Sample records for heating fuel type

  1. Fuel cell entropy production with ohmic heating and diffusive polarization

    E-Print Network [OSTI]

    Naterer, Greg F.

    Fuel cell entropy production with ohmic heating and diffusive polarization G.F. Naterer a,*, C production of ohmic heating and concentration polarization is investigated for two types of fuel cells (PEMFC oxide fuel cell (SOFC), this article formulates entropy production within electrodes of a proton

  2. Apparatus for regenerative heating of diesel fuel

    SciTech Connect (OSTI)

    Leary, D.F.; Olds, R.N.

    1987-03-17T23:59:59.000Z

    This patent describes an apparatus for heating diesel fuel before it is filtered and for transferring heat from filtered diesel fuel to diesel fuel to be filtered, the apparatus comprising means for removably securing it between a fuel manifold and a fuel filter of a fuel supply system of a diesel-engined vehicle. The apparatus comprises: (1) an electric heater; (2) means for connecting the heater to a power supply; and (3) a housing which comprises: a heat-exchange chamber having a heat-exchange member therein and having a first entry port for the entry of filtered diesel fuel from a fuel filter when the apparatus is secured to a fuel filter, and a first exit port for the exit of fuel to a fuel manifold when the apparatus is secured to a fuel manifold; the first entry and exit ports defining a first passage therebetween on one side of the heat exchange member. The heat exchange member has a second entry port for entry of diesel fuel from a fuel manifold when the apparatus is secured to a fuel manifold and having a second exit port for the exit of fuel to a heating chamber. The second entry and exit ports define a second passage on the other side of the heat-exchange member so that heat from the first passage can be transferred to the second passage through the heat-exchange member; and a heating chamber having a heating chamber entry port for the entry of diesel fuel from the second exit port of the heat exchange means and a heating chamber exit port for the exit of diesel fuel to a filter when the apparatus is secured to a fuel filter.

  3. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02T23:59:59.000Z

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  4. Combustion & Fuels Waste Heat Recovery & Utilization Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion & Fuels Waste Heat Recovery & Utilization Project Project Technical Lead - Thermoelectric Analysis & Materials 27 February 2008 2008 DOE OVT Annual Merit Review 2008...

  5. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05T23:59:59.000Z

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  6. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A. [Oak Ridge National Laboratory (United States); Baylor, L.R. [Oak Ridge National Laboratory (United States); Combs, S.K. [Oak Ridge National Laboratory (United States); Fredd, E. [Princeton Plasma Physics Laboratory (United States); Goulding, R.H. [Oak Ridge National Laboratory (United States); Hosea, J. [Princeton Plasma Physics Laboratory (United States); Swain, D.W. [Oak Ridge National Laboratory (United States)

    2005-04-15T23:59:59.000Z

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  7. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04T23:59:59.000Z

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  8. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01T23:59:59.000Z

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  9. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  10. Experimental and Analytical Study of Exponential Power Excursion in Plate-Type Fuel

    E-Print Network [OSTI]

    Sargentini, Lucia

    This paper presents an investigation of transient heat transfer, which may occur in nuclear reactors with plate-type fuel during a reactivity initiated accident. Analytical solutions of the heat transfer equation were ...

  11. Combined Heat and Power Market Potential for Opportunity Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    opportunity fuel(s) for distributed energy resources and combined heat and power (DERCHP) applications, examine the DERCHP technologies that can use them, and assess the...

  12. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  13. Types of Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional StarkFuel Cells » Types

  14. Hypoelliptic heat kernel inequalities on H-type groups

    E-Print Network [OSTI]

    Eldredge, Nathaniel Gilbert Bartsch

    2009-01-01T23:59:59.000Z

    Hypoelliptic heat kernel inequalities on the HeisenbergHypoelliptic heat kernel inequalities on Lie groups. PhDHypoelliptic heat kernel inequalities on H-type groups A

  15. Fuel cells: providing heat and power in the urban environment

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel cells: providing heat and power in the urban environment Jim Halliday, Alan Ruddell, Jane;Fuel cells: providing heat and power in the urban environment Tyndall Centre Technical Report No. 32 efficiencies, and therefore reduced CO2 emissions, compared to conventional centralised generation. Fuel cell

  16. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Energy Savers [EERE]

    Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer...

  17. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  18. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  19. The effect of fuel type in unsaturated spent fuel tests

    SciTech Connect (OSTI)

    Finn, P.A.; Gong, M.; Bates, J.K.; Emery, J.W.; Hoh, J.C.

    1994-04-01T23:59:59.000Z

    Two well-characterized types of spent nuclear fuel (ATM-103 and ATM-106) were tested under simulated unsaturated conditions with simulated groundwater at 90{degree}C. The actinides present in the leachate were measured after periods of approximately 60, 120, and 275 days. The vessels were acid stripped after 120 and 275 days. Both colloidal and soluble actinide species were detected in the leachates which had pHs ranging from 4 to 7. Alpha spectroscopy studies of filtered and unfiltered leachates showed that large amounts of actinides may be bound in colloids. The uranium phases identified in the colloids were schoepite and soddyite. The actinide release behavior of the two fuels appears to be different. The ATM-106 fuel began to release actinides later than the ATM-103 fuel, but after 275 days, it had released more. The amount of americium released from the two fuels was a higher percentage of the maximum amount of americium present than was the percentage of the simultaneous amount of uranium released.

  20. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  1. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  2. Type B Accident Investigation Report on the Exertional Heat Illnesses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Illnesses during SPOTC 2006 at the National Training Center in Albuquerque, New Mexico, July 13, 2006 Type B Accident Investigation Report on the Exertional Heat...

  3. Residential Wood Heating Fuel Exemption (New York)

    Broader source: Energy.gov [DOE]

    New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from...

  4. Winter Heating Fuels - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 2012 MEMORANDUMWestern4

  5. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,

  6. Wood Heating Fuel Exemption | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms. KesslerKimWomenTinaResidential

  7. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

  8. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  9. High pressure low heat rate phosphoric acid fuel cell stack

    SciTech Connect (OSTI)

    Wertheim, R.J.

    1987-07-07T23:59:59.000Z

    A high pressure phosphoric acid fuel cell stack assembly is described comprising: (a) a stack of fuel cells for producing electricity, the stack including cathode means, anode means, and heat exchange means; (b) means for delivering pressurized air to the cathode means; (c) means for delivering a hydrogen rich fuel gas to the anode means for electrochemically reacting with oxygen in the pressurized air to produce electricity and water; (d) first conduit means connected to the cathode means for exhausting a mixture of oxygen-depleted air and reaction water from the cathode means; (e) second conduit means connected to the first conduit means for delivering a water fog to the first conduit means for entrainment in the mixture of oxygen-depleted air and reaction water to form a two phase coolant having a gaseous air phase and an entrained water droplet phase; (f) means for circulating the coolant to the heat exchange means to cool the stack solely through vaporization of the water droplet phase in the heat exchange means whereby a mixed gas exhaust of air and water vapor is exhausted from the heat exchange means; and (g) means for heating the mixed gas exhaust and delivering the heated mixed gas exhaust at reformer reaction temperatures to an autothermal reformer in the stack assembly for autothermal reaction with a raw fuel to form the hydrogen rich fuel.

  10. Industrial Heat Pumps--Types and Costs

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    workings. from the waste heat flowing toward the cooling The three categories are: (a) electrically driven, utility. In practice, achieving. this objective (b) prime heat driven, and (c) waste heat driven. requires both proper integration of' the heat... shown in Figure 2 still holds except that the low temperature or waste heat is split, with part, Qb, going to the heat pump to be boosted to a higher temperature and part, Qd, going to the driver to drive the heat pump. The COP is defined as: COP...

  11. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01T23:59:59.000Z

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  12. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY INSTRUCTIONS

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7, "Winter Heating

  13. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01T23:59:59.000Z

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  14. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    None

    2011-12-19T23:59:59.000Z

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  15. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01T23:59:59.000Z

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  16. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, Ramkrishna G. (San Antonio, TX)

    1986-01-01T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  17. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, R.G.

    1984-08-31T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  18. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  19. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  20. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  1. Industrial Heat Pumps--Types and Costs 

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    1985-01-01T23:59:59.000Z

    this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various...

  2. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  3. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  4. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01T23:59:59.000Z

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  5. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

  6. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

  7. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research...

  8. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  9. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2005-12-01T23:59:59.000Z

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  10. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01T23:59:59.000Z

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  11. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01T23:59:59.000Z

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  12. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition Ping Hu October 2010 Keywords: Zinc ferrite Fuel additive Heat treatment Phase composition a b s t r a c, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15

  13. Chapter 2: Machine Design, Fueling, and Heating in ASDEX Upgrade

    SciTech Connect (OSTI)

    Streibl, Bernhard; Lang, Peter Thomas; Leuterer, Fritz; Noterdaeme, Jean-Marie; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik (Germany)

    2003-11-15T23:59:59.000Z

    The machine design, power supply, and machine protection, as well as the different heating systems installed at ASDEX Upgrade are discussed. The available auxiliary heating power of 30 MW, supplied by three different heating systems, allows the power deposition to be varied and species heated over a large range. These three heating systems - neutral beam, ion cyclotron, and electron cyclotron heating - are presented in detail. A description of the pellet refueling system is included, which is successfully used for density control.

