Sample records for heating fuels outlook

  1. EIA Winter Fuels Outlook

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsin profile Wisconsin8,ElectricEIA

  2. Fuels outlook for oil/propane

    SciTech Connect (OSTI)

    Weigand, P.

    1995-09-01T23:59:59.000Z

    The outlook for using oil and propane as fuels is outlined. The following topics are discussed: factors affecting price of the burner tip, supply and demand forecast, distribution costs and availability, alternate fuels economics, propane prices, No. 2 oil prices, natural gas vs. 1% residual HP prices, and future for industrial oil and propane consumers.

  3. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . ....

  4. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...

    Office of Environmental Management (EM)

    Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities Status and Outlook for the U.S....

  5. Winter Fuels Outlook Presentation 2014- 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb MarperYork State SHOPP

  6. Winter Fuels Outlook Conference Rescheduled for November 1 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075Department of

  7. April 2013 Short-Term Energy and Summer Fuels Outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5 (Million8103.SourceU.S.and

  8. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas Supply

  9. Short-Term Energy and Winter Fuels Outlook October 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties in the3 1 Short-Term3 1

  10. Apparatus for regenerative heating of diesel fuel

    SciTech Connect (OSTI)

    Leary, D.F.; Olds, R.N.

    1987-03-17T23:59:59.000Z

    This patent describes an apparatus for heating diesel fuel before it is filtered and for transferring heat from filtered diesel fuel to diesel fuel to be filtered, the apparatus comprising means for removably securing it between a fuel manifold and a fuel filter of a fuel supply system of a diesel-engined vehicle. The apparatus comprises: (1) an electric heater; (2) means for connecting the heater to a power supply; and (3) a housing which comprises: a heat-exchange chamber having a heat-exchange member therein and having a first entry port for the entry of filtered diesel fuel from a fuel filter when the apparatus is secured to a fuel filter, and a first exit port for the exit of fuel to a fuel manifold when the apparatus is secured to a fuel manifold; the first entry and exit ports defining a first passage therebetween on one side of the heat exchange member. The heat exchange member has a second entry port for entry of diesel fuel from a fuel manifold when the apparatus is secured to a fuel manifold and having a second exit port for the exit of fuel to a heating chamber. The second entry and exit ports define a second passage on the other side of the heat-exchange member so that heat from the first passage can be transferred to the second passage through the heat-exchange member; and a heating chamber having a heating chamber entry port for the entry of diesel fuel from the second exit port of the heat exchange means and a heating chamber exit port for the exit of diesel fuel to a filter when the apparatus is secured to a fuel filter.

  11. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02T23:59:59.000Z

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  12. Combustion & Fuels Waste Heat Recovery & Utilization Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion & Fuels Waste Heat Recovery & Utilization Project Project Technical Lead - Thermoelectric Analysis & Materials 27 February 2008 2008 DOE OVT Annual Merit Review 2008...

  13. Missouri Agriculture Outlook Conference

    E-Print Network [OSTI]

    Noble, James S.

    Missouri Agriculture Outlook Conference Conference Information This conference will discuss the drivers of Missouri agricultural and bio-fuel markets and the implications for Missouri farmsDr.JonHagler, DirectoroftheMissouriDepartment ofAgriculture. · Outlookpresentationsderivedfrom thelatestbaselineresultsof

  14. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A. [Oak Ridge National Laboratory (United States); Baylor, L.R. [Oak Ridge National Laboratory (United States); Combs, S.K. [Oak Ridge National Laboratory (United States); Fredd, E. [Princeton Plasma Physics Laboratory (United States); Goulding, R.H. [Oak Ridge National Laboratory (United States); Hosea, J. [Princeton Plasma Physics Laboratory (United States); Swain, D.W. [Oak Ridge National Laboratory (United States)

    2005-04-15T23:59:59.000Z

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  15. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04T23:59:59.000Z

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  16. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8OrganicOsmoticOutdoor Solar

  17. DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof Energy DOE'sDOE's|

  18. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringout byDevelopmentTurkeyDepartment(Septemberof

  19. Registration Open for Winter Fuels Outlook Conference on October 10, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.DepartmentRegistration

  20. Registration Open for Winter Fuels Outlook Conference on October 12, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.DepartmentRegistrationDepartment

  1. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01T23:59:59.000Z

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  2. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  3. International energy outlook 2005

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    This report presents international energy projections through 2025, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. After a chapter entitled 'Highlights', the report begins with a review of world energy and an economic outlook. The IEO2005 projections cover a 24 year period. The next chapter is on world oil markets. Natural gas and coal reserves and resources, consumption and trade discussed. The chapter on electricity deals with primary fuel use for electricity generation, and regional developments. The final section is entitled 'Energy-related greenhouse gas emissions'.

  4. Registration Open for Winter Fuels Outlook Conference on October 10, 2012 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy RecoveryofRegional

  5. Registration Open for Winter Fuels Outlook Conference on October 12, 2011 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy RecoveryofRegionalDepartment of

  6. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO) To

  7. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring SolarSystem,Departmentof Government

  8. Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I AU.S.14,

  9. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5:

  10. Combined Heat and Power Market Potential for Opportunity Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    opportunity fuel(s) for distributed energy resources and combined heat and power (DERCHP) applications, examine the DERCHP technologies that can use them, and assess the...

  11. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2FORFROM THE MESSAGE

  12. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  13. Missouri Agriculture Outlook Conference

    E-Print Network [OSTI]

    Noble, James S.

    Missouri Agriculture Outlook Conference Conference Information Join us to discuss the drivers of Missouri agricultural and bio-fuels markets and participate in a special review of international policy implications for Missouri agriculture. Registration Deadline To guarantee space availability, please register

  14. Outlooks of HLW Partitioning Technologies Usage for Recovering of Platinum Metals from Spent Fuel

    SciTech Connect (OSTI)

    Pokhitonov, Y. A.; Estimantovskiy, V.; Romanovski, v.; Zatsev, B.; Todd, T.

    2003-02-24T23:59:59.000Z

    The existing practice of management of high level waste (HLW) generated by NPPs, call for a task of selective separation of the most dangerous long-lived radionuclides with the purpose of their subsequent immobilization and disposal. HLW partitioning allows to reduce substantially the cost of vitrified product storage owing to isolation of the most dangerous radionuclides, such as transplutonium elements (TPE) into separate fractions of small volumes, intended for ultimate storage. By now numerous investigations on partitioning of HLW of various composition have been carried out in many countries and a lot of processes permitting to recover cesium, strontium, TPE and rare earth elements (REE) have been already tested. Apart from enumerated radionuclides, a fair quantity of palladium and rhodium presents in spent fuel, but the problem of these elements recovery has not yet been decided at the operating radiochemical plants. A negative effect of platinum group metals (PGM) occurrence is determined by the formation of separate metal phase, which not only worsens the conditions of glass-melting but also shortens considerably the service life of the equipment. At the same time, the exhaustion of PGMs natural resources may finally lead to such a growth of their costs that the spent nuclear fuel would became a substituting source of these elements industrial production. Allowing above mentioned, it is of interest to develop the technique for ''reactor'' palladium and rhodium recovery process which would be compatible with HLW partitioning and could be realized using the same facilities. In the report the data on platinum metals distribution in spent fuel reprocessing products and the several flowsheets for palladium separation from HLW are presented.

  15. Fuel cells: providing heat and power in the urban environment

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel cells: providing heat and power in the urban environment Jim Halliday, Alan Ruddell, Jane;Fuel cells: providing heat and power in the urban environment Tyndall Centre Technical Report No. 32 efficiencies, and therefore reduced CO2 emissions, compared to conventional centralised generation. Fuel cell

  16. Fuel cell entropy production with ohmic heating and diffusive polarization

    E-Print Network [OSTI]

    Naterer, Greg F.

    Fuel cell entropy production with ohmic heating and diffusive polarization G.F. Naterer a,*, C production of ohmic heating and concentration polarization is investigated for two types of fuel cells (PEMFC oxide fuel cell (SOFC), this article formulates entropy production within electrodes of a proton

  17. Agricultural Outlook Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgricultural Outlook Forum Agricultural Outlook

  18. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Energy Savers [EERE]

    Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer...

  19. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  20. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  1. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  2. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  3. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05T23:59:59.000Z

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  4. Residential Wood Heating Fuel Exemption (New York)

    Broader source: Energy.gov [DOE]

    New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from...

  5. Winter Heating Fuels - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 2012 MEMORANDUMWestern4

  6. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,

  7. Wood Heating Fuel Exemption | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms. KesslerKimWomenTinaResidential

  8. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

  9. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Presented at the...

  10. High pressure low heat rate phosphoric acid fuel cell stack

    SciTech Connect (OSTI)

    Wertheim, R.J.

    1987-07-07T23:59:59.000Z

    A high pressure phosphoric acid fuel cell stack assembly is described comprising: (a) a stack of fuel cells for producing electricity, the stack including cathode means, anode means, and heat exchange means; (b) means for delivering pressurized air to the cathode means; (c) means for delivering a hydrogen rich fuel gas to the anode means for electrochemically reacting with oxygen in the pressurized air to produce electricity and water; (d) first conduit means connected to the cathode means for exhausting a mixture of oxygen-depleted air and reaction water from the cathode means; (e) second conduit means connected to the first conduit means for delivering a water fog to the first conduit means for entrainment in the mixture of oxygen-depleted air and reaction water to form a two phase coolant having a gaseous air phase and an entrained water droplet phase; (f) means for circulating the coolant to the heat exchange means to cool the stack solely through vaporization of the water droplet phase in the heat exchange means whereby a mixed gas exhaust of air and water vapor is exhausted from the heat exchange means; and (g) means for heating the mixed gas exhaust and delivering the heated mixed gas exhaust at reformer reaction temperatures to an autothermal reformer in the stack assembly for autothermal reaction with a raw fuel to form the hydrogen rich fuel.

