and CO2 emissions, as blends were increased from B20 to B100, was also found to be an indication of better combustion using biodiesel fuels than petroleum diesel. However, NOx emissions were higher, predominantly at low speeds for most biodiesel and blends and therefore may require some additives or engine modifications/or adjustments to equalize the NOx emissions of diesel. Other emissions particularly SO2 were lower than standards require.

Santos, Bjorn Sanchez

2009-12-01T23:59:59.000Z

283

Diesel Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

284

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

285

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

286

diesel | OpenEI  

Open Energy Info (EERE)

diesel diesel Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

287

Middle distillate price monitoring system. Interim validation report. [No. 2 heating oil  

SciTech Connect

The Middle Distillate Price Monitoring System collects data on prices and gross margins for No. 2 heating oil from a sample of refiners, resellers, and retailers. The data is used to evaluate the level of competition and the reasonableness of prices in the heating oil market. It is concluded that the data does not provide a basis for determining whether a market is competitive, and that there is serious doubt as to the accuracy of the information collected by the system. Some recommendations are given for improving the quality of the information. (DLC)

Hopelain, D.G.; Freedman, D.; Rice, T.H.; Veitch, J.G.; Finlay, A.

1978-12-01T23:59:59.000Z

288

Identifying Bio-Diesel Production Facility Locations for Home Heating Fuel Applications Within the Midwest Region of the United States.  

E-Print Network (OSTI)

??Amid concerns of rising oil prices, interest into researching alternative renewable energy sources has increased in recent years. A great deal of research has been… (more)

Schafer, Guy M.

2011-01-01T23:59:59.000Z

289

Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Pre-heat trains differ from most other heat recovery networks in a number of important ways. Combination of factors gives rise to the need for a design procedure specific to pre-heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat demand. We next observe that the heat recovery comes from streams a number of streams having similar temperature spans. Looking at typical Composite Curves (Figure 1) we observe that rather than the presence of a distinct and clear 'pinch point', the curves are close together over quite a large temperature region. Consideration of the process leads to the observation that the heating is undertaking in three distinct stages: storage to desalter, desalter to preflash and preflash to column. The operating temperature of both desalter and preflash can only be varied over a relatively small temperature span. Finally, we see that fouling is an important consideration. At the hot end of the train, this fouling is affected by velocity and by exchanger wall temperature. Consideration of fouling must be incorporated into the design procedure.

Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

2002-04-01T23:59:59.000Z

290

What is the difference between crude oil, petroleum products ...  

U.S. Energy Information Administration (EIA)

How do I calculate diesel fuel surcharges? How many gallons of diesel fuel does one barrel of oil make? How much biodiesel is produced, imported, exported, ...

291

Enlaces Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Enlaces Diesel Enlaces Diesel Los siguientes enlaces no son parte del sitio ahorremosgasolina.gov. Le ofrecemos estos enlaces externos para que a su conveniencia tenga acceso a informaciĂłn adicional que puede serle Ăştil o interesante para usted. VehĂ­culos y Fabricantes Diesel Audi A3 (modelos TDI) Q7 (modelos TDI) Mercedes-Benz Mercedes E350 BlueTEC Mercedes GL350 BlueTEC Mercedes ML350 BlueTEC Mercedes R350 BlueTEC Volkswagen Golf (modelos TDI) Jetta (modelos TDI) Jetta Sportwagen (modelos TDI) Touareg (modelos TDI) InformaciĂłn Sobre el Diesel Biodiesel Abundante informaciĂłn sobre el biodiesel proporcionada por el Centro de Datos de Combustibles Alternativos y VehĂ­culos Avanzados (AFDC) Mezclas de Biodiesel ĂŤcono de Adobe Acrobat Informe sobre el debate de las mezclas de biodiesel desarrollado por el programa de Ciudades Limpias del EERE.

292

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

293

The influence of temperature in the gas emissions by using mixtures of diesel & olive seed oil as fuels  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: gas emissions, olive seed oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

294

Diesel - soy oil blends as fuel in a four stroke engine when the fuel temperatures are different  

Science Conference Proceedings (OSTI)

Due to the fact that petroleum is decreased in nowadays and also the fact that the environment sustains a lot of damage, it is necessary to be replaced by renewable fuels that can be used in the engines and are friendlily to the environment. This paper ... Keywords: biofuels, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis; Konstantinos Mitroulas; Marianthi Moschou

2011-12-01T23:59:59.000Z

295

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

Science Conference Proceedings (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

296

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

297

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

298

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine  

E-Print Network (OSTI)

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the biodiesel fuel. In general, NOx formation is dominated by flame temperature. Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high temperature gases. Thus, the cooling effect of soot may change the flame temperature and therefore, NOx emissions. In this study, emphasis is placed on the relationship between soot and NO (Nitric oxide) formation. For the experimental study, a metallic fuel additive is used since barium is known to be effective to suppress soot formation during combustion. The barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John Deere. For the analysis, an analytical model is used to estimate combustion temperature, NO concentration and soot emissivity. The results show that NO concentration does not have the expected trade-off relation with soot. Rather, NO concentration is found to be more strongly affected by ambient temperature and combustion characteristics than by soot. The results of the analytical model show the reasonable NO estimation and the improvement on temperature calculation. However, the model is not able to explain the detailed changes of soot emissivity by the different fuels since the emissivity correlation is developed empirically for diesel fuel.

Song, Hoseok

2012-05-01T23:59:59.000Z

299

Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7 mm straight smooth tube  

SciTech Connect

Two-phase flow patterns and heat transfer characteristics of R410A-oil mixture flow boiling inside a straight smooth tube with the outside diameter of 7.0 mm were investigated experimentally. The experimental conditions include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.56 to 15.12 kW m{sup -2}, the inlet vapor quality from 0.2 to 0.7, nominal oil concentration from 0% to 5%. The test results show that the heat transfer coefficient of R410A-oil mixture increases with mass flux of refrigerant-oil mixture; the presence of oil enhances the heat transfer at the range of low and intermediate vapor qualities; there is a peak of local heat transfer coefficient at about 2-4% nominal oil concentration at higher vapor qualities, and the peak shifts to lower nominal oil concentration with the increasing of vapor qualities; higher nominal oil concentration gives more detrimental effect at high vapor qualities. The flow pattern map of R410A-oil mixture was developed based on refrigerant-oil mixture properties, and the observed flow patterns match well with the flow pattern map. New correlation to predict the local heat transfer of R410A-oil mixture flow boiling inside the straight smooth tube was developed based on flow patterns and local properties of refrigerant-oil mixture, and it agrees with 90% of the experiment data within the deviation of {+-}25%. (author)

Hu, Haitao; Ding, Guoliang; Wei, Wenjian; Wang, Zhence [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Wang, Kaijian [Fujitsu General Institute of Air-Conditioning Technology Limited, Kawasaki 213-8502 (Japan)