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

  15. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  16. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01T23:59:59.000Z

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  17. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  18. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01T23:59:59.000Z

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  19. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  20. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  1. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  2. REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL

    E-Print Network [OSTI]

    Berning, Torsten

    REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL University Denmark ABSTRACT Solid oxide fuel cell (SOFC) is a promising technology for decentralized power performance parameters will be identified. Keywords: Solid Oxide Fuel Cell, Micro CHP System INTRODUCTION

  3. RIS-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS

    E-Print Network [OSTI]

    RISØ-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS IRRADIATED IN DR3 C. Bagger of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially of the data. INIS Descriptors . BURN-UP, CALORIMETRY, COMPUTER CALCULATIONS, DR-3, FISSION, FUEL ASSEMBLIES

  4. Combustion & Fuels Waste Heat Recovery & Utilization Project | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"DepartmentToward Targets of Efficient NOxof

  5. Low Temperature Heat Release Behavior of Conventional and Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustion |Needs | DepartmentLowin

  6. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of& Systems Simulation| Department of

  7. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New

  8. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualTowardMulti

  9. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect (OSTI)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  10. Multi-function fuel-fired heat pump CRADA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment ofDepartment

  11. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | Department of Energy ThisofDepartmentDepartment

  12. Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

    E-Print Network [OSTI]

    Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

  13. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01T23:59:59.000Z

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  14. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  15. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels 

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  16. The effect of drying on the heating value of biomass fuels

    E-Print Network [OSTI]

    Rodriguez, Pablo Gregorio

    1994-01-01T23:59:59.000Z

    There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying...

  17. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  18. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T. [AREVA Inc., 303 Ravendale Drive, Mountain View, CA 94043 (United States)

    2013-07-01T23:59:59.000Z

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  19. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|&Fuel Cellsatand Power

  20. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2004-01-01T23:59:59.000Z

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  1. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30T23:59:59.000Z

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  2. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Broader source: Energy.gov (indexed) [DOE]

    The combination of the Native Village of Tellers limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of...

  3. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    duty fuel cell vehicles using gasoline, methanol, ethanol,fuel-cell vehicle with a proton-exchange membrane (PEM) and methanolmethanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  4. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Fuel cell power Publication Date

  5. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Gulliver's fuel cell travels

  6. Optimal Allocation of Heat Exchanger Inventory in a Serial Type Diabatic Distillation Column

    E-Print Network [OSTI]

    Salamon, Peter

    Optimal Allocation of Heat Exchanger Inventory in a Serial Type Diabatic Distillation Column Edward Abstract Diabatic distillation is a separation process in which heat is transferred on the trays inside savings is through diabatic distillation. Instead of just one heat source (the reboiler) and one heat sink

  7. Heat-rate improvements obtained by retubing condensers with new, enhanced tube types

    SciTech Connect (OSTI)

    Rabas, T.J. [Argonne National Lab., IL (United States); Taborek, J. [Consulting Services, Virginia Beach, VA (United States)

    1995-01-01T23:59:59.000Z

    Significant fuel savings can be achieved at power plants by retubing the condensers with enhanced tubes. Because of the higher overall heat-transfer coefficient, the exhaust steam is condensed at a lower pressure and the plant efficiency is therefore increased or plant heat rate is reduced. Only the spirally indented type of enhanced tube is currently being used in the U.S. and most other countries; however, different types of enhanced tubes have been proposed for power-plant condensers, each with their own set of attributes. This paper determines what attributes and their magnitudes of enhanced tubes lead to the most energy savings as measured by reduction of the plant heat rate. The particular attributes considered are the inside and outside enhancement levels, the inside efficiency index (inside enhancement level divided by pressure-drop increase), and the enhanced-tube fouling-rate multiplier. Two particular condensers were selected because all necessary information were known from previous heat-rate studies such as the condenser geometry, the circulating-water pump and system information, and the low-pressure turbine characteristics. These are {open_quotes}real-world{close_quotes} condensers and therefore the finding will be representative for many other condenser-retubing applications. However, the authors strongly recommend that an economic evaluation be performed at each site to determine the energy savings and payback time. This generic investigation showed that the outside enhancement level is the most important attribute, and a value of about 1.5 can lead to heat-rate savings of about 20 to 40 Btu/kW-hr. Increasing the inside enhancement is less effective because of the increased pressure drop that leads to a reduction of the coolant flow rate and velocity.

  8. ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 The U.S.Heat and

  9. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat Pumps for Steam and

  10. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24T23:59:59.000Z

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  11. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  12. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

    2012-07-01T23:59:59.000Z

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  13. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

    2014-01-01T23:59:59.000Z

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  14. Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

    2010-11-01T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

  15. Design of chemical reactors of the heat exchanger type

    E-Print Network [OSTI]

    McBeth, Lloyd Theodore

    1956-01-01T23:59:59.000Z

    , of the coolant varies with respect to its position in the tubes. A heat balance on the reactants is shown below. Heat balance on the reacting mass during time ae Heat in by generation = rV QR& 9 R R Heat transferred from p i = the tubes to the mass: na... at constant temper- ature, less and less heat must be removed as the reaction proceeds. This is accomplished by the gradual reduction of the coolant flow rate. A mefhod for the determination of the inanner in which the coolant rate must be varied...

  16. A new cascade-type heat conversion system

    SciTech Connect (OSTI)

    Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

    1996-12-31T23:59:59.000Z

    Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

  17. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat||

  18. Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

  19. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01T23:59:59.000Z

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  20. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand7. ConsumptionNov-14

  1. U.S. Residual Fuel Oil Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S. East Coast502 2.170

  2. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S.Feet)

  3. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.6

  4. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.601.2

  5. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.601.213.7

  6. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9

  7. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.987.1 81.2 38.0

  8. Direct Gas Fired Air Heating For 40 to 50% Fuel Savings

    E-Print Network [OSTI]

    Searcy, J. A.

    1979-01-01T23:59:59.000Z

    between direct and indirect gas fired unit heaters show why there is a minimum of 40% fuel savings. The application of direct gas-fired make-up heaters for industrial space heating as well as the safety of the direct gas fired systems, a simple...

  9. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon...

  10. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon...

  11. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  12. Type B Accident Investigation Report on the Exertional Heat Illnesses

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation WorkDecember 28,InjuryInjurySustained

  13. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01T23:59:59.000Z

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  14. High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News

    E-Print Network [OSTI]

    South Bohemia, University of

    's Residential Energy Consumption Survey (RECS), which provides data on how Americans heat their homes. According of the 2009 RECS show that wood is a significant source of heat in many U.S. homes, and wood consumption is almost as much as heating oil consumption," Berry said. Sometimes-Forgotten Fuel Ackerly

  15. Numerical simulation of turbulent heat transfer in an annular fuel channel augmented by spacer ribs

    SciTech Connect (OSTI)

    Takase, Kazuyuki; Akino, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of High Temperature Engineering

    1995-12-31T23:59:59.000Z

    Thermal-hydraulic characteristics of fuel channels with three dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors were investigated under the same coolant conditions as the reactor operation, maximum fuel channel outlet temperature of 1,000 C and pressure of 4 MPa, and analytically by numerical simulations using the {kappa}-{var_epsilon} turbulence model. The turbulent heat transfer coefficients in the spacer ribbed fuel channel were 20 to 100% higher than those in a concentric smooth annulus for a region of Reynolds number exceeding 2,000. Furthermore, the predicted Nusselt number in the spacer ribbed fuel channel was in good agreement with the empirical correlation obtained from the present experimental data within an error of 10% with Reynolds number of more than 5000. On the other hand, the friction factors in the spacer ribbed fuel channel were higher than those in the smooth duct in the turbulent region, and also they could be predicted with sufficient accuracy. In addition, the present numerical simulation could clarify quantitatively the effects of the heat transfer augmentation due to the spacer ribs and the axial velocity increase due to a reduction in the annular channel cross-section.

  16. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  17. Performance of an industrial type combustor burning simulated fuels of medium BTU content

    E-Print Network [OSTI]

    Goehring, Howard Lee

    1983-01-01T23:59:59.000Z

    studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

  18. Design of a core-length thermionic fuel element for electrical heating

    SciTech Connect (OSTI)

    Miskolczy, G. (ThermoTrex Coporation, 85 First Avenue, P.O. Box 8995, Waltham, MA 02254-8995 (United States)); Horner, H. (General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92186-9784 (United States)); Lamp, T. (Wright Laboratories, WL/POOC-2, Wright Patternson Air Force Base, Ohio 45433-6563 (United States))

    1993-01-20T23:59:59.000Z

    This paper describes the design of an electrically heated version of a core-length Thermionic Fuel Element (TFE) with advanced features, as is suggested by the designation Advanced Thermionic Inititative (ATI). The advanced features include a high-strength emitter structure to be fabricated by Space Power, Incorporated. This structure consists of a cylindrical emitter, 15 mm diameter and 254 mm long of Chemically Vapor Deposited (CVD) tungsten, reinforced with tungsten-hafnium carbide wire wound over a CVD tungsten core with additional CVD tungsten incorporating and bonding the wire into the emitter. The emitter surface is CVD tungsten, deposited from tungsten chloride resulting in the desirable crystal orientation of [l angle]110[r angle]. It is possible to design a reactor with core-length TFEs so that it can be electrically tested prior to fueling. The program is focussed on the design and fabrication of a single core-length TFE with current collection at both ends which will be tested in a reactor. In parallel with this effort is the design, fabrication, and testing of an unfueled, electrically heated prototype. The intent is to make the electrically heated converter as similar as possible to the fueled one, while providing for accurate emitter and collector temperature measurement.