  11. International energy outlook 1999

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

  12. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01T23:59:59.000Z

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  13. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY INSTRUCTIONS

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7, "Winter Heating

  14. International energy outlook 1998

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year`s report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs.

  15. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01T23:59:59.000Z

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  16. NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration22)May 28, 1996September83-201510 1

  17. Key Milestones/Outlook

    Broader source: Energy.gov [DOE]

    Key Milestones/Outlook per the Department of Energy 2015 Congressional Budget Request, Environmental Management, March 2014

  18. WEST VIRGINIA ECONOMIC OUTLOOK

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    WEST VIRGINIA ECONOMIC OUTLOOK 2009 BUREAU OF BUSINESS AND ECONOMIC RESEARCH College of Business and Economics West Virginia University #12;West Virginia Economic Outlook 2009 George W. Hammond, Associate Director, BBER, and Associate Professor of Economics West Virginia Economic Outlook 2009 is published

  19. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    None

    2011-12-19T23:59:59.000Z

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  20. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  1. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  2. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  3. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

  4. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

  5. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research...

  6. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  7. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    Administration Annual Energy Outlook 2012 17 Table A7. Transportation sector key indicators and delivered energy consumption (continued) Key indicators and consumption...

  8. Oil and Gas Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

  9. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A6. Industrial sector key indicators and consumption Energy Information Administration ...

  10. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

  11. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless...

  12. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    for Defense Districts 216 U.S. Energy Information Administration Annual Energy Outlook 2010 Figure F3. Petroleum Administration for Defense Districts AK WA NV AZ OR...

  13. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    end of table. (continued on next page) U.S. Energy Information Administration | Annual Energy Outlook 2012 116 Comparison with other projections Table 28. Comparison of coal...

  14. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01T23:59:59.000Z

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  15. Outlook export contacts and groups Migrate Outlook Contacts to gmail

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Outlook export contacts and groups Migrate Outlook Contacts to gmail 1. In Outlook 2007 on the File menu, click Import and Export. 1a. For Outlook 2010 on the File menu, click Open, then Import 2. Click Export to a file, and then click Next. #12;3. Click Comma Separated Values (Windows), and then click Next

  16. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01T23:59:59.000Z

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  17. International energy outlook 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

  18. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition Ping Hu October 2010 Keywords: Zinc ferrite Fuel additive Heat treatment Phase composition a b s t r a c, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15

  19. Energy Market Outlook

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Energy Market Outlook: Helping Customers Meet Their Diverse Energy Goals, held on May 22-23, 2013 in San Francisco, California.

  20. Annual Energy Outlook 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil and natural gas outlook IAEE International Conference June 16, 2014 | New York, NY By Adam Sieminski, EIA Administrator The U.S. has experienced a rapid increase in natural gas...

  1. Annual Energy Outlook 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Outlook Oil and Gas Strategies Summit May 21, 2014 | New York, NY By Adam Sieminski, EIA Administrator The U.S. has experienced a rapid increase in natural gas and oil...

  2. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5 U.S. Energy Information Administration | Annual Energy Outlook 2012 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic...

  3. Chapter 2: Machine Design, Fueling, and Heating in ASDEX Upgrade

    SciTech Connect (OSTI)

    Streibl, Bernhard; Lang, Peter Thomas; Leuterer, Fritz; Noterdaeme, Jean-Marie; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik (Germany)

    2003-11-15T23:59:59.000Z

    The machine design, power supply, and machine protection, as well as the different heating systems installed at ASDEX Upgrade are discussed. The available auxiliary heating power of 30 MW, supplied by three different heating systems, allows the power deposition to be varied and species heated over a large range. These three heating systems - neutral beam, ion cyclotron, and electron cyclotron heating - are presented in detail. A description of the pellet refueling system is included, which is successfully used for density control.

  4. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

  5. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  6. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  7. Winters fuels report

    SciTech Connect (OSTI)

    NONE

    1995-10-27T23:59:59.000Z

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  8. Short-Term Energy Outlook September 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctoberOutlook September

  9. EIA - Annual Energy Outlook 2014 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1InformationDieselAnnual Energy Outlook 2015 Release

  10. Annual Energy Outlook Report | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture and SequestrationAnemoi RenovablesAnjanOutlook

  11. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

    2011-06-01T23:59:59.000Z

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  12. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  13. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  14. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  15. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    A n n u a l E n e r g y Ou t l o o k 2 0 1 2 For further information . . . The Annual Energy Outlook 2012 was prepared by the U.S. Energy Information Administration (EIA), under...

  16. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  17. REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL

    E-Print Network [OSTI]

    Berning, Torsten

    REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL University Denmark ABSTRACT Solid oxide fuel cell (SOFC) is a promising technology for decentralized power performance parameters will be identified. Keywords: Solid Oxide Fuel Cell, Micro CHP System INTRODUCTION

  18. RIS-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS

    E-Print Network [OSTI]

    RISØ-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS IRRADIATED IN DR3 C. Bagger of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially of the data. INIS Descriptors . BURN-UP, CALORIMETRY, COMPUTER CALCULATIONS, DR-3, FISSION, FUEL ASSEMBLIES

  19. Combustion & Fuels Waste Heat Recovery & Utilization Project | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"DepartmentToward Targets of Efficient NOxof

  20. Low Temperature Heat Release Behavior of Conventional and Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustion |Needs | DepartmentLowin

  1. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of& Systems Simulation| Department of

  2. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New

  3. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualTowardMulti

  4. Multi-function fuel-fired heat pump CRADA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment ofDepartment

  5. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | Department of Energy ThisofDepartmentDepartment

  6. Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

    E-Print Network [OSTI]

    Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

  7. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01T23:59:59.000Z

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  8. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01T23:59:59.000Z

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  9. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  10. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels 

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  11. The effect of drying on the heating value of biomass fuels

    E-Print Network [OSTI]

    Rodriguez, Pablo Gregorio

    1994-01-01T23:59:59.000Z

    There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying...

  12. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  13. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T. [AREVA Inc., 303 Ravendale Drive, Mountain View, CA 94043 (United States)

    2013-07-01T23:59:59.000Z

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  14. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|&Fuel Cellsatand Power

  15. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringout byDevelopmentTurkeyDepartment(Septemberof101

  16. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2004-01-01T23:59:59.000Z

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  17. International energy outlook 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

  18. International energy outlook 2006

    SciTech Connect (OSTI)

    NONE

    2006-06-15T23:59:59.000Z

    This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

  19. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Broader source: Energy.gov (indexed) [DOE]

    The combination of the Native Village of Tellers limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of...

  20. EIA - Annual Energy Outlook 2014 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Energy Outlook 2013 LED Light emitting diode AEO2014 Annual Energy Outlook 2014 LNG Liquefied natural gas ATRA American Taxpayer Relief Act of 2012 LPG Liquefied petroleum...

  1. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-03T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-17T23:59:59.000Z

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  3. ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 The U.S.Heat and

  4. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat Pumps for Steam and

  5. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24T23:59:59.000Z

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  6. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

    2012-07-01T23:59:59.000Z

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  7. Annual Energy Outlook Retrospective Review

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.

  8. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  9. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

    2014-01-01T23:59:59.000Z

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  10. Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

    2010-11-01T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

  11. Energy conversion with solid oxide fuel cell systems: A review of concepts amd outlooks for the short- and long-term

    SciTech Connect (OSTI)

    Adams, II, Thomas A. [McMaster University; Nease, Jake [McMaster University; Tucker, David [U.S DOE; Barton, Paul I. [MIT

    2013-01-01T23:59:59.000Z

    A review of energy conversion systems which use solid oxide fuel cells (SOFCs) as their primary electricity generation component is presented. The systems reviewed are largely geared for development and use in the short- and long-term future. These include systems for bulk power generation, distributed power generation, and systems integrated with other forms of energy conversion such as fuel production. The potential incorporation of CO{sub 2} capture and sequestration technologies and the influences of potential government policies are also discussed.

  12. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat||

  13. Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

  14. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    of energy by electricity-only and combined heat and power plants whose primary business is to sell electricity, or electricity and heat, to the public. Includes small...

  15. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    consumption for geothermal heat pumps, buildings photovoltaic systems, and solar thermal water heaters. 14 Includes consumption of energy by electricity-only and combined heat and...

  16. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01T23:59:59.000Z

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  17. Short-Term Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    Chart Gallery for April 2015 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 0 20 40 60 80 100 120 140 160 180 200 220 Jan 2014...

  18. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01T23:59:59.000Z

    OUTLOOK FOR INDUSTRIAL ENERGY BENCHMARKING Zoe Hartley Environmental Protection Specialist U.S. Environmental Protection Agency Washington, DC ABSTRACT The U.S. Environmental Protection Agency is exploring options to sponsor an ~d~ ~~gy...

  19. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    day Forecast -1.0 2012 2013 2014 OPEC countries North America Russia and Caspian Sea Latin America North Sea Other Non-OPEC Source: Short-Term Energy Outlook, November 2013 -1 0...

  20. Direct Gas Fired Air Heating For 40 to 50% Fuel Savings

    E-Print Network [OSTI]

    Searcy, J. A.

