Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

2

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

3

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

4

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

5

A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING  

E-Print Network (OSTI)

Tex. , 3rd Ann. Solar Heating & Cooling R&D Contractors'Proceedings, Passive Solar Heating & Cooling~'-~&-l~orkshop,Solar Jubilee, Phoenix, AZ, June 2-6, 1980 A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING

Tavana, Medhi

2011-01-01T23:59:59.000Z

6

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

7

Radiative cooling and solar heating potential by using various roofing materials  

Science Conference Proceedings (OSTI)

The results of testing over twenty typical and potential roofing materials such as: corrugated galvanized steel, corrugated clear fiberglass, 90number black roll roofing, 90number green roll roofing, 90number red roll roofing, 90number brown roll roofing, 90number white roll roofing, 240number brown asphalt shingles, anodized aluminum, etc. under exposure to solar and nocturnal sky radiation are presented. Some cadmium sulfite solar cells and silicon solar cells are being tested as potential future roofing panels. Graphs showing the temperature variation of each material versus testing time are given for a heating and a cooling cycle. The environmental conditions of testing such as: solar insolation, apparent sky temperature, ambient air temperature, relative humidity and wind speed are also given. On the basis of preliminary results obtained during the testing of roofing materials, several mini-modules of an integrated collector/radiator/ roof element with the dimensions 0.6 m x 0.6 m (2 ft x 2 ft) were constructed and tested. The thermal response of the mini-modules under solar and nocturnal sky radiation is shown and the testing results are discussed. The spectral transmittance curves for nine transparent cover materials are also presented. The preliminary results indicate that solar radiation and nocturnal sky radiation could be used effectively by employing an integrated collector/radiator structure.

Pytlinski, J.T.; Connell, H.L.; Conrad, G.R.

1980-12-01T23:59:59.000Z

8

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

9

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

10

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

11

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

12

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

13

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

14

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why Cool Roofs? Why Cool Roofs? Why Cool Roofs? Addthis Description By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills. Speakers Secretary Steven Chu Duration 1:46 Topic Tax Credits, Rebates, Savings Commercial Weatherization Commercial Heating & Cooling Fossil Oil Credit Energy Department Video SECRETARY OF ENERGY STEVEN CHU: The reason we wanted the Department of Energy to take the lead in cool roofs is to demonstrate that this really saves money. If you have a roof and it's black, it's absorbing energy from the sun

15

Evolution of cool roof standards in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

& Standards, Heat Island Abstract Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally...

16

Roof shading and wall glazing techniques for reducing peak building heating and cooling loads. Final report  

SciTech Connect

The roof shading device proved to be effective in reducing peak building cooling loads under both actual testing conditions and in selected computer simulations. The magnitude of cooling load reductions varied from case to case depending on individual circumstances. Key variables that had significant impacts on its thermal performance were the number of months of use annually, the thermal characteristics of the roof construction, hours of building use, and internal gains. Key variables that had significant impacts upon economic performance were the costs of fuel energy for heating and cooling, and heating and cooling equipment efficiency. In general, the more sensitive the building is to climate, the more effective the shading device will be. In the example case, the annual fuel savings ($.05 psf) were 6 to 10% of the estimated installation costs ($.50 to .75 psf). The Trombe wall installation at Roxborough High School proved to be effective in collecting and delivering significant amounts of solar heat energy. It was also effective in conserving heat energy by replacing obsolete windows which leaked large amounts of heat from the building. Cost values were computed for both solar energy contributions and for heat loss reductions by window replacement. Together they amount to an estimated three hundred and ninety dollars ($390.00) per year in equivalent electric fuel costs. When these savings are compared with installation cost figures it is apparent that the Trombe wall installation as designed and installed presents a potentially cost-effective method of saving fuel costs. The study results indicate that improved Trombe wall efficiency can be achieved by making design and construction changes to reduce or eliminate outside air leakage into the system and provide automatic fan control.

Ueland, M.

1981-08-01T23:59:59.000Z

17

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

18

Cool Roofs | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roofs Cool Roofs Cool Roofs Posted: July 18, 2012 - 1:59pm | Y-12 Report | Volume 9, Issue 1 | 2012 Hot, sunny days call for light-colored clothing to reflect the heat. As it turns out, the same principle works for roofs. Consider the results from a Lawrence Berkeley National Laboratory study in Austin, Texas, which measured a dark roof to average a whopping 43 degrees hotter than a light roof. The hotter the roof, the hotter the building becomes, and the more air-conditioning is needed - 11 percent, in that particular study. That in turn puts more carbon dioxide into the atmosphere. Higher atmospheric temperatures also affect atmospheric chemistry, causing higher ozone levels and more smog. Turning down the heat can be both inexpensive and simple, however: replace

19

what is a cool roof? what is the  

E-Print Network (OSTI)

samples the 2008 building energy efficiency standards for cool roofs: There are two approaches Building Energy Efficiency Standards California contact more about cool roof requirements for more to the building below The sun's heat hits the roof surface A non-residential cool roof Coating for a low

20

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

22

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Chu at COP-16: Building a Sustainable Energy...

23

AEDG Implementation Recommendations: Cool Roofs | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

section of the guide and focus on cool roofs, which are recommended for metal building roofs and roofs with insulation entirely above deck. Publication Date: Wednesday,...

24

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

25

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

26

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

27

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

28

Cool Roofs Lead to Cooler Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities July 23, 2010 - 2:07pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofs and roadways create what is called the "urban heat island effect," meaning a city is significantly warmer than its surrounding rural areas. Light colored roofs reduce the heat island effect and improve air quality by reducing emissions. Lighter-colored roofing surfaces reflect more of the sun's heat, which helps to improve building efficiency by reducing cooling costs and offsetting carbon emissions. Roofs and road pavement cover 50 to 65 percent of urban areas. Because they absorb so much heat, dark-colored roofs and roadways create what is called

29

Evolution of cool-roof standards in the United States  

SciTech Connect

Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

2008-07-11T23:59:59.000Z

30

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

solar absorptance, attic, and duct insulation on cooling and heating energy use in single-family new residential buildings.solar- reflective roof on the heating- and cooling-energy uses of a residential-building

Akbari, Hashem

2008-01-01T23:59:59.000Z

31

Cool Roofs: An Easy Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade December 14, 2010 - 9:25am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Dark roofs can be 50 degrees hotter than light roofs. Combined with dark roads and parking lots, dark roofs lead to the 'urban heat island' effect: cities tend to be 2-5 degrees hotter. A cooler roof means energy bills that are up to 10-15% lower because your air conditioner doesn't have to work as hard. Check out Google Earth - the 'view from above' of your favorite American city. And look at the roofs of the office buildings, warehouses, shopping centers, and even the homes. Most of them are probably pretty dark in color - and this means they heat up a lot when the weather is warm -

32

Guidelines for Selecting Cool Roofs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

33

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network (OSTI)

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol-air principles are covered and a simplified method of evaluation presented. A life cycle energy savings example is discussed. Benefits of roof life and roof top equipment efficiency and maintenance are covered as well as water consumption and performance trade-offs with alternate methods of roof heat gain control. Testimonials and case studies are presented. The gradual migration of business, industry, and populace to the southern United States was largely brought on by the advent of the practical air-conditioner, cheap electricity, and the harshness of northern winters. But while "wintering at Palm Beach" has been replaced by "Sun Belt industries" ; the compression-refrigeration cooling cycle is about the only thing separating millions of southerners (native and adopted) from August heat stroke and the Detroit News employment ads. This migration has been spurred by economic recessions which hit harder at the competitively populated northern centers than at the still growing industries of the south. These trends are important illustrations of the concern for efficient cooling strategies. Not only are homes in hot climates vulnerable to the now not-so-low cost of electricity but large, compact. and heavily occupied buildings (offices, schools, hospitals, theaters, etc.) often must air-condition year-around. In 1968. air-conditioning was 3% of U.S. end energy consumption compared to 18% for space heating and 25% for transportation. By 1980, according to Electric Power Research Institute's Oliver Yu, air-conditioning use was 12.5% of all electricity generated and by the year 2000 is projected to reach 16.7% "as migration slows and the GNP reaches a stable 3% growth rate" (EPRI 1982 to 1986 Overview and Strategy). Of further significance is the effect of air-conditioning loads on the peak generating requirements of electrical utilities. Because utilities must build generating capacity to meet peak requirements, they normally charge a higher summer kWh rate (for residential) and levy a peak kW demand charge on a monthly or even annual "ratchet" rate (for larger service customers). The June '83 cover of Houston City Magazine, in reference to future electrical rates, promised: "Pay or Sweat". Typical of many cooling or heat gain prevention strategies being employed on "innovative" buildings in warm climates, evaporative spray roof cooling (ESRC) systems (not to be confused with roof ponds) are not new. Like ventilated structures, ice house roofs, enhanced ventilation, masonry walls, night sky radiation and ground contact cooling, evaporative cooling in many forms has been around for centuries. (See Solar Age, July '82 and February '81 for related articles). Even the development of roof spray systems is not as newly founded as one might suspect.

Bachman, L. R.

1985-01-01T23:59:59.000Z

34

Microsoft PowerPoint - Cool Roofs_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for: for: Quarterly Facilities and Infrastructure Meeting Presented by: The Office of Engineering and Construction Management Content Excerpted From Presentation of: Bob Schmidt - NNSA Kansas City Plant Cool Roofs - An Overview August 4, 2009 2 *The terms "white roof" and "cool roof" are often mistakenly used interchangeably. A white roof is not necessarily a cool roof and a cool roof is not necessarily white. *"Cool Roofs" come in many style as defined by industry standard and can include: Metal Single ply Modified bitumen Acrylic coated White Roof vs. Cool Roof 3 Solar reflectance alone can significantly influence surface temperature, with the white stripe on the brick wall about 5 to 10° F (3-5° C) cooler than the surrounding, darker

35

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

Science Conference Proceedings (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

36

One Cool Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

37

Aging and weathering of cool roofing membranes  

E-Print Network (OSTI)

and L.S. Rose. 2002. Aging of reflective roofs: sootAging and Weathering of Cool Roofing Membranes HashemNRC), Canada ABSTRACT Aging and weathering can reduce the

2005-01-01T23:59:59.000Z

38

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet and a fluid outlet. Shingles are assembled in a normal overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive shingles to provide a fluid path through the complete array. An inlet manifold is contained in a cap used at the peak of the roof and an outlet manifold is connected to the lowest row of shingles.

Straza, G.T.

1984-01-31T23:59:59.000Z

39

Photovoltaic roof heat flux  

E-Print Network (OSTI)

many solar installations have basic weather stations. Withthe solar panels. Figure 6: Setup #1 on RIMAC roof. Weather

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

40

Cool roofs as an energy conservation measure for federal buildings  

SciTech Connect

We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

Taha, Haider; Akbari, Hashem

2003-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

program in Mexico City, and contacts in energy efficiencyenergy savings due to cool roofs for the median climate in Brazil, India, and Mexico ..energy savings due to cool roofs for the median climate in Brazil, India, and Mexico

Akbari, Hashem

2011-01-01T23:59:59.000Z

42

Effectiveness of Cool Roof Coatings with Ceramic Particles  

SciTech Connect

Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

Brehob, Ellen G [ORNL; Desjarlais, Andre Omer [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

43

Energy Saving 'Cool Roofs' Installed at Y-12 | Y-12 National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving 'Cool ... Saving 'Cool ... Energy Saving 'Cool Roofs' Installed at Y-12 Posted: October 17, 2012 - 4:08pm The Y-12 National Security Complex has taken additional steps to reduce its energy costs by installing almost 100,000 square feet of new heat reflective "cool" roofs at the Oak Ridge, Tennessee facility. The latest Y-12 cool roofs were added to Buildings 9204-2E and 9103. Fifteen percent of roofs at Y-12 are currently equipped with cool roof technology. This technology is expected to be applied to the majority of the roofs at Y-12. "Replacing older, heat-absorbing roofs with the heat-reflective cool roofs is part of NNSA's strategy to achieve energy and cost efficiencies," said Robert "Dino" Herrera, Facilities and Infrastructure Recapitalization Program Manager. "We strive to lead the

44

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet socket at the upper end and a fluid outlet plug at the lower end with a skirt at the lower end overlapping the plug. Shingles are assembled in an overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive longitudinally positioned shingles to provide fluid paths through the complete array. An inlet manifold is positioned at the upper end of the array or in the alternative contained in a cap used at the peak of the roof and an outlet manifold is connected to the outlet of the lowest row of shingles.

Straza, G.T.

1981-01-13T23:59:59.000Z

45

Potential benefits of cool roofs on commercial buildings: conserving...  

NLE Websites -- All DOE Office Websites (Extended Search)

of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on...

46

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

47

Potential benefits of cool roofs on commercial buildings: conserving  

NLE Websites -- All DOE Office Websites (Extended Search)

cool roofs on commercial buildings: conserving cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., and Hashem Akbari Journal Energy Efficiency Volume 3 Pagination 53-109 Publisher Springer Netherlands ISSN 1570-646X Keywords cool roof, Heat Island Abstract Cool roofs-roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission-lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes-new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980)-were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m2 in Alaska to 7.69 kWh/m2 in Arizona (5.02 kWh/m2 nationwide); a heating energy penalty ranging from 0.003 therm/m2 in Hawaii to 0.14 therm/m2 in Wyoming (0.065 therm/m2 nationwide); and an energy cost saving ranging from $0.126/m2 in West Virginia to $1.14/m2 in Arizona ($0.356/m2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m2 in Alaska to 4.97 kg/m2 in Hawaii (3.02 kg/m2 nationwide); an NOx reduction ranging from 1.70 g/m2 in New York to 11.7 g/m2 in Hawaii (4.81 g/m2 nationwide); an SO2 reduction ranging from 1.79 g/m2 in California to 26.1 g/m2 in Alabama (12.4 g/m2 nationwide); and an Hg reduction ranging from 1.08 μg/m2 in Alaska to 105 μg/m2 in Alabama (61.2 μg/m2 nationwide). Retrofitting 80% of the 2.58 billion square meters of commercial building conditioned roof area in the USA would yield an annual cooling energy saving of 10.4 TWh; an annual heating energy penalty of 133 million therms; and an annual energy cost saving of $735 million. It would also offer an annual CO2 reduction of 6.23 Mt, offsetting the annual CO2 emissions of 1.20 million typical cars or 25.4 typical peak power plants; an annual NOx reduction of 9.93 kt, offsetting the annual NOx emissions of 0.57 million cars or 65.7 peak power plants; an annual SO2 reduction of 25.6 kt, offsetting the annual SO2 emissions of 815 peak power plants; and an annual Hg reduction of 126 kg.