2008-01-15T23:59:59.000Z

300

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

302

Coal-fueled diesels for modular power generation  

DOE Green Energy (OSTI)

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

303

Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems  

SciTech Connect

The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

2010-10-21T23:59:59.000Z

304

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

305

Release of gas from heated oil shale and from mixtures of dolomite and quartz  

DOE Green Energy (OSTI)

Experiments and calculations were performed to determine the amount of gas released from heated oil shale. It is known that kerogen, a component of oil shale, releases gas when heated. When the temperature is increased, the kerogen yields not only gas but char, a solid that reacts with steam and CO/sub 2/ (by-products of heated shale) to yield H/sub 2/ and CO. It was found that as much as 200 moles of CO and H/sub 2/ could be produced by the reaction of 1 kg of kerogen with steam at 1200/sup 0/C. Another of the gas-releasing components of oil shale, carbonate minerals, begins to decompose at 500/sup 0/C; decomposition is complete at about 700/sup 0/C after 1000 hr. The minerals begin to decompose at a lower temperature in steam. Reactions among carbonates and silicates resulted in the release of CO/sub 2/ even under high CO/sub 2/ pressure.

Taylor, R.W.

1976-01-12T23:59:59.000Z

306

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

1992-01-01T23:59:59.000Z

307

Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery  

Science Conference Proceedings (OSTI)

Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind ...

S. Guan; G. W. Reuter

1996-08-01T23:59:59.000Z

308

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

309

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

310

A study of diesel PM with X-ray microspectroscopy Artur Brauna,*, Naresh Shaha  

E-Print Network (OSTI)

hydrocarbons, such as residual lubricating oil and diesel fuel and their reaction products. q 2003 Elsevier Ltd lubricant was Havoline 10W30 motor oil. While the total soot sample contained 42.7% extractables, only non, carbon NEXAFS spectra of pure graphite, diesel fuel, and lubricating oil (10W40) were used. The latter

311

State of Maine residential heating oil survey: 1995--1996 season summary  

SciTech Connect

In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years` relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine`s prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other.

Elder, B.

1996-05-01T23:59:59.000Z

312

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

313

ÂżAceite vegetal puro como combustible diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version), Programa de TecnologĂ­as de VehĂ­culos (Vehicle Technologies Program VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

* Junio 2010 * Junio 2010 rápida sino a lo largo del tiempo. Estas son las conclusiones de una cantidad significa- tiva de información técnica publicada en múltiples artículos e informes. Un artículo técnico de SAE 1 reseña los datos publicados sobre el uso de SVO en motores. El artículo señala lo siguiente: "Comparado con el combustible diesel No. 2, todos los aceites vegetales son mucho más viscosos, mucho más

314

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

315

Desempenho de motor ciclo diesel, alimentado com biodiesel de soja e de oliva.  

E-Print Network (OSTI)

??The objective of this work was to compare the acting of a diesel engine using biodiesel of soy oil (B100) and olive (B100), in comparison… (more)

Alexon do Prado Conde

2007-01-01T23:59:59.000Z

316

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

317

SCALE UP OF Si/Si0.8Ge0.2 AND B4C/B9C SUPERLATTICES FOR HARVESTING OF WASTE HEAT IN DIESEL ENGINES  

DOE Green Energy (OSTI)

Thermoelectric devices show significant promise for harvesting and recovery of waste heat from diesel engines, exhaust systems and industrial heat sources. While these devices convert a heat flow directly into electrical energy, cooling can be accomplished by the same device with application of a direct current (Peltier effect). Conversion efficiencies of bulk thermoelectric systems, however, are still too low for economical power conversion in diesel powered vehicles and heavy vehicles. Thermoelectric superlattice devices have demonstrated the potential for increased efficiencies and utilization of waste heat. Although reported efficiencies are well above 15%, fabrication costs are still too high for use in diesel engine systems. To realize this efficiency goal of {approx} 20% and power generation in the kWMW range, large quantities of superlattice materials are required. Additionally, if the figure of merit (ZT) of these superlattices can be increased to > 2, even less superlattice material will be required to generate electric power from heat in diesel engines. We report on development of and recent progress in scale up of Si/Si0.8Ge0.2 and B4C/B9C superlattices for thermoelectric applications, and particularly for fabrication of large quantities of these materials. We have scaled up the magnetron sputtering process to produce large quantities of Si/Si0.8Ge0.2 and B4 C/B9C superlattices with high ZT at low cost. Quantum well films with up to 1000 layers were deposited onto substrate areas as large as 0.5 m2 by magnetron sputtering. Initial studies showed that the power factor of these SL's was high enough to produce a ZT significantly greater than 1. Both p- and n-type superlattices were fabricated to form a complete thermoelectric power generating device. ZT measurements will be reported, and based on measured power factor of these materials, should be significantly greater than 1. These results are encouraging for the use of quantum well materials in thermoelectric power generation.

Martin, P; Olsen, L

2003-08-24T23:59:59.000Z

318

Biodiesel: The clean, green fuel for diesel engines (fact sheet)  

SciTech Connect

Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

Tyson, K.S.

2000-04-11T23:59:59.000Z

319

High Performance Diesel Fueled Cabin Heater  

DOE Green Energy (OSTI)

Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

Butcher, Tom

2001-08-05T23:59:59.000Z

320

Vegetable oils: liquid coolants for solar heating and cooling applications. Semiannual report, September 29, 1978-March 31, 1979  

DOE Green Energy (OSTI)

As high temperature solar energy systems are developed for applications such as refrigeration, heating, cooking, electrical power generation, and industrial processes, the need for inexpensive, reliable heat transfer media (liquid coolants) will become more intense. At present petroleum distillates and synthetic coolants are being utilized for these purposes. Since the use of these substances represents a drain on our natural fuel resources, it has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. This research project was implemented for the purpose of researching such a use. During the conceptual phase of the study, it was recognized that very little data are readily available for predicting the results of using vegetable oils as liquid coolants in high temperature solar systems. Therefore, the major thrust of the project will be to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density and thermal conductivity will be determined over a range of temperatures for corn, soybean, peanut and cottonseed oil. ASTM standard methods will be used for these determinations. Boiling point data and viscosity data have been determined for each of the four oils selected. Chemical analyses have been performed on samples of each oil. The samples were collected before and after each boiling point experiment so that any changes in composition could be noted. The tests include iodine number, fatty acid, and moisture content determination.

Ingley, H A

1979-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

322

Nuclear Maintenance Applications Center: Guide for the Storage and Handling of Fuel Oil for Standby Diesel Generator Systems, Revisi on 3  

Science Conference Proceedings (OSTI)

Diesel engines are used to operate the emergency generators that supply power for many applications such as hospitals, communication facilities, fire water pumps, and nuclear power plants. In order for these engines to perform their intended function, they must have a readily available supply of suitable fuel. This revised guide addresses the concerns associated with long term storage of fuel, as well as techniques for monitoring and reducing the effects of contaminants, which can affect fuel storage sys...