    1979-01-01T23:59:59.000Z

    between direct and indirect gas fired unit heaters show why there is a minimum of 40% fuel savings. The application of direct gas-fired make-up heaters for industrial space heating as well as the safety of the direct gas fired systems, a simple...

  1. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2005-12-01T23:59:59.000Z

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  2. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  3. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01T23:59:59.000Z

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Fuel Oil Natural Gas Electricity Total Transportation FuelHeavy Oil Natural Gas Electricity Heat Total Transportation

  5. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  6. High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News

    E-Print Network [OSTI]

    South Bohemia, University of

    's Residential Energy Consumption Survey (RECS), which provides data on how Americans heat their homes. According of the 2009 RECS show that wood is a significant source of heat in many U.S. homes, and wood consumption is almost as much as heating oil consumption," Berry said. Sometimes-Forgotten Fuel Ackerly

  7. Biodiesel Outlook - An Engine Manufacturer's Perspective | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment inEnergy Outlook -

  8. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    load. 2 Includes small electric devices, heating elements, and motors not listed above. Electric vehicles are included in the transportation sector. 3 Includes such appliances as...

  9. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  10. Numerical simulation of turbulent heat transfer in an annular fuel channel augmented by spacer ribs

    SciTech Connect (OSTI)

    Takase, Kazuyuki; Akino, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of High Temperature Engineering

    1995-12-31T23:59:59.000Z

    Thermal-hydraulic characteristics of fuel channels with three dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors were investigated under the same coolant conditions as the reactor operation, maximum fuel channel outlet temperature of 1,000 C and pressure of 4 MPa, and analytically by numerical simulations using the {kappa}-{var_epsilon} turbulence model. The turbulent heat transfer coefficients in the spacer ribbed fuel channel were 20 to 100% higher than those in a concentric smooth annulus for a region of Reynolds number exceeding 2,000. Furthermore, the predicted Nusselt number in the spacer ribbed fuel channel was in good agreement with the empirical correlation obtained from the present experimental data within an error of 10% with Reynolds number of more than 5000. On the other hand, the friction factors in the spacer ribbed fuel channel were higher than those in the smooth duct in the turbulent region, and also they could be predicted with sufficient accuracy. In addition, the present numerical simulation could clarify quantitatively the effects of the heat transfer augmentation due to the spacer ribs and the axial velocity increase due to a reduction in the annular channel cross-section.

  11. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  12. Design of a core-length thermionic fuel element for electrical heating

    SciTech Connect (OSTI)

    Miskolczy, G. (ThermoTrex Coporation, 85 First Avenue, P.O. Box 8995, Waltham, MA 02254-8995 (United States)); Horner, H. (General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92186-9784 (United States)); Lamp, T. (Wright Laboratories, WL/POOC-2, Wright Patternson Air Force Base, Ohio 45433-6563 (United States))

    1993-01-20T23:59:59.000Z

    This paper describes the design of an electrically heated version of a core-length Thermionic Fuel Element (TFE) with advanced features, as is suggested by the designation Advanced Thermionic Inititative (ATI). The advanced features include a high-strength emitter structure to be fabricated by Space Power, Incorporated. This structure consists of a cylindrical emitter, 15 mm diameter and 254 mm long of Chemically Vapor Deposited (CVD) tungsten, reinforced with tungsten-hafnium carbide wire wound over a CVD tungsten core with additional CVD tungsten incorporating and bonding the wire into the emitter. The emitter surface is CVD tungsten, deposited from tungsten chloride resulting in the desirable crystal orientation of [l angle]110[r angle]. It is possible to design a reactor with core-length TFEs so that it can be electrically tested prior to fueling. The program is focussed on the design and fabrication of a single core-length TFE with current collection at both ends which will be tested in a reactor. In parallel with this effort is the design, fabrication, and testing of an unfueled, electrically heated prototype. The intent is to make the electrically heated converter as similar as possible to the fueled one, while providing for accurate emitter and collector temperature measurement.

  13. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01T23:59:59.000Z

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  14. Annual Energy Outlook2014

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor further

  15. Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual38 Reference

  16. China Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E X U C H A I

  17. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energy

  18. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energyU.S.

  19. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energyU.S.

  20. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet

  1. Summer_Gas_Outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights1,943,742 1,947,078 Summary

  2. Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I

  3. Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I U.S. Energy

  4. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High natural

  5. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference | The

  6. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference |

  7. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference

  8. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity

  9. Annual Energy Outlook 2011

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2Cubic Feet) Gas7currentNatural

  10. World Energy Outlook 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA - 2008 ©

  11. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can you please respond

  12. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can you please

  13. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can you pleaseDuke,

  14. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can you

  15. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can youRobin Griffin

  16. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1aMargaret Can youRobin

  17. 2013 Propane Market Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustApril 20133 Audit2013 NUFOPlasma Propane

  18. Microsoft Outlook - Memo Style

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGE ResearchersIndustrial|Kinetics9

  19. Winter Weather Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of2 BONNEVILLENREL Winners00

  20. Winter Weather Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of2 BONNEVILLENREL Winners001

  1. The Outlook for Renewable Electricity in the United States

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook for Renewable Electricity in the United

  2. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1InformationDieselAnnual Energy Outlook 2015 Release Date:

  3. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

    2014-01-01T23:59:59.000Z

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  4. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  5. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01T23:59:59.000Z

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  6. Outlook: The Next Twenty Years

    SciTech Connect (OSTI)

    Murayama, Hitoshi

    2003-12-07T23:59:59.000Z

    I present an outlook for the next twenty years in particle physics. I start with the big questions in our field, broken down into four categories: horizontal, vertical, heaven, and hell. Then I discuss how we attack the bigquestions in each category during the next twenty years. I argue for a synergy between many different approaches taken in our field.

  7. The outlook for natural gas

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The proceedings of the Institute of Gas Technology`s Houston Conference on the Outlook for Natural Gas held October 5, 1993 are presented. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  8. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  9. Short-Term Energy Outlook Supplement: 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook for Gulf of Mexico Hurricane-Related

  10. Short-Term Energy Outlook Supplement: 2015 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctoberOutlook September45

  11. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  12. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    E-Print Network [OSTI]

    Berning, Torsten

    Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use

  13. Trigger - and heat-transfer times measured during experimental molten-fuel-interactions

    SciTech Connect (OSTI)

    Spitznagel, N.; Dürig, T.; Zimanowski, B. [Physikalisch-Vulkanologisches Labor, Universität Würzburg, Pleicherwall 1, 97070 Würzburg (Germany)] [Physikalisch-Vulkanologisches Labor, Universität Würzburg, Pleicherwall 1, 97070 Würzburg (Germany)

    2013-10-15T23:59:59.000Z

    A modified setup featuring high speed high resolution data and video recording was developed to obtain detailed information on trigger and heat transfer times during explosive molten fuel-coolant-interaction (MFCI). MFCI occurs predominantly in configurations where water is entrapped by hot melt. The setup was modified to allow direct observation of the trigger and explosion onset. In addition the influences of experimental control and data acquisition can now be more clearly distinguished from the pure phenomena. More precise experimental studies will facilitate the description of MFCI thermodynamics.

  14. World nuclear outlook 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  15. World nuclear outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  16. Annual Energy Outlook 2011: With Projections to 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . ....

  17. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  18. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  19. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  20. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    are conventional air conditioning and heat pump, given thein heat pump alternative Dummy for oil forced air choiceair choice Dummy for electric baseboard choice Dummy for heat pump

  1. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Agency (IEA). 2009. World Energy Outlook 2009. Paris: OECDlines in the 2009 World Energy Outlook 450 ppm scenario.Agency (IEA)’s 2009 World Energy Outlook 450 ppm scenario.

  2. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  3. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Reference case Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2015 Table A10. Electricity...

  4. Energy Information Administration / Annual Energy Outlook 2011

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Administration Annual Energy Outlook 2011 1 7 Table A7. Transportation Sector Key Indicators and Delivered Energy Consumption (Continued) Key Indicators and Consumption...

  5. EIA - Annual Energy Outlook 2014 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    gain perspective on how variations in key assumptions can lead to different outlooks for energy markets. To provide a basis against which alternative cases and policies can be...

  6. Annual Energy Outlook 2015 - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    gain perspective on how variations in key assumptions can lead to different outlooks for energy markets. In addition to the alternative cases prepared for AEO2015, EIA has...

  7. Annual Energy Outlook 2013 - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data...

  8. EIA - Annual Energy Outlook 2011 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    January STEO Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related...

  9. ORNL/TM-2011/101 Status and Outlook for the U.S.

    E-Print Network [OSTI]

    ORNL/TM-2011/101 Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry FUEL CELL INDUSTRY: IMPACTS OF GOVERNMENT POLICIES AND ASSESSMENT OF FUTURE OPPORTUNITIES David .................................................................................................. 5 3. THE U.S. INDUSTRY IN 2010

  10. International energy outlook 1997 with projections to 2015

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The International Energy Outlook 1997 (IE097) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2015.

  11. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    131 million metric tons annually." " 5 Includes pipeline fuel natural gas and compressed natural gas used as vehicle fuel." " 6 Includes electricity-only and combined heat and...

  12. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect (OSTI)

    Moyer, M.W.

    2001-01-11T23:59:59.000Z

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  13. Ignition and fueling scenario calculations for neutral-beam-heated Tokamak reactors based on pellet injection

    SciTech Connect (OSTI)

    Lengyel, L.L.