48

Cool roofs as an energy conservation measure for federal buildings  

SciTech Connect

We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

Taha, Haider; Akbari, Hashem

2003-04-07T23:59:59.000Z

49

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

50

DOE Cool Roof Calculator for Low-Slope or Flat Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Estimates Cooling and Heating Savings for Flat Roofs with Non-Black Surfaces - Developed by the U.S. Department of Energy's Oak Ridge National Laboratory (Version 1.2) - This version of the calculator is for small and medium-sized facilities that purchase electricity without a demand charge based on peak monthly load. If you have a large facility that purchases electricity with a demand charge, run the CoolCalcPeak version in order to include the savings in peak demand charges from using solar radiation control. - What you get out of this calculator is only as good as what you put in. If you CLICK HERE , you'll find help in figuring out the best input values. Some things, such as the weathering of the solar radiation control properties and the effects of a plenum, are especially important. You'll

51

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

52

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

53

Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements  

SciTech Connect

Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2002-12-15T23:59:59.000Z

54

Covered Product Category: Cool Roof Products  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

55

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

57

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

Konopacki. 1998b. "Measured Energy Savings of Light- coloredPeak Power and Cooling Energy Savings of High-Albedo Roofs,Peak Power and Cooling Energy Savings of High-albedo Roofs,"

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

58

Cool Roof Resource Guide for Federal Agencies (Fact Sheet)  

Science Conference Proceedings (OSTI)

Resource guide containing information and links for the evaluation and installation of cool roofs within the Federal Government

Not Available

2009-07-01T23:59:59.000Z

59

Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Implement Cool Roofs at DOE and Steps to Implement Cool Roofs at DOE and Across the Federal Government Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the Federal Government July 19, 2010 - 12:00am Addthis Washington - U.S. Department of Energy Secretary Steven Chu today announced a series of initiatives underway at the Department of Energy to more broadly implement cool roof technologies on DOE facilities and buildings across the federal government. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency by reducing cooling costs and offsetting carbon emissions. President Obama and Secretary Chu have made clear that the federal government should play a leading role in moving the nation toward a more

60

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents (OSTI)

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pollution Impact on Cool Roof Efficacy Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Pollution Impact on Cool Roof Efficacy Emerging Technologies » Pollution Impact on Cool Roof Efficacy Research Project Pollution Impact on Cool Roof Efficacy Research Project The Department of Energy (DOE) is currently determining how pollution impacts the efficacy of cool roofs. The project specifically is focusing on the efficacy of white roofs in Northern India. The first phase of the project will take physical measurements to characterize the cooling and climate effects of white roofs. Results from this project will provide important guidance to policymakers and planners as they decide where cool roofs would have the greatest benefits. Project Description The project involves the development of advanced surfaces and next-generation materials to improve solar reflectance of roofs; the ability to reflect the visible, infrared and ultraviolet wavelengths of the

62

Status of cool roof standards in the United States  

SciTech Connect

Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

Akbari, Hashem; Levinson, Ronnen

2007-06-01T23:59:59.000Z

63

Building Technologies Office: Pollution Impact on Cool Roof Efficacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution Impact on Pollution Impact on Cool Roof Efficacy Research Project to someone by E-mail Share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Facebook Tweet about Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Twitter Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Google Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Delicious Rank Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Digg Find More places to share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

64

Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements  

Science Conference Proceedings (OSTI)

Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2003-07-01T23:59:59.000Z

65

Would You Consider Installing a Cool Roof? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? August 12, 2010 - 7:30am Addthis On Monday, Erin discussed cool roof technologies and how they can improve the comfort of buildings while reducing energy costs. Would you consider installing a cool roof? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Installing a Cool Roof? Tips: Energy-Efficient Roofs How Do You Save Water When Caring for Your Lawn?

66

Status of cool roof standards in the United States  

E-Print Network (OSTI)

Cool roofs save energy. ASHRAE Transactions 104(1B):783-788.2000. Updates on revision to ASHRAE Standard 90.2: includingSSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B),

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

67

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

DOE Green Energy (OSTI)

Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-07-01T23:59:59.000Z

68

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

69

Aging and weathering of cool roofing membranes  

Science Conference Proceedings (OSTI)

Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

2005-08-23T23:59:59.000Z

70

Cool roof Q+A 011.doc 29 July 2009 Cool Roof Q & A (draft)  

E-Print Network (OSTI)

thermal radiation. Thus, a cool roof should have both high "solar reflectance" (ability to reflect, also measured on a scale of 0 to 1). The solar reflectance and thermal emittance of a surface are called its "radiative" properties because they describe its abilities to reflect solar radiation and emit

71

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10 19%. With the assumption of an annual increase...

72

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

73

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool  

NLE Websites -- All DOE Office Websites (Extended Search)

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool as You Thought it Was Speaker(s): Ronnen Levinson Date: June 30, 2009 - 12:00pm Location: LBNL Bldg. 66 Auditorium Solar reflectance is often used to estimate the solar heat gain and rate the "coolness" of roofs and pavements. A solar reflectance property measured by two popular ASTM standard test methods (E903, C1549) can underestimate the peak solar heat gain of a spectrally selective "cool colored" surface by nearly 100 W m-2 because it assumes that sunlight contains an unrealistically high fraction of near-infrared (invisible) energy. Its use in building energy simulations can overestimate cool-roof annual energy savings by more than 20%. I define a new and simple solar

74

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

model the complete heat transfer process through the roof,model the complete heat transfer process through the roof,

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

75

Cool Roofs: Your Questions Answered | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: Your Questions Answered Roofs: Your Questions Answered Cool Roofs: Your Questions Answered January 6, 2011 - 2:58pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Last month Secretary Chu announced that the Department of Energy had installed a "cool roof" atop the west building of our Washington, DC headquarters. The announcement elicited a fair number of questions from his Facebook fans, so we decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice. Jim Bullis (Facebook): So what is the percentage saving of energy bills for this building? Answer: The West Building cool roof is estimated to save about $2,000 per

76

Status of cool roof standards in the United States  

E-Print Network (OSTI)

roofs (Table 5.5 of ASHRAE 90.2- Climate Zone Roof U-FactorASHRAE 2004a) tabulates thermal transmittance multipliers by U.S. climate zones (ASHRAE 2007). ceilings with attics wood frame steel frame climate conventional cool conventional cool zone

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

77

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Cool roofs, cool research, at DOE Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network National Library of Energy OSTIblog Science.gov Science Accelerator

78

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

79

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

80

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

roof when it came time to replace the roofing at our Washington, D.C. headquarters - an investment that's projected to cut thousands of dollars off our utility bills each year....

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

can also reduce peak electricity demand. Cool roofs transferthe cool roof on peak electricity demand, we inspected theEstimate of Peak Electricity Demand Use and Savings Using

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

82

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

83

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

995. Evolution of cool roof standards in the United StatesMar/Apr, pp. 52-58. ASHRAE. 1999. ASHRAE Standard 90.1-1999: Energy Standard for Buildings Except Low- Rise

Akbari, Hashem

2008-01-01T23:59:59.000Z

84

Regional climate consequences of large-scale cool roof and photovoltai...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials)...

85

Regional climate consequences of large-scale cool roof and photovoltai...  

NLE Websites -- All DOE Office Websites (Extended Search)

roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and...

86

Preliminary Analysis of Energy Consumption for Cool Roofing Measures  

SciTech Connect

The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

Mellot, Joe [The Garland Company; Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-01-01T23:59:59.000Z

87

Energy saving potential of various roof technologies  

E-Print Network (OSTI)

Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...

Ray, Stephen D. (Stephen Douglas)

2010-01-01T23:59:59.000Z

88

Top-of-atmosphere radiative cooling with white roofs: experimental  

NLE Websites -- All DOE Office Websites (Extended Search)

Top-of-atmosphere radiative cooling with white roofs: experimental Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Title Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Publication Type Journal Article Year of Publication 2012 Authors Salamanca, Francisco, Shaheen R. Tonse, Surabi Menon, Vishal Garg, Krishna P. Singh, Manish Naja, and Marc L. Fischer Journal Environmental Research Letters Volume 7 Issue 4 Abstract We evaluate differences in clear-sky upwelling shortwave radiation reaching the top of the atmosphere in response to increasing the albedo of roof surfaces in an area of India with moderately high aerosol loading. Treated (painted white) and untreated (unpainted) roofs on two buildings in northeast India were analyzed on five cloudless days using radiometric imagery from the IKONOS satellite. Comparison of a radiative transfer model (RRTMG) and radiometric satellite observations shows good agreement (R2 = 0.927). Results show a mean increase of ~50 W m-2 outgoing at the top of the atmosphere for each 0.1 increase of the albedo at the time of the observations and a strong dependence on atmospheric transmissivity.

89

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network (OSTI)

Preliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use of commonly available calculators, one can analyze the potential energy savings based on environmental

Tennessee, University of

90

A meeting of the minds when NYC CoolRoofs visits PPPL | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

visits PPPL By Jeanne Jackson DeVoe January 28, 2013 Tweet Widget Facebook Like Google Plus One Two visitors representing NYC CoolRoofs got a tour of PPPL's cool roof above...

91

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

92

Status of cool roof standards in the United States  

E-Print Network (OSTI)

solar absorptance, attic, and duct insulation on cooling and heating energy use in single- family new residential buildings.

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

93

Tips: Energy-Efficient Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Roofs Energy-Efficient Roofs Tips: Energy-Efficient Roofs April 24, 2012 - 4:29pm Addthis Tips: Energy-Efficient Roofs If you've ever stood on a roof on a hot summer day, you know how hot it can get. The heat from your roof makes your air conditioner work even harder to keep your home cool. Cool Roofs If you are building a new home, decide during planning whether you want a cool roof, and if you want to convert an existing roof, you can: Retrofit the roof with specialized heat-reflective material. Re-cover the roof with a new waterproofing surface (such as tile coating). Replace the roof with a cool one. A cool roof uses material that is designed to reflect more sunlight and absorb less heat than a standard roof. Cool roofs can be made of a highly reflective type of paint, a sheet covering, or highly reflective tiles or

94

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

things about it is it also reflects that energy back into space. There is very little greenhouse gas effect for visible light. It's - the heat light is being trapped by the...

95

Monitoring the energy-use effects of cool roofs on Californiacommercial buildings  

Science Conference Proceedings (OSTI)

Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such 'cool' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas. Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33-42 K. In the retail store building in Sacramento, for the monitored period of 8 August-30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m{sup 2}/day (52%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak demand for peak hours (noon-5 p.m.) was about 10 W/m{sup 2} of conditioned area. In the school building in San Marcos, for the monitored period of 8 July-20 August 2002, the estimated savings in average air conditioning energy use was about 42-48 Wh/m{sup 2}/day (17-18%). On hot days, when the afternoon temperature exceeded 32 C, the measured savings in average peak demand for hours 10 a.m.-4 p.m. was about 5 W/m{sup 2} of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July-14 September 2002, and 11 July-18 August 2003, the estimated savings in average chiller energy use was about 57-81 Wh/m{sup 2}/day (3-4%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon-6 p.m.) was about 5-6 W/m{sup 2} of conditioned area. Using the measured data and calibrated simulations, we estimated savings for similar buildings installing cool roofs in retrofit applications for all 16 California climate zones. For similar retail stores in climate zones 2 and 4-16, installing a cool roof can save about 6-15 kWh/m{sup 2}/year of conditioned area. In climate zones 2-16, estimates of average peak demand savings for hours noon-5 p.m. range from 2.9 to 5.8 W/m{sup 2}. For similar school buildings in climate zones 2-16, installing a cool roof can save from 3 to 6 kWh/m{sup 2}/year of conditioned roof area. For all 16 climate zones estimates of average peak demand savings for hours noon-5 p.m. range from 2.6 to 3.8 W/m{sup 2}. In similar cold storage buildings in all 16 climate zones, installing a cool roof can save about 4.5-7.4 kWh/m{sup 2}/year of conditioned roof area. In all 16 climate zones, estimates of average peak demand savings for hours noon-5 p.m. range from 3.9 to 6.6 W/m{sup 2}.

Akbari, Hashem; Levinson, Ronnen; Rainer, Leo

2004-07-14T23:59:59.000Z

96

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

97

TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING  

Science Conference Proceedings (OSTI)

Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the d

Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

2010-03-01T23:59:59.000Z

98

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

classes of users: potential customersbuilding owners and roofing surface sellersinstallers. Input User selects location, enters the proposed roof's R-value, reflectance,...

99

Secretary Chu Announces Steps to Implement Cool Roofs at DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in cities around the world can help reduce the demand for air conditioning, cool entire cities, and potentially cancel the heating effect of up to two years of worldwide carbon...

100

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

coating comparison of air-conditioning energy usage for bothtemperature, heat flux, and air conditioning electricity useHourly time series of air conditioning and non-conditioning

Akbari, Hashem

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

102

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B),Roofing Insulation and Siding. Mar/Apr, pp. 52-58. ASHRAE.1999. ASHRAE Standard 90.1-1999: Energy Standard for

Akbari, Hashem

2008-01-01T23:59:59.000Z

103

Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions  

Science Conference Proceedings (OSTI)

Three passive cooling methods (e.g. roof pond, reflective roof cooling and using insulation over the roof) have been experimentally evaluated using an experimental test structure. The objective of this work is to train an artificial neural network (ANN) ... Keywords: Artificial neural network, Energy saving, India, Passive cooling, Thermal comfort

Shrikant Pandey; D. A. Hindoliya; Ritu Mod

2012-03-01T23:59:59.000Z

104

A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products  

SciTech Connect

The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

2009-11-20T23:59:59.000Z

105

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

106

Cool Colored Roofs to Save Energy and Improve Air Quality  

Science Conference Proceedings (OSTI)

Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-08-23T23:59:59.000Z

107

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

108

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

109

Status of cool roof standards in the United States  

E-Print Network (OSTI)

Updates on revision to ASHRAE Standard 90.2: including roof104(1B), pp. 984-995. ASHRAE. 1999. ASHRAE Standard 90.1-1999: Energy Standard for Buildings Except Low-Rise

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

110

Cool roofs as an energy conservation measure for federal buildings  

E-Print Network (OSTI)

of asphalt shingle, plywood, with an attic cavity andbuilt-up roofs with inch plywood, attic space, and an R-11a combination of stucco, plywood, insulation and gypsum, or

Taha, Haider; Akbari, Hashem

2003-01-01T23:59:59.000Z

111

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

Locations of the eight ASHRAE-defined climate zones in the5.5.3.1 of ASHRAE 90.1-2004). climate zone roof U-factorASHRAE Figure 2. Locations of the 16 California climate zones (

Akbari, Hashem

2008-01-01T23:59:59.000Z

112

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

roof provisions. Hawaii Building energy codes in Hawaii areadopted from the Hawaii Model Energy Code (Eley AssociatesHawaii; and Charles Eley, Architectural Energy Corporation for clarifying building codes.