2007-12-21T23:59:59.000Z

323

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 9, 2012 November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the Department of Defense with additional ultra-low sulfur diesel fuel from the Northeast Home Heating Oil Reserve in response to a request from the State of Connecticut. November 2, 2012 Energy Department to Loan Emergency Fuel to Department of Defense as Part of Hurricane Sandy Response Release from Northeast Home Heating Oil Reserve to Provide Additional Source of Diesel for Emergency Response in New York/New Jersey Area August 31, 2012 Energy Department Advances Research on Methane Hydrates - the World's

324

Small oil-fired heating equipment: The effects of fuel quality  

SciTech Connect

The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

Litzke, W.

1993-08-01T23:59:59.000Z

325

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

326

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price...

327

Diesel prices decrease slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago,...

328

Diesel prices rise slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to 4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based...

329

Diesel prices flat  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at 3.89 a gallon on Monday, based on the weekly...

330

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2013 Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on...

331

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

332

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price...

333

Diesel prices increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

334

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

335

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price...

336

Diesel prices flat nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

337

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price...

338

Diesel prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

339

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

340

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oil shale retorting: a correlation of selected infrared absorbance bands with process heating rates and oil yeild  

DOE Green Energy (OSTI)

The measured absorbance for specific infrared bands of Colorado shale oil is correlated with process oil yield and retorting rate. The results show excellent correlations using bands associated with olefinic groups (910, 990 and 1640 cm/sup -1/); analyses were carried out using both quantitative and qualitative infrared methods. No pretreatment of the crude shale oil is required. The results are encouraging enough that, with further development, the method may have potential use as an on-line monitoring technique for various retorting processes.

Evans, R.A.; Campbell, J.H.

1979-01-01T23:59:59.000Z

342

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

343

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

344

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

345

Study of the combined effects of smoking and inhalation of uranium ore dust, radon daughters and diesel oil exhaust fumes in hamsters and dogs. Final report  

SciTech Connect

Exposure to particulates from uranium ore dust and diesel exhaust soot provoked inflammatory and proliferative responses in lungs. Also exposure to radon and radon daughters yielded increased occurrences of bronchiolar epithelial hyperplasia and metaplastic changes of alveolar epithelium. The data suggest that this cellular change is also a precursor of premalignant change in hamsters. The authors suggest an animal model other than the hamster based on two observations: (1) the Syrian golden hamster has been shown to be highly refractory to carcinoma induction; and (2) that when exposed to realistic levels of agents in life-span exposure regimens, the hamster does not develop lesions. Dog studies with cigarette smoke exposure showed mitigating effects on radon daughter induced respiratory tract cancer. Two reasons are suggested although no empirical evidence was gathered. A strict comparison of human and animal exposures and interpolative models are not possible at this time. (PCS)

Cross, F.T.; Palmer, R.F.; Filipy, R.E.; Busch, R.H.; Stuart, B.O.

1978-09-01T23:59:59.000Z

346

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes  

Science Conference Proceedings (OSTI)

Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu. [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

2010-10-15T23:59:59.000Z

347

Earthship BioDiesel | Open Energy Information  

Open Energy Info (EERE)

Earthship BioDiesel Earthship BioDiesel Jump to: navigation, search Name Earthship BioDiesel Place Taos, New Mexico Zip 87571 Product Supplier and retailer of biodiesel made from Waste Vegetable Oil. Coordinates 36.4116°, -105.574251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4116,"lon":-105.574251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Energy & Financial Markets: What Drives Crude Oil Prices? - Energy  

U.S. Energy Information Administration (EIA) Indexed Site

& Financial Markets - U.S. Energy Information Administration (EIA) & Financial Markets - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

349

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

350

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

351

State of Missouri: State Heating Oil and Propane Program (SHOPP). Final performance report, August 8, 1993--July 1, 1994  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program is to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1993 through April 1994, and (2) Collection of annual Bales volume data for residential propane for the period September 1, 1992 through August 31, 1993. This data was required for the first report only. (3) Due to extenuating circumstances surrounding propane stocks particularly in the Midwest and East Coast, additional surveys were requested by the EIA. The additional survey dates were April 4 and 18th for residential propane only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting option (PEDRO).

Buchanan, J.A.

1994-07-01T23:59:59.000Z

352

Development of Extraction Techniques for the Detection of Signature Lipids from Oil  

E-Print Network (OSTI)

has been shown previously in oil samples (Hallman, 2008)of signature lipids from oil Sharon Borglin, Olivia Mason, were combined with model oil samples and oil/diesel mixtures

Borglin, Sharon

2011-01-01T23:59:59.000Z

353

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

354

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

DOE Green Energy (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

355

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network (OSTI)

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn oils with low-viscosity diesel and jet fuel mixed with butanol and ethanol were studied. Several corn oil-based blends were formulated and characterized to understand the effect of composition on viscosity, fuel stability and energy content. The formulated corn oil blends were combusted in a 30 kW modified combustion chamber to determine the corresponding NOx and CO emission levels, along with CO? levels. Used corn oil was made by simply heating fresh corn oil for a fixed period of time (about 44 hours), and was characterized by quantifying its total polar material (TPM), iodine value, free fatty acid content, and peroxide value. The combustion experiments were conducted at a constant heat output of 68,620 kJ/hr (19 kW), to observe and study the effects of equivalence ratio, swirl number, and fuel composition on emissions. Used corn oil blends exhibited better combustion performance than fresh corn oil blends, due in part to the higher unsaturation levels in fresh corn oil. NOx emissions for used corn oil increased with swirl number. Among all the blends, the one with the higher amount of diesel (lower amount of corn oil) showed higher NOx emissions. The blend with fresh corn oil showed decreasing NOx with increasing equivalence ratio at swirl number 1.4. All blends showed generally decreasing CO trends at both swirl numbers at very lean conditions. The diesel fuel component as well as the alcohols in the blends were also important in the production of pollutants. Compared to the diesel-based blends mixed with used corn oil, butanol, and ethanol, the jet fuel-based blends showed higher NOx levels and lower CO levels at both swirl numbers.

Savant, Gautam Sandesh

2012-05-01T23:59:59.000Z

356

Electrical diesel particulate filter (DPF) regeneration  

SciTech Connect

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

357

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

358

Table A13. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Combustible Inputs of Energy for Heat, Power, and" 3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural Gas(c)",,"and Breeze)","RSE" ,"Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","LPG","(1000 short","Row"

359

Argonne Transportation - Diesel Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

360

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE PERFORMANCE OF SMDS DIESEL FUEL MANUFACTURED BY SHELL'S GtL TECHNOLOGY  

DOE Green Energy (OSTI)

The Royal Dutch/Shell Group's (Shell's) Gas to Liquids (GtL) technology, better known as the Shell Middle Distillate Synthesis (SMDS) process, converts natural gas into diesel and other products via a modem improved Fisher-Tropsch synthesis. The diesel cut has very good cetane quality, low density, and virtually no sulphur and aromatics; such properties make it valuable as a diesel fuel with lower emissions than conventional automotive gas oil.