    1986-11-01T23:59:59.000Z

    Results of ignition and continuous fueling scenario calculations are presented that were obtained in the framework of an assessment performed for the Next European Torus based on International Tokamak Reactors (INTOR) parameters. The results obtained with pellet injection are compared with results corresponding to gas puffing. Pellet injection transports fresh fuel to the reaction zone on a time scale that is much shorter than the diffusion time characterizing the gas puffing method, thus making the method flexible and readily adaptable to different situations. In the case of ignition by pellet injection, it may become possible to have deep neutral beam penetration and maintain favorable heat deposition profiles up to the moment of density ramp-up, thus substantially relaxing beam output requirements. The importance of a proper match between beam characteristics and pellet parameters is shown. In the case of continuous fueling of an already ignited discharge, the alpha power production notably increases if repetitive pellet injection, instead of gas puffing, is applied. The advantages of pellet injection are substantial, even at moderate pellet velocities.

  14. CFD Simulations of a Flow Mixing and Heat Transfer Enhancement in an Advanced LWR Nuclear Fuel Assembly

    SciTech Connect (OSTI)

    In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-Gu, Daejeon, Korea 305-353 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)

  15. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01T23:59:59.000Z

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    ci ty Heat NG Fuel Oil Heavy oil Electri city Heat Coal CokeElectr icity H eat Coal Heavy oil NG Electr icity H eat NGRef Region: All Regions Heavy Oil Electricity Heat Variable:

  17. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  18. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  19. Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

  20. World Biodiesel Markets The Outlook to 2010

    E-Print Network [OSTI]

    World Biodiesel Markets The Outlook to 2010 A special study from F.O. Licht and Agra CEAS This important new study provides a detailed analysis of the global biodiesel market and the outlook for growth, including the regulatory and trade framework, feedstock supply and price developments, biodiesel production

  1. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22T23:59:59.000Z

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  2. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and Technology Choice in Home Heating and Cooling D.J. Wood,AND TECHNOLOGY CHOICE IN HOME HEATING AND COOLING* David J.nology choices in home heating and cooling is presented. We

  3. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31T23:59:59.000Z

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  4. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31T23:59:59.000Z

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  5. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26T23:59:59.000Z

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  6. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30T23:59:59.000Z

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  7. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-01-13T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-01-27T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Short-term energy outlook, annual supplement 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  11. Short-term energy outlook annual supplement, 1993

    SciTech Connect (OSTI)

    NONE

    1993-08-06T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  12. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect (OSTI)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  13. Annual outlook for US electric power, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-24T23:59:59.000Z

    This document includes summary information on the ownership structure of the US electric utility industry, a description of electric utility regulation, and identification of selected factors likely to affect US electricity markets from 1985 through 1995. This Outlook expands upon projections first presented in the Annual Energy Outlook 1985, offering additional discussion of projected US electricity markets and regional detail. It should be recognized that work on the Annual Energy Outlook 1985 had been completed prior to the sharp reductions in world oil prices experienced early in 1986.

  14. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

    1997-01-10T23:59:59.000Z

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  15. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

    1997-01-01T23:59:59.000Z

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  16. Prospects for increased low-grade bio-fuels use in home and commercial heating applications

    E-Print Network [OSTI]

    Pendray, John Robert

    2007-01-01T23:59:59.000Z

    Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

  17. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01T23:59:59.000Z

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  18. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  19. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption 

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01T23:59:59.000Z

    This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

  20. 2015 NASEO Energy Policy Outlook Conference

    Broader source: Energy.gov [DOE]

    BETO Director Jonathan Male will be speaking at the National Association of State Energy Organization Energy Policy Outlook Conference, which will be taking place from February 3–6 at the Washington, D.C.

  1. Energy Information Administration / Annual Energy Outlook 2011

    Gasoline and Diesel Fuel Update (EIA)

    23.60 28.73 28.99 28.68 27.92 27.22 0.6% Energy Information Administration Annual Energy Outlook 2011 1 4 Table A6. Industrial Sector Key Indicators and Consumption...

  2. EIA - Annual Energy Outlook 2012 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Report Number: DOEEIA-0383ER(2012) This release is an abridged version of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy...

  3. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Reference case Table A14. Oil and gas supply Energy Information Administration Annual Energy Outlook 2015 Table A14. Oil and gas supply Production and supply Reference case...

  4. Short-Term Energy Outlook September 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day Forecast -0.9 2012 2013 2014 OPEC countries North America Russia and Caspian Sea Latin America North Sea Other Non-OPEC Source: Short-Term Energy Outlook, September 2013 -1...

  5. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outlook 2015 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013...

  6. Winter fuels report week ending: November 17, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. Winter Fuels Report: Week ending November 10, 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on: distillate fuel oil net production, imports and stocks on a US level and for all PADD and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and, a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report, week ending December 16, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-22T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local Governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Winter fuels report, week ending October 6, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-06T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topcs: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s, I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Informatoin Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Winter fuels reports, week ending: November 24, 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-30T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  11. Winter fuels report, week ending December 1, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-07T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  12. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  13. Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat.

    E-Print Network [OSTI]

    outside seoul. · in the United states, the state of Ohio utility, First Energy, purchased a 1 MW, polymer's oil and gas supplies. · Fuel cells have more than double the energy-efficien- cy of internal can provide energy at all scales, ranging from micro power sources for small consumer devices to multi

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap-

  15. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSSNotices of(CCHP) Systems -

  16. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategicthe Department of Energy |Oil and

  17. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser

  18. Fission product release from highly irradiated LWR fuel heated to 1300 to 1600/sup 0/C in steam

    SciTech Connect (OSTI)

    Lorenz, R.A.; Collins, J.L.; Malinauskas, A.P. Osborne, M.F.; Towns, R.L.

    1980-11-01T23:59:59.000Z

    Four tests were performed with high-burnup light water reactor (LWR) fuel to explore the amount and characteristics of fission product release at short heating times (0.4 to 10 min) in steam atmosphere in the temperature range 1300 to 1600/sup 0/C. The test fuel rod segments were cut from full-length fuel rods irradiated at low heat rating to 30,000 MWd/MT in the H.B. Robinson-2 reactor. The releases of cesium and iodine increased tenfold (approx.0.3 to >4%) with temperature from 1350 to 1400/sup 0/C from fuel with defects that simulate ruptured cladding. Krypton release rose from approx.2 to approx.11% of total inventory in this temperature range. This sudden increase in release of krypton, cesium, and iodine is believed to result from prior accumulations of these species at or very near the grain boundaries. At 1600/sup 0/C, the releases of krypton, cesium, and iodine were in the range 17 to 25% of total fuel inventory.

  19. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 FuelModel | Department ofHeaters

  20. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    joint probability of a household choosing each particular heating/cooling technology combination is a function of the capital and operating

  1. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

  2. Microsoft Office Outlook - Memo Style

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid Workshop Report August 2011Modeling

  3. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01T23:59:59.000Z

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  4. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models require accurate estimates of how the market shares of different fuel choices (electricity, gas, or oil)

  5. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving Fungi Are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy StorageFirst-Ever Asian

  6. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect (OSTI)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01T23:59:59.000Z

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  7. *sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer for a HTPEM fuel cell system

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    *sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer, Pontoppidanstræde 101, 9220 Aalborg East, Denmark Motivation Methanol Reformer Test Conclusions The use of a liquid reformed hydro- carbon as fuel for fuel cells can redu- ce fuel storage volume considerably. The PBI

  8. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  9. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEAC FuelFederal agencies andDiagram|

  10. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -SeptemberWorkshopby: AlanCasaCentral Office

  11. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSECCSDepartment of Energy

  12. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember

  13. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency | Department ofEnvergent

  14. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1 Inspection12-01SummaryRemovable

  15. Load Preheating Using Flue Gases from a Fuel-Fired Heating System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | DepartmentComputing CenterLiz Doris

  16. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"Department of8,catalysts for3ServicesAugust|

  17. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56: MitigationEnergyRenewable Energy

  18. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs |Executive

  19. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap- pingLiquidCentral

  20. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet RunsTexas Puts a New SpinThe

  1. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and|DepartmentMicrochannel

  2. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t t m m e e n n t t

  3. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualTowardMultiEnergy

  4. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the LostDepartmentIn the Senate

  5. The U.S. Oil and Natural Gas Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

  6. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01T23:59:59.000Z

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  7. DOE/EIA-0383(2009) Annual Energy Outlook 2009

    E-Print Network [OSTI]

    Laughlin, Robert B.

    2009-01-01T23:59:59.000Z

    DOE/EIA-0383(2009) March 2009 Annual Energy Outlook 2009 With Projections to 2030 #12;For Further Information . . . The Annual Energy Outlook 2009 was prepared by the Energy Information Administration, under for the Annual Energy Outlook 2009 during 2009. Other contributors to the report include Justine Barden, Joseph

  8. OECD Internet Economy Outlook 2012 Access the complete publication at

    E-Print Network [OSTI]

    Weske, Mathias

    From: OECD Internet Economy Outlook 2012 Access the complete publication at: http://dx.doi.org/10 and development", in OECD Internet Economy Outlook 2012, OECD Publishing. http://dx.doi.org/10 of international law. #12;OECD Internet Economy Outlook © OECD 2012 63 Chapter 2 Internet trends and development

  9. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

  10. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01T23:59:59.000Z

    kiln, it is possible to save hundreds of thousands of dollars in fuel annually by paying attention to the proper operating details....