  19. Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield 

    E-Print Network [OSTI]

    Herron, Steven Douglas

    1973-01-01T23:59:59.000Z

    RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Industrial Hygiene RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Approved...

  20. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10T23:59:59.000Z

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  1. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

    2014-01-01T23:59:59.000Z

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  2. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  3. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01T23:59:59.000Z

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  4. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  5. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    SciTech Connect (OSTI)

    Pavel G. Medvedev

    2009-11-01T23:59:59.000Z

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20oC temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  6. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    E-Print Network [OSTI]

    Berning, Torsten

    Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use

  7. Joule heating induced by vortex motion in a type-II superconductor Z. L. Xiao and E. Y. Andrei

    E-Print Network [OSTI]

    Andrei, Eva Y.

    Joule heating induced by vortex motion in a type-II superconductor Z. L. Xiao and E. Y. Andrei-II superconductor due to Joule heating induced by vortex motion. The effect of Joule heating is detected s duration, where the Joule heating is negligible and saturates, respectively. The thermometry is based

  8. Trigger - and heat-transfer times measured during experimental molten-fuel-interactions

    SciTech Connect (OSTI)

    Spitznagel, N.; Dürig, T.; Zimanowski, B. [Physikalisch-Vulkanologisches Labor, Universität Würzburg, Pleicherwall 1, 97070 Würzburg (Germany)] [Physikalisch-Vulkanologisches Labor, Universität Würzburg, Pleicherwall 1, 97070 Würzburg (Germany)

    2013-10-15T23:59:59.000Z

    A modified setup featuring high speed high resolution data and video recording was developed to obtain detailed information on trigger and heat transfer times during explosive molten fuel-coolant-interaction (MFCI). MFCI occurs predominantly in configurations where water is entrapped by hot melt. The setup was modified to allow direct observation of the trigger and explosion onset. In addition the influences of experimental control and data acquisition can now be more clearly distinguished from the pure phenomena. More precise experimental studies will facilitate the description of MFCI thermodynamics.

  9. Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield

    E-Print Network [OSTI]

    Herron, Steven Douglas

    1973-01-01T23:59:59.000Z

    compared. The relative absorptivities of two types of rear?silvered safety plate mirrors and a polished aluminum sheet will be compared in this research. LITERATURE REVIEW Modes of Heat Transmission It is well understood that heat may flow only... of vasomotor tone, peripheral venous blood pooling, hypotension, and cerebral anoxia. This instability results in nausea, giddi- 19 ness, universal discomfort, acute physical fatigue, and sometimes fainting. Salt deficiency from any of several possible...

  10. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  11. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  12. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  13. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    are conventional air conditioning and heat pump, given thein heat pump alternative Dummy for oil forced air choiceair choice Dummy for electric baseboard choice Dummy for heat pump

  14. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  15. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect (OSTI)

    Moyer, M.W.

    2001-01-11T23:59:59.000Z

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  16. Ignition and fueling scenario calculations for neutral-beam-heated Tokamak reactors based on pellet injection

    SciTech Connect (OSTI)

    Lengyel, L.L.

    1986-11-01T23:59:59.000Z

    Results of ignition and continuous fueling scenario calculations are presented that were obtained in the framework of an assessment performed for the Next European Torus based on International Tokamak Reactors (INTOR) parameters. The results obtained with pellet injection are compared with results corresponding to gas puffing. Pellet injection transports fresh fuel to the reaction zone on a time scale that is much shorter than the diffusion time characterizing the gas puffing method, thus making the method flexible and readily adaptable to different situations. In the case of ignition by pellet injection, it may become possible to have deep neutral beam penetration and maintain favorable heat deposition profiles up to the moment of density ramp-up, thus substantially relaxing beam output requirements. The importance of a proper match between beam characteristics and pellet parameters is shown. In the case of continuous fueling of an already ignited discharge, the alpha power production notably increases if repetitive pellet injection, instead of gas puffing, is applied. The advantages of pellet injection are substantial, even at moderate pellet velocities.

  17. CFD Simulations of a Flow Mixing and Heat Transfer Enhancement in an Advanced LWR Nuclear Fuel Assembly

    SciTech Connect (OSTI)

    In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-Gu, Daejeon, Korea 305-353 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)

  18. Effects of weld preheat temperature and heat input on type IV failure

    E-Print Network [OSTI]

    Cambridge, University of

    Effects of weld preheat temperature and heat input on type IV failure J. A. Francis*1 , G. M. D of a welded joint due to an enhanced rate of creep void formation in the fine grained or intercritically standpoint, and comparatively little effort has been directed at understanding the effects of welding

  19. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  20. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01T23:59:59.000Z

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  1. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23T23:59:59.000Z

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  2. Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

  3. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22T23:59:59.000Z

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  4. Energy-efficiency comparison of advanced ammonia heat-exchanger types

    SciTech Connect (OSTI)

    Panchal, C.; Rabas, T.

    1990-01-01T23:59:59.000Z

    Ammonia is the most cost-effective working fluid for many Rankine power cycles and is widely utilized in industrial refrigeration applications. For example, it was selected as the most advantageous working fluid for the comprehensive closed-cycle Ocean Thermal Energy Conversion investigations where the heat source and sink are the warm, surface seawater and the cold, deep seawater, respectively. An essential part of this investigation was to measure the performance of many advanced heat-exchanger types using ammonia as the working fluid and to compare these results with those for conventional shell-and-tube designs. This paper presents an overview of these experiments and their potential significance for improved energy efficiency for industrial refrigeration applications. The heat exchangers used for industrial refrigeration systems account for about 50% of the equipment cost. However, current practice is to use state-of-the-art designs -- the shell-and-tube type without enhanced tubes. Substantial energy savings are possible through the use of advanced ammonia evaporator and condenser heat-exchanger types. 31 refs., 10 figs., 6 tabs.

  5. A dynamic, dependent type system for nuclear fuel cycle code generation

    SciTech Connect (OSTI)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01T23:59:59.000Z

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  6. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and Technology Choice in Home Heating and Cooling D.J. Wood,AND TECHNOLOGY CHOICE IN HOME HEATING AND COOLING* David J.nology choices in home heating and cooling is presented. We

  7. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31T23:59:59.000Z

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  8. Probabilistic Analysis of a Monod-type equation by use of a single chamber Microbial Fuel Cell

    E-Print Network [OSTI]

    Probabilistic Analysis of a Monod-type equation by use of a single chamber Microbial Fuel Cell Eric for our society. Microbial fuel cells (MFCs) represent a new form of renewable energy by converting of a single chamber Microbial Fuel Cell affect the power density produced in the Microbial Fuel Cell

  9. On Energy and Entropy Influxes in the Green-Naghdi Type III Theory of Heat Conduction

    E-Print Network [OSTI]

    Swantje Bargmann; Antonino Favata; Paolo Podio-Guidugli

    2012-09-13T23:59:59.000Z

    The energy-influx/entropy-influx relation in the Green-Naghdi Type III theory of heat conduction is examined within a thermodynamical framework \\`a la Mueller-Liu, where that relation is not specified a priori irrespectively of the constitutive class under attention. It is shown that the classical assumption, i.e., that the entropy influx and the energy influx are proportional via the absolute temperature, holds true if heat conduction is, in a sense that is made precise, isotropic. In addition, it is proven that the standard assumption does not hold in case of transversely isotropic conduction.

  10. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31T23:59:59.000Z

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  11. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26T23:59:59.000Z

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  12. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30T23:59:59.000Z

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  13. absorption-type heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  14. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

    1997-01-10T23:59:59.000Z

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  15. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

    1997-01-01T23:59:59.000Z

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  16. Prospects for increased low-grade bio-fuels use in home and commercial heating applications

    E-Print Network [OSTI]

    Pendray, John Robert

    2007-01-01T23:59:59.000Z

    Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

  17. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01T23:59:59.000Z

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  18. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  19. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption 

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01T23:59:59.000Z

    This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

  20. Type II Blow Up for the Four Dimensional Energy Critical Semi Linear Heat Equation

    E-Print Network [OSTI]

    Rémi, Schweyer

    2012-01-01T23:59:59.000Z

    We consider the energy critical four dimensional semi linear heat equation \\partial tu-\\Deltau-u3 = 0. We show the existence of type II finite time blow up solutions and give a sharp description of the corresponding singularity formation. These solutions concentrate a universal bubble of energy in the critical topology u(t,r)-1/{\\lambda} Q(r/{\\lambda})\\rightarrow u* in $\\dot{H}^1$ where the blow up profile is given by the Talenti Aubin soliton Q(r)= 1/(1 +r^2/8) and with speed {\\lambda}(t) ~(T-t)/|log(T - t)|^2 as t\\rightarrowT. Our approach uses a robust energy method approach developped for the study of geometrical dispersive problems, and lies in the continuation of the study of the energy critical harmonic heat flow and the energy critical four dimensional wave equation.

  1. Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat.

    E-Print Network [OSTI]

    outside seoul. · in the United states, the state of Ohio utility, First Energy, purchased a 1 MW, polymer's oil and gas supplies. · Fuel cells have more than double the energy-efficien- cy of internal can provide energy at all scales, ranging from micro power sources for small consumer devices to multi

  2. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap-

  3. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSSNotices of(CCHP) Systems -

  4. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategicthe Department of Energy |Oil and

  5. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser

  6. The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-03T23:59:59.000Z

    We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

  7. Fission product release from highly irradiated LWR fuel heated to 1300 to 1600/sup 0/C in steam

    SciTech Connect (OSTI)

    Lorenz, R.A.; Collins, J.L.; Malinauskas, A.P. Osborne, M.F.; Towns, R.L.