Clark, Richard H.

2000-08-20T23:59:59.000Z

362

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network (OSTI)

to the building below The sun's heat hits the roof surface A non-residential cool roof Coating for a low. These requirements apply only to buildings that are mechanically heated or cooled. What are the minimum requirementswhat is a cool roof? what is the solar reflectance index (sri)? SRI combines SR and TE

Choate, Paul M.

363

North Dakota crude oil production continues to rise ...  

U.S. Energy Information Administration (EIA)

... diesel, propane, and other liquids including ... North Dakota's oil production averaged 660 thousand barrels per day (bbl/d) in June 2012, ... Add ...

364

Rising North Dakota oil production and demand spurs two new ...  

U.S. Energy Information Administration (EIA)

The Trenton Diesel Refinery, whose parent company is Dakota Oil Processing, is expected to cost $200 million to build and start-up.

365

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Conference Proceedings (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

366

Influence of biofuels on the internal flow in diesel injector nozzles  

Science Conference Proceedings (OSTI)

In this paper, the behavior of the internal nozzle flow of a standard diesel fuel has been compared against a biodiesel fuel (soybean oil) at cavitating and non-cavitating conditions, using a homogeneous equilibrium model. The model takes into account ... Keywords: Biodiesel, Cavitation, Diesel injector, Internal flow, Nozzle, OpenFOAM®

F. J. Salvador; J. MartíNez-LóPez; J. -V. Romero; M. -D. Roselló

2011-10-01T23:59:59.000Z

367

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

368

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... commercial buildings, manufacturing, and transportation. ... Solar › Energy in Brief ...

369

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... commercial buildings, manufacturing, ... solar, wind, geothermal, ...

370

U.S. natural gas exports to Mexico reach record high in 2012 ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... (Bcf/d) in 2012, ... According to company announcements, ...

371

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

372

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

to 3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in...

373

Alaska No 2 Diesel Adj Sales/Deliveries to On-Highway Consumers ...  

U.S. Energy Information Administration (EIA)

Alaska No 2 Diesel Adj Sales/Deliveries to On-Highway Consumers (Thousand Gallons) Decade Year-0 Year-1 Year-2 ... Adjusted Sales of Distillate Fuel Oil for On ...

374

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

375

The diesel approach  

Science Conference Proceedings (OSTI)

Whether for standby or baseload capacity, diesel generator sets are being used in markets worldwide. Companies are taking a variety of approaches to tapping these markets. The markets for diesel generators follow two basic paths. In the US, they are used primarily for standby or peaking applications. Outside the US, the market includes standby applications but is more often for baseload or prime-power applications.

Anderson, J.L.

1993-04-01T23:59:59.000Z

376

Diesel Engine Analysis Guide  

Science Conference Proceedings (OSTI)

This guide provides a thorough background on diesel engine analysis including combustion, vibration, and ultrasonic analysis theory. Interpretation of results is also provided. This guide is intended to enable nuclear utility personnel to make informed decisions regarding the nature and use of diesel engine analysis, including how to set up an effective program, how to establish analysis guidelines, how to make use of the resulting data to plan maintenance, determine the causes of off-design operating co...

1997-10-09T23:59:59.000Z

377

Home - Energy Explained, Your Guide To Understanding Energy ...  

Annual Energy Outlook 2012 (EIA)

Surcharges Diesel & the Environment Heating Oil Where Our Heating Oil Comes From Use of Heating Oil Prices and Outlook Factors Affecting Heating Oil Prices Propane Delivery and...

378

The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000  

Science Conference Proceedings (OSTI)

This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to establish a heating oil component of the Strategic Petroleum Reserve in the Northeast, and 2 million barrels of heating oil are now stored in the reserve. Other possible policy options are outlined.

None

2000-11-01T23:59:59.000Z

379

An Experimental Investigaton of the Effect of Oil on Convective Heat Trasfer and Pressure Drop of a HFC-32/HRC-125 Mixture  

E-Print Network (OSTI)

The heat transfer coefficients and pressure drops of HCFC-22 and a 50% mass mixture of HFC-32/HFC-125 were experimentally measured under flow boiling conditions in a smooth tube. The refrigerants were flowed through an 8 mm diameter smooth tube at mass fluxes of 277, 434, 520 and 700 kg/sm^2. Heat fluxes were applied at values of 5100, 7100 and 11000 W/m^2. The heat transfer coefficients and pressure drops were measured at refrigerant qualities of 10, 15, 20, 25, 30, 40 and 60 percent. The refrigerants were examined at temperatures near 4°C. Oil was added to the HFC-32/HFC-125 mixture in concentrations of 2.6% and 5.4%. Experiments were repeated with the oil laden refrigerant. The heat transfer coefficients for HCFC-22 increased with quality, mass flux and heat flux. The heat transfer coefficients for HFC-32/HFC-125 often decreased at low qualities and increased with quality at high qualities. The pressure drop increased with quality and mass flux for both refrigerants. The heat transfer had a minimal effect upon pressure drop. HFC-32/HFC-125 had a lower pressure drop than HCFC-22 for all conditions. The addition of oil increased the pressure drop. A pressure drop correlation and heat transfer correlation were developed for HFC-32/HFC-125.

McJimsey, Bert Ashford

1994-12-01T23:59:59.000Z

380

100 area diesel performance data  

Science Conference Proceedings (OSTI)

Performance data for diesel engine-generator sets was collected to aid an analysis of the electric power system being conducted by an offsite consultant. Diesels in three different services were studied: emergency power (GM) diesels, 903 fan backup diesels and the Caterpillar diesels that power the dc motors for the D/sub 2/O pumps. It was convenient to collect data for the ECS booster pump diesel at the same time, even though it is not part of the electric power system. The results are published here to make them more widely available.

Smith, J.A.; Tudor, A.A.

1984-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

382

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

383

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

384

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

WOW operates in the energy efficiency field- one of the fastest growing energy sectors in the world today. The two key products - WOWGen® and WOWClean® provide more energy at cheaper cost and lower emissions. •WOWGen® - Power Generation from Industrial Waste Heat •WOWClean® - Multi Pollutant emission control system. Current power generation technology uses only 35% of the energy in a fossil fuel and converts it to useful output. The remaining 65% is discharged into the environment as waste heat at temperatures ranging from 300°F to 1,200°F. This waste heat can be captured using the WOWGen® technology and turned into electricity. This efficiency is up to twice the rate of competing technologies. Compelling economics and current environmental policy are stimulating industry interest. WOWGen® power plants can generate between 1 - 25 MW of electricity. Project payback is between two to five years with IRR of 15% 30%. Nearly anywhere industrial waste heat is present, the WOW products can be applied. Beneficial applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas (pipeline compression stations, processing plants). Sources such as stack flue gases, steam, diesel exhaust, hot oil or combinations of sources can be used to generate power. WOWGen® can also be used with stand alone power plants burning fossil fuels or using renewable energy sources such as solar and biomass.