Akbari, Hashem

2008-01-01T23:59:59.000Z

113

Status of cool roof standards in the United States  

E-Print Network (OSTI)

multipliers by U.S. climate zones (see Table 2). Table 1.5.5 of ASHRAE 90.2- Climate Zone Roof U-Factor Multiplierthermal resistances in climate zones 1 3 for ceilings

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

114

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

require a sub-roof radiant barrier for residential buildings4, and 8 - 15), radiant barriers are not usually installedIn climates zones where radiant barriers are prescriptively

Akbari, Hashem

2008-01-01T23:59:59.000Z

115

Status of cool roof standards in the United States  

E-Print Network (OSTI)

requires a sub-roof radiant barrier in some climate zones (4, and 8 - 15), radiant barriers are not usually installedroofs. Without a radiant barrier, total savingsinitial cost

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

116

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

that stay cool in the sun by minimizing solar absorption andhigh solar reflectance can also stay cool in the sun.solar reflectance and high thermal emittance stay cool in the sun.

Akbari, Hashem

2008-01-01T23:59:59.000Z

117

Regional climate consequences of large-scale cool roof and photovoltaic array deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic array deployment climate consequences of large-scale cool roof and photovoltaic array deployment This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Environ. Res. Lett. 6 034001 (http://iopscience.iop.org/1748-9326/6/3/034001) Download details: IP Address: 98.204.49.123 The article was downloaded on 01/07/2011 at 12:38 Please note that terms and conditions apply. View the table of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 6 (2011) 034001 (9pp) doi:10.1088/1748-9326/6/3/034001 Regional climate consequences of large-scale cool roof and photovoltaic array deployment Dev Millstein and Surabi Menon Lawrence

118

Comparison of energy modeling and laboratory tests on green roof potential to decrease the cooling demand for North European office buildings  

Science Conference Proceedings (OSTI)

Greenroofs have been shown to reduce the rooftop heat transfer, offering enhancement to a building's thermal resistance or R-value in warm climate zones. However a comprehensive study of neither the magnitude of that effect, nor the impact of green roof ... Keywords: cooling load, energy efficiency, energy modeling, greenroofs

Hendrik Voll; Teet-Andrus Kiv

2011-05-01T23:59:59.000Z

119

Impact of Reflective Roofing on Cooling Electrical Use and Peak Demand in a Florida Retail Mall  

E-Print Network (OSTI)

Architects in hot climates have long recognized that reflective roof colors can reduce building cooling load. Experimentation spanning nearly three decades has shown that white roofing surfaces can significantly reduce surface temperatures and cooling loads (Givoni and Hoffmann, 1968; Reagan and Acklam, 1979; Griggs and Shipp, 1988; Anderson, 1989; Anderson et al., 1991 and Bansal et al., 1992). More importantly, measured cooling energy savings of white surfaces have been significant in California's climate (Akbari et al., 1991, 1992, 1997). In Florida, field research by the Florida Solar Energy Center (FSEC) since 1993 has quantified the impact of reflective roof coatings on sub-metered air conditioning (AC) consumption in tests in a dozen occupied homes (Parker et al., 1993; 1994; 1995; 1997). The coatings were applied to the roofs of each home in mid-summer after a month-long period of monitoring during which meteorological conditions, building temperatures and AC energy use were recorded. Using weather periods with similar temperatures and solar insolation, air conditioning energy use was reduced by 10% - 43% in the homes. The average drop in space cooling energy use was about 7.4 kWh/day or 19% of the pre-application air conditioning consumption. Unfortunately, until this project there has been little objective testing of the impact of roof whitening on the AC load of commercial buildings in Florida. Two demonstration sites have been monitored. The first was an elementary school in Cocoa Beach, Florida, which was monitored for a year before and after a white roof coating was applied. A final report on this project was published in the CADDET Newsletter (Parker et al., 1996a, b). The project demonstrated a 10% annual savings in chiller energy with a 30% reduction in peak cooling electrical demand. This paper summarizes the findings from the second demonstration at a commercial strip mall.

Parker, D. S.; Sonne, J. K.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

120

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

122

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

123

Literature Review of Uncertainty of Analysis Methods (Cool Roofs), Report to the Texas Commission on Environmental Quality  

E-Print Network (OSTI)

In this literature review, seventy two (72) articles were reviewed from various sources, including: the literature compiled by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); literature listed on the web sites of the Florida Solar Energy Center (FSEC), the Oak Ridge National Laboratory (ORNL), the National Renewal Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), the American Council for an Energy Efficient Economy (ACEEE), and the publications of Elsevier. Keywords searched were: cool roofs, radiant barrier, highalbedo, attic ventilation, duct, as well as the names of the most prolific authors in this area, Dr. Hashem Akbari (LBNL), and Mr. Danny Parker (FSEC).

Haberl, J. S.; Cho, S.

2004-01-01T23:59:59.000Z

124

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

125

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

126

Heat pipe turbine vane cooling  

SciTech Connect

The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

Langston, L.; Faghri, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

127

Heating & Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

128

Improving Our Environment One Roof at a Time | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time June 27, 2013 - 12:10pm Addthis Improving Our Environment One Roof at a Time How does it work? Green roofs are ideal for urban buildings with flat or shallow-pit roofs, and can include anything from basic plant cover to a garden. The primary reasons for using this type of roof include managing storm water and enjoying a rooftop open space. Green roofs also provide insulation, lower the need for heating and cooling, and can reduce the urban heat island effect. This roof type can be much more expensive to implement than other efficient roof options, so you should carefully assess your property and consult a professional before deciding to install a green roof. Click here for more information on energy-efficient roofs

129

Improving Our Environment One Roof at a Time | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time June 27, 2013 - 12:10pm Addthis Improving Our Environment One Roof at a Time How does it work? Green roofs are ideal for urban buildings with flat or shallow-pit roofs, and can include anything from basic plant cover to a garden. The primary reasons for using this type of roof include managing storm water and enjoying a rooftop open space. Green roofs also provide insulation, lower the need for heating and cooling, and can reduce the urban heat island effect. This roof type can be much more expensive to implement than other efficient roof options, so you should carefully assess your property and consult a professional before deciding to install a green roof. Click here for more information on energy-efficient roofs

130

Energy Performance Aspects of a Florida Green Roof Part 2  

E-Print Network (OSTI)

Green roof installation in the United States is growing at a significant rate. There are a number of reasons for this growth including rainwater runoff reduction and aesthetic benefits. Energy performance evaluations of green roofs, the subject of this study, are also becoming available. This monitored study is an evaluation of summer and winter energy performance aspects of a green roof on a 2-story central Florida university building addition that was completed in 2005. An earlier report on this study was published through the 2006 Symposium on Improving Building Systems in Hot and Humid Climates. This report reviews these earlier results and provides second-summer results which show significant performance improvements for the green roof compared with the first summer results. One half of the two-story project buildings 3,300 square foot project roof is a light-colored, conventional flat membrane roof, the other half being the same membrane roof covered with 6 to 8 of plant media and a variety of primarily native Florida vegetation up to approximately 2 feet in height to create an extensive green roof. Analysis of 2005 summer data from the first year the green roof was installed indicates significantly lower peak roof surface temperatures for the green roof compared with the conventional roof and a significant shift in when the peak green roof temperature occurs compared to the conventional roof. Data analysis of the same 2005 period also shows lower heat fluxes for the green roof. Calculations show the green roof to have an average heat flux of 0.39 Btu/ft2hr or 18.3% less than the conventional roofs average heat fluxrate of 0.48 Btu/ft2hr. Analysis of 2006 summer data when the green roof was more established and conventional roof somewhat darker, shows even greater temperature and heat flux differences between the two roofs. The weighted average heat flux rate over the 2006 summer period for the green roof is 0.34 Btu/ft2hr or 44.1% less than the conventional roofs average heat flux rate of 0.60 Btu/ft2hr. An additional heat flux analysis was performed for an April 1st 2006 through October 31st 2006 monitoring period to provide an estimate of heat flux for an extended cooling season. The weighted average heat flux rate over the period for the green roof is 0.25 Btu/ft2hr or 45.7% less than the conventional roofs average heat flux rate of 0.46 Btu/ft2hr. Winter data again show substantially lower peak roof surface temperatures, higher nighttime surface temperatures and significantly lower heat flux rates for the green roof compared with the conventional roof. For periods during which the ambient air temperature was less than 55oF, the weighted average winter heat flux rate for the green roof is -0.40 Btu/ft2hr or 49.5% less than the conventional roofs average heat flux rate of -0.79 Btu/ft2hr. Because of air conditioning zoning limitations, an extensive energy savings analysis was not possible for this project. However, an energy savings analysis was performed using the roof heat flux results and equipment efficiency assumptions. Based on this analysis the total estimated cooling and heating season savings for the green roof compared with the conventional roof, if the entire 3,300 square foot project roof were green, would be approximately 489 kWhr/yr.

Sonne, J.; Parker, D.

2008-12-01T23:59:59.000Z

131

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

132

Green roofs: potential at LANL  

SciTech Connect

Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

Pacheco, Elena M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

133

Advances in Measuring Solar Reflectance-or, Why That Roof isn...  

NLE Websites -- All DOE Office Websites (Extended Search)

reflectance is often used to estimate the solar heat gain and rate the "coolness" of roofs and pavements. A solar reflectance property measured by two popular ASTM standard...

134

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

135

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

Science Conference Proceedings (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

136

Experimental Study of Hybrid Cooled Heat Exchanger.  

E-Print Network (OSTI)

??A test system for a hybrid cooled heat exchanger was designed, and the test facility was constructed based on ASHRAE Standard 41.2-1987. A conventional air-cooled (more)

Tsao, Han-Chuan

2011-01-01T23:59:59.000Z

137

Reducing home heating and cooling costs  

SciTech Connect

This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

Not Available

1994-07-01T23:59:59.000Z

138

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water (more)

Rulff, David

2011-01-01T23:59:59.000Z

139

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

140

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

142

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

143

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

Post: Pyranometer: Radiant barrier: Roof underside: RTD:w/mineral capsheet, multi-year radiant barrier White coatingMulti-layer radiant barrier (R-7 equivalent) San Marcos

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

144

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

Radiant barrier: Roof underside: RTD: RTU: SDREO: SEER: SkyType T thermocouple AD592 RTD in Gill radiation shieldwere measured with Minco RTD thermal ribbon sensors

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

145

Active Solar Heating and Cooling Systems Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating and Cooling Systems Exemption Active Solar Heating and Cooling Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Heating...

146

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

147

Use advisability of heat pumps for building heating and cooling  

Science Conference Proceedings (OSTI)

In the actual economic and energetic juncture, the reduction of thermal energy consumption in buildings became a major, necessary and opportune problem, general significance. The heat pumps are alternative heating installations more energy efficiency ... Keywords: "Geoterm" system, building heating/cooling, energy and economic analysis, heat pump performances, heat pumps, renewable energy sources

Ioan Srbu; C?lin Sebarchievici

2010-02-01T23:59:59.000Z

148

Control system for solar heating and cooling  

DOE Green Energy (OSTI)

A control system is being developed that will be capable of operating solar heating and cooling systems covering a wide range of configurations, and using different operating strategies that may be optimal for different climatic regions. To insure widespread applicability of the control system, it is being designed to allow for modification for operating with essentially all practical heating and cooling system configurations and control algorithms simply by interchange of replaceable modules in the circuitry. An experimental heating and cooling system, the main purpose of which is to allow testing and exercise of the controller, was designed so that it could be operated in these various configurations.

Wahlig, M.; Binnall, E.; Dols, C.; Graven, R.; Selph, F.; Shaw, R.; Simmons, M.

1975-08-01T23:59:59.000Z

149

Rooftop Membrane Temperature Reductions with Green Roof Technology in South-Central Texas  

E-Print Network (OSTI)

Early green roof cooling and energy reduction research in North America took place in Canada and the northern latitudes of the United States, where green roofs reduced rooftop temperatures by 70% to 90%. Less is known about green roof technology in the southern Untied States; where energy demand for cooling buildings is high, and the urban heat island effect is more pronounced. This paper reports early findings for rooftop membrane temperature reductions from 11.6-cm-deep modular green roof trays, typical of large-scaled, low-maintenance applications. Measurements observed during May, 2010 reveal that temperatures below the modular planted green roof units were 82% to 91.6% cooler compared to the surface temperatures of the control roof membrane. These findings on low-input modular green roof trays reinforce other research findings that indicate green roof technology can dramatically reduce and modify temperatures on roof deck surfaces during peak energy demand periods in hot sunny climates.

Dvorak, B.

2010-08-01T23:59:59.000Z

150

Analytical study of residential building with reflecting roofs  

SciTech Connect

This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

Zarr, R.R.

1998-10-01T23:59:59.000Z

151

Fundamental heat transfer experiments of heat pipes for turbine cooling  

SciTech Connect

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

Yamawaki, S. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Yoshida, T.; Taki, M.; Mimura, F. [National Aerospace Lab., Tokyo (Japan)

1998-07-01T23:59:59.000Z

152

Simulated energy savings of cool roofs applied to industrial premises in the Mediterranean Area  

E-Print Network (OSTI)

The thermal insulation affects the sensible cooling savingshigh thermal insulation reduces the sensible cooling energyof a high thermal insulation increases the sensible cooling

De Carli, Michele; Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

153

5 Cool Things about Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo...

154

Buffer Gas Cooling: A Tool for Trapping Neutral Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings...

155

Energy Basics: Supporting Equipment for Heating and Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heating and Cooling Systems Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat...

156

ManualforEvaluatingtheThermalPerformanceofthe HamerschlagHallGreenRoof  

E-Print Network (OSTI)

maintenance costs. Reduced heating and cooling costs ­ Provides extra roof insulation. And reduction in the building's overall heating and cooling costs. Aesthetics ­ Makes the building attractive from aerial view, and provides building users a green space. Improved air quality ­ Plants can absorb carbon dioxide and other

Andrews, Peter B.

157

Electronic thermostat with selectable mode to control heating only, cooling only or both heating and cooling  

Science Conference Proceedings (OSTI)

This patent describes a thermostat for use in a building having means for cooling the building and means for heating the building, the thermostat being connected to the cooling means and the heating means and operative to generate an energizing signal for only one of the heating means or cooling means at a given time, the thermostat comprising: means for measuring the ambient temperature within the building; manual data entry means; means for storing a program of desired heating temperatures over a repetitive time cycle, programmed by the manual data entry means; a clock operative to generate time signals within the repetitive time cycle; means for generating a signal representative of a desired heating temperature and a desired cooling temperature at the present time based upon the signals from the clock in the stored temperature program; means for placing the thermostat in either a first mode where control signals are generated only for the heating means as a function of the difference between the measured temperature within the building and the desired heating temperature signal. Control signals are generated for either the heating means or the cooling means based upon the measured temperature and the respective desired heating and cooling temperature signals.