    1980-11-01T23:59:59.000Z

    Four tests were performed with high-burnup light water reactor (LWR) fuel to explore the amount and characteristics of fission product release at short heating times (0.4 to 10 min) in steam atmosphere in the temperature range 1300 to 1600/sup 0/C. The test fuel rod segments were cut from full-length fuel rods irradiated at low heat rating to 30,000 MWd/MT in the H.B. Robinson-2 reactor. The releases of cesium and iodine increased tenfold (approx.0.3 to >4%) with temperature from 1350 to 1400/sup 0/C from fuel with defects that simulate ruptured cladding. Krypton release rose from approx.2 to approx.11% of total inventory in this temperature range. This sudden increase in release of krypton, cesium, and iodine is believed to result from prior accumulations of these species at or very near the grain boundaries. At 1600/sup 0/C, the releases of krypton, cesium, and iodine were in the range 17 to 25% of total fuel inventory.

  8. Some evidence on determinants of fuel economy as a function of driving cycle and test type

    SciTech Connect (OSTI)

    Santini, D.J.; Anderson, J.

    1993-08-01T23:59:59.000Z

    Statistical methods are used with 107 vehicles whose fuel economy was presented and reported for five test types in a single publication by Consumers Union (CU) for 1986--1988 vehicles. Standard loglinear statistical formulations (i.e., multiplicative models of interactions) are used with data from this and supplementary sources to develop coefficients estimating the percent fuel economy gain per percent change in engine/vehicle design characteristic. The coefficients are developed for the five different test conditions evaluated by CU and are compared with each other on the basis of attributes of the tests. The insights of engineering models are used to develop expectations regarding the shift in size of coefficients as driving cycles change. In both the engineering models and the statistical model, the effect of weight is estimated to be higher in urban driving than in highway driving. For two test categories -- field tests and dynamometer tests -- the benefits of weight reduction are statistically estimated to be greatest in urban driving conditions. The effect on idle fuel flow rate of designing vehicles to hold performance roughly constant by maintaining power per kilogram and/or displacement per kilogram is examined, and its implication for the size of the weight effect is simply approximated from Sovran`s 1983 engineering model results. The fuel-economy-decreasing effect of the desire for performance is estimated to be somewhat larger in the statistical analysis than in the NAS study, when engine technology is held constant.

  9. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 FuelModel | Department ofHeaters

  10. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    joint probability of a household choosing each particular heating/cooling technology combination is a function of the capital and operating

  11. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

  12. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01T23:59:59.000Z

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  13. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models require accurate estimates of how the market shares of different fuel choices (electricity, gas, or oil)

  14. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving Fungi Are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy StorageFirst-Ever Asian

  15. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect (OSTI)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01T23:59:59.000Z

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  16. *sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer for a HTPEM fuel cell system

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    *sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer, Pontoppidanstræde 101, 9220 Aalborg East, Denmark Motivation Methanol Reformer Test Conclusions The use of a liquid reformed hydro- carbon as fuel for fuel cells can redu- ce fuel storage volume considerably. The PBI

  17. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEAC FuelFederal agencies andDiagram|

  18. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -SeptemberWorkshopby: AlanCasaCentral Office

  19. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSECCSDepartment of Energy

  20. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember

  1. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency | Department ofEnvergent

  2. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1 Inspection12-01SummaryRemovable

  3. Load Preheating Using Flue Gases from a Fuel-Fired Heating System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | DepartmentComputing CenterLiz Doris

  4. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"Department of8,catalysts for3ServicesAugust|

  5. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56: MitigationEnergyRenewable Energy

  6. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs |Executive

  7. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap- pingLiquidCentral

  8. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet RunsTexas Puts a New SpinThe

  9. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and|DepartmentMicrochannel

  10. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t t m m e e n n t t

  11. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualTowardMultiEnergy

  12. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the LostDepartmentIn the Senate

  13. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01T23:59:59.000Z

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  14. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01T23:59:59.000Z

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  15. The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-08T23:59:59.000Z

    We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

  16. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

  17. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01T23:59:59.000Z

    kiln, it is possible to save hundreds of thousands of dollars in fuel annually by paying attention to the proper operating details....

  18. Fundamentals of Understanding & Collecting data for SHOPPs EIA-877 Winter Heating Fuels Survey

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009 2010F6:8:7:9:F9:Data

  19. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-SectorDepartmentReplace

  20. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P URFIof CleanEnergy

  1. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology Project OfficerTheasHow important0,

  2. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment ofDepartment ofEnergy Emerging

  3. Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, New York: EnergyFortuna,Foss

  4. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A. [Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098 (India)

    2009-02-15T23:59:59.000Z

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  5. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  6. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  7. High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

    2012-09-01T23:59:59.000Z

    Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

  8. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Energy Savers [EERE]

    to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high concentrations of sulfur species in the biogas (up to 1.5%...

  9. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  10. Smokes from the burning of aviation fuel and their self-lofting by solar heating

    SciTech Connect (OSTI)

    Radke, L.F.; Lyons, J.H.; Hobbs, P.V. (Univ. of Washington, Seattle (USA)); Weiss, R.E. (Radiance Research, Inc., Seattle, WA (USA))

    1990-08-20T23:59:59.000Z

    The emission factors and optical properties of smokes produced by the burning of aviation fuel were determined from airborne measurements. These rather large fires (30 m in diameter and containing as much as 4.5 {times} 10{sup 4} liters of fuel) produced dark columns of smoke. On several occasions the smoke was observed to continue to rise slowly after its initial stabilization at a temperature inversion. This rise was evidently due to the absorption of solar radiation by the smoke.

  11. Analysis of reactor material experiments investigating oxide fuel crust stability and heat transfer in jet impingement flow

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1985-01-01T23:59:59.000Z

    An analysis is presented of the crust stability and heat transfer behavior in the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten oxide fuel at approx. 160/sup 0/K above its freezing temperature was impinged normally upon stainless steel plates initially at 300 and 385 K. The major issue is the existence of nonexistence of a stable solidified layer of fuel, or crust, interstitial to the flowing hot fuel and the steel substrate, tending to insulate the steel from the hot molten fuel. A computer model was developed to predict the heatup of thermocouples imbedded immediately beneath the surface of the plate for both of the cases in which a stable crust is assumed to be either present or absent during the impingement phase. Comparison of the model calculations with the measured thermocouple temperatures indicates that a protective crust was present over nearly all of the plate surface area throughout the impingement process precluding major melting of the plate steel. However, the experiments also show evidence for very localized and isolated steel melting as revealed by localized and isolated pitting of the steel surface and the response of thermocouples located within the pitted region.

  12. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  13. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  14. Development of an air-cooled, loop-type heat pipe with multiple condensers

    E-Print Network [OSTI]

    Kariya, H. Arthur (Harumichi Arthur)

    2012-01-01T23:59:59.000Z

    Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

  15. Environmental benefits of different types of heat pumps, available and expected

    SciTech Connect (OSTI)

    Hughes, P.J.

    1993-11-01T23:59:59.000Z

    A brief overview of integrated resource planning (IRP) is provided, with emphasis on how stakeholders interact within the process and where the opportunities may lie for heat pump advocates in cold climates. Five heat pump options that represent various approaches for improving heat pump cold weather performance are included here in a comparative analysis: 2-speed electric air source heat pumps, variable-speed electric air source heat pumps, electric ground-source heat pumps, natural gas engine-driven heat pumps, and natural gas absorption heat pumps. The comparative analysis addresses seasonal performance, seasonal peak demand, air pollutant emissions, customer energy costs, and recognition of environmental externalities in IRP, all in the context of a residential application in the Great Lakes region of the US. Several actions that may be in the interest of heat pump stakeholders in cold climates were identified, including: development of improved software for utility planners, advocacy of a practical form of the Societal Test for use in IRP that credits heat pumps for the residential air pollutant emissions that they avoid, and development of practical methods to credit heat pumps with other environmental benefits for which they may be responsible.

  16. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    because diesel fuel contains 11% more BTUs per gallon thangenerators, in gallons-diesel fuel per million BTU of

  17. Cycle simulation of coal-fueled engines utilizing low heat rejection concepts

    E-Print Network [OSTI]

    Roth, John M.

    1988-01-01T23:59:59.000Z

    combustion engines has existed since the development of' the earliest engines. Caton and Rosegay (I] presented a comprehensive review of coal fired engine activities spanning the years from the late 1800's to 1983. Interest is seen to have been sustained.... n increased understanding of the coal coinbustion process in an internal combustion engine envi'ronment. Ryan and Dodge [6] studied the injection and combustion of slurries of coal, charcoal and coke in diesel fuel. Deviations between the slurry...

  18. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  19. alternative-fuel vehicle types: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency...

  20. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected

  1. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  2. Table 5.14. U.S. Vehicle Fuel Consumption by Vehicle Type, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption by

  3. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergy 9: MayDepartment

  4. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect (OSTI)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01T23:59:59.000Z

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  5. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    SciTech Connect (OSTI)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M. [GIR-QUESCAT, Departamento de Quimica Inorganica, Universidad de Salamanca, 37008 Salamanca (Spain); Rives, V., E-mail: vrives@usal.es [GIR-QUESCAT, Departamento de Quimica Inorganica, Universidad de Salamanca, 37008 Salamanca (Spain)

    2011-11-15T23:59:59.000Z

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.