Romero, M.

2009-05-01T23:59:59.000Z

385

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

386

Diesel Nuevos y Por Venir  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Nuevos y Por Venir Nuevos Modelos Diesel del 2014 Vehculo Estimados de MPG de la EPA Precios (MSRP) Audi A8 L Automvil Grande Audi A8 L Chart: Ciudad, 24; Carretera, 36;...

387

Diesel prices slightly decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.97 a gallon on Monday. That's down 7-tenths of a penny from a week...

388

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

389

Diesel prices see slight drop  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to 3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago,...

390

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based...

391

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 3 cents from a week ago based on the...

392

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the...

393

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.94 a gallon on Monday. That's down 3 12 cents from a week ago, based...

394

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

395

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the...

396

Diesel prices remain fairly stable  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to 3.85 a gallon on Monday. That's down 6-tenths of a penny from a week...

397

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 5 12 cents from a week ago, based on the...

398

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the...

399

Diesel prices slightly increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's up 4-tenths of a penny from a...

400

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

402

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the...

403

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down a penny from a week ago, based on the...

404

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.83 a gallon on Monday. That's down 2 cents from a week ago, based on the...

405

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

406

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

4, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based...

407

Predicting the products of crude oil distillation columns.  

E-Print Network (OSTI)

??Crude oil distillation systems, consisting of crude oil distillation columns and the associated heat recovery systems, are highly energy intensive. Heat-integrated design of crude oil… (more)

Liu, Jing

2012-01-01T23:59:59.000Z

408

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

409

A Study of a Diesel Engine Based Micro-CHP System  

DOE Green Energy (OSTI)

This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

2010-08-31T23:59:59.000Z

410

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

411

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

412

STATEMENT OF CONSIDERATIONS PETITION BY DETROIT DIESEL CORPORATION (DDC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BY DETROIT DIESEL CORPORATION (DDC) BY DETROIT DIESEL CORPORATION (DDC) FOR ADVANCE WAIVER OF U.S. AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER MODIFICATION 17 TO CONTRACT DEN-3-329 [W(A)93-043] The Petitioner is asking for U.S. and foreign patent rights to all subject inventions made under DOE Contract DEN-3-329, Modification 17, entitled "Adiabetic Diesel Engine Component Development". This entire contract is being funded by DOE, but is being administered by the NASA Lewis Research Center. The entire contract has as its object the successful design, fabrication, and demonstration of five stationary and moving structural monolithic ceramic components in an extremely hostile Low Heat Rejection (LHR) environment. DDC was formed in January 1988 to design, manufacture, and sell diesel engines. It is a joint-venture company 80% owned by

413

High-alcohol microemulsion fuel performance in a diesel engine  

DOE Green Energy (OSTI)

Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

West, B.H.; Compere, A.L.; Griffith, W.L.

1990-01-01T23:59:59.000Z

414

Consideration of Fouling During the Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Over the last five years significant progress has been made in the modelling of fouling in refinery pre-heat exchangers. In this paper we consider how such information can be exploited in the design of individual units and networks, and what information is still missing and how such data can be obtained.

Polley, G. T.; Pugh, S. J.; Wilson, D. I.

2001-05-01T23:59:59.000Z

415

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

416

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

417

Diesel Engine Alternatives  

DOE Green Energy (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

418

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Home; Browse by Tag; Most Popular Tags. ... High heating oil prices discourage heating oil supply contracts for the ...

419

NREL: News - NREL to Help Convert Methane to Liquid Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL to Help Convert Methane to Liquid Diesel Advanced research project could lead to lower greenhouse emissions, new life for spent gas and oil wells January 3, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help develop microbes that convert methane found in natural gas into liquid diesel fuel, a novel approach that if successful could reduce greenhouse gas emissions and lower dependence on foreign oil. The amount of natural gas simply flared or vented from oil wells globally is enormous - equal to one-third of the amount of petroleum used in the United States each year. And every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.

420

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network (OSTI)

Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University and compares the emissions of a 100 percent blended feed stock biodiesel to an ultra low sulfur diesel certification fuel. The steady state tests were conducted while holding engine speed constant at three different speeds and three different loads. The gaseous emissions, exhaust gas recirculation, fuel flow rate, and torque were monitored and recorded for 300 points per test. Four tests were performed and the results were averaged per each fuel. Carbon monoxide, carbon dioxide, oxygen, and oxides of nitrogen emissions were analyzed. The biodiesel averaged up to 12% lower torque, 5.4% more fuel, 7.5% less carbon dioxide, 29% more oxygen, and 29% more oxides of nitrogen. Overall the biodiesel produced less torque and carbon dioxide emissions, while emitting more oxygen and oxides of nitrogen.

Tompkins, Brandon T.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

422

How much oil is produced in Alaska and where does it go ...  

U.S. Energy Information Administration (EIA)

... diesel, propane, ... In 2012, it was nearly 192 million barrels, ... How dependent is the United States on foreign oil? How many gallons of ...

423

Biodiesel synthesis from spent frying vegetable oils over heterogeneous inorganic catalysts.  

E-Print Network (OSTI)

??Biodiesel derived from renewable plant seed oils and animal fats is a promising alternative to fossil diesel fuel. Commercially, triglyceride transesterification and free fatty acid… (more)

Al-Zaini, Essam O. Ali

2012-01-01T23:59:59.000Z

424

OIL & GAS HISTORY 1 History in California  

E-Print Network (OSTI)

to reduce consumption of imported oil, developing renewable diesel plays a vital role industry is the availablilty of affordable vegetable oil feedstocks and the competition of current feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil

425

Engine performance and exhaust emissions from a diesel  

E-Print Network (OSTI)