  11. Fundamentals of Understanding & Collecting data for SHOPPs EIA-877 Winter Heating Fuels Survey

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009 2010F6:8:7:9:F9:Data

  12. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-SectorDepartmentReplace

  13. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P URFIof CleanEnergy

  14. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology Project OfficerTheasHow important0,

  15. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment ofDepartment ofEnergy Emerging

  16. Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: EnergyFortuna,Foss

  17. Microsoft Office Outlook - Memo Style

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid Workshop Report August 2011Modeling |from

  18. Microsoft Office Outlook - Memo Style

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid Workshop Report August 2011Modeling |fromPell,

  19. Short-Term Energy Outlook April 1999-Summer Gasoline Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002‹

  20. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  1. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  2. 2010 Fuel Cell Technologies Market Report, June 2011

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

  3. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarshipsShedding LightShinyShorei

  4. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarshipsShedding LightShinyShorei

  5. Short-Term Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April19.Data Series: Proved Reserves

  6. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 13 13

  7. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 13 133 1

  8. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 13

  9. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 13(STEO)

  10. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13

  11. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 1 December

  12. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 1

  13. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 1(STEO)

  14. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13

  15. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June 2014 1

  16. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June 2014

  17. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June 2014

  18. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June

  19. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June(STEO)

  20. Short-Term Energy Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13June(STEO)4

  1. Short-Term Energy Outlook

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENT OF ENERGY OMB No.Despite dropnatural

  2. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk2***

  3. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk2***Thursday, March

  4. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk2***Thursday, March

  5. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk2***Thursday,

  6. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk2***Thursday,Carr,

  7. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a

  8. 2015 Outlook for NERSC Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy, Office of Scientific and2015

  9. Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctoberOutlook

  10. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Energy Savers [EERE]

    to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high concentrations of sulfur species in the biogas (up to 1.5%...

  11. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  12. Smokes from the burning of aviation fuel and their self-lofting by solar heating

    SciTech Connect (OSTI)

    Radke, L.F.; Lyons, J.H.; Hobbs, P.V. (Univ. of Washington, Seattle (USA)); Weiss, R.E. (Radiance Research, Inc., Seattle, WA (USA))

    1990-08-20T23:59:59.000Z

    The emission factors and optical properties of smokes produced by the burning of aviation fuel were determined from airborne measurements. These rather large fires (30 m in diameter and containing as much as 4.5 {times} 10{sup 4} liters of fuel) produced dark columns of smoke. On several occasions the smoke was observed to continue to rise slowly after its initial stabilization at a temperature inversion. This rise was evidently due to the absorption of solar radiation by the smoke.

  13. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  14. Short-term energy outlook, January 1999

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

  15. Configure Outlook 2010 with Exchange Server

    E-Print Network [OSTI]

    Qiu, Weigang

    Configure Outlook 2010 with Exchange Server #12;1. Navigate to the Windows Start Menu (or press. #12;14. E-mail server settings will now auto configure. 15. Once the Auto Account Setup is configured server settings or additional server types. 3. Click the Next > button. #12;4. Select Microsoft Exchange

  16. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  17. Energy Information Administration / Annual Energy Outlook 2011

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    r) 9.8 9.8 9.0 8.9 8.9 9.0 9.2 -0.2% Energy Information Administration Annual Energy Outlook 2011 2 Table A1. Total Energy Supply and Disposition Summary (Continued)...

  18. Energy Information Administration / Annual Energy Outlook 2011

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    . 0.03 0.03 0.03 0.03 0.02 0.02 0.02 -1.4% Energy Information Administration Annual Energy Outlook 2011 1 0 Table A4. Residential Sector Key Indicators and Consumption...

  19. Energy Information Administration / Annual Energy Outlook 2011

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    . 8.60 8.49 8.98 9.48 9.93 10.47 11.03 1.0% Energy Information Administration Annual Energy Outlook 2011 1 2 Table A5. Commercial Sector Key Indicators and Consumption...

  20. Neutrino oscillations: present status and outlook

    E-Print Network [OSTI]

    Thomas Schwetz

    2007-10-26T23:59:59.000Z

    I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

  1. Analysis of reactor material experiments investigating oxide fuel crust stability and heat transfer in jet impingement flow

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1985-01-01T23:59:59.000Z

    An analysis is presented of the crust stability and heat transfer behavior in the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten oxide fuel at approx. 160/sup 0/K above its freezing temperature was impinged normally upon stainless steel plates initially at 300 and 385 K. The major issue is the existence of nonexistence of a stable solidified layer of fuel, or crust, interstitial to the flowing hot fuel and the steel substrate, tending to insulate the steel from the hot molten fuel. A computer model was developed to predict the heatup of thermocouples imbedded immediately beneath the surface of the plate for both of the cases in which a stable crust is assumed to be either present or absent during the impingement phase. Comparison of the model calculations with the measured thermocouple temperatures indicates that a protective crust was present over nearly all of the plate surface area throughout the impingement process precluding major melting of the plate steel. However, the experiments also show evidence for very localized and isolated steel melting as revealed by localized and isolated pitting of the steel surface and the response of thermocouples located within the pitted region.

  2. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  3. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  4. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    duty fuel cell vehicles using gasoline, methanol, ethanol,fuel-cell vehicle with a proton-exchange membrane (PEM) and methanolmethanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  5. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07T23:59:59.000Z

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  6. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    because diesel fuel contains 11% more BTUs per gallon thangenerators, in gallons-diesel fuel per million BTU of

  7. Cycle simulation of coal-fueled engines utilizing low heat rejection concepts

    E-Print Network [OSTI]

    Roth, John M.

    1988-01-01T23:59:59.000Z

    combustion engines has existed since the development of' the earliest engines. Caton and Rosegay (I] presented a comprehensive review of coal fired engine activities spanning the years from the late 1800's to 1983. Interest is seen to have been sustained.... n increased understanding of the coal coinbustion process in an internal combustion engine envi'ronment. Ryan and Dodge [6] studied the injection and combustion of slurries of coal, charcoal and coke in diesel fuel. Deviations between the slurry...

  8. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  9. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01T23:59:59.000Z

    Agency (IEA). 2009. World Energy Outlook 2009. Paris: OECDsection of the IEA World Energy Outlook 2009. At the sameEnergy Agency (IEA)’s World Energy Outlook (WEO) 2009, which

  10. Supplement to the annual energy outlook 1995

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This section of the Supplement to the Annual Energy Outlook 1995 present the major assumptions of the modeling system used to generate the projections in the Annual Energy Outlook 1995 (AEO95). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in Appendix B. A synopsis of the National Energy Modeling System (NEMS), the model components, and the interrelationships of the modules is presented. The NEMS is developed and maintained by the office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projection of domestic energy-economy markets in the midterm time period and perform policy analyses requested by various government agencies and the private sector.

  11. Supplement to the Annual Energy Outlook 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-17T23:59:59.000Z

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

  12. International energy outlook 1995, May 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The International Energy Outlook 1995 (IEO95) presents an assessment by the Energy Information Administration (EIA) of the international energy market outlook through 2010. The report is an extension of the EIA`s Annual Energy Outlook 1995 (AEO95), which was prepared using the National Energy Modeling System (NEMS). US projections appearing in the IEO95 are consistent with those published in the AEO95. IEO95 is provided as a statistical service to energy managers and analysts, both in government and in the private sector. The projects are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of energy Organization Act of 1977 (Public Law 95-91), Section 295(c). The IEO95 projections are based on US and foreign government policies in effect on October 1, 1994. IEO95 displays projections according to six basic country groupings. The regionalization has changed since last year`s report. Mexico has been added to the Organization for Economic Cooperation and Development (OECD), and a more detailed regionalization has been incorporated for the remainder of the world, including the following subgroups: non-OECD Asia, Africa, Middle East, and Central and South America. China is included in non-OECD Asia. Eastern Europe and the former Soviet Union are combined in the EE/FSU subgroup.

  13. Short-term energy outlook, July 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

  14. Short-term energy outlook, April 1999

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The forecast period for this issue of the Outlook extends from April 1999 through December 2000. Data values for the first quarter 1999, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the April 1999 version of the Short-Term Integrated forecasting system (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 25 figs., 19 tabs.

  15. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  16. Short-term energy outlook. Quarterly projections, Third quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-02T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

  17. EIA - Annual Energy Outlook (AEO) 2012 Data Tables

    Gasoline and Diesel Fuel Update (EIA)

    75. Imported Liquids by Source XLS Table 76. Conversion Factors XLS About the Annual Energy Outlook Contact information and staff Press release AEO2012 Early Release AEO2012...

  18. EIA - Annual Energy Outlook (AEO) 2011 Data Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    75. Imported Liquids by Source XLS Table 76. Conversion Factors XLS About the Annual Energy Outlook Contact Information and Staff About the National Energy Modeling System (NEMS)...

  19. U.S. Energy Information Administration | Annual Energy Outlook...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration | Annual Energy Outlook 2011 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  20. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration | Annual Energy Outlook 2013 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  1. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Income and Employment by Region Table 74. Conversion Factors About the Annual Energy Outlook Contact information and staff Press release Press conference presentation...

  2. Outlook for Energy and Implications for Irrigated Agriculture 

    E-Print Network [OSTI]

    Patton, W. P.; Lacewell, R. D.

    1977-01-01T23:59:59.000Z

    TR- 87 1977 Outlook for Energy and Implications for Irrigated Agriculture W.P. Patton R.D. Lacewell Texas Water Resources Institute Texas A&M University ...

  3. Assumptions to Annual Energy Outlook - Energy Information Administrati...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    January STEO Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related...

  4. Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets

    SciTech Connect (OSTI)

    Not Available

    1993-02-18T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    cells as a heat and electrical power source for residential combined heat and power (CHP characterization provided data to assess the CHP potential of the Nexa and validate the model used ambient temperature. #12;iv To improve performance as a CHP heat engine, the Nexa and other air-cooled PEM

  6. Winter fuels report. Week ending, October 21, 1994

    SciTech Connect (OSTI)

    Zitomer, M.; Griffith, A.; Zyren, J.

    1994-10-01T23:59:59.000Z

    Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

  7. Global Biodiesel Market Trends,Global Biodiesel Market Trends, Outlook and OpportunitiesOutlook and Opportunities

    E-Print Network [OSTI]

    Global Biodiesel Market Trends,Global Biodiesel Market Trends, Outlook and OpportunitiesPresident, Emerging Markets Online http://www.emerginghttp://www.emerging--markets.commarkets.com Author, Biodiesel 2020: A Global Market SurveyAuthor, Biodiesel 2020: A Global Market Survey Columnist

  8. Short-term energy outlook quarterly projections. First quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-07T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

  9. Colorado 2014 Economic Outlook: There are No Guarantees

    E-Print Network [OSTI]

    Colorado 2014 Economic Outlook: There are No Guarantees Dr. Martin Shields Regional Economics Institute Colorado State University #12;The Important Economic Issues · The economy is no longer "recovering the recovery looked like · 2014 outlook · Does economic growth improve individual well-being? #12;"Recovery

  10. Energy for 500 million Homes: Drivers and Outlook for

    E-Print Network [OSTI]

    -up analysis of residential building energy consumption in China using data from a wide variety of sourcesLBNL-2417E Energy for 500 million Homes: Drivers and Outlook for Residential Energy Consumption and Outlook for Residential Energy Consumption in China Nan Zhou*, Michael A. McNeil, Mark Levine Keywords

  11. Alberta's Energy Reserves 2007 and Supply/Demand Outlook

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

  12. Federal Fuels Taxes and Tax Credits (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Provides a review and update of the handling of federal fuels taxes and tax credits, focusing primarily on areas for which regulations have changed or the handling of taxes or credits has been updated in Annual Energy Outlook 2009.

  13. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    governments are considering a diverse energy mix that includes a growing proportion of renewable energy sources and natural gas. Proponents of this approach suggest that methane...

  14. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01T23:59:59.000Z

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  15. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01T23:59:59.000Z

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  16. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W. [ed.

    1993-08-01T23:59:59.000Z

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  17. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  18. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Ris Energy Report 5 Renewable energy outlook for selected regions 1 4 Renewable energy outlook for selected regions

    E-Print Network [OSTI]

    Risø Energy Report 5 Renewable energy outlook for selected regions 1 4 Renewable energy outlook, are now gradually expanding their role in global energy supply. In 2004, renewable energy from all sources.2 0.0% Biomass 48.3 10.4% Total renewable 60.9 13.1% Total global primary energy consumption 465.4 100

  1. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    S and a reference ultra-low-sulfur diesel (ULSD) with 5 ppmof the reference ultra-low-sulfur diesel (5 ppm). SF CD =diesel fuel (CD), ultra-low-sulfur diesel fuel (ULSD),

  2. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    = distillate fuel; ULSD = ultra-low-sulfur distillate fuel;ppm S and a reference ultra-low-sulfur diesel (ULSD) with 5content of the reference ultra-low-sulfur diesel (5 ppm). SF

  3. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  4. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  5. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  6. Three-dimensional numerical simulations of heat transfer in an annular fuel channel with periodic spacer ribs under a fully developed turbulent flow

    SciTech Connect (OSTI)

    Takase, Kazuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-05-01T23:59:59.000Z

    Thermal-hydraulic characteristics in a spacer-ribbed annular fuel channel for high-temperature gas-cooled reactors were analyzed numerically by three-dimensional computations under a fully developed turbulent flow. The two-equation {kappa}-{epsilon} turbulence model was applied in the present turbulent analysis, and the turbulence model constants for eddy viscosity and the turbulent Prandtl number were improved from the previous standard values to increase the accuracy of numerical simulations. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number >3,000. It was clarified quantitatively that the main mechanism for heat transfer augmentation in the spacer-ribbed fuel channel was a combined effect of the turbulence promoter effect by the spacer rib and the velocity acceleration effect by a reduction in the channel cross section.

  7. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctoberOutlookShort-Term

  8. Annual Energy Outlook 2011 with Projections to 2035

    SciTech Connect (OSTI)

    None

    2011-04-01T23:59:59.000Z

    The projections in the Energy Information Administration's (EIA) Annual Energy Outlook 2011 (AEO2011) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2011 is not limited to the Reference case. It also includes 57 sensitivity cases (see Appendix E, Table E1), which explore important areas of uncertainty for markets, technologies, and policies in the U.S. energy economy. Key results highlighted in AEO2011 include strong growth in shale gas production, growing use of natural gas and renewables in electric power generation, declining reliance on imported liquid fuels, and projected slow growth in energy-related carbon dioxide (CO2) emissions even in the absence of new policies designed to mitigate greenhouse gas (GHG) emissions. AEO2011 also includes in-depth discussions on topics of special interest that may affect the energy outlook. They include: impacts of the continuing renewal and updating of Federal and State laws and regulations; discussion of world oil supply and price trends shaped by changes in demand from countries outside the Organization for Economic Cooperation and Development or in supply available from the Organization of the Petroleum Exporting Countries; an examination of the potential impacts of proposed revisions to Corporate Average Fuel Economy standards for light-duty vehicles and proposed new standards for heavy-duty vehicles; the impact of a series of updates to appliance standard alone or in combination with revised building codes; the potential impact on natural gas and crude oil production of an expanded offshore resource base; prospects for shale gas; the impact of cost uncertainty on construction of new electric power plants; the economics of carbon capture and storage; and the possible impact of regulations on the electric power sector under consideration by the U.S. Environmental Protection Agency (EPA). Some of the highlights from those discussions are mentioned in this Executive Summary. Readers interested in more detailed analyses and discussions should refer to the 'Issues in focus' section of this report.

  9. Nonlinear Electron Heat Conduction Equation and Self similar method for 1-D Thermal Waves in Laser Heating of Solid Density DT Fuel

    E-Print Network [OSTI]

    A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

    2011-11-23T23:59:59.000Z

    Electron heat conduction is one of the ways that energy transports in laser heating of fusible target material. The aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly dependent on temperature and the equation of electron heat conduction is a nonlinear equation. In this article, we solve the one-dimensional (1-D) nonlinear electron heat conduction equation with a self-similar method (SSM). This solution has been used to investigate the propagation of 1-D thermal wave from a deuterium-tritium (DT) plane source which occurs when a giant laser pulse impinges onto a DT solid target. It corresponds to the physical problem of rapid heating of a boundary layer of material in which the energy of laser pulse is released in a finite initial thickness.

  10. Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartmentHartman About9 * January

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #8 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy InvestingS10IS007 InspectionRemovable Insulation on78

  12. Development of a technique for ex-reactor heating of electrodes and for obtaining voltage-current characteristics of multi-cell thermionic fuel elements

    SciTech Connect (OSTI)

    Kalandarishvili, A.G.; Mailov, G.M.; Igumnov, B.N.; Bisko, V.A. [I.N. Vekua Sukhumi Inst. for Physics and Engineering, Tbilisi (Georgia)

    1995-12-31T23:59:59.000Z

    This paper presents results of development of a technique for ex-reactor heating with simultaneous recording of voltage-current characteristics of multi-cell thermionic fuel elements (TFE). Heating pulses were applied to electrodes of a thermionic energy converter (TIC), and between these pulses in the antiphase to them there were applied shorter pulses. The TIC emitter was heated by energy of an electric current flowing from the collector (back current heating). Comparison of TIC voltage-current characteristics, obtained for direct (using electric heater) and back current (current from the collector) heating, shows that for the same conditions they differ only slightly. Significant difference may be observed in the case of different profiles along the collector working surface. Results are given of the investigation of multi-cell thermionic fuel assemblies conducted using this technique. The developed technique of the TFE diagnostics can be successfully employed to assess the device quality. Pre-loop testing of multi-cell TFE by the method of back currents allows for cost effective and expeditious thermovacuum treatment of the TFE on thermal stands and for checking of its serviceability prior to its mounting into an irradiation loop or reactor-converter, enables improvements to the TFE design, monitoring of its electric parameters, for example, after vibration testing, and TFE accelerated testing in the most arduous conditions (thermocycling, loss of vacuum, etc.).

  13. Short-term energy outlook. Quarterly projections, Third quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-02T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the third quarter of 1995 through the fourth quarter of 1996. Values for the second quarter of 1995, however, are preliminary EIA estimates.

  14. FUEL CELL TECHNOLOGIES PROGRAM Case Study: Fuel

    E-Print Network [OSTI]

    through March), cooling water conveys waste heat from the fuel cells to an unfired furnace for space by the boilers. Early in the project, Verizon decided not to utilize the fuel cell's low temperature waste heat the cooling season (April through October), the high-grade waste heat from the fuel cells is used in two 70

  15. Winter fuels report. Week ending: October 13, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-19T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10-Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. This report is published weekly by the EIA starting the second week in October 1995 and will continue until the second week in April 1996. The data will also be available electronically after 5:00 p.m. on Wednesday and Thursday during the heating season through the EIA Electronic Publication System (EPUB). 36 figs., 13 tabs.