  6. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  7. Type A: Magma-heated, Dry Steam Resource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump

  8. Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater

    E-Print Network [OSTI]

    Zheng, H.; Fan, X.; Li, A.

    2006-01-01T23:59:59.000Z

    . It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

  9. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building 

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  10. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  11. Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater 

    E-Print Network [OSTI]

    Zheng, H.; Fan, X.; Li, A.

    2006-01-01T23:59:59.000Z

    . It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

  12. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 5537,954.6

  13. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  14. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  15. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  16. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  17. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333331996

  18. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January

  19. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  20. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  1. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  2. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January

  3. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation Results

  4. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation Results61.7

  5. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation

  6. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.1 62.0

  7. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.1

  8. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.156.9

  9. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.156.962.7

  10. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181

  11. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.4 66.0 65.3

  12. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.4 66.0 65.345.2

  13. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand7. ConsumptionNov-14 Dec-142009

  14. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU32,422.9

  15. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S.Feet) DecadeDecadeFeet)

  16. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"for

  17. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    cells as a heat and electrical power source for residential combined heat and power (CHP characterization provided data to assess the CHP potential of the Nexa and validate the model used ambient temperature. #12;iv To improve performance as a CHP heat engine, the Nexa and other air-cooled PEM

  18. Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode

    E-Print Network [OSTI]

    Kumar, Bhupendra

    2012-01-01T23:59:59.000Z

    transportation fuels (via Fischer-Tropsch synthesis). p-typebe fed into the Fischer-Tropsch process to make syntheticformation by the Fischer-Tröpsch process) the Re complex

  19. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    SciTech Connect (OSTI)

    Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

    1992-01-01T23:59:59.000Z

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  20. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01T23:59:59.000Z

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  1. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01T23:59:59.000Z

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  2. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W. [ed.

    1993-08-01T23:59:59.000Z

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  3. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  4. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  5. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    S and a reference ultra-low-sulfur diesel (ULSD) with 5 ppmof the reference ultra-low-sulfur diesel (5 ppm). SF CD =diesel fuel (CD), ultra-low-sulfur diesel fuel (ULSD),

  7. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    = distillate fuel; ULSD = ultra-low-sulfur distillate fuel;ppm S and a reference ultra-low-sulfur diesel (ULSD) with 5content of the reference ultra-low-sulfur diesel (5 ppm). SF

  8. Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets

    SciTech Connect (OSTI)

    Chad Pope; Larry L. Taylor; Soon Sam Kim

    2007-02-01T23:59:59.000Z

    This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

  9. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  11. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  12. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  13. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01T23:59:59.000Z

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  14. Three-dimensional numerical simulations of heat transfer in an annular fuel channel with periodic spacer ribs under a fully developed turbulent flow

    SciTech Connect (OSTI)

    Takase, Kazuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-05-01T23:59:59.000Z

    Thermal-hydraulic characteristics in a spacer-ribbed annular fuel channel for high-temperature gas-cooled reactors were analyzed numerically by three-dimensional computations under a fully developed turbulent flow. The two-equation {kappa}-{epsilon} turbulence model was applied in the present turbulent analysis, and the turbulence model constants for eddy viscosity and the turbulent Prandtl number were improved from the previous standard values to increase the accuracy of numerical simulations. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number >3,000. It was clarified quantitatively that the main mechanism for heat transfer augmentation in the spacer-ribbed fuel channel was a combined effect of the turbulence promoter effect by the spacer rib and the velocity acceleration effect by a reduction in the channel cross section.

  15. EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2

    E-Print Network [OSTI]

    ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

  16. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 71.1 77.5 78.8 79.6 75.7 66.7 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

  17. Nonlinear Electron Heat Conduction Equation and Self similar method for 1-D Thermal Waves in Laser Heating of Solid Density DT Fuel

    E-Print Network [OSTI]

    A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

    2011-11-23T23:59:59.000Z

    Electron heat conduction is one of the ways that energy transports in laser heating of fusible target material. The aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly dependent on temperature and the equation of electron heat conduction is a nonlinear equation. In this article, we solve the one-dimensional (1-D) nonlinear electron heat conduction equation with a self-similar method (SSM). This solution has been used to investigate the propagation of 1-D thermal wave from a deuterium-tritium (DT) plane source which occurs when a giant laser pulse impinges onto a DT solid target. It corresponds to the physical problem of rapid heating of a boundary layer of material in which the energy of laser pulse is released in a finite initial thickness.

  18. Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartmentHartman About9 * January

  19. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #8 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy InvestingS10IS007 InspectionRemovable Insulation on78

  20. Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode

    E-Print Network [OSTI]

    Kumar, Bhupendra

    2012-01-01T23:59:59.000Z

    of p-type Silicon in acetonitrile with tetraethyl ammoniumCO 2 saturated solution of acetonitrile and kinetic limitedRe-catalyst in 0.1 M TBAH in acetonitrile at different scan

  1. Development of a technique for ex-reactor heating of electrodes and for obtaining voltage-current characteristics of multi-cell thermionic fuel elements

    SciTech Connect (OSTI)

    Kalandarishvili, A.G.; Mailov, G.M.; Igumnov, B.N.; Bisko, V.A. [I.N. Vekua Sukhumi Inst. for Physics and Engineering, Tbilisi (Georgia)

    1995-12-31T23:59:59.000Z

    This paper presents results of development of a technique for ex-reactor heating with simultaneous recording of voltage-current characteristics of multi-cell thermionic fuel elements (TFE). Heating pulses were applied to electrodes of a thermionic energy converter (TIC), and between these pulses in the antiphase to them there were applied shorter pulses. The TIC emitter was heated by energy of an electric current flowing from the collector (back current heating). Comparison of TIC voltage-current characteristics, obtained for direct (using electric heater) and back current (current from the collector) heating, shows that for the same conditions they differ only slightly. Significant difference may be observed in the case of different profiles along the collector working surface. Results are given of the investigation of multi-cell thermionic fuel assemblies conducted using this technique. The developed technique of the TFE diagnostics can be successfully employed to assess the device quality. Pre-loop testing of multi-cell TFE by the method of back currents allows for cost effective and expeditious thermovacuum treatment of the TFE on thermal stands and for checking of its serviceability prior to its mounting into an irradiation loop or reactor-converter, enables improvements to the TFE design, monitoring of its electric parameters, for example, after vibration testing, and TFE accelerated testing in the most arduous conditions (thermocycling, loss of vacuum, etc.).

  2. FUEL CELL TECHNOLOGIES PROGRAM Case Study: Fuel

    E-Print Network [OSTI]

    through March), cooling water conveys waste heat from the fuel cells to an unfired furnace for space by the boilers. Early in the project, Verizon decided not to utilize the fuel cell's low temperature waste heat the cooling season (April through October), the high-grade waste heat from the fuel cells is used in two 70

  3. HEAT SHOCK PROTEINS: NOVEL THERAPEUTIC TARGETS AGAINST INSULIN RESISTANCE AND TYPE 2 DIABETES

    E-Print Network [OSTI]

    Gupte, Anisha A.

    2009-03-16T23:59:59.000Z

    Impaired insulin action, termed insulin resistance, is characteristic of type 2 diabetes, obesity and aging. Given the rising epidemic of diabetes, efforts to understand the mechanisms of insulin resistance and discover ...

  4. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartmentPotawatomi Community -A Guide

  5. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01T23:59:59.000Z

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  6. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    However, in the case of biomass feedstocks and fuels, LNG,NGL57/LRG43 LDVs, biomass feedstocks (versus 26 mpg LDGV)NGL57/LRG43 HDVs, biomass feedstocks (versus 6 mpg HDDV)

  7. Small Scale CHP and Fuel Cell Incentive Program (New Jersey)

    Broader source: Energy.gov [DOE]

    The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and are...

  8. Heat Transfer -2 A heat generating ( ) flat plate fuel element of thickness 2L is covered with flat plate steel cladding of

    E-Print Network [OSTI]

    Virginia Tech

    with flat plate steel cladding of thickness b. The heat generated is removed by a fluid at T, which adjoins on both sides On the sketch show regions where dT/dx is zero, constant and increasing. T , h x LL bb SteelSteel

  9. Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions

    SciTech Connect (OSTI)

    Tim Lieuwen

    2007-09-30T23:59:59.000Z

    The objective of this project was to improve understanding and modeling of flashback, a significant issue in low emissions combustors containing high levels of hydrogen. Experimental studies were performed over a range of fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to flashback. In addition, high speed imaging of the flashback phenomenon was obtained. One of the key conclusions of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying parametric dependencies. Specifically, two mechanisms of 'flashback' were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback tendencies. We suggested that this was due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not relevant for some parameter regimes found in swirling flames. In addition, it was found that in certain situations, pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition. This result could have significant implications on the development of future high hydrogen turbine systems.