Levine, M.R.

1987-08-04T23:59:59.000Z

158

Liquid metal heat pipe behavior under transient cooling and heating  

SciTech Connect

This paper describes the results of an experimental investigation of the transient behavior of a liquid metal heat pipe. A 0.457 m long, screen-wick, sodium heat pipe with 0.0127 m outer diameter was tested in sodium loop facility. The heat pipe reversed under a pulse heat load applied at the condenser. The time at which the heat pipe reversed was dependent of the heat pipe properties, the sodium loop flow rate and heating conditions at the condenser. The start-up and the operational shut-down by forced cooling of the condenser were also studied. During the start-up process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all working fluid in the heat pipe was molten. With forced cooling at the condenser, the heat pipe approached its heat transport limit before section of the condenser became frozen. The measured heat transport limit was in agreement with the theoretical value. 5 refs.

Nguyen, H.X.; Hahn, T.O.; Hahn, O.J.; Chow, L.C.; Tagavi, K.A.; Morgan, M.J. (Kentucky, University, Lexington (United States) USAF, Wright Laboratory, Wright-Patterson AFB, OH (United States))

1992-01-01T23:59:59.000Z

159

Towards Occupancy-Driven Heating and Cooling  

E-Print Network (OSTI)

$100­$200 per home in hardware, and less than $0.10 per square foot in office buildings. It will also a 28% reduction per household in the energy required for heating and cooling, at the cost of only $25. This energy savings is a low hanging fruit: a large amount of energy can be saved at a very low cost

Whitehouse, Kamin

160

Prototype solar heating and cooling systems  

DOE Green Energy (OSTI)

A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

Not Available

1978-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

HEATING AND COOLING SYSTEM FOR CALUTRON  

DOE Patents (OSTI)

An apparatus is invented for heating or cooling the electrostatic liner conventionally disposed in a calutron tank. The apparatus is additionally arranged to mount the liner in its intended position in a readily detachable manner so as to facilitate disassembly of the calutron.

Starr, A.M.

1960-06-28T23:59:59.000Z

162

Solar heating and cooling demonstration project summaries  

DOE Green Energy (OSTI)

Brief descriptive overviews are presented of the design and operating characteristics of all commercial and Federal residential solar heating and cooling systems and of the structures themselves. Also included are available pictures of the buildings and simplified solar system diagrams. A list of non-Federal residential installations is provided.

Not Available

1978-05-01T23:59:59.000Z

163

Advanced Energy Efficient Roof System  

SciTech Connect

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

164

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

165

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Central AC (15 SEER or greater): $35 Central AC (16 SEER or greater): $50 Heat Pump (15 SEER or greater): $250 Geothermal Heat Pump (19 EER or greater): $350 Provider Jones-Onslow EMC Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat pump, which does not have a SEER rating greater than 13, with a central AC, heat pump, or geothermal heat

166

Principles of Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Principles of Heating and Cooling Principles of Heating and Cooling Principles of Heating and Cooling May 30, 2012 - 6:04pm Addthis To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. Understanding how heat is transferred from the outdoors into your home and from your home to your body is important for understanding the challenge of keeping your house cool. Understanding the processes that help keep your body cool is important in understanding cooling strategies for your home. Principles of Heat Transfer Heat is transferred to and from objects -- such as you and your home -- via

167

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network (OSTI)

to the building below The sun's heat hits the roof surface A non-residential cool roof Coating for a low. These requirements apply only to buildings that are mechanically heated or cooled. What are the minimum requirementswhat is a cool roof? what is the solar reflectance index (sri)? SRI combines SR and TE

Choate, Paul M.

168

COOLING AND HEATING FUNCTIONS OF PHOTOIONIZED GAS  

SciTech Connect

Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hollon, Nicholas, E-mail: gnedin@fnal.gov [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

2012-10-15T23:59:59.000Z

169

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

for all California climate zones. CTZ Jan. Feb. Mar. Apr.A/C: Albedo: ASTM: Climate Zone: Cooling energy: DAS: EnergyCalifornia Climate Zones. . 44

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

170

Modeling the effects of reflective roofing  

SciTech Connect

Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

Gartland, L.M.; Konopacki, S.J.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-08-01T23:59:59.000Z

171

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on...

172

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

173

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

174

Near-Instantaneous Microwave Heating and Cooling for Microfluidic ...  

home \\ technologies \\ microwave heating of microfluidics. Technologies: Ready-to-Sign Licenses: Software: Patents: Near-Instantaneous Microwave Heating and Cooling ...

175

An analysis of electrothermodynamic heating and cooling  

E-Print Network (OSTI)

Current advances in semiconductor manufacturing have brought about an increasing use of thermoelectricity in a variety of applications. Most of these applications, however, have involved the steady state application of this phenomenon. As a result, few have considered the transient aspect of this field (Gray 1960). In recent years there has been an increasing demand to heat and cool objects very quickly. One particular proposal to use the transient nature of thermoelectricity was made by Lagoudas and Kinra (I 993) in regard to shape memory alloy (SMA) actuators. In general, SMA actuators have been largely limited by the rate that heat may be extracted from the SMA. In their investigation, they proposed the concept of using the SMA directly as the cold junction of a thermocouple. By way of the Peltier effect, then, heat could be added or removed at the interfaces at a rate proportional to the current density and local temperature; by increasing the current, the rate of cooling would be increased, albeit at the expense of the Joule heating within the conductor. This investigation explores the dynamic nature of thermoelectrically cooled/heated regions in effort to gain a greater understanding of the transient application of thermoelectricity, including the role of the surrounding material properties. To this end, we consider a pair of semi-infinite rods of equal cross-sectional area in perfect thermoelectric contact. At time t = 0, a DC current begins to flow in the axial direction. The electrothermodynamic response of the composite rod at the interface is calculated. The transient interface temperature is completely described by a single dimensionless parameter called the MOET number (Modulus Of ElectroThermodynamics). Perhaps the most interesting result is that the minimum temperature at the interface is independent of the current density. Of course, the time required to reach this minimum temperature does depend on the current density; it varies as 1/J2.

Honea, Mark Stephen

1998-01-01T23:59:59.000Z

176

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

for the FuturePhase I: An Energy Saving Materials Researchand H. Akbari. 2002 Energy savings of heat-island-reductionand H. Akbari. 2000. Energy Savings Calculations for Heat

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

177

Roof Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roof Renovations Roof Renovations Roof Renovations October 16, 2013 - 4:58pm Addthis The roof of a Federal building is a common placement for a number of renewable energy technologies, so they should be addressed anytime a roof renovation is undertaken, including roof-mounted photovoltaics (PV) and solar hot water (SHW) systems that consider structural loads, accessible wiring/plumbing, and available roof space; daylighting, including skylights, clerestories, and solar tubes; and energy-efficient roofing technologies such as vegetative roofs. Renewable Energy Options for Building Envelope Renovations Daylighting Photovoltaics Solar Water Heating (SWH) In a Federal building renovation, a variety of equipment may vie for roof space. Decisions about using roof space should involve a range of

178

Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles  

E-Print Network (OSTI)

This paper presents an overview of results from experimental research conducted at FSEC's Flexible Roofing Facility in the summer of 2002. The Flexible Roof Facility (FRF) is a test facility in Cocoa, Florida designed to evaluate a combination of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems, both finished and unfinished, might compare with other more traditional roofing types. All of the test cells had R-19 insulation installed on the attic floor except in the double roof configuration which had R-19 of open cell foam blown onto the underside of the roof decking. The test results were used to determine relative thermal performance of various roofing systems under typical Florida summer conditions. Measured impacts included changes to ceiling heat flux and attic air temperature which influences loads from unintended attic air leakage and duct heat gain. We also develop an analysis method to estimate total cooling energy benefits of different roofing systems considering the various impacts. The results show that all the options perform better than dark composition shingles. White metal performs best with an estimated cooling energy reduction of about 15%, but the spectrally selective metal shingles (12%) and unfinished Galvalume roofs (11%) do surprisingly well. Galvanized roofing did less well than Galvalume (7% reduction) and worse performance in the second year of exposure was observed due to corrosion of the zinc surface. The sealed attic with a double roof produced an estimated cooling energy reduction of only 2% -- largely due to increases in ceiling flux.

Parker, D. S.; Sherwin, J.; Sonne, J.

2004-01-01T23:59:59.000Z

179

Assessment of solar heating and cooling techology  

DOE Green Energy (OSTI)

In order to assess in detail the state of the technology for solar heating and cooling of buildings, five 2-day meetings were held. The meeting subjects were solar collectors, thermal storage, air conditioning and heat pumps, systems and controls, and non-engineering aspects of solar energy. This is a condensation of these meetings, presenting for each topic discussed the details of the state of the art, the problem areas, and the objectives of necessary research and development. The existing state of technology for solar heating and cooling presents a mixed picture. Liquid-heating flat-plate solar collectors, for example, are in a rather mature stage, and there is a small, viable industry producing components. Even here, however, there are problems of materials which, if solved, can reduce collector cost, improve performance, or increase lifetime. In other areas such as, for example, desiccant chillers, passive concepts, and many of the systems categories, the technology is at an early stage of evolution, and much research and development remain to be done.

Balcomb, J.D.; Perry, J.E. Jr.

1977-05-01T23:59:59.000Z

180

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

National solar heating and cooling programs  

DOE Green Energy (OSTI)

This document is a compilation of status reports on the national solar heating and cooling programs of seventeen countries participating in the Committee on the Challenges of Modern Society's Solar Energy Pilot Study. These reports were presented in two special sessions of the 25th Congress of the International Solar Energy Society held in May 1979, in Atlanta, Georgia, USA. This information exchange activity was part of the two-year follow up (1978-1980) of the Solar Energy Pilot Study, which ended in October 1978.

Blum, S; Allen, J [eds.

1979-08-01T23:59:59.000Z

182

Effects of Soiling and Cleaning on the Reflectance and Solar HeatGain of a Light-Colored Roofing Membrane  

Science Conference Proceedings (OSTI)

A roof with high solar reflectance and high thermalemittance (e.g., a white roof) stays coolin the sun, reducing coolingpower demand in a conditioned building and increasing comfort in anunconditioned building. The high initial solar reflectance of a whitemembrane roof (circa 0.8) can be degraded by deposition of soot, dust,and/or algae to about 0.6 (range 0.3 to 0.8, depending on exposure) Weinvestigate the effects of soiling and cleaning on the solar spectralreflectance and solar absorptance of 15 initially white or light-graymembrane samples taken from roofs across the United States. Soot andorganic carbon were the two identifiable strongly absorbing contaminantson the membranes. Wiping was effective at removing soot, and less so atremoving organic carbon. Rinsing and/or washing removed nearly all of theremaining soil layer, with the exceptions of (a) thin layers of organiccarbon and (b) isolated dark spots of algae. Bleach was required toremove the last two features. The ratio of solar reflectance to unsoiledsolar reflectance (a measure of cleanliness) ranged from 0.41 to 0.89 forthe soiled samples; 0.53to 0.95 for the wiped samples; 0.74 to 0.98 forthe rinsed samples; 0.79 to 1.00 for the washed samples; and 0.94 to 1.02for the bleached samples. However, the influence of membrane soiling andcleaning on roof heat gain is better gauged by variations in solarabsorptance. Relative solar absorptances (indicating solar heat gainrelative to that of the unsoiled membrane) ranged from 1.4 to 3.5 for thesoiled samples; 1.1 to 3.1 for the wiped samples; 1.0 to 2.0 for therinsed samples; 1.0 to 1.9 for the washed samples; and 0.9 to 1.3 for thebleached samples.

Levinson, Ronnen; Berdahl, Paul; Berhe, Asmeret Asefaw; Akbari,Hashem

2005-04-12T23:59:59.000Z

183

Restaurateur designs and installs passive solar heating/cooling system  

SciTech Connect

An example of the use of passive solar heating and cooling systems by a Wisconsin restaurateur is discussed. The greenhouse effect is used on three sides of the restaurant's exterior walls. A dozen water-to-air electric heat pumps handle the restaurant's heating and cooling chores. The system doesn't require any fossil fuel for heating or cooling.

1983-04-01T23:59:59.000Z

184

Measured energy savings of light colored roofs: Results from three California demonstration sites  

SciTech Connect

Measured data and computer simulations have demonstrated the impact of roof albedo in reducing cooling energy use in buildings. Savings are a function of both climate and the amount of roof insulation. The cooling energy savings for reflective roofs are highest in hot climates. A reflective roof may also lead to higher heating energy use. Reflective coatings are also used in commercial buildings to protect the roofing membrane, and hence, maintain and prolong the useful life of the roof. Reflectivity of coatings changes with weathering and aging which in turn could have an effect on building cooling-energy savings. For that reason, reflective roof coatings are not primarily marketed for their energy savings potential. To monitor the field performance of reflective coatings, the authors initiated a demonstration project where three commercial buildings in California were painted with light-colored roof coatings. The buildings are two medical care centers and one drug store. At all sites, the roof reflectance, both fresh and aged, and cooling energy use were monitored. In addition, they measured temperature throughout the roof systems and inside the conditioned space. In the monitored buildings, increasing the roof reflectance from an initial value of about 20% to 60%, dropped the roof temperature on hot summer afternoons by about 45 F. Summertime standard-weekday average daily air-conditioning savings were 18% (198 kWh) in the first medical office building, 13% (86 kWh) in the second medical office building, and 2% (13 kWh) in the drug store. The overall u-value of the roofs had dictated the impact of roof reflectance.

Akbari, H.; Gartland, L.; Konopacki, S.