Non-road diesel engines are significant contributors to air pollution in the United States. Recent regulations put forth by EPA and other environmental agencies have laid out stringent guidelines for engine manufacturers and fuel producers. Recent increases in oil prices and foreign energy dependency has led to a push to produce renewable fuels, which will supplement current reserves. Biodiesel is a clean-burning renewable fuel, that can be blended with petroleum diesel. It is important to understand the effect on engine performance and exhaust emissions when using biodiesel from different feedstocks. The objective of this research was to determine the relationship between engine performance and emissions and cottonseed oil biodiesel used in a diesel engine rated for 14.2 kW. When using cottonseed oil biodiesel blends, CO, hydrocarbon, NOx, and SO2 emissions decreased as compared to petroleum diesel. Carbon dioxide emissions had no definitive trend in relation to cottonseed oil biodiesel blends. Carbon monoxide emissions increased by an average 15% using B5 and by an average of 19% using B100. Hydrocarbon emissions decreased by 14% using B5 and by 26% using B100. Nitrogen oxide emissions decreased by four percent with B5, five percent with B20, and 14% with B100. Sulfur dioxide emissions decreased by an average of 86% using B100, and by 94% using B50 blended with ultra-low sulfur diesel. The difference between peak output power when using biodiesel and diesel was insignificant in blends less that B40. Peak measured power using B100 was about five percent lower than for diesel fuel. Pure cottonseed oil biodiesel achieved and maintained a peak corrected measured power of 13.1 kW at speeds of 2990, 2875, and 2800 rpm at loads of 41.3, 42.7, and 43.8 N-m. Using B5 produced a peak power of 13.6 kW at 2990 rpm and 43.9 N-m and at 2800 rpm and 46.7 N-m, while using B20 produced a peak power of 13.4 kW at 2990 rpm and 43.7 N-m. Brake-specific fuel consumption at peak measured load and torque using B100 was 1238 g/kW-h. Brake-specific fuel consumption at peak measured power and loads using B5 and B20 were 1276 and 1155 g/kW-h.

Powell, Jacob Joseph

2007-12-01T23:59:59.000Z

426

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

Science Conference Proceedings (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

427

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

428

A Study of the Use of Jatropha Oil Blends in Boilers  

DOE Green Energy (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

Krishna, C.R.

2010-10-01T23:59:59.000Z

429

Nevada - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... The Handbook of Texas Online, Petrochemical Industry: Oil and Gas: University of Texas, ...

430

Kuwait - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Kuwait has implemented enhanced oil recovery measures to boost stagnant production rates.

431

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

432

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

U.S. Energy Information Administration (EIA)

II — Midwest ..... 3,533,120 460,000 (13.0) 376,500 (10.7) III — Gulf Coast ... 25Differences in the average refiner prices for diesel fuel and heating

433

Heating  

SciTech Connect

According to The Hydronics Institute, the surge in gas-fired boiler shipments brought about 3 years ago by high oil prices and the availability of natural gas after years of curtailment has almost competely subsided. Gas prices continue to escalate and the threat of decontrol by 1985 continues. Likewise, the Gas Appliance Manufacturers Association reports that shipments of gas-fired unit heaters, duct furnaces, and wall furnaces have also dropped as homeowners adopt a wait-and-see attitude toward conversion. However, the market for high- and ultra-high-efficiency furnaces appears to hold potential for expansion. Because of the rebounding home market, a steady replacement market, and increased sales for reasons of efficiency, GAMA expects the total (gas, oil, and electric) central furnace market to increase by 16% in 1983.

1983-04-04T23:59:59.000Z

434

Southeast BioDiesel | Open Energy Information  

Open Energy Info (EERE)

BioDiesel Jump to: navigation, search Name Southeast BioDiesel Place Charleston, South Carolina Product Biodiesel producer based in South Carolina References Southeast BioDiesel1...

435

Ultra-Low Sulfur Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection Agency requires 80% of the highway diesel fuel refined in or...

436

Diesel de Azufre Ultra Bajo  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel de Azufre Ultra Bajo Diesel de Azufre Ultra Bajo ULSD LSD Off-Road Diesel para Carretera de Azufre Ultra Bajo (máximo de 15 ppm de azufre). Se requiere su uso en todos los motores y vehículos diesel de carretera modelos 2007 y posteriores. También se recomienda su uso en todos los vehículos y motores diesel. Diesel para Carretera Bajo en Azufre (máximo de 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores modelos 2007 y posteriores, su uso podría dañarlos. Combustible Diesel que no es para Carretera (puede exceder 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores que no son de carretera, su uso podría dañarlos. Los consumidores con vehículos modelo 2007 ó posteriores deben utilizar solo diesel ultra bajo de azufre (ULSD). El ULSD es un diesel de

437

Cermet Filters To Reduce Diesel Engine Emissions  

DOE Green Energy (OSTI)

Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

Kong, Peter

2001-08-05T23:59:59.000Z

438

Novel techniques for the denitrogenation of shale oil. Final report, January 1, 1982-March 31, 1984  

DOE Green Energy (OSTI)

The objective of this project is to test the feasibility of a novel process to denitrogenate shale oil and selected distillate fractions by mild catalytic hydrogenation followed by ion exchange. Emphasis is directed toward the study of the ion exchange portion of the process. Using both bench- and pilot-scale units, research was first undertaken to produce a series of samples of mildly hydrogenated shale oils which were then distilled into naphtha, jet fuel, diesel fuel, gas oil and residue. Experiments were performed to determine the relative thermal stability (at somewhat elevated temperatures) of various hydrogenated and ion-exchange treated jet and diesel fuels. Ion exchange markedly improved the stability of raw shale oil. However, the stability of the mildly hydrotreated shale-derived jet fuel was made worse by adding ion-exchange treatment, presumably as a result of removing some of the lower level stabilizers (i.e., phenolics). All samples of shale-derived jet fuel, except the highly hydrogenated P67-154 jet fuel, were less stable than petroleum-derived jet A. In contrast to the above, the raw shale-derived diesel fuel was more stable than petroleum-derived No. 2 heating oil. Mild hydrotreating effected some improvement in stability. A study of the results with Amberlyst-15 resin shows that the process economics are most favorable for the ion exchange of jet fuel when the shale oil hydrotreating severity is high and the nitrogen content of the charge to ion exchange is relatively low. Although ion exchange is not economical in these cases, it appears to be economical when the weight percent nitrogen in the charge to the ion exchange is below 0.05 wt %. Significant savings are possible by minimizing the amount of resin used and by maximizing the number of cycles before discarding the resin. This appears to be realizable using Rohm and Haas XE-397 resin. 14 references, 46 figures, 28 tables.

Cronauer, D.C.

1985-02-01T23:59:59.000Z

439

Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October–December 2004  

SciTech Connect

This Oil Bypass Filter Technology Evaluation quarterly report (October–December 2004) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL; formerly Idaho National Engineering and Environmental Laboratory) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight INL four-cycle diesel-engine buses used to transport INL employees on various routes and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. This quarter, three additional buses were equipped with bypass filters from Refined Global Solutions. Oil bypass filters are reported to have an engine oil filtering capability of less than 1 micron. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminate from the oil. During the quarter, the eleven diesel engine buses traveled 62,188 miles, and as of January 3, 2005 the buses had accumulated 643,036 total test miles. Two buses had their engine oil changed this quarter. In one bus, the oil was changed due to its degraded quality as determined by a low total base number (<3.0 mg KOH/g). The other bus had high oxidation and nitration numbers (>30.0 Abs/cm). Although a total of six buses have had their oil changed during the last 26 months, by using the oil bypass filters the buses in the evaluation avoided 48 oil changes, which equates to 1,680 quarts (420 gallons) of new oil not consumed and 1,680 quarts of waste oil not generated. Therefore, over 80% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved over 80% reduction in the amount of waste oil normally generated. The six Tahoe test vehicles traveled 39,514 miles, and as of January 3, 2005 the Tahoes had accumulated 189,970 total test miles. The Tahoe filter test is in transition. To increase the rate of bypass filter oil flow on the Tahoes, puraDYN provided a larger orifice assembly, and these are being changed out as the Tahoes come in for regular service.

Larry Zirker; James Francfort; Jordan Fielding

2005-02-01T23:59:59.000Z

440

Diesel Idling Reduction | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Diesel Idling Reduction Jump to: navigation, search Tool Summary Name: Diesel Idling Reduction AgencyCompany...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

Beginning July 26, 2010 publication of Ultra Low Sulfur Diesel (ULSD) price became fully represented by the Diesel Average All Types price. As of December 1, ...

442

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Get the RSS feed. Release Schedule. Details... Procedures, Methodology & CV's Gasoline Diesel fuel. ... How do I calculate/find diesel fuel surcharges? ...

443

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

444

Louisiana Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Louisiana Downstream Charge Capacity of Operable ...

445

O2Diesel Corporation formerly Dynamic Ventures | Open Energy Information  

Open Energy Info (EERE)

O2Diesel Corporation formerly Dynamic Ventures O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name O2Diesel Corporation (formerly Dynamic Ventures) Place Newark, Delaware Zip 19713 Product O2Diesel Corporation has a proprietary additive made from fats and oils, which facilitates the blending of ethanol with diesel. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Coal-fueled diesel locomotive test  

DOE Green Energy (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

447

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP). Final report, August 9, 1991--August 8, 1992  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

1992-12-31T23:59:59.000Z

448

Diesel prices continue to fall  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to 4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly...

449

Diesel prices continue to rise  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to rise The U.S. average retail price for on-highway diesel fuel rose to 4.16 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly...

450

Diesel prices up this week  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices up this week The U.S. average retail price for on-highway diesel fuel rose sharply to 4.10 a gallon on Monday. That's up 8.2 cents from a week ago and 17.7 cents...

451

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

452

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesels Diesels Diesel Vehicle Federal tax credit up to $3,400! Some diesels purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. (No eligible vehicles were manufactured for sale until 2008.) Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible hybrid and diesel vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. Audi BMW Mercedes-Benz Volkswagen All Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Audi Jan. 1, 2006 July 1 - Dec. 31, 2010 Not Applicable Jan. 1, 2011 Audi A3 TDI 2010-11 Audi A3 2.0L TDI $1,300 $650 -- $0

453

Conversion of Furnace oil fired boiler to biomass(Gliricidia) fired (External/Internal) furnace boiler; NA.  

E-Print Network (OSTI)

?? In the present era, with the prevailing competition, the cost of production plays a vital role. As the price of petroleum oils, especially diesel… (more)

Channa Gaya Siriwardhana, Kahandawa Arachchilage

2010-01-01T23:59:59.000Z

454

Behavior of oil muds during drilling operations  

Science Conference Proceedings (OSTI)

This paper presents an analysis of the behavior of diesel-oil-based muds with an advanced thermal and hydraulic wellbore mathematical simulator. Recent diesel-oil-mud rheological correlations have been incorporated into the model to account for viscosity and density variations of oil mud with temperature and pressure. As rheological correlations are developed for other oil-based muds, such as mineral-oil based muds, they can also be incorporated into the model. A specific deep-well application of the model illustrates the behavior of the oil-based muds and shows the differences between water-based mud and oil-mud for local fluid densities during drilling, circulating, and static conditions. Temperature and density profiles are presented for various operating conditions to show that modeling improves the understanding of oil-mud behavior downhole.

Galate, J.W.; Mitchell, R.F.

1986-04-01T23:59:59.000Z

455

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

456

Portec Voltage Regulators: for Emergency Diesel Generators  

Science Conference Proceedings (OSTI)

This report contains information to help utilities address emergency diesel generator voltage regulator issues.

2004-12-15T23:59:59.000Z

457

Diesel fuel component contribution to engine emissions and performance. Final report  

DOE Green Energy (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

458

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Price Cap Cost Gas Heat Cap Cost Oil Heat Electric Share GasPrice Cap Cost Gas Heat Cap Cost Oil Heat 3. Summary of WorkEPRI [this study] Cap Cost Elec Heat Oil Price Income Gas

Wood, D.J.

2010-01-01T23:59:59.000Z

459

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

460

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Residential Heating Oil Prices  

U.S. Energy Information Administration (EIA)

We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly.

462

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

463

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

464

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

465

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

466

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

467

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

468

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas. ... Diesel fuel prices, ...

469

VehĂ­culos Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehículos Diesel Vehículos Diesel Audi A3 Los vehículos Diesel podrían estar de regreso. Los motores de Diesel son más poderosos y ahorradores de gasolina en comparación con los motores de gasolina del mismo tamaño (un 30-35% aprox. más eficientes en su consumo). Además, los vehículos diesel son mejores que los que se fabricaban en el pasado. Mejor Desempeño Tienen mejores inyectores de combustible y tecnologías electrónicas en sus controles Más poder Aceleración Mejorada Más Eficiencia Los nuevos diseños en los motores, además de las tecnologías de reducción de ruido y vibración, los han hecho silenciosos y suaves en su manejo. El arranque en clima-frío también ha sido mejorado. Más Limpios Mercedes ML320 BlueTEC En la actualidad los diesels deben cumplir con los mismos estándares de

470

Ultra-Low Sulfur Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur Diesel Fuel Ultra-Low Sulfur Diesel Fuel August 20, 2013 - 8:53am Addthis Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

471

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

472

Current developments in oil shale research at the Laramie Energy Research Center. [Review of studies in 4 areas: concurrent gasification and retorting; high pressure retorting; abnormal heating rate of interior of large blocks of oil shale; and in-situ combustion  

DOE Green Energy (OSTI)

Current oil shale research being conducted at the Laramie Energy Research Center is many faceted, and some of the recent developments in these areas are presented. Concurrent gasification and retorting of oil shale where the effects of operating pressure and amounts of oxygen and water injection on quality and quantity of gas and oil produced is being studied. This work has resulted in off gas with heating values varying from 50 to 1,300 Btu/ft/sup 3/ and oil recovery of up to 80 vol percent of Fischer assay. The effects of retorting atmosphere, pressure, and external heating rate are being studied in a high pressure batch retort. Results from this work indicate that a nitrogen atmosphere decreases oil yield slightly while a hydrogen atmosphere increases the oil yield significantly. Large blocks of oil shale are being retorted in a 150-ton aboveground retort to study the abnormal heating rate of the interior of the blocks. This could be caused by an oxidation exotherm similar to that found in limited DTA studies. Some early results from the Rock Springs site 9 in-situ experiment are also presented. This is the fifth in-situ combustion experiment and is being performed in a 40-foot-thick oil shale bed having an average Fischer assay of 23 gallons per ton.