  10. Check Burner Air to Fuel Ratios; Industrial Technologies Program (ITP) Process Heating Tip Sheet #2 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccess Storiesof EnergyChartPeriodic

  11. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeam Cumberland »Department of

  12. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect (OSTI)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01T23:59:59.000Z

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  13. Lung cancer and indoor pollution from heating and cooking with solid fuels - The IARIC International Multicentre Case-Control study in Eastern/Central Europe and the United Kingdom

    SciTech Connect (OSTI)

    Lissowska, J.; Bardin-Mikolajczak, A.; Fletcher, T.; Zaridze, D.; Szeszenia-Dabrowska, N.; Rudnai, P.; Fabianova, E.; Cassidy, A.; Mates, D.; Holcatova, I.; Vitova, V.; Janout, V.; Mannetje, A.; Brennan, P.; Boffetta, P. [Center for Cancer, Warsaw (Poland). Dept. of Epidemiology & Cancer Prevention

    2005-08-15T23:59:59.000Z

    Exposure to fuel from cooking and heating has not been studied in Europe, where lung cancer rates are high and many residents have had a long tradition of burning coal and unprocessed biomass. Study subjects included 2,861 cases and 3,118 controls recruited during 1998-2002 in the Czech Republic, Hungary, Poland, Romania, Russia, Slovakia, and the United Kingdom. The odds ratio of lung cancer associated with solid fuel use was 1.22 (95% confidence interval (CI): 1.04, 1.44) for cooking or heating, 1.37 (95% CI: 0.90, 2.09) for solid fuel only for cooking, and 1.24 (95% CI: 1.05, 1.47) for solid fuels used for both cooking and heating. Risk increased relative to the percentage of time that solid fuel was used for cooking (P-trend {lt} 0.0001), while no risk increase was detected for solid fuel used for heating. The odds ratio of lung cancer in whole-life users of solid cooking fuel was 1.80 (95% CI: 1.35, 2.40). Switching to nonsolid fuels resulted in a decrease in risk. The odds ratio for the longest duration of time since switching was 0.76 (95% CI: 0.63, 0.92). The data suggest a modest increased risk of lung cancer related to solid-fuel use for cooking rather than heating.

  14. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    E-Print Network [OSTI]

    Berning, Torsten

    of burner temperature and the aspects of implementing advanced modeling based control approaches using], auxiliary and uninterruptible power systems [13, 14, 15, 16, 17, 18, 19]. Polymer electrolyte membrane fuelDesign and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air

  15. Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation

    E-Print Network [OSTI]

    Gadalla, M.; Ratlamwala, T.; Dincer, I.

    2010-01-01T23:59:59.000Z

    In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor...

  16. Accidental Burning of a Fuel Layer on a Waterbed: A Scale Analysis Study of the Heat Transfer Models Predicting the pre-Boilover Time and Scaling to Published Data 

    E-Print Network [OSTI]

    Hristov, J; Planas, E; Arnaldos, J; Casal, J

    The paper concerns the heat transfer models of liquid fuel bed burning on water sublayer. The main efforts are stressed on the qualitative assessment of models available and their adequacy as well as on the prediction of ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Labeling Requirement Biodiesel fuel retailers may not advertise or offer for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

  19. Peculiarities of a method for ex-reactor heating of electrodes and obtaining voltage-current characteristics of multi-cell thermionic fuel elements

    SciTech Connect (OSTI)

    Kalandarishvili, A.G. [Sukhumi Institute of Physics and Engineering, Tbilisi 380008 Republic of (Georgia); Drozdov, A.A. [RRC ``Kurchatov Institute``, Moscow 123182 (Russia); Stepennov, B.S. [INERTEK, Moscow 123182 (Russia)

    1996-03-01T23:59:59.000Z

    The paper discusses principle of operation and applications of a pulse method of heating multi-cell thermionic fuel elements. Some experimental results are given for a cylindrical single-cell thermionic energy converter that simulates conditions close to that of multi-cell TFE operation. Basic requirements for technical parameters are stated that should be observed when testing TFE on thermal facilities. The means to improve the method are described, including both a computer-aided experiment and modifications in individual components of the test facility. {copyright} {ital 1996 American Institute of Physics.}

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  4. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  5. Study of turbulent single-phase heat transfer and onset of nucleate boiling in high aspect ratio mini-channels to support the MITR LEU conversion/

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2014-01-01T23:59:59.000Z

    Heat transfer in high aspect ratio mini-channels has important applications for materials test reactors using plate-type fuel. These fuel plates typically possess coolant channels with hydraulic diameters on the order of ...

  6. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  7. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01T23:59:59.000Z

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  8. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  9. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  10. Winters fuels report

    SciTech Connect (OSTI)

    NONE

    1995-10-27T23:59:59.000Z

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  11. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  12. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  13. Heat-activated cooling devices: A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1994-02-01T23:59:59.000Z

    Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

  14. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01T23:59:59.000Z

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  15. Special Problem for Chapter 4: Compare the Lower Heating Values of different fuel gases per Standard Cubic Foot, recalling that

    E-Print Network [OSTI]

    2 + 3.76N2) - 1H2Ovapor + 1.88N2 0 = 1 lbmolH2 O lbmolfuel � 18.016 lbmH2 O lbmolH2 O µ -5774.6 BTU lbmH2 0 ¶ + Qout 0 = -104040 BTU/lbmolfuel + Qout Qout = 104040 BTU/lbmolfuel = 51607 BTU/lbmfuel = 266 BTU/ft3 fuel [274 BTU/SCF] For 16.043 lbm of Methane CH4 + 2 (O2 + 3.76N2) - 2H2O + CO2 + 7.52N2

  16. MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News & Public Policy > Press Releases > Research Begun on New Fuel Cell Type

    E-Print Network [OSTI]

    SEARCH ASME: MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News Type NEW YORK, June 25, 2004 - In the June 2004 issue of Mechanical Engineering, a publication of ASME the potential to generate 2.3 megawatts of electricity, or enough energy to power 1,500 homes. One of the fuel

  17. Alternative Fuels Data Center: xTL Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquefaction technologies. Liquid Fuels from Biomass Liquid fuels converted from biomass feedstocks are produced primarily through two processes: Gasification-heating biomass by...

  18. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  19. Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

    E-Print Network [OSTI]

    Pacheco, Jose Rafael

    Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures

  20. Using and Measuring the Combined Heat and Power Advantage

    E-Print Network [OSTI]

    John, T.

    2011-01-01T23:59:59.000Z

    compared to other power generation systems. Fuel Charged to Power (FCP) is the fuel, net of credit for thermal output, required to produce a kilowatt-hour of electricity. This provides a metric that is used for comparison to the heat rate of other types...

  1. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  2. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to reduce the state's dependence on petroleum-based fuels in the transportation and heating sectors. Recommendations will include those related to incentives, plug-in electric...

  4. Investigation of global and regional BWR instabilities with a four heated-channel Reduced Order Model

    E-Print Network [OSTI]

    Demazière, Christophe

    transport) and a heat transfer model (describing heat transfer between the fuel and the coolant). All

  5. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  6. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  7. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationCentral Air Conditioners and Heat Pumps. Washington DC:Central Air Conditioners and Heat Pumps Energy Conservation

  8. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

  9. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

  10. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31T23:59:59.000Z

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  11. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19T23:59:59.000Z

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  12. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  13. Experimental Measurement of the Interface Heat Conductance Between Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations

    SciTech Connect (OSTI)

    Abelson, Robert Dean; Abdou, Mohamed A. [University of California, Los Angeles (United States)

    2001-03-15T23:59:59.000Z

    In fusion blanket designs that employ beryllium as a neutron multiplier, the interface conductance h plays a key role in evaluating the blanket's thermal profile. Therefore, an extensive experimental program was conducted to measure the magnitude of h between nonconforming beryllium and Type 316 stainless steel surfaces subjected to nonuniform thermal deformations. The magnitude of h was measured as a function of relevant environmental, surface, and geometric parameters, including surface roughness, contact pressure, gas pressure, gas type, and magnitude and direction of heat flow. The results indicate the following: (a) Decreasing the interfacial surface roughness from 6.28 to 0.28 {mu}m, in 760 Torr of helium, increased the magnitude of h by up to 100%; however, increasing the surface roughness reduced the dependence of h on the magnitude of the contact pressure. (b) The interface conductance was significantly higher for measurements made in helium gas as opposed to air. Additionally, the sensitivity of h to the gas pressure was significantly greater for runs conducted in helium and/or with smoother surfaces. This sensitivity was reduced in air and/or with roughened surfaces, and it was essentially nonexistent for the 6.25-{mu}m specimen for air pressures exceeding 76 Torr. (c) For runs conducted in vacuum, the interface conductance was more sensitive to heat flux than when runs were conducted in 760 Torr of helium. (d) The interface conductance was found to be dependent on the direction of heat flux. When the specimens were arranged so that heat flowed from the steel to the beryllium disk, the magnitude of h was generally greater than in the opposite direction.

  14. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24T23:59:59.000Z

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  15. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Registration When a motor vehicle is modified to use a different fuel type or more than one type of fuel, the vehicle's registered owner must notify the county treasurer...

  17. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  18. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  19. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  20. Biodiesel Fuel

    E-Print Network [OSTI]

    unknown authors

    publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

  1. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  2. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June...

  3. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a...

  4. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  5. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  6. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29T23:59:59.000Z

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  7. Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling

    E-Print Network [OSTI]

    Mattson, Jonathan Michael Stearns

    2013-08-31T23:59:59.000Z

    The increasing dependency of the global economy on mineral fuels necessitates the investigation and future implementation of renewable fuels. Within the spectrum of compression ignition engines, this requires an understanding of the differences...

  8. Fuel rail

    SciTech Connect (OSTI)

    Haigh, M.; Herbert, J.D.; O'Leary, J.J.