1998-06-01T23:59:59.000Z

185

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

186

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

187

Solar heating and cooling diode module  

DOE Patents (OSTI)

A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

Maloney, Timothy J. (Winchester, VA)

1986-01-01T23:59:59.000Z

188

Next Generation Roofs and Attics for Homes  

SciTech Connect

Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

Miller, William A [ORNL; Kosny, Jan [ORNL

2008-01-01T23:59:59.000Z

189

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

190

Special Property Assessment for Renewable Heating and Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Property Assessment for Renewable Heating and Cooling Special Property Assessment for Renewable Heating and Cooling Systems Special Property Assessment for Renewable Heating and Cooling Systems < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Program Info State Maryland Program Type Property Tax Incentive Rebate Amount Eligible property is assessed at no more than the value of a conventional system Provider Department of Assessments and Taxation Title 8 of Maryland's property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not more than the value of a conventional system for property tax purposes if no conventional system

191

Cooling by Heat Conduction Inside Magnetic Flux Loops and the Moderate Cluster Cooling Flow Model  

E-Print Network (OSTI)

I study non-radiative cooling of X-ray emitting gas via heat conduction along magnetic field lines inside magnetic flux loops in cooling flow clusters of galaxies. I find that such heat conduction can reduce the fraction of energy radiated in the X-ray band by a factor of 1.5-2. This non-radiative cooling joins two other proposed non-radiative cooling processes, which can be more efficient. These are mixing of cold and hot gas, and heat conduction initiated by magnetic fields reconnection between hot and cold gas. These processes when incorporated into the moderate cooling flow model lead to a general cooling flow model with the following ingredients. (1) Cooling flow does occur, but with a mass cooling rate about 10 times lower than in old versions of the cooling flow model. Namely, heating occurs such that the effective age of the cooling flow is much below the cluster age, but the heating can't prevent cooling altogether. (2) The cooling flow region is in a non-steady state evolution. (3) Non-radiative cooling of X-ray emitting gas can bring the model to a much better agreement with observations. (4) The general behavior of the cooling flow gas, and in particular the role played by magnetic fields, make the intracluster medium in cooling flow clusters similar in some aspects to the active solar corona.

Noam Soker

2003-11-02T23:59:59.000Z

192

More durable roof coverings such as steel and fiber cement  

E-Print Network (OSTI)

- heating equipment saves money. Tankless water heaters provide hot water on demand at a preset temperature. Lighter colors absorb less heat, reducing cooling costs in warm climates. Now, solar roofing products- cement siding is termite- and water-resistant and warrantied to last 50 years. Increasing the amount

193

5 Cool Things about Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Cool Things about Solar Heating 5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read Energy Saver's article on solar heating systems to see whether see whether active solar heating is a good option for you. Most people are familiar with solar photovoltaic panels, but far fewer know about using solar as a source of heat in their homes. Active solar heating uses solar energy to heat fluid or air, which then transfers the solar heat

194

Solar heating and cooling. Research and development: project summaries  

DOE Green Energy (OSTI)

The Conservation and Solar Applications Solar Heating and Cooling Research and Development Program is described. The evolution of the R and D program is described and the present program is outlined. A series of project descriptions summarizes the research and development presently supported for further development of collectors, thermal energy storage and heat exchangers, heat pumps, solar cooling, controls, and systems. (MHR)

Not Available

1978-05-01T23:59:59.000Z

195

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

This program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences and commercial applications. This document describes the progress of the program during the fifth program quarter, 1 July 1977 to 30 September 1977.

Not Available

1977-11-11T23:59:59.000Z

196

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

The progress of the program for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test is described for the period, 1 January 1978 through 31 March 1978. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences, and commercial applications.

Not Available

1978-07-01T23:59:59.000Z

197

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

198

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

199

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

200

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network (OSTI)

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity not supplied to the grid is analyzed in detail. Further, the new concept of CCHP system with cooling and heating network interconnecting is developed. Then, the Olympic Park energy system is presented to illustrate the advantage and improvement both in economy performance and energy efficiency.

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network (OSTI)

detailed discussion of sun angles see "The Solar Resource:Passive Solar Conference. NORTH SUM ER SUN ANGLES ON SOUTH-SOLAR COOLING SYSTEMS STORAGE ROOF ISOLATED STORAGE ROOF {NIGHT.SKY RADIATION) {NJGHTSKY RADIATION) {REQUIRES MOVING INSULATION) SUN

Holtz, Michael J.

2011-01-01T23:59:59.000Z

202

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

203

PureComfort 240 Combined Cooling, Heating, and Power Unit  

Science Conference Proceedings (OSTI)

This report is an interim case study of a PureComfort 240 combined cooling, heating and power project at the University of Toronto, Mississauga.

2006-03-28T23:59:59.000Z

204

Heat-activated cooling devices: A guidebook for general audiences  

DOE Green Energy (OSTI)

Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

Wiltsee, G.

1994-02-01T23:59:59.000Z

205

ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling Upgrades The Building Upgrade...

206

CONTROLS FOR SOLAR HEATING AND COOLING  

SciTech Connect

An experimental test facility for solar heating and cooling has been constructed to evaluate the operation and performance of an LBLdeveloped solar controller that has promising commercial potential. The LBL controller was designed to be intermediate in performance between a simple differential thermostat and an on-line microprocessor. The PROM~based controller operates the solar system according to a preprogrammed algorithm that translates operating state conditions (fluid temperatures, switch positions, comparator outputs) into a set of operating instructions (open or close valves, turn pumps on or off). The operating algorithm can be changed by reprogramming or exchanging the plug-in integrated circuit component, or by changing the sensors selected for comparison. The experimental solar heating system can be operated using different control algorithms, input meteorological conditions, and output load demands. In FY 1979 the test facility became operational and initial testing began. Emphasis has been on refinement of system instrumentation and the development of necessary computer software to run the facility and perform data analysis. Preliminary energy balance experiments with the load and collector loops under microcomputer control were successfully completed in November 1979. Experiment modifications have been completed to permit variable-flow and proportional-flow control of the collector loop. A series of experimental comparisons of proportional and on/off collector loop strategies are planned using typical meteorological year data. The evaluation of configurations for combined domestic hot water and heating systems has begun to determine necessary experiment modifications to test one and two tank domestic hot water systems in combination with hydronic space heating systems. Other work has included the application of theoretical models to describe dynamic collector operation and building temperature response. Theoretical analysis of the energy collection performance of on/off and proportional flow control collector loop strategies has been completed. Papers have been presented at the Second System Simulation and Economics Conference held in January 1980 in San Diego. Technical program support activities, in cooperation with SERI and SAN, are continuing.

Warren, Mashuri L.; Schiller, Steven R.; Wahlig, Michael

1980-03-01T23:59:59.000Z

207

Alternatives for metal hydride storage bed heating and cooling  

DOE Green Energy (OSTI)

The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development.

Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

1991-10-04T23:59:59.000Z

208

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

209

Countries Commit to White Roofs, Potentially Offsetting the Emissions of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Countries Commit to White Roofs, Potentially Offsetting the Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants April 8, 2011 - 4:26pm Addthis Dr. Art Rosenfeld Distinguished Scientist Emeritus at Lawrence Berkeley National Laboratory What does this project do? Builds energy savings. Promotes heat island mitigation and public health benefits. Encourages global cooling. I am delighted to learn that India, Mexico, and the United States have signed up to join the Cool Roofs Working Group, announced yesterday at the second Clean Energy Ministerial in Abu Dhabi. This working group was offered as part of the Clean Energy Ministerial, which is a high-level global forum to promote policies and programs that advance clean energy

210

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

Lifetimes and Ages Median Equipment Type Lifetime Air Conditioners Through-the-Wall 15 Water-CooledPackage 24 (1) Roof-Top 15 Chillers Reciprocating 20 Centrifugal 25 (1)...

211

Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors  

Science Conference Proceedings (OSTI)

Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

Miller, William A [ORNL

2005-11-01T23:59:59.000Z

212

Heat pipe cooling for scramjet engines. Final report  

Science Conference Proceedings (OSTI)

Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

Silverstein, C.C.

1986-12-01T23:59:59.000Z

213

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

Dols, C.

2010-01-01T23:59:59.000Z

214

Energy Department Invests to Save on Heating, Cooling and Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Save on Heating, Cooling and Lighting to Save on Heating, Cooling and Lighting Energy Department Invests to Save on Heating, Cooling and Lighting August 14, 2013 - 1:39pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding. "Energy efficient technologies - from improved heating and cooling

215

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

the use of heat Heat exchangers between the collectors andlocated access hole. The heat exchanger for the domestic hotmains is preheated by a heat exchanger immersed in the main

Dols, C.

2010-01-01T23:59:59.000Z

216

Maui County - Solar Roofs Initiative Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Local Loan Program Rebate Amount Zero-interest loans Provider Maui Electric Company, LTD In September 2002, Maui Electric Company (MECO) and the County of Maui teamed up to launch the Maui Solar Roofs Initiative to increase the use of renewable energy in Maui County. MECO administers the loan program and, through the Hawaii Energy Program, offers a $750 rebate for installations through its approved independent solar contractors. Residential homeowners with existing electric water heaters are eligible and must provide a down payment equal to 35% of the system cost after

217

Preliminary design package for prototype solar heating and cooling systems  

DOE Green Energy (OSTI)

A summary is presented of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multiple-Family Residences (MFR), and commerical applications.

Not Available

1978-12-01T23:59:59.000Z

218

Passive thermosyphon solar heating and cooling module with supplementary heating. Quarterly report  

DOE Green Energy (OSTI)

This report is a collection of three quarterly reports from Sigma Research, Inc., covering progress and status from January through September 1977. Sigma Research is developing and delivering three heat exchangers for use in a solar heating and cooling system for installation into single-family dwellings. Each exchanger consists of one heating and cooling module and one submersed electric water heating element.

Not Available

1977-10-01T23:59:59.000Z

219

Solar heating and cooling systems design and development quarterly report  

DOE Green Energy (OSTI)

The program calls for the development and delivery of eight (was 12) prototype solar heating and cooling systems for installation and operational test. Two (was 6) heating and six heating and cooling units will be delivered for single-family residences (SFR), multiple-family residences (MFR) and commercial applications. This document describes the progress of the program during the eighth program quarter, 1 April 1978 to 30 June 1978.

Not Available

1978-07-01T23:59:59.000Z

220

Heat pipe cooling of metallurgical furnace equipment.  

E-Print Network (OSTI)

??Current water-cooling technology used in the metallurgical industry poses a major safety concern. In addition, these systems are expensive to operate and result in significant (more)

Navarra, Pietro, 1979-

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reducing Home Heating and Cooling Costs  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . 19 B1. Annual Cost of Oil Heat in Various Climates for a Range of Heating Oil Prices and System Efficiencies . . . . . 21 B2. Annual Cost of Gas Heat in...

222

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

223

District heating and cooling market assessment  

SciTech Connect

For more than 10 years, the U.S. Department of Energy (DOE) has supported research on and development of district steam, hot-water, and chilled-water systems in the residential and commercial sectors. In 1991, DOE sponsored a research project at Argonne National Laboratory (ANL) to reestimate the national market for district heating and cooling (DHC) systems to the year 2010. ANL had previously developed a DHC market-penetration model and used it to project future market penetration. The first step in the project was to conduct a literature search to identify major data sources on historical DHC markets and any past studies on the future market potential of DHC systems. On the basis of an evaluation of the available data and methodologies for estimating market penetration of new technologies, it was concluded that ANL should develop a new econometric model for forecasting DHC markets. By using the 1989 DOE/Energy Information Administration Commercial Buildings Energy Consumption Surveys (CBECS) public-use-tape data, a model was estimated for steam, hot-water, and chilled-water demand in the buildings surveyed. The model provides estimates of building steam, hot-water, and chilled-water consumption and expenditures between now and the year 2010. The analysis shows that the total U.S. market for district steam, hot water, and chilled water could grow from 0.8 quadrillion British thermal units (quad) in 1989 to 1.0 quad by 2000 and 1.25 quad by 2010. The demand for chilled water could nearly double in the forecast period, and its share could approach one-third of the total DHC market. This model, and the results, should be of use to policymakers, researchers, and market participants involved in the planning and implementation of community-based, energy-conserving, and environmentally beneficial energy systems.

Teotia, A.P.S.; Karvelas, D.E.; Daniels, E.J.; Anderson, J.L.

1993-06-01T23:59:59.000Z

224

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

225

NREL: Vehicle Ancillary Loads Reduction - Heat Generated Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Generated Cooling Heat Generated Cooling A counterintuitive but promising path to reducing the loads imposed by automotive air conditioning systems is to use heat-specifically the waste heat generated by engines. This can be an abundant source of energy, since most light-duty vehicles with combustion engines are only about 30% efficient at best. With that degree of thermal efficiency, an engine releases 70% of its fuel energy as waste heat through the coolant, exhaust gases, and engine compartment warm-up. During much of a typical drive cycle, the engine efficiency is even lower than 30%. As efficiency decreases, the amount of waste heat increases, representing a larger potential energy source. NREL's Vehicle Ancillary Loads Reduction (VALR) team is investigating a number of heat generated cooling technologies

226

Heat-driven acoustic cooling engine having no moving parts  

DOE Patents (OSTI)

A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

227

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

Involvement in Passive Solar Heating and Cooling Section C:performance of passive solar heating and cooling systems.the design of passive solar heating and cooling systems, J

Authors, Various

2012-01-01T23:59:59.000Z

228

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Choice in Home Heating and Cooling D.J. Wood, H. Ruderman,IN HOME HEATING AND COOLING* David J. Wood, Henry RudermanIN HOME HEATING AND COOLING David J. Wood, Henry Ruderman,

Wood, D.J.

2010-01-01T23:59:59.000Z

229

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

230

Data Center Rack Cooling with Rear-door Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

they can use treated water from a plate-and-frame heat exchanger connected to a cooling tower. These inherent features of a RDHx help reduce energy use while minimizing maintenance...

231

Special Property Assessment for Renewable Heating & Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Title 8 of Marylands property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

232

Policymakers' Guidebook for Geothermal Heating and Cooling (Revised) (Brochure)  

Science Conference Proceedings (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Heating and Cooling with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

233

Estimating Historical Heating and Cooling Needs. Per Capita Degree Days  

Science Conference Proceedings (OSTI)

Time series of approximate United States average annual per capita heating and cooling degree days for the years 18951983 are presented. The data reflect the combined effects of climate fluctuations and population shifts, and can be used in ...

M. W. Downton; T. R. Stewart; K. A. Miller

1988-01-01T23:59:59.000Z

234

Radiative Heating and Cooling Rates in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

One of the limitations to the accurate calculation of radiative heating and cooling rates in the stratosphere and mesosphere has been the lack of accurate data on the atmospheric temperature and composition. Data from the LIMS experiment on ...

John C. Gille; Lawrence V. Lyjak

1986-10-01T23:59:59.000Z

235

AEDG Implementation Recommendations: Cooling and Heating Loads | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling and Heating Loads Cooling and Heating Loads The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on heating and cooling system design loads for the purpose of sizing systems and equipment should be calculated in accordance with generally accepted engineering standards and handbooks such as ASHRAE Handbook--Fundamentals. Publication Date: Wednesday, May 13, 2009 air_cooling_and_heating_loads.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999

236

Supporting Equipment for Heating and Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use.

237

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

coil (G) of the absorption chiller (or boiler of a Rankineor heat input to the absorption chiller of approximately

Dols, C.

2010-01-01T23:59:59.000Z

238

Heat pipe radiation cooling evaluation: Task 2 concept studies report  

SciTech Connect

This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

Silverstein, C.C.

1991-10-01T23:59:59.000Z

239

FILM COOLING CALCULATIONS WITH AN ITERATIVE CONJUGATE HEAT TRANSFER APPROACH USING EMPIRICAL HEAT TRANSFER COEFFICIENT CORRECTIONS.  

E-Print Network (OSTI)

??An iterative conjugate heat transfer technique was developed and automated to predict the temperatures on film cooled surfaces such as flat plates and turbine blades. (more)

Dhiman, Sushant

2010-01-01T23:59:59.000Z

240

Silicon heat pipes for cooling electronics  

SciTech Connect

The increasing power density of integrated circuits (ICs) is creating the need for improvements in systems for transferring heat away from the chip. In earlier investigations, diamond films were used to conduct heat from ICs and spread the energy across a heat sink. The authors` investigation has indicated that a 635 {mu}m (25 mil) thick silicon substrate with embedded heat pipes could perform this task better than a diamond film. From their study, it appears that the development of a heat-pipe heat-spreading system is both technically and commercially feasible. The major challenge for this heat-spreading system is to develop an effective wick structure to transport liquid to the heated area beneath the chip. This paper discusses the crucial design parameters for this heat-pipe system, such as the required wick properties, the material compatibility issues, and the thermal characteristics of the system. The paper also provides results from some recent experimental activities at Sandia to develop these heat-pipe heat spreader systems.

Adkins, D.R.; Shen, D.S.; Palmer, D.W.; Tuck, M.R.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors  

SciTech Connect

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

WRIGHT,STEVEN A.; HOUTS,MICHAEL

2000-11-22T23:59:59.000Z

242

While Summer Heats Up, Birmingham Community Centers Cool Down | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

While Summer Heats Up, Birmingham Community Centers Cool Down While Summer Heats Up, Birmingham Community Centers Cool Down While Summer Heats Up, Birmingham Community Centers Cool Down July 22, 2010 - 4:14pm Addthis Birmingham Mayor William A. Bell, Sr., City officials, and DOE representatives at Monday's groundbreaking. Birmingham Mayor William A. Bell, Sr., City officials, and DOE representatives at Monday's groundbreaking. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Birmingham received a $2.4 million Energy Efficiency Community Block Grant under the Recovery Act. The HVAC system will use ground source heat pump technology. It seems like these days there's just no avoiding the heat. Whether we're in our homes, at our places of work, and certainly every time we

243

While Summer Heats Up, Birmingham Community Centers Cool Down | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

While Summer Heats Up, Birmingham Community Centers Cool Down While Summer Heats Up, Birmingham Community Centers Cool Down While Summer Heats Up, Birmingham Community Centers Cool Down July 22, 2010 - 4:14pm Addthis Birmingham Mayor William A. Bell, Sr., City officials, and DOE representatives at Monday's groundbreaking. Birmingham Mayor William A. Bell, Sr., City officials, and DOE representatives at Monday's groundbreaking. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Birmingham received a $2.4 million Energy Efficiency Community Block Grant under the Recovery Act. The HVAC system will use ground source heat pump technology. It seems like these days there's just no avoiding the heat. Whether we're in our homes, at our places of work, and certainly every time we

244

Equilibrium Models of Galaxy Clusters with Cooling, Heating and Conduction  

E-Print Network (OSTI)

It is generally argued that most clusters of galaxies host cooling flows in which radiative cooling in the centre causes a slow inflow. However, recent observations by Chandra and XMM conflict with the predicted cooling flow rates. Amongst other mechanisms, heating by a central active galactic nucleus and thermal conduction have been invoked in order to account for the small mass deposition rates. Here, we present a family of hydrostatic models for the intra-cluster medium where radiative losses are exactly balanced by thermal conduction and heating by a central source. We describe the features of this simple model and fit its parameters to the density and temperature profiles of Hydra A.

M. Bruggen

2003-03-20T23:59:59.000Z

245

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

246

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network (OSTI)

Products or systems that heat, cool and heat domestic water, which are also referred to as integrated systems, have been available for several years. The concept is simple and appeals to consumers. This paper presents methods for evaluating the potential savings by using an integrated system that heats water by desuperheating discharge gas in the refrigeration cycle. The methods may be applied for any specific location, and their accuracy will depend on the accuracy of building loads and water usage estimates. Power demand can also be affected by electric water heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks.

Cawley, R.

1992-05-01T23:59:59.000Z

247

Cooling your home naturally  

SciTech Connect

This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

NONE

1994-10-01T23:59:59.000Z

248

Introduction to solar heating and cooling design and sizing  

DOE Green Energy (OSTI)

This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information. (MHR)

Not Available

1978-08-01T23:59:59.000Z

249

All Green Residential Solar Energy to Heat Absorption Cooling / Heating Systems  

Science Conference Proceedings (OSTI)

An all-green residential solar to heat absorption cooling / heating system system is designed. It describes the components of the system and working principle, and analyze the prospects of the system and academic value. Finally, To Changsha, for example, ... Keywords: solar, ground-source heat pump, absorption, heat tube

Xu Feng

2013-01-01T23:59:59.000Z

250

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

level, the choice alternatives are cooling and no cooling.to zero in central cooling alternative Income ($1000) in airalternatives are conventional air conditioning and heat pump, given the cooling

Wood, D.J.

2010-01-01T23:59:59.000Z

251

Design, effectiveness, and construction of passive-thermal-control roofing shingles. Technical final report  

Science Conference Proceedings (OSTI)

The concept of a passive thermal control roofing shingle, which is a shingle that reflects the summer sun and absorbs the winter sun, is discussed. Such a shingle will reduce summer cooling and winter heating costs and conserve electricity and natural gas or heating oil. Design calculations indicate that it is possible to design shingles for particular latitudes and styles of roof which absorb nearly all of the winter solar energy and reflect nearly all of the summer solar energy. Calculations of the energy savings and cost effectiveness of the passive thermal control roofing shingle indicate that it is most cost effective on all south facing pitched roofs regardless of heating fuel type, and on flat or east or west facing roofs that are heated with costly fuels such as electricity or heating oil. The shingle is most effective on poorly insulated structures. If the cost of the shingle is about one dollar per square foot it will be cost effective in these applications. Additional calculations demonstrate the feasibility of using the passive thermal control roofing shingle in conjunction with a heat pump to pump heat absorbed by the shingle into a well insulated structure. Construction of a variety of models of the passive thermal control roofing shingle illustrate numerous alternate methods of manufacture. A profile extruded, plastic, glazed shingle appears to be the most promising approach. Additionally, extruded plastic reflector assemblies of various kinds could be added to existing shingled roofs. Use of a glazed shingle can increase the effectiveness of the passive thermal control roofing shingle by reducing convective heat losses.

Wolf, L. Jr.

1982-09-01T23:59:59.000Z

252

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90 levels instead of 150 and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84 -86 when outside ambient temperatures range from 98 -100. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

253

Cooling concept integration. Phase I final technical report, October 1, 1979-July 31, 1981. [For pre-engineered metal buildings  

DOE Green Energy (OSTI)

Before specific test prototypes were developed, six potential evaporative roof cooling configurations with alternative storage and heat transfer mechanisms were examined, and preliminary cost estimates were made. Each system uses a wet roof system which sprays or floods the roof, allowing evaporative heat transfer to the environment. Finite difference thermal network methods were used for the evaluation of the systems. Detailed results including charts of the hourly heat flows during particular days are presented, and the performance is summarized for Las Vegas. (LEW)

Fraker, H.; Glennie, W.; Snyder, M.K.

1981-08-19T23:59:59.000Z

254

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network (OSTI)

EXAMPLES OF PASSIVE SOLAR HEATING SYSTEMS {CONVECTIVE SPACEbeen supported by the Solar Heating and Cooling Research andinteraction. Passive solar heating systems use elements of

Holtz, Michael J.

2011-01-01T23:59:59.000Z

255

Economic Analysis of Home Heating and Cooling  

E-Print Network (OSTI)

Over the last eleven years Houston Lighting & Power has raised utility rates an average of 17% per year. Over the last 3 1/2 years the utility rates have doubled. According to Houston City Magazine, Houstonians can expect future raises of 20-25% annually due to required construction of new utility plants to accommodate Houston's future growth. Utility costs could, and in many cases do, exceed the monthly mortgage payment. This has caused all to become concerned with what can be done to lower the utility bill for homes. In a typical Gulf Coast home approximately 50% of household utility costs are due to the air conditioning system, another 15-20% of utility costs are attributed to hot water heating. The remaining items in the home including lights, toaster, washer, dryer, etc. are relatively minor compared to these two "energy gulpers". Reducing air conditioning and hot water heating costs are therefore the two items on which homeowners should concentrate.

Wagers, H. L.

1984-01-01T23:59:59.000Z

256

Manual for participants in the solar heating/cooling seminars  

DOE Green Energy (OSTI)

This manual was intended as a text for participants in the Solar Heating/Cooling seminars presented in conjunction with the ERDA Transportable Solar Laboratory in various regions of the US. The seminar was designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. The two-day course enabled the attendees to assess potential solar applications in their geographic area, including tools to do a preliminary design of the system and to analyze its economic benefits. (WDM)

Not Available

1976-01-01T23:59:59.000Z

257

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

258

PROGRAM SUPPORT FOR SOLAR HEATING AND COOLING RESEARCH AND DEVELOPMENT BRANCH  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'6782 Program Support for Solar Heating and Marlo Martin andPROGRAN SUPPORT FOR SOLAR HEATING AND COOLING RESEARCH AND

Martin, M.

2011-01-01T23:59:59.000Z

259

A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT  

E-Print Network (OSTI)

Home Heating and Cooling Equipment D.J. Wood, H. Ruderman,on home heating appliance choice are referred to Wood,FOR HOME HEATING AND COOLING EQUIPMENT David J. Wood, Henry

Wood, D.J.

2010-01-01T23:59:59.000Z

260

Electricity production and cooling energy savings from installation of a  

NLE Websites -- All DOE Office Websites (Extended Search)

production and cooling energy savings from installation of a production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Title Electricity production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Publication Type Journal Article Year of Publication 2013 Authors Ban-Weiss, George, Craig P. Wray, William W. Delp, Peter Ly, Hashem Akbari, and Ronnen M. Levinson Journal Energy and Buildings Volume 56 Pagination 210 - 220 ISSN 0378-7788 Keywords Advanced Technology Demonstration, building design, Building heat transfer, cool roof, energy efficiency, Energy Performance of Buildings, energy savings, Energy Usage, energy use, Heat Island Abstract Reflective roofs can reduce demand for air conditioning and warming of the atmosphere. Roofs can also host photovoltaic (PV) modules that convert sunlight to electricity. In this study we assess the effects of installing a building integrated photovoltaic (BIPV) roof on an office building in Yuma, AZ. The system consists of thin film PV laminated to a white membrane, which lies above a layer of insulation. The solar absorptance of the roof decreased to 0.38 from 0.75 after installation of the BIPV, lowering summertime daily mean roof upper surface temperatures by about 5 °C. Summertime daily heat influx through the roof deck fell to ±0.1 kWh/m2from 0.3-1.0 kWh/m2. However, summertime daily heat flux from the ventilated attic into the conditioned space was minimally affected by the BIPV, suggesting that the roof was decoupled from the conditioned space. Daily PV energy production was about 25% of building electrical energy use in the summer. For this building the primary benefit of the BIPV appeared to be its capacity to generate electricity and not its ability to reduce heat flows into the building. Building energy simulations were used to estimate the cooling energy savings and heating energy penalties for more typical buildings.

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Heat pipe cooling system for underground, radioactive waste storage tanks  

SciTech Connect

An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70/sup 0/F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle.

Cooper, K.C.; Prenger, F.C.

1980-02-01T23:59:59.000Z

262

Advanced turbine cooling, heat transfer, and aerodynamic studies  

DOE Green Energy (OSTI)

The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

Han, Je-Chin; Schobeiri, M.T. [Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

263

Mpemba effect, Newton cooling law and heat transfer equation  

E-Print Network (OSTI)

In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

Vladan Pankovic; Darko V. Kapor

2010-05-06T23:59:59.000Z

264

Approximations for radiative cooling and heating in the solar chromosphere  

E-Print Network (OSTI)

Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heat...

Carlsson, Mats

2012-01-01T23:59:59.000Z

265

Developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-01-24T23:59:59.000Z

266

District cooling and heating development in Stamford, CT. Final report  

SciTech Connect

This report summarizes the development options for introducing district cooling and heating in downtown Stamford, Connecticut. A district energy system as defined for the Stamford project is the production of chilled and hot water at a central energy plant, and its distribution underground to participating building in the vicinity. The objective of the study was to investigate implementation of a district energy system in conjunction with cogeneration as a means to encourage energy conservation and provide the city with an economic development tool. Analysis of the system configuration focused on selecting an arrangement which offered a realistic opportunity for implementation. Three main alternatives were investigated: (1) construction of an 82 MW cogeneration plant and a district heating and cooling system to serve downtown buildings, (2) construction of a small (4 MW) in-fence cogeneration plant combined with cooling and heating, and (3) construction of a district cooling and heating plant to supply selected buildings. Option (1) was determined to be unfeasible at this time due to low electricity prices. The analysis demonstrated that alternatives (2) and (3) were feasible. A number of recommendations are made for detailed cost estimates and ownership, leasing, and financial issues. 12 figs., 10 tabs.

1994-12-01T23:59:59.000Z

267

Solar heating/cooling and domestic hot-water systems  

Science Conference Proceedings (OSTI)

Increasing awareness of global warming forces policy makers and industries to face two challenges: reducing greenhouse gas emissions and securing stable energy supply against ever-increasing world energy consumption, which is projected to increase by ... Keywords: buildings heating, domestic hot-water, energetical analysis, renewable energy sources, solar cooling technologies, solar energy collection, solar thermal systems

Ioan Srbu; Marius Adam

2011-02-01T23:59:59.000Z

268

Retrofitting Power Plants to Provide District Heating and Cooling  

Science Conference Proceedings (OSTI)

Case studies at five utilities documented consumer and utility benefits of retrofitting fossil steam and combined-cycle plants to provide thermal energy for district heating and cooling (DHC) for nearby loads. This cogeneration strategy helps utilities boost revenues and plant energy utilization efficiencies. It can also revitalize communities by providing inexpensive electricity and thermal energy while reducing emissions.

1997-03-27T23:59:59.000Z

269

Prototype solar heating and cooling systems. Monthly progress reports  

DOE Green Energy (OSTI)

This report is a collection of monthly status reports from the AiResearch Manufacturing Company, who is developing eight prototype solar heating and cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

Not Available

1978-10-01T23:59:59.000Z

270

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

etc. Heat Exchangers Heat Pipes & Thermal Diodes ConceptJ. Heat Exchangers K. Heat Pipes & Thermal Diodes A. Conceptwith two control, one heat pipe, and one cooling study. In

Authors, Various

2012-01-01T23:59:59.000Z

271

Method and apparatus for heat extraction by controlled spray cooling  

DOE Patents (OSTI)

Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.

Edwards, Christopher Francis (5492 Lenore Ave., Livermore, Alameda County, CA 94550); Meeks, Ellen (304 Daisyfield Dr., Livermore, Alameda County, CA 94550); Kee, Robert (864 Lucille St., Livermore, Alameda County, CA 94550); McCarty, Kevin (304 Daisyfield Dr., Livermore, Alameda County, CA 94550)

1999-01-01T23:59:59.000Z

272

Simulation and analysis of district-heating and -cooling systems  

DOE Green Energy (OSTI)

A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

Bloomster, C.H.; Fassbender, L.L.

1983-03-01T23:59:59.000Z

273

Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report  

SciTech Connect

This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heating and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.

NONE

1990-04-01T23:59:59.000Z

274

Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade  

SciTech Connect

The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

Josh A. Salmond

2009-08-07T23:59:59.000Z

275

Sensitivity of Low Sloped Roofs Designs to Initial Water and Air Leakage  

E-Print Network (OSTI)

Liquid water in low sloped roofs almost always causes problems. Roofs are designed only to control the migration of vapor, if at all. Small amounts of water leakage/penetration, may cause mold growth or catastrophic corrosion in current roofs systems. In a recent paper by the authors the effect of exterior surface emissive and absorptive properties was found to have a significant effect on the moisture performance of a roof that had a leak. Depending on the surface characteristics, roof systems can be designed to effectively manage water penetration, but at an energy cost. In the roofs system examined previously, air leakage was not included. In the present study, the authors reinvestigated the effect of water penetration and the influence of air leakage on the hygrothermal performance of a few selected roofs. The drying potential of a groove ventilated roof is examined. The performance concept is based on the fact that warming up of air in the groove increases it's ability to transport moisture to the outside. Solar radiation raises the temperature of air in the grooves and on average, during a sunny summer day 0.5 L of water can be ventilated out of the roof per 1m width of the roof. In this paper, one climatic condition was investigated; a hot and humid Climate representative of Houston, TX. The specific questions that the paper addresses are: What are the vapor and liquid control dynamic involved in the moisture migration of a roof in Houston TX? and how does airflow influence the performance of a roof that is initially wet ? A state-of-the-art numerical model was used to address these issues. Results showed that the drying potential depends on the ventilation rates. The roof system with ventilation grooves dried out faster from the initially wet stage than the roof without the ventilation grooves. The total increase in heat loss of the roof was found to be between 0 - 5 % depending on the thickness of the insulation. The ventilation can cool down the temperature of the roof in the middle of a hot and sunny day thus reducing the heat load to the inside.

Karagiozis, A.; Desjarlais, A.; Salonvaara, M.

2002-01-01T23:59:59.000Z

276

Heating and cooling the Raft River geothermal transite pipe line  

SciTech Connect

A preliminary transient heat transfer analysis to aid in defining operating limits for the 4000-foot-long transite pipe line at the Raft River geothermal test site was completed. The heat transfer problem was to determine the time required to cool down the line from a 285/sup 0/F operating temperature to 50/sup 0/F and the time to heat up the line from 50/sup 0/F to 285/sup 0/F such that the temperature differential across the pipe wall will not exceed 25/sup 0/F. The pipe and the surrounding soil was modeled with a two-dimensional heat transfer computer code assuming constant convective heat transfer at the soil-atmosphere interface. The results are sensitive to the soil thermal conductivity used in the calculation and imply that measurement of soil thermal conductivity used in the calculation and imply that measurement of soil thermal properties should be made in order to refine the calculations. Also, the effect of variable convective heat transfer at the soil surface should be investigated. However, the results reported here indicate the order of magnitude to be expected for cool-down and heat-up times when operating the transite pipe at the stated condition.

Shaffer, C.J.

1977-06-01T23:59:59.000Z

277

Duke Energy - Heating & Cooling Equipment Loan Program (North...  

Open Energy Info (EERE)

Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Active Incentive No Implementing Sector Utility Energy Category...

278

Duke Energy - Heating & Cooling Equipment Loan Program (South...  

Open Energy Info (EERE)

Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Active Incentive No Implementing Sector Utility Energy Category...

279

Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars  

SciTech Connect

We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B > or approx. 10{sup 13} G. At a density of {rho}{approx_equal}10{sup 12}-10{sup 14} g/cm{sup 3}, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature {approx_equal}10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

Aguilera, Deborah N. [Tandar Laboratory, Comision Nacional de Energia Atomica, Avenida Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pons, Jose A. [Department of Applied Physics, University of Alicante, Apartado de Correos 99, E-03080 Alicante (Spain)

2009-03-06T23:59:59.000Z

280

Superfluid heat conduction and the cooling of magnetized neutron stars  

SciTech Connect

We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

Cirigliano, Vincenzo [Los Alamos National Laboratory; Reddy, Sanjay [Los Alamos National Laboratory; Sharma, Rishi [Los Alamos National Laboratory; Aguilera, Deborah N [BUENOS AIRES

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars  

E-Print Network (OSTI)

We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field $B \\gsim 10^{13}$ G. At density $\\rho \\simeq 10^{12}-10^{14} $ g/cm$^3$ the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity when temperature $\\simeq 10^8$ K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

Aguilera, Deborah N; Pons, Jos A; Reddy, Sanjay; Sharma, Rishi

2008-01-01T23:59:59.000Z

282

Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars  

E-Print Network (OSTI)

We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field $B \\gsim 10^{13}$ G. At density $\\rho \\simeq 10^{12}-10^{14} $ g/cm$^3$ the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity when temperature $\\simeq 10^8$ K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

Deborah N. Aguilera; Vincenzo Cirigliano; Jos A. Pons; Sanjay Reddy; Rishi Sharma

2008-07-29T23:59:59.000Z

283

Climatic indicators for estimating residential heating and cooling loads  

Science Conference Proceedings (OSTI)

An extensive data base of residential energy use generated with the DOE-2.1A simulation code provides an opportunity for correlating building loads predicted by an hourly simulation model to commonly used climatic parameters such as heating and cooling degree-days, and to newer parameters such as insolation-days and latent enthalpy-days. The identification of reliable climatic parameters for estimating cooling loads and the incremental loads for individual building components, such as changing ceiling and wall R-values, infiltration rates or window areas is emphasized.

Huang, Y.J.; Ritschard, R.; Bull, J.; Chang, L.

1986-11-01T23:59:59.000Z

284

Skin and core temperature response to partial- and whole-body heating and cooling  

E-Print Network (OSTI)

rate after cooling The whole-body thermal state affects theof Thermal Biology 29 (2004) 549558 Forehead Head CoolingThermal Biology 29 (2004) 549558 local spot heating or cooling

Huizenga, Charlie; Zhang, Hui Ph.D; Arens, Edward A

2004-01-01T23:59:59.000Z

285

Keeping cool on the job. [Heat-resistant protective clothing  

SciTech Connect

Maintenance workers at nuclear power plants need special protective clothing that slows overheating from the 55/sup 0/C temperature caused by waste heat from pipes and pressure vehicles. Cooling garments increase efficiency by extending the time workers can function, as well as safeguarding their health and morale. The Electric Power Research Institute evaluated two cooling concepts: circulating liquid suits already available on the market and a prototype frozen-water garment. Performance tests of the frozen-water suit found that it can more than double the 65-minute stay-time of liquid-cooled systems. The frozen-water garment permits mobility, is compatible with radiation protection and other garments and equipment, is easty to clean or decontaminate, has no moving parts, and is attractively priced. 4 figures. (DCK)

Lihach, N.; O'Brien, J.

1982-09-01T23:59:59.000Z

286

Heat Budget Analysis of Nocturnal Cooling and Daytime Heating in a Basin  

Science Conference Proceedings (OSTI)

Nocturnal cooling and daytime heating in a basin were studied on clear and calm days by means of heat budget observations. In the nighttime, drainage flow occurs along the basin sideslope and advects cold air to the boundary layer over the basin ...

Junsei Kondo; Tsuneo Kuwagata; Shigenori Haginoya

1989-10-01T23:59:59.000Z

287

Active solar heating-and-cooling system-development projects  

DOE Green Energy (OSTI)

The Department of Energy (DOE) projects with industry and academic institutions directed toward the development of cost effective, reliable, and publically acceptable active solar heating and cooling systems are presented. A major emphasis of the program is to insure that the information derived from these projects is made available to all members of the solar community who will benefit from such knowledge. The purpose of this document is to provide a brief summary of each of the 214 projects that were active during Fiscal Year 1980, and to provide sufficient information to allow the reader to acquire further details on specific projects. For clarity and convenience, projects are organized by either the program element or technology group as follows: (1) Program elements - Rankine Solar Cooling Systems; Absorption Solar Cooling Systems; Desiccant Solar Cooling Systems; Solar Space Heating Systems; Solar Hot Water Systems; Special Projects; and (2) Technology Groups - Solar Collector Technology; Solar Storage Technology; Solar Controls Technology; Solar Analysis Technology; and Solar Materials Technology. For further convenience, this book contains three indices of contracts, with listings by (1) organization, (2) contract number and (3) state where the project is performed. A brief glossary of terms used is also included at the end of the book.

Not Available

1980-10-01T23:59:59.000Z

288

Solar heating and cooling commercialization research program. Final report  

DOE Green Energy (OSTI)

The Solar Heating and Cooling Commercialization Research Program has addressed a recognized need to accelerate the commercialization of solar products. The development of communication techniques and materials for a target group of heating, ventilating and air-conditioning (HVAC) wholesalers and distributors has been the primary effort. A summary of the program, the approach to the development of the techniques and materials, the conclusions derived from seminar feedback, the development of additional research activities and reports and the recommendations for follow-on activities are presented. The appendices offer detailed information on specific elements of the research effort.

Christensen, D.L.; Tragert, W.; Weir, S.

1979-11-01T23:59:59.000Z

289

(Thermal energy storage technologies for heating and cooling applications)  

DOE Green Energy (OSTI)

Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

Tomlinson, J.J.

1990-12-19T23:59:59.000Z

290

Investigation of the heat pipe arrays for convective electronic cooling  

E-Print Network (OSTI)

A combined experimental and analytical investigation was conducted to evaluate a heat pipe convective cooling device consisting of sixteen small copper/water heat pipes mounted vertically in a 4x4 array 25.4 mm square. The analytical portion of the investigation focused on determination of the maximum heat transport capacity and the resistance of the individual heat pipes. The resistance of each beat pipe was found to be 2.51 K/Watt, or more than 3 times smaller than the resistance produced by a solid copper rod with the same dimensions. The maximum predicted heat rejection for the module was over 50 Watts, or a power density in excess of 7.75 Watts/CM2. In the experimental portion of the investigation, two different modules were tested. The first module utilized ten circular aluminum fins mounted on the condenser end of each heat pipe to enhance heat rejection, while the second contained only the sixteen copper/water heat pipes. The effects of flow velocity, input power, and base plate temperature on the overall thermal resistance and the heat rejection capacity were determined, as well as the pressure drop resulting from each module. The finned heat pipe array was found to have a lower overall thermal resistance and thus, a higher heat rejection capacity, but also resulted in a significantly larger pressure drop than the array without fins. The results of the heat pipe array experiments were also compared with experimental and empirical results obtained from flow over a flat plate 25.4 mm square.

Howard, Alicia Ann Harris

1993-01-01T23:59:59.000Z

291

Prototype solar heating and cooling systems. Monthly progress reports  

DOE Green Energy (OSTI)

This report is a combination of monthly progress reports submitted by AiResearch Manufacturing Company. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. AiResearch Manufacturing Company is developing prototype solar heating/cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

Not Available

1979-04-01T23:59:59.000Z

292

Incremental cooling load determination for passive direct gain heating systems  

DOE Green Energy (OSTI)

This paper examines the applicability of the National Association of Home Builders (NAHB) full load compressor hour method for predicting the cooling load increase in a residence, attributable to direct gain passive heating systems. The NAHB method predictions are compared with the results of 200 hour-by-hour simulations using BLAST and the two methods show reasonable agreement. The degree of agreement and the limitations of the NAHB method are discussed.

Sullivan, P.W.; Mahone, D.; Fuller, W.; Gruber, J.; Kammerud, R.; Place, W.; Andersson, B.

1981-05-01T23:59:59.000Z

293

Signatures of Heating and Cooling Energy Consumption for Typical AHUs  

E-Print Network (OSTI)

An analysis is performed to investigate the signatures of different parameters on the heating and cooling energy consumption of typical air handling units (AHUs). The results are presented in graphic format. HVAC simulation engineers can use these graphs to make quick and rational decisions during the model calibration, identify faulty parameters, and develop optimized operation and control schedules. An application example is given as well in the paper.

Wei, G.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

294

BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.  

SciTech Connect

This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

ANDREWS,J.

2001-01-01T23:59:59.000Z

295

Strategy Guideline: Accurate Heating and Cooling Load Calculations  

SciTech Connect

This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

Burdick, A.

2011-06-01T23:59:59.000Z

296

Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones  

Science Conference Proceedings (OSTI)

A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

Pallin, Simon B [ORNL

2013-01-01T23:59:59.000Z

297

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network (OSTI)

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

298

Policy Makers' Guidebook for Geothermal Heating and Cooling | Open Energy  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Heating and Cooling Policy Makers' Guidebook for Geothermal Heating and Cooling Jump to: navigation, search Tool Summary Name: Policy Makers' Guidebook for Geothermal Heating and Cooling Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network (OSTI)

For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes, operating modes and weather conditions. The results show that 1) for most areas of China, the solar systems with seasonal storage can save energy; 2) for areas with cold winter and hot summer, it is suitable to store heat from summer to winter and store cold energy from winter to summer, but for chilly areas, it is suitable to only store heat from summer to winter; 3) when the ratio of volume of seasonal storage tank to collector areas is 2~3, the system performance is optimal and the payback period is shortest for most areas of north China; and 4) if cooling storage is needed, the seasonal storage coupled with short-term storage may raise the solar fraction largely.

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

300

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER  

E-Print Network (OSTI)

THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER Dennis L. Youchison-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications-channel, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore

California at Los Angeles, University of

302

InterTechnology Corporation technology summary, solar heating and cooling. National Solar Demonstration Program  

DOE Green Energy (OSTI)

A summary of systems technology for solar-thermal heating and cooling of buildings is given. Solar collectors, control systems for solar heating and cooling, selective surfaces, thermal energy storage, solar-assisted heat pumps, and solar-powered cooling systems are discussed in detail. Also, an ITC specification for a solar control system is included. (WHK)

None

1976-12-01T23:59:59.000Z

303

An office building used as a federal test bed for energy-efficient roofs  

SciTech Connect

The energy savings benefits of re-covering the roof of an existing federal office building with a sprayed polyurethane foam system are documented. The building is a 12,880 ft{sup 2} (1,197 m{sup 2}), 1 story, masonry structure located at the Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Prior to re-covering, the roof had a thin fiberglass insulation layer, which had become partially soaked because of water leakage through the failed built-up roof membrane. The average R-value for this roof measured at 2 hr{center_dot}ft{sup 2}{center_dot}{degrees}F/Btu (0.3 m{sup 2} {center_dot}K/W). After re-covering the roof, it measured at 13 hr{center_dot}ft{sup 2}{degrees}F/Btu (2.3 m{sup 2}{center_dot}K/W). The building itself is being used as a test bed to document the benefits of a number of energy efficiency improvements. As such, it was instrumented to measure the half-hourly energy consumption of the whole building and of the individual rooftop air conditioners, the roof heat fluxes and the interior air and roof temperatures. These data were used to evaluate the energy effectiveness of the roof re-covering action. The energy savings analysis was done using the DOE-2.lE building simulation program, which was calibrated to match the measured data. The roof re-covering led to around 10% cooling energy savings and around 50% heating energy savings. The resulting energy cost reductions alone are not sufficient to justify re-covered roofs for buildings having high internal loads, such as the building investigated here. However the energy savings do contribute significantly to the measure`s Savings-to-Investment Ratio (SIR).

McLain, H.A.; Christian, J.E.

1995-08-01T23:59:59.000Z

304

Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005  

SciTech Connect

The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

Tombari, C.

2005-09-01T23:59:59.000Z

305

Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

Tombari, C.

2005-09-01T23:59:59.000Z

306

Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer  

DOE Patents (OSTI)

An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

2002-01-01T23:59:59.000Z

307

Solar heating and cooling system design and development. Status summary, April--June 1978  

DOE Green Energy (OSTI)

Information is provided on the development of eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and monitoring the operation of prototype systems. The program currently consists of development of heating and cooling equipment for single-family residential and commercial applications and eight operational test sites (four heating and four heating and cooling). Four are single-family residences and four are commercial buildings.

Not Available

1978-07-01T23:59:59.000Z

308

District heating and cooling: a 28-city assessment  

DOE Green Energy (OSTI)

Findings of a project that assessed the potential for construction of district heating and cooling (DHC) systems in 28 US cities are presented. The project sought to determine whether DHC could promote local community and economic development. In the preliminary assessment, 17 of the cities identified up to 23 projects that could be built within three to five years. Most of these projects would rely on nonscarce heat sources such as refuse or geothermal energy, and to improve financial feasibility, the majority would cogenerate electricity along with heat. Many would use existing power plants or industrial boilers to hold down capital costs. Overall, the projects could generate as amany as 24,000 jobs and retain $165 million that otherwise could leave the communities, thereby helping to stabilize local economies.

Meshenberg, M.J.

1983-08-01T23:59:59.000Z

309

Numerical Model for Conduction-Cooled Current Lead Heat Loads  

SciTech Connect

Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY

2011-06-10T23:59:59.000Z

310

New and Underutilized Technology: Green Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Roofs Green Roofs New and Underutilized Technology: Green Roofs October 8, 2013 - 2:53pm Addthis The following information outlines key deployment considerations for green roofs within the Federal sector. Benefits Green roofs place vegetation on the rooftop to reduce heat load and add insulation. It also reduces storm runoff from the roof. Application Green roofs are appropriate for deployment within most building categories with higher roof to conditioned floor area ratios and should be considered in building design, renovation, or during roof replacement projects. Climate and Regional Considerations Climate issues can affect the performance of green roofs. Key Factors for Deployment Green roofs have weight loading issues, which need to be considered prior to deployment.

311

Photovoltaic roof heat flux  

E-Print Network (OSTI)

showed that a solar panel over a rooftop w i l l lead to aalbedo (or solar reflectance) by painting the rooftops whitesolar panel offset height became a key component for rooftop

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

312

Photovoltaic roof heat flux  

E-Print Network (OSTI)

represent the total H V A C energy usage for that day. Otherrepresent the total H V A C energy usage for that day. Other

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

313

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and a major factor of energy usage (-37%) is the amount ofdesign approaches to reduce energy usage i n order to coollongest, a n d hence the energy usage was the largest d u r

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

314

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

DOE Green Energy (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

315

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

316

Modeling Free Convection Flow of Liquid Hydrogen within a Cylindrical Heat Exchanger Cooled to 14 K  

E-Print Network (OSTI)

Lau, W, and Yang, S. , A Heat Exchanger between Forced FlowWITHIN A CYLINDRICAL HEAT EXCHANGER COOLED TO 14 K S. Qof the container is a heat exchanger between the hydrogen

Yang, S.W.; Oxford U.

2004-01-01T23:59:59.000Z

317

Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures  

E-Print Network (OSTI)

Aguilar G 2004 Radial heat transfer dynamics during cryogenof droplet dynamics and heat transfer in spray cooling Exp.S0031-9155(04)84030-2 Heat-transfer dynamics during cryogen

Jia, W; Aguilar, G; Wang, G X; Nelson, J S

2004-01-01T23:59:59.000Z

318

Microelectronic chip cooling: an experimental assessment of a liquid-passing heat sink, a microchannel heat rejection module, and a microchannel-based recirculating-liquid cooling system  

Science Conference Proceedings (OSTI)

Results of heat transfer testing of heat absorption modules (HAM), heat rejection modules (HRM), and a recirculating-liquid cooling system are reported. Low-profile, Cu-based, microchannel heat exchangers (MHEs) were fabricated and used as the HAM as ...

Bin Lu; W. J. Meng; Fanghua Mei

2012-03-01T23:59:59.000Z

319

Solar heating and cooling system design and development (status summay through December 1977)  

DOE Green Energy (OSTI)

The program scope is to develop, fabricate, install, and monitor the operation of prototype solar heating and cooling systems. Application studies have been completed for three application categories: single-family residential, multi-family residential, and commercial. The program currently consists of development of heating and cooling euipment for single-family residential and commercial applications and eight operational test sites (four heating and four heating and cooling). Four are single-family residences and four are commercial buildings.

Not Available

1978-04-06T23:59:59.000Z

320

Developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well a previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--1992 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space hearing systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report. 6 figs., 2 tabs.

Not Available

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Research on the Effect of a Planting Roof on the Thermal Load of a Business Building  

E-Print Network (OSTI)

A pair of comparative testing rooms (one with an ordinary roof and the other with a planting roof) was established in our laboratory, and in- situ measurement (in summer) data have been collected and treated. The indoor thermal environment was analyzed and the thermal load within each room was calculated Comparative analysis of thermal loads of these two rooms was done. Reduction of thermal load by the planting roof is clearly shown from our research work. A theoretical analysis of the effect of the planting roof on the room's thermal load was done, and theoretical relations between outdoor air temperature and indoor thermal load within certain region were established. The feasibility analysis of the application of our research work to the business building was also completed. The summer cooling load reduction characteristics, the energy saving characteristics on air conditioning system, the yearly electricity consumption reduction, the yearly consumption amount reduction of Primary Energy, the discharge amount reduction of sensible heat to outdoor atmosphere in summer, and the yearly discharge amount reduction of greenhouse gases to the outdoor atmosphere from air conditioning system due to the planting roof are also predicted. A corresponding economic analysis is also presented in this paper. The results show the advantages of the planting roof, and also promote the widespread application of the planting roof to business buildings.

Zhang, W.; Wu, J.; Wei, Y.; Gao, X.

2006-01-01T23:59:59.000Z

322

Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts  

SciTech Connect

Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

2005-09-01T23:59:59.000Z

323

On the Use of Cool Materials as a Heat Island Mitigation Strategy  

Science Conference Proceedings (OSTI)

The mitigation of the heat island effect can be achieved by the use of cool materials that are characterized by high solar reflectance and infrared emittance values. Several types of cool materials have been tested and their optical and thermal ...

A. Synnefa; A. Dandou; M. Santamouris; M. Tombrou; N. Soulakellis

2008-11-01T23:59:59.000Z

324

Counter flow cooling drier with integrated heat recovery  

DOE Patents (OSTI)

A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

Shivvers, Steve D. (Prole, IA)

2009-08-18T23:59:59.000Z

325

Cool Roofs and Solar Shingles  

Science Conference Proceedings (OSTI)

A 60% reduction in CO2 emissions will be needed in the buildings sector by 2050 compared to today's level if the goal of limiting global temperature rise to...

326

A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme  

SciTech Connect

Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

Not Available

1994-02-01T23:59:59.000Z

327

Thermal analysis of a piston cooling system with reciprocating heat pipes  

SciTech Connect

The reciprocating heat pipe is a very promising technology in engine piston cooling, especially for heavy-duty diesel engines. The concept of the reciprocating heat pipe is verified through the experimental observation of a transparent heat pipe and by thermal testing of a copper/water reciprocating heat pipe. A comparative thermal analysis on the reciprocating heat pipe and gallery cooling systems is performed. The approximate analytical results show that the piston ring groove temperature can be significantly reduced using heat pipe cooling technology, which could contribute to an increase in engine thermal efficiency and a reduction in environmental pollution.

Cao, Y.; Wang, Q. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering

1995-04-01T23:59:59.000Z

328

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

This paper is a progress report for the period of July 1, 1990 to 31 August 1990 on activities at Colorado State University in a program for developing, testing, evaluating and optimizing solar heating and cooling systems. Topics covered are: solar heating with isothermal collectors; solid cooling with solid desiccant; liquid desiccant cooling systems; solar heating systems; solar water heaters; fields tests; and program management. 6 figs., 2 tabs. (FSD)

Not Available

1990-09-07T23:59:59.000Z

329

THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS  

Office of Scientific and Technical Information (OSTI)

THERMAL PERFORMANCE MEASUREMENTS THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING PONDS R. K. Hadlock 0 . B. Abbey Battelle Pacific Northwest Laboratories Prepared for U. S. Nuclear Regulatory Commission b + NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, pro- duct or process disclosed, nor represents that its use would not infringe privately owned rights. F Available from National Technical Information Service

330

Active solar heating and cooling information user study  

DOE Green Energy (OSTI)

The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

331

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

332

Standards applicable to performance measurement of solar heating and cooling systems  

DOE Green Energy (OSTI)

The advantage of the utilization of existing standards in the performance monitoring of solar heating and cooling systems is discussed. Existing applicable measurement standards and practices are listed.

Lior, N.

1978-01-01T23:59:59.000Z

333

PureComfort 240 Combined Cooling,Heating,and Power Unit  

Science Conference Proceedings (OSTI)

This report is the second interim case study of a PureComfort 240 combined cooling, heating and power project at the University of Toronto, Mississauga.

2006-12-06T23:59:59.000Z

334

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

For decades, space heating and cooling (space conditioning) accounted for more than half of all residential energy consumption. Estimates from the ...

335

Market assessment for active solar heating and cooling products. Progress report  

DOE Green Energy (OSTI)

Progress is reported on a comprehensive evaluation of the market for active solar heating and cooling products focusing on the attributes and behavior of HVAC decision makers. (MHR)

Not Available

1980-02-21T23:59:59.000Z

336

Design and evaluation of heat transfer fluids for direct immersion cooling of electronic systems .  

E-Print Network (OSTI)

??Comprehensive molecular design was used to identify new heat transfer fluids for direct immersion phase change cooling of electronic systems. Four group contribution methods for (more)

Harikumar Warrier, Pramod Kumar Warrier

2012-01-01T23:59:59.000Z

337

Impingement cooling and heat transfer measurement using transient liquid crystal technique.  

E-Print Network (OSTI)

??A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow (more)

Huang, Yizhe

2012-01-01T23:59:59.000Z

338

Modeling of Heat Transfer during Cooling of a Hot Steel Plate  

Science Conference Proceedings (OSTI)

Thus, it is crucial to develop accurate heat transfer models in order to predict the temperature history during cooling of steel plates. The present study describes a ...

339

Vibration Induced Droplet Generation from a Liquid Layer for Evaporative Cooling in a Heat Transfer Cell .  

E-Print Network (OSTI)

??During this investigation, vibration induced droplet generation from a liquid layer was examined as a means for achieving high heat flux evaporative cooling. Experiments were (more)

Pyrtle, Frank, III

2005-01-01T23:59:59.000Z

340

A micro-COOLING, HEATING, AND POWER (m-CHP) INSTRUCTIONAL MODULE.  

E-Print Network (OSTI)

??Cooling, Heating, and Power (CHP) is an emerging category of energy systems consisting of power generation equipment coupled with thermally activated components. The application of (more)

Oliver, Jason Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

THE STIRLING ENGINE: THERMODYNAMICS AND APPLICATIONS IN COMBINED COOLING, HEATING, AND POWER SYSTEMS.  

E-Print Network (OSTI)

?? The goal of this study is to assess the potential of the Stirling engine in alternative energy applications including combined cooling, heating, and power (more)

Harrod, James C

2010-01-01T23:59:59.000Z

342

PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA  

Science Conference Proceedings (OSTI)

Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

Biswas, Kaushik [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Kosny, Jan [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL

2011-01-01T23:59:59.000Z

343

List of Roofs Incentives | Open Energy Information  

Open Energy Info (EERE)

List of Roofs Incentives List of Roofs Incentives Jump to: navigation, search The following contains the list of 178 Roofs Incentives. CSV (rows 1 - 178) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government

344

Compact intermediate heat transport system for sodium cooled reactor  

SciTech Connect

This patent describes a combination with a sodium cooled reactor having an intermediate heat exchanger for extracting heat in a nonradioactive secondary sodium loop from the sodium rector. It comprises: first and second upstanding closed cylindrical vessels, one of the cylindrical vessels being exterior of the other of the cylindrical vessels; the other of the cylindrical vessels being interior, smaller, and concentric of the larger cylindrical vessel so as to define between the inside of the larger vessel and the outside of the smaller vessel an interstitial annular volume; at least one feedwater inlet plenums at the bottom of the larger vessel communicated to the interstitial annular volume; at least one feedwater outlet plenums