  16. Winter fuels report, week ending: March 25, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-31T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly.

  17. "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents

    E-Print Network [OSTI]

    "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents (47%) thought that biofuels would account for 5-10% of total global fuel production by 2017. A further 25% of respondents thought that biofuels would account for 2

  18. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23T23:59:59.000Z

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  19. Supplement to the annual energy outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

  20. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartmentPotawatomi Community -A Guide

  1. The U.S. Natural Gas and Shale Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

  2. Supply, Demand, and Export Outlook for North American Oil and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply, Demand, and Export Outlook for North American Oil and Gas For Energy Infrastructure Summit September 15, 2014 | Houston, TX By Adam Sieminski, EIA Administrator 0 20 40 60...

  3. Global Liquefied Natural Gas Market: Status and Outlook, The

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  4. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    However, in the case of biomass feedstocks and fuels, LNG,NGL57/LRG43 LDVs, biomass feedstocks (versus 26 mpg LDGV)NGL57/LRG43 HDVs, biomass feedstocks (versus 6 mpg HDDV)

  5. Short-term energy outlook: Quarterly projections, Third quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  6. Heat Transfer -2 A heat generating ( ) flat plate fuel element of thickness 2L is covered with flat plate steel cladding of

    E-Print Network [OSTI]

    Virginia Tech

    with flat plate steel cladding of thickness b. The heat generated is removed by a fluid at T, which adjoins on both sides On the sketch show regions where dT/dx is zero, constant and increasing. T , h x LL bb SteelSteel

  7. Check Burner Air to Fuel Ratios; Industrial Technologies Program (ITP) Process Heating Tip Sheet #2 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccess Storiesof EnergyChartPeriodic

  8. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeam Cumberland »Department of

  9. Energy Information Administration / Annual Energy Outlook 2011

    Gasoline and Diesel Fuel Update (EIA)

    Includes Federal and State taxes while excluding county and local taxes. 8 Compressed natural gas used as a vehicle fuel. Includes estimated motor vehicle fuel taxes and...

  10. Fundamental Models for Fuel Cell Engineering Chao-Yang Wang*

    E-Print Network [OSTI]

    Diagnostics 4757 4.4. Model Validation 4758 4.5. Summary and Outlook 4760 5. Solid Oxide Fuel Cells 4760 5Fundamental Models for Fuel Cell Engineering Chao-Yang Wang* Departments of Mechanical Engineering Fuel Cell Dynamics 4727 2.1. CFCD Model Equations 4728 2.2. Computational Aspects 4729 2.2.1. General

  11. Lung cancer and indoor pollution from heating and cooking with solid fuels - The IARIC International Multicentre Case-Control study in Eastern/Central Europe and the United Kingdom

    SciTech Connect (OSTI)

    Lissowska, J.; Bardin-Mikolajczak, A.; Fletcher, T.; Zaridze, D.; Szeszenia-Dabrowska, N.; Rudnai, P.; Fabianova, E.; Cassidy, A.; Mates, D.; Holcatova, I.; Vitova, V.; Janout, V.; Mannetje, A.; Brennan, P.; Boffetta, P. [Center for Cancer, Warsaw (Poland). Dept. of Epidemiology & Cancer Prevention

    2005-08-15T23:59:59.000Z

    Exposure to fuel from cooking and heating has not been studied in Europe, where lung cancer rates are high and many residents have had a long tradition of burning coal and unprocessed biomass. Study subjects included 2,861 cases and 3,118 controls recruited during 1998-2002 in the Czech Republic, Hungary, Poland, Romania, Russia, Slovakia, and the United Kingdom. The odds ratio of lung cancer associated with solid fuel use was 1.22 (95% confidence interval (CI): 1.04, 1.44) for cooking or heating, 1.37 (95% CI: 0.90, 2.09) for solid fuel only for cooking, and 1.24 (95% CI: 1.05, 1.47) for solid fuels used for both cooking and heating. Risk increased relative to the percentage of time that solid fuel was used for cooking (P-trend {lt} 0.0001), while no risk increase was detected for solid fuel used for heating. The odds ratio of lung cancer in whole-life users of solid cooking fuel was 1.80 (95% CI: 1.35, 2.40). Switching to nonsolid fuels resulted in a decrease in risk. The odds ratio for the longest duration of time since switching was 0.76 (95% CI: 0.63, 0.92). The data suggest a modest increased risk of lung cancer related to solid-fuel use for cooking rather than heating.

  12. Winter fuels report. Week ending: December 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I,II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6-10 day, 30 day,and 90 day outlook for temperature and precipitation and U.S. total heating degree-days by city. This report is for the week ending December 31, 1993.

  13. Winter fuels report week ending, December 3, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-09T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, 11, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  14. Winter fuels report week ending, December 17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-23T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  15. Winter fuels report, week ending March 4, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-10T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter fuels report, week ending October 7, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-10-14T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, the policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  17. Winter fuels report, week ending January 21, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-27T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. Winter fuels report, week ending March 11, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-17T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing, data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating, degree-days by city.

  19. Winter fuels report, week ending January 14, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-21T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  20. Winter fuels report, week ending November 19, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-26T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  1. Winter fuels report week ending, November 5, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-12T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report. Week ending December 10, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. 37 figs., 13 tabs.

  3. Winter fuels report, week ending February 24, 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-02T23:59:59.000Z

    The Winter Fuels Report for the week ending February 24, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  4. Winter fuels report week ending, February 11, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-17T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Winter fuels report, week ending December 9, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-15T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s: as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Winter fuels report, week ending November 12, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-18T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. Winter fuels report, week ending November 26, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-02T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 day, 30-day, and 90-day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report, week ending January 7, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-13T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing, data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Winter fuels report week ending, February 18, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-24T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Winter fuels report, week ending February 25, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-03T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and 111; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  11. Winter fuels report, week ending January 28, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-03T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural cas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing, data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating, degree-days by city.

  12. Winter fuels report, week ending October 15, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-21T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  13. Winter fuels report. Week ending: March 3, 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-09T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 fig., 13 tabs.

  14. Winter fuels report, week ending April 1, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-07T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  15. Winter fuels report, week ending November 18, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-25T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level, propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s: as well as selected National average prices; residential and wholesale pricing, data for heating, oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter fuels report. Week ending: January 20, 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  17. Winter fuels report, Week ending December 2, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. Winter fuels report, Week ending December 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-06T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a U.S. level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumptive for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  19. Winter fuels report week ending, October 22, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  20. Winter fuels report week ending, February 4, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-10T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`S (as well as selected National average prices); Residential and wholesale pricing data for heating, oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 day, 30-day, and 90-day outlook for temperature and precipitation and US total heating degree-days by city.

  1. Winter fuels report. Week ending: January 19, 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-25T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, the policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  2. Winter fuels report. Week ending: December 29, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-05T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  3. Winter fuels report. Week ending: January 12, 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-19T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 21 tabs.

  4. Winter fuels report. Week ending: January 6, 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-12T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the followings topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PASS) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Winter fuels report, week ending March 10, 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-16T23:59:59.000Z

    The Winter Fuels Report for the week ending March 10, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Winter fuels report. Week ending: December 15, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-21T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  7. Winter fuels report, week ending March 24, 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-30T23:59:59.000Z

    The Winter Fuels Report for the week ending March 24, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report, week ending October 8, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-15T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Alternate Fuel Cell Membranes at the University of Southern Mississippi |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgricultural OutlookDepartment of Energy

  10. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    E-Print Network [OSTI]

    Berning, Torsten

    of burner temperature and the aspects of implementing advanced modeling based control approaches using], auxiliary and uninterruptible power systems [13, 14, 15, 16, 17, 18, 19]. Polymer electrolyte membrane fuelDesign and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air

  11. Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation

    E-Print Network [OSTI]

    Gadalla, M.; Ratlamwala, T.; Dincer, I.

    2010-01-01T23:59:59.000Z

    In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor...

  12. Gas energy supply outlook through 2010

    SciTech Connect (OSTI)

    Kalisch, R.B.

    1986-03-01T23:59:59.000Z

    Late in 1984 the American Gas Association published a study by the Gas Supply Committee titled, ''The Outlook for Gas Energy Through 2010.'' This study was a joint effort by many people of the gas industry including GRI, IGT and AGA. The study observed that come 1646 Tcf of natural gas is judged to be ultimately recoverable in the US. Of this total, 665 Tcf were produced up to year-end 1984. At that time an additional 197 Tcf were categorized as proved reserves, i.e., known to exist with reasonable certainty and producible under current economic and operating conditions. An additional 784 Tcf were classified as potential supply. In short, about 60 % of the nation's ultimately recoverable resource still is available; only 40 % has been produced to data. This is a formidable gas resource for the lower-48; in 1984 the production level was about 17 Tcf; proved reserves were approximately 163 Tcf - more than nine times the 1984 production. 2 references, 2 tables.