    1988-09-20T23:59:59.000Z

    This patent describes a fuel rail for a V-configuration automotive type internal combustion engine having a throttle body superimposed over an intake manifold. The throttle body has an air plenum above an induction channel aligned with a throttle bore passage in the manifold for flow or air to the engine cylinders. The rail includes a spacer body mounted sealingly between the throttle body and the manifold of the engine and having air induction passages therethrough to connect the throttle body channels and the manifold, the spacer body having at least on longitudinal bore defining a fuel passage extending through the spacer body, and a fuel injector receiving cups projecting from and communicating with the fuel passage. The spacer body consists of a number of separated spacer members, and rail member means through which the fuel passage runs joining the spacer members together.

  9. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  10. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Crepeau, J.C.; Sidwell, R.W. [Idaho Univ., Idaho Falls, ID (United States) Dept. of Mechanical Engineering

    1996-05-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  11. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  12. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07T23:59:59.000Z

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  13. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  14. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  15. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24T23:59:59.000Z

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  17. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  18. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  19. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01T23:59:59.000Z

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  20. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  1. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  2. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01T23:59:59.000Z

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  3. Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    : Multiple fuel feedstocks, usable waste heat, and cheap catalysts · Cons: Slow start-up, poor transient Carbonate Fuel Cell (MCFC) · Pros: Multiple fuel feedstocks and usable waste heat · Cons: Slow start

  4. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31T23:59:59.000Z

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  5. Northwest home buyers' fuel and energy-efficiency preferences

    SciTech Connect (OSTI)

    Lee, A.D.; Harkreader, S.A.; Bruneau, C.L.; Volke, S.M.

    1990-11-01T23:59:59.000Z

    This study for the Bonneville Power Administration (Bonneville) investigated home buyers' heating fuel and energy-efficiency preferences, and the influence of incentives on their choices. The study was conducted in four regions of Washington State: Spokane and Pierce Counties, where the Model Conservation Standards (MCS) for new electrically heated homes have been adopted as local code, and King and Clark Counties, where the MCS has been implemented only through a voluntary marketing program. The results of this study provide useful information about energy-efficiency, space heating fuel type, and alternative incentive programs. They provide initial evidence that fuel-specific energy-efficiency standards may significantly affect the shares of different heating fuels in the new home market. They also suggest that cash rebates and utility rate incentives may have a modest effect on the shares for different heating fuels. Because these results are based on a technique relying on hypothetical choices and because they reflect only four metropolitan areas, further study must be conducted to determine whether the results apply to other locations and whether other analytic approaches produce similar findings. 3 refs.

  6. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    National Fuel Cell Research Center www.nfcrc.uci.edu CONTROLS RESIDENTIAL FUEL CELL PHOTOVOLTAIC and efficiency, (3) RFC produces hydrogen, a flexible fuel that may be used for electricity, vehicles, heating fuel cells (RFC), we gain access to a new energy storage device that is both analogous to rechargeable

  7. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types Types of

  8. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    its lower heating value compared to diesel fuel. Biodiesellower in heating value compared to typical diesel fuel on aGTL diesel fuel, which is due to the lower heating value of

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and must include space for the following fuel types: gasoline, diesel, propane, electricity, natural gas, methanolM85, ethanolE85, biodiesel, and other. For more...

  11. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13T23:59:59.000Z

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  12. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  13. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01T23:59:59.000Z

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  14. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01T23:59:59.000Z

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  15. Unconventional fuel: Tire derived fuel

    SciTech Connect (OSTI)

    Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

    1995-09-01T23:59:59.000Z

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  16. PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    2003-06-09T23:59:59.000Z

    This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  17. apex nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

  18. A GUIDE TO FUEL PERFORMANCE

    SciTech Connect (OSTI)

    LITZKE,W.

    2004-08-01T23:59:59.000Z

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

  19. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  20. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  1. A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design

    SciTech Connect (OSTI)

    Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

    2010-11-01T23:59:59.000Z

    Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

  2. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  3. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11T23:59:59.000Z

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  4. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentFuel and Technology Choice in Home Heating and Cooling," LBLTHE MARKET FOR HOME HEATING AND COOLING EQUIPMENT* David

  5. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22T23:59:59.000Z

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  6. advanced fuel systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this aim, a heat exchanger based TEG heat recovery Berning, Torsten 129 Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems CERN Preprints Summary:...

  7. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  8. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. Combined Heat & Power Technology Overview and Federal Sector...

    Broader source: Energy.gov (indexed) [DOE]

    electricity) from a single fuelenergy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    power. In these scenarios, hydrogen fuel could be produced for use: (1) in stationary fuel cells to produce electricity and heat and (2) as a transportation fuel in fuel cell...

  11. Changing fuel specifications

    SciTech Connect (OSTI)

    Hatt, R.

    1995-08-01T23:59:59.000Z

    This paper will describe the goals, methods, and results of a program designed to expand fuel specifications. The ability to expand fuel specs can provide many advantages to a power company. These would include increased fuel flexibility, better performance and lower fuel cost. The expansion of transportation modes also may enhance the scenario. Although brief, this paper should provide a good understanding of the types of problems that can be encountered, and the cooperative effort necessary to resolve them.

  12. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    National Fuel Cell Research Center www.nfcrc.uci.edu SOFC AND PEMFC COMPARISON Efficiency ­ Higher FOR OPTIMIZATION · Fuel Cell · Compressor · Combustor · Turbine · Storage Tank · Heat Exchanger·Battery · Motor of the system. · Operating characteristics of fuel cells at pressures less than 1 atm are largely unknown

  13. Damaged Fuel Experiment DF-1

    SciTech Connect (OSTI)

    Gasser, R.D.; Fryer, C.P.; Gauntt, R.O.; Marshall, A.C.; Reil, K.O.; Stalker, K.T.

    1990-01-01T23:59:59.000Z

    A series of in-pile experiments addressing LWR severe fuel damage phenomena has been conducted in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The ACRR Debris Formation and Relocation (DF) experiments are quasi-separate effects tests that provide a data base for the development and verification of models for LWR severe core damage accidents. The first experiment in this series, DF-1, was performed on March 15, 1984, and the results are presented in this report. The DF-1 experiment examined the effects of low initial clad oxidation conditions on fuel damage and relocation processes. The DF-1 test assembly consisted of a nine-rod square-matrix bundle that employed PWR-type fuel rods with a 0.5-m fissile length. The fuel rods were composed of 10% enriched UO{sub 2} pellets within a zircaloy-4 cladding. Steam flowed through the test bundle at flow rates varying between 0.5 and 3 g/s, and the ACRR maintained a peak power level of 1.5 MW during the high temperature oxidation phase of the test inducing {approximately}8.5 kW fission power and {approximately}20 kW peak oxidation power in the assembly. Visual observation showed early clad relocation and partial blockage formation at the grid spacer location accompanied by production of a dense aerosol. Posttest cross sections show liquefaction losses of fuel in excess of 10 volume percent, as well as large fractional losses of cladding material from the upper two-thirds of the bundle. The quantity of hydrogen measured during the test was consistent with the observed magnitude of cladding oxidation. Oxidation driven heating rates of 25 K/s and peak temperatures in excess of 2525 K were observed. The analyses, interpretation, and application of these results to severe fuel damage accidents are discussed. 27 refs., 118 figs., 23 tabs.

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well...

  15. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Leonard, Gary L. (Schenctady, NY)

    1988-01-01T23:59:59.000Z

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  16. Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination

    E-Print Network [OSTI]

    A. Vaudrey; P. Baucour; F. Lanzetta; R. Glises

    2010-08-30T23:59:59.000Z

    Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

  17. Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination

    E-Print Network [OSTI]

    Vaudrey, A; Lanzetta, F; Glises, R

    2009-01-01T23:59:59.000Z

    Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  19. Technique for estimating jet fuel prices from energy futures market

    SciTech Connect (OSTI)

    Vineyard, T.A.

    1988-05-01T23:59:59.000Z

    This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

  20. Breakout Group 5: Solid Oxide Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    choice o Combined heat and power applications maximize SOFC benefit of high grade waste heat o Critical and remote power are good early market applications o Biomass-fueled SOFCs...

  1. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

    2010-02-23T23:59:59.000Z

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  2. Residential gas heat pump assessment: A market-based approach

    SciTech Connect (OSTI)

    Hughes, P.J.

    1995-09-01T23:59:59.000Z

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  3. Combined Heat and Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat

  4. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  5. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating »

  6. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating

  7. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01T23:59:59.000Z

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  8. Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or

    E-Print Network [OSTI]

    About CHP Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of energy. CHP is a type of distributed generation, which, unlike central station generation, is located fuel in a furnace or boiler to produce thermal energy, consumers use CHP to provide these energy

  9. Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.

    2008-01-01T23:59:59.000Z

    Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

  10. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  11. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  12. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  13. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect (OSTI)

    Douglas L. Porter

    2011-02-01T23:59:59.000Z

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  14. MotorWeek Fuel Cell Video

    Broader source: Energy.gov [DOE]

    Learn how fuel cells are being used in specialty vehicles, auxiliary power, standby power generators, and for supplying power and heat to buildings and warehouse operations.

  15. Future Directions in Engines and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    parties Future Directions in Engines and Fuels 9 HP-EGR Cooler: Shell and tubes heat exchanger with optimised gas tube design High thermal exchange and resistance to...