Jacobson, I.A. Jr.; Burwell, E.L.; Harak, A.E.; Long, A.; Wise, R.L.

1976-01-01T23:59:59.000Z

473

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

474

Wear mechanism and wear prevention in coal-fueled diesel engines  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the diesel engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: Definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; Definition of the specific effect of each coal-related lube oil contaminant; Determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; Evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and Presentation of the engine/lubricant system design determined to have the most potential.

Not Available

1990-06-20T23:59:59.000Z

475

Measured Effects of Retrofits - A Refrigerant Oil Additive and a Condenser Spray Device - On the Cooling Performance of a Heat Pump  

E-Print Network (OSTI)

A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard AM cooling rating conditions (95°F outdoor dry bulb and 80167 OF indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity. and the unit was tested for several days at the same 95°F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. Our short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of our unit Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

Levins, W. P.; Sand, J. R.; Baxter, V. D.; Linkous, R. S.

1996-01-01T23:59:59.000Z

476

Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)  

DOE Green Energy (OSTI)

Subcontract report discussing safety concerns of ethanol-diesel blends and pathways to reducing risks.

Waterland, L. R.; Venkatesh, S.; Unnasch, S.

2003-09-01T23:59:59.000Z

477

Commercialization of coal diesel engines for non-utility and export power markets  

DOE Green Energy (OSTI)

The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.

Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

1993-11-01T23:59:59.000Z

478

Selection of best neural network for estimating properties of diesel-biodiesel blends  

Science Conference Proceedings (OSTI)

Soybean oil was transesterified with methanol in the presence of alkaline catalyst to produce methyl esters commonly known as biodiesel. Biodiesel and diesel blends were prepared and tested in laboratory for flash point, fire point, viscosity and density. ... Keywords: artificial neural network, biodiesel, density, fire point, flash point, transesterification, viscosity

Jatinder Kumar; Ajay Bansal

2007-02-01T23:59:59.000Z

479

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network (OSTI)

establish criteria for engine design, operation, after-treatment, and fuel and lubri- cating oil and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust

Yu, Fangqun

480

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

Note: This page contains sample records for the topic "heating oil diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Compare New and Used Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

City 35 30 25 20 15 10 Combined 45 40 35 30 25 20 15 10 Highway Your Selections Search Diesel Vehicles & Fuels Compare Side by Side About Diesel Vehicles New & Upcoming Ultra-Low...

482

Diesel prices top $4 per gallon  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices top 4 per gallon The U.S. average retail price for on-highway diesel fuel surpassed the four dollar mark for the first time this year. Prices rose to 4.02 a gallon...

483

Diesel prices continue to decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.95 a gallon on Monday. That's down 2 cents from a week ago...

484

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

485

DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH  

DOE Green Energy (OSTI)

The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

2004-05-01T23:59:59.000Z

486

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

487

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass  

E-Print Network (OSTI)

LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report, “LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report “AFUEL Transesterified, biomass-derived oil or biodiesel can

Delucchi, Mark; Lipman, Timothy

2003-01-01T23:59:59.000Z

488

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

489

Diesel Power: Clean Vehicles for Tomorrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Power: Diesel Power: Clean Vehicles for Tomorrow July 2010 VEHICLE TECHNOLOGIES PROGRAM Prepared for the U.S. Department of Energy Vehicle Technologies Program The diesel engine has changed significantly over the last quarter-century, in terms of technology and performance. For this reason, the U.S. Department of Energy (DOE) has created this series of documents about the history of the diesel engine, its current uses in transportation vehicles,

490

Opportunities for Biorenewables in Oil Refineries  

Science Conference Proceedings (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

491

Experimental Characterization of Canola Oil Emulsion Combustion in a Modified Furnace  

E-Print Network (OSTI)

Vegetable oils have been researched as alternative source of energy for many years because they have proven themselves as efficient fuel sources for diesel engines when used in the form of biodiesel, vegetable oil–diesel blends, vegetable oil-water-diesel blends and mixtures thereof. However, very few studies involving the use of emulsified low grade alcohols in straight vegetable oils, as fuels for combustion have been published. Even, the published literature involves the use of emulsified fuels only for compression ignition diesel engines. Through this project, an attempt has been made to suggest the use of alcohol-in-vegetable oil emulsions (AVOE) as an alternate fuel in stationary burners like electric utility boiler producing steam for electricity generation and more dynamic systems like diesel engines. The main goal of this study is to understand the effect of the combustion of different methanol-in-canola oil emulsions, swirl angle and equivalence ratio on the emission levels of NOx, unburned hydrocarbons (UHC), CO and CO2. The 30 kW furnace facility available at Coal and Biomass Energy Laboratory at Texas A & M University was modified using a twin fluid atomizer, a swirler and a new liquid fuel injection system. The swirler blades were positioned at 60° and 51° angles (with respect to vertical axis) in order to achieve swirl numbers of 1.40 and 1.0, respectively. The three different fuels studied were, pure canola oil, 89-9 emulsion [9 percent methanol – in – 89 percent canola oil emulsion with 2 percent surfactant (w/w)] and 85-12.5 emulsion [12.5 percent methanol – in – 85 percent canola oil (w/w) emulsion with 2.5 percent surfactant]. All the combustion experiments were conducted for a constant heat output of 72,750 kJ/hr. One of the major findings of this research work was the influence of fuel type and swirl number on emission levels. Both the emulsions produced lower NOx, unburned (UHC) hydrocarbon and CO emissions than pure canola oil at both swirl numbers and all equivalence ratios. The emulsions also showed higher burned fraction values than pure oil and produced more CO2. Comparing the performance of only the two emulsions, it was seen that the percentage amount of methanol added to the blend had a definite positive impact on the combustion products of the fuel. The higher the percentage of methanol in the emulsions, the lesser the NOx, UHC and CO emissions. Of all the three fuels, 85-12.5 emulsion produced the least emissions. The vorticity imparted to the secondary air by the swirler also affected the emission levels. Increased vorticity at higher swirl number led to proper mixing of air and fuel which minimized emission levels at SN = 1.4. The effect of equivalence ratio on NO_x formation requires a more detailed analysis especially with regards to the mechanism which produces nitrogen oxides during the combustion of the studied fuels.

Bhimani, Shreyas Mahesh

2011-05-01T23:59:59.000Z

492

Novel injector techniques for coal-fueled diesel engines  

DOE Green Energy (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

493

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

494

Performance Profiles of Major Energy Producers - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

495

Nigeria - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

496

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas: Kentucky ...

497

Illinois - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

498

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ... petroleum administration for ...

499

Kansas - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

500

South Dakota - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas: Kentucky ...