  13. Legal improvements brighten North Africa production outlook

    SciTech Connect (OSTI)

    NONE

    1997-05-12T23:59:59.000Z

    North Africa`s three main oil producing countries soon will reap benefits of past moves by their governments to encourage investment by international companies. Production of crude oil and natural gas in Algeria, Egypt, and Libya is ready to increase from suppressed levels of the recent past, says International Energy Agency, Paris. The gains are possible despite political risks, total reserves accounting for only 4% of the world`s crude reserves, and oil prices well below levels of the 1980s, when the countries` flow rates peaked. The reason: producing oil in North Africa is profitable. In a recent study entitled North Africa Oil and Gas, IEA attributes the bright production outlook to improvements that the countries` governments have made in the past decade to hydrocarbon laws and the fiscal terms they offer international investors. According to announced plans, the three countries` combined capacity to produce crude oil will rise 18% by the year 2000 to 3.65 million b/d, and a further gain of 700,000 b/d is possible. IEA expects production capacity for natural gas to increase 50% from its 1995 level by 2000 to a combined 139.4 billion cu m/year. This paper discusses production capacities, Algeria`s record, improvements in Egypt, and Libya`s changes.

  14. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:of California, Berkeley Mexico’s Deteriorating Oil Outlook:and the Environment in Mexico, 2005. No. 14: Kevin P.

  15. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

  16. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    Mexico’s Deteriorating Oil Outlook: Implications and EnergyMexico’s Deteriorating Oil Outlook: Implications and EnergyA ccelerates Mexico’s crude oil production, which reached a

  17. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    L ABORATORY Japan’s Residential Energy Demand Outlook tol i f o r n i a Japan’s Residential Energy Demand Outlook toParticularly in Japan’s residential sector, where energy

  18. Fujifilm_NERSC_StorageOutlook.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2: Jet Fuel8:FuelingA Storage

  19. Fuels generated from renewable energy: a possible solution for large scale energy storage

    E-Print Network [OSTI]

    Franssen, Michael

    conversion Conclusions and Outlook Fuel processing from CO2 and H2O: syngas Basically production of syngas H2 and H2O: syngas Basically production of syngas H2

  20. Annual Energy Outlook 2015 - Appendix A

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Includes small electric devices, heating elements, and motors not listed above. Electric vehicles are included in the transportation sector. 5 Includes such appliances as...

  1. Short-term energy outlook quarterly projections: First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-03T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.). The forecast period for this issue of the Outlook extends from the first quarter of 1993 through the fourth quarter of 1994. Values for the fourth quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  2. Short-term energy outlook, Quarterly projections. Third quarter 1993

    SciTech Connect (OSTI)

    NONE

    1993-08-04T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  3. Short-term energy outlook: Quarterly projections. Second quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-02T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  4. Accidental Burning of a Fuel Layer on a Waterbed: A Scale Analysis Study of the Heat Transfer Models Predicting the pre-Boilover Time and Scaling to Published Data 

    E-Print Network [OSTI]

    Hristov, J; Planas, E; Arnaldos, J; Casal, J

    The paper concerns the heat transfer models of liquid fuel bed burning on water sublayer. The main efforts are stressed on the qualitative assessment of models available and their adequacy as well as on the prediction of ...

  5. WEST VIRGINIA SPECIAL THANKS TO THE 2014 ECONOMIC OUTLOOK CONFERENCE SPONSORS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    2015 WEST VIRGINIA ECONOMIC OUTLOOK #12;SPECIAL THANKS TO THE 2014 ECONOMIC OUTLOOK CONFERENCE SPONSORS: WEST VIRGINIA DEPARTMENT OF REVENUE CHAMBERS ENDOWED PROGRAM FOR ELECTRONIC BUSINESS #12;Cover WEST VIRGINIA ECONOMIC OUTLOOKWest Virginia Economic Outlook 2015 is published by: Bureau of Business

  6. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    gas boiler boiler stove district heating heat pump airsmall cogen stove district heating heat pump Central AC Roomrespectively, followed by district heating of 22%, while in

  7. Peculiarities of a method for ex-reactor heating of electrodes and obtaining voltage-current characteristics of multi-cell thermionic fuel elements

    SciTech Connect (OSTI)

    Kalandarishvili, A.G. [Sukhumi Institute of Physics and Engineering, Tbilisi 380008 Republic of (Georgia); Drozdov, A.A. [RRC ``Kurchatov Institute``, Moscow 123182 (Russia); Stepennov, B.S. [INERTEK, Moscow 123182 (Russia)

    1996-03-01T23:59:59.000Z

    The paper discusses principle of operation and applications of a pulse method of heating multi-cell thermionic fuel elements. Some experimental results are given for a cylindrical single-cell thermionic energy converter that simulates conditions close to that of multi-cell TFE operation. Basic requirements for technical parameters are stated that should be observed when testing TFE on thermal facilities. The means to improve the method are described, including both a computer-aided experiment and modifications in individual components of the test facility. {copyright} {ital 1996 American Institute of Physics.}

  8. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  9. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Microsoft Word - Hurricane Outlook.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels8 1 0 20 408 1

  12. Microsoft Word - Hurricane Outlook.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels8 1 0 20 408

  13. Microsoft Word - Hurricane Outlook.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels8 1 0 20

  14. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  15. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  16. Winter fuels report. Week ending, January 26, 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-23T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly. The data are based on company submissions for the week ending 7:00 a.m. for the preceding Friday. Weekly data for distillate fuel oil are also published in the Weekly Petroleum Status Report. Monthly data for distillate fuel oil and propane are published in the Petroleum Supply Monthly. The residential pricing information is collected by the EIA and the State Energy Offices on a semimonthly basis for the EIA/State Heating Oil and Propane Program. The wholesale price comparison data are collected daily and are published weekly. Residential heating fuel prices are derived from price quotes for home delivery of No. 2 fuel oil and propane. As such, they reflect prices in effect on the dates shown. Wholesale heating oil and propane prices are estimates using a sample of terminal quotes to represent average State prices on the dates given.

  17. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  18. Annual Energy Outlook 2013 with Projections to 2040

    SciTech Connect (OSTI)

    none,

    2013-04-01T23:59:59.000Z

    The Annual Energy Outlook 2013 (AEO2013), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040, based on results from EIA’s National Energy Modeling System. The report begins with an “Executive summary” that highlights key aspects of the projections. It is followed by a “Legislation and regulations” section that discusses evolving legislative and regulatory issues, including a summary of recently enacted legislation and regulations, such as: Updated handling of the U.S. Environmental Protection Agency’s (EPA) National Emissions Standards for Hazardous Air Pollutants for industrial boilers and process heaters; New light-duty vehicle (LDV) greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for model years 2017 to 2025; Reinstatement of the Clean Air Interstate Rule (CAIR) after the court’s announcement of intent to vacate the Cross-State Air Pollution Rule (CSAPR); and Modeling of California’s Assembly Bill 32, the Global Warming Solutions Act (AB 32), which allows for representation of a cap-and-trade program developed as part of California’s GHG reduction goals for 2020. The “Issues in focus” section contains discussions of selected energy topics, including a discussion of the results in two cases that adopt different assumptions about the future course of existing policies, with one case assuming the elimination of sunset provisions in existing policies and the other case assuming the elimination of the sunset provisions and the extension of a selected group of existing public policies—CAFE standards, appliance standards, and production tax credits. Other discussions include: oil price and production trends in AEO2013; U.S. reliance on imported liquids under a range of cases; competition between coal and natural gas in electric power generation; high and low nuclear scenarios through 2040; and the impact of growth in natural gas liquids production. The “Market trends” section summarizes the projections for energy markets. The analysis in AEO2013 focuses primarily on a Reference case, Low and High Economic Growth cases, and Low and High Oil Price cases. Results from a number of other alternative cases also are presented, illustrating uncertainties associated with the Reference case projections for energy demand, supply, and prices. Complete tables for the five primary cases are provided in Appendixes A through C. Major results from many of the alternative cases are provided in Appendix D. Complete tables for all the alternative cases are available on EIA’s website in a table browser at http://www.eia.gov/oiaf/aeo/tablebrowser. AEO2013 projections are based generally on federal, state, and local laws and regulations in effect as of the end of September 2012. The potential impacts of pending or proposed legislation, regulations, and standards (and sections of existing legislation that require implementing regulations or funds that have not been appropriated) are not reflected in the projections. In certain situations, however, where it is clear that a law or regulation will take effect shortly after the Annual Energy Outlook (AEO) is completed, it may be considered in the projection.

  19. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01T23:59:59.000Z

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  20. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  1. EIA - Annual Energy Outlook 2013 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    about the use of those fuels relative to natural gas. Augmentation of the construction and mining models in the Industrial Demand Model to better reflect AEO2013...

  2. International Energy Outlook 2014 - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOfvia aEnergy

  3. Preliminary Results for Annual Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28.WildlifePreliminary

  4. Short-Term Energy Outlook January 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014 MEMORANDUM7,5:January

  5. Global EV Outlook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) |GigaCreteCommunity

  6. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes only kerosene type. 12 Includes distillate fuel oil from petroleum and biomass feedstocks. 13 Includes kerosene, aviation gasoline, petrochemical feedstocks, lubricants,...

  7. Annual Energy Outlook 2015 - Appendix D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes only kerosene type. 12 Includes distillate fuel oil from petroleum and biomass feedstocks. 13 Includes kerosene, aviation gasoline, petrochemical feedstocks, lubricants,...

  8. Annual Energy Outlook 2015 - Appendix B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes only kerosene type. 12 Includes distillate fuel oil from petroleum and biomass feedstocks. 13 Includes kerosene, aviation gasoline, petrochemical feedstocks, lubricants,...

  9. EIA - Annual Energy Outlook 2014 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What's happening

  10. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubiccurrent CoalDetailed

  11. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual

  12. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual38

  13. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.

  14. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.5

  15. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.57

  16. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.578

  17. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.5789

  18. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823 U.S.57891

  19. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual3823

  20. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual38235 U.S.