  16. Heat treatment effect on p type Zn doped InP substrates A. Dhouib, B. Maloumbi, C. Martinez (*), L. Gouskov, D. Bayaa (1), T. Bretagnon (1)

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract. 2014 During the process of elaboration of n+ /p InP photodiodes for solar energy conversion, we in device processing, heat treatments are required for contact formation, im- purity diffusion, implantation of the process parameters. During the elaboration of n+ /p InP photodiodes for solar energy conversion by sulfur

  17. Cold start characteristics of ethanol as an automobile fuel

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

    1982-01-01T23:59:59.000Z

    An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

  18. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01T23:59:59.000Z

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  19. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  20. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  1. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    the choice of space heating technology is depen- dent on thefor Fuel and Technology Choice in Home Heating and Cooling,"fuel or technology for residential space heating. The

  2. Planning a Commercial Fuel Cell Installation 

    E-Print Network [OSTI]

    Bowden, J. R.; May, G. W.

    1986-01-01T23:59:59.000Z

    Fuel cell power plants represent a unique opportunity for industrial users to combine on-site electricity generation and heat recovery with high efficiencies and no significant environmental releases. Thus in some circumstances, the fuel cell may...

  3. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  4. DYNAMIC MODELING FUEL PROCESSORS

    E-Print Network [OSTI]

    Mease, Kenneth D.

    turbine module (compressor and turbine sub-modules) Catalytic oxidizer Combustor module Heat exchanger, PEM, Gas Turbine General Model Assumptions · 1D process flow · Well-stirred within nodal volume · Slow reactants #12;Steam Reformation ­ Occurs in Reformer and Fuel Cells Methane reformation reaction Water Gas

  5. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  7. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  8. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-03T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-17T23:59:59.000Z

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  10. Combined Heat and Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    system performance e.g., effect of low-temperature combustion strategies, improved turbo-machinery, etc on process heat production and system efficiency Fuel flexibility...

  11. A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems

    SciTech Connect (OSTI)

    Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

    1994-12-31T23:59:59.000Z

    The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

  12. Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S.Heat Pumps Heat

  13. Residential heating oil prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil9,heating

  14. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3, 2014heating

  15. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3, 2014heating5,

  16. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating oil

  17. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating

  18. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  19. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on any vehicle type or engine configuration. How the specific fuel and emissions control systems work together determines compliance with EPA emissions standards for a...

  20. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  1. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle ReductionOfficesActive Solar HeatingScience &

  2. Industrial process heating energy analysis, 1989. Topical report

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The study was initiated to analyze and compare the major process heat trends and applications in U.S. industry at a level of detail sufficient to enable GRI to select industries and process heat technologies where potential R D efforts could have the greatest impact on the efficient use of natural gas and thus improve the competitive position of natural gas technologies. This study was conducted as an update of earlier studies from 1980 and 1985 that estimated the amount of process heat energy consumed by industry. Process heat applications were divided into fifteen major categories, which cover a wide range of applications used in over 16 major industry groups (2-digit SICs). Most of the process heat categories cover a wide variety of technologies that are capable of achieving the same result using different fuel types. In addition, many technologies are used in more than one type of process heat application (e.g., rotary kilns are used for both calcining and ore roasting).

  3. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J. (Schenectady, NY); Dwyer, Joseph R. (Albany, NY); Luce, Robert G. (Schenectady, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY)

    1992-01-01T23:59:59.000Z

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  4. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    Water Heating Requirements ­ Overview Page 5-1 5 Water Heating Requirements 5.1 Overview 5.1.1 Water Heating Energy Water heating energy use is an important end use in low-rise residential buildings. Roughly 90 percent of California households use natural gas fueled water heaters, typically storage gas

  5. LMFBR fuel assembly design for HCDA fuel dispersal

    DOE Patents [OSTI]

    Lacko, Robert E. (North Huntingdon, PA); Tilbrook, Roger W. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  6. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs... requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling...

  7. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-05-12T23:59:59.000Z

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  8. Hog Fuel Drying Using Vapour Recompression 

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01T23:59:59.000Z

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  9. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  10. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  11. Transportation Fuel Market Stood at 2,332.57 MTOE in 2013 and...

    Open Energy Info (EERE)

    transportation fuel market has been segmented on the basis of fuel type into gasoline, diesel, aviation turbine fuel, and others. More than 90% of the global transportation fuel...

  12. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df the fuel rod, and the volumetric generation rate is known to vary sinusoidally with distance along the rod to exist between the surface of the rod and the water. Axial conduction can be neglected in rod and fluid

  13. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEast WingHeat

  14. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  19. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  20. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL

    2011-11-01T23:59:59.000Z

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  1. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  2. Industrial Heat Pumps: Where and When 

    E-Print Network [OSTI]

    Ranade, S. M.; Chao, Y. T.

    1989-01-01T23:59:59.000Z

    A brief review of the types of industrial heat pumps is presented. General guidelines are provided for appropriate placement of industrial heat pumps. Industrial applications are used as examples to illustrate key points.

  3. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31T23:59:59.000Z

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  4. Toward alternative transportation fuels

    SciTech Connect (OSTI)

    Sperling, D. (Univ. of California, Davis (USA))

    1990-01-01T23:59:59.000Z

    At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.

  5. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01T23:59:59.000Z

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  6. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  7. Synergistic smart fuel for in-pile nuclear reactor measurements

    SciTech Connect (OSTI)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01T23:59:59.000Z

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  8. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08T23:59:59.000Z

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  9. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

  10. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  11. Climate Change Fuel Cell Program

    SciTech Connect (OSTI)

    Alice M. Gitchell

    2006-09-15T23:59:59.000Z

    A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  13. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16T23:59:59.000Z

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  14. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-10-04T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  15. *Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., a

    E-Print Network [OSTI]

    Mease, Kenneth D.

    and fuel cell electric vehicles), there are still emissions associated with the upstream processes Electric Vehicles Fuel Cell Electric Vehicles #12;*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center

  16. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  17. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  18. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  19. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  20. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  1. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances »Contact-InformationFuels DOE would

  2. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton PlasmaEnergyFuel Cell

  3. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on...

  4. Stocks of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,591 135,428 135,820

  5. Diesel fuel additive

    SciTech Connect (OSTI)

    Carr, R.P.; Corpuz, M.Y.

    1987-04-28T23:59:59.000Z

    This patent describes an improved cold weather diesel fuel treatment of the type comprising the ingredients % by weight: wax crystal modifier 10 to 50%; sludge dispersant and stabilizer 1 to 10%; hydrocarbon solvent 15 to 40%; oil-soluble water solvent 15 to 40%. The ingredients comprise a low molecular weight organic compound containing from 1 to 3 structural units having formula: -CH/sub 2/CH/sub 2/O-. The improved cold weather diesel fuel treatment is capable of dispersing or dissolving water contained in diesel fuels.

  6. The Homopolar Pulse Billet Heating Process

    E-Print Network [OSTI]

    Keith, R. E.; Weldon, W. F.

    1982-01-01T23:59:59.000Z

    - or gas-fired furnace machine. (7) Also during 1981, under the heating. Although most billet heating sponsorship of the Electric Power Research today is done using fuel-fired furnaces, Institute (EPRI), CEM-UT carried out a electric heating... obtained frDm Electromechanics at The University of Texas the EPRI study. at Austin (CEM-UT) has been engaged in research on large pulsed power supplies for use in experiments leading to controlled TEMPERATURE GRADIENTS IN BILLET HEATING...

  7. LowerLower--Cost Fuel CellsCost Fuel Cells Allen J. Bard, Arumugam Manthiram,Allen J. Bard, Arumugam Manthiram,

    E-Print Network [OSTI]

    Lightsey, Glenn

    1 LowerLower--Cost Fuel CellsCost Fuel Cells Allen J. Bard, Arumugam Manthiram,Allen J. BardMaterials Science and Engineering Program 2 CONVENTIONAL POWER PLANT DIRECT FUEL CELL POWER PLANT Heat power PEMFC: H2 fuel DMFC: Methanol fuel Fuel cells vs. conventional #12;2 3 Fuel cells could change

  8. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22T23:59:59.000Z

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  9. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10T23:59:59.000Z

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  10. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heat

  12. State heating oil and propane program, 1994--1995 heating season. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-05-09T23:59:59.000Z

    Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

  13. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and

    E-Print Network [OSTI]

    Liso, Vincenzo

    Performance of hybrid quad generation system consisting of solid oxide fuel cell system. Keywords: Energy system modeling, Solid oxide fuel cell, Absorption heat pump. 1. Introduction 1

  14. Binder enhanced refuse derived fuel

    DOE Patents [OSTI]

    Daugherty, Kenneth E. (Lewisville, TX); Venables, Barney J. (Denton, TX); Ohlsson, Oscar O. (Naperville, IL)

    1996-01-01T23:59:59.000Z

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  15. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the major national security imperatives of this century. Get Expertise Rod Borup MPA-11, Fuel Cell Program Manager Email Andrew Dattelbaum MPA-11 Group Leader Email Melissa Fox...

  16. Fuel Saving Ideas for Metal and Ceramic Processing

    E-Print Network [OSTI]

    Reed, R. J.

    1982-01-01T23:59:59.000Z

    An easy method is presented for analyzing sources of heat loss from industrial processing furnaces, kilns, and ovens; and thus for recognizing opportunities for fuel saving. This will relate to melting, heat treating and hot forming of metals...

  17. Home Heating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome DesignHeating

  18. Radiant Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmart SensorsHeating Radiant

  19. Sandia Energy - Heat Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobalHeat Exchanger

  20. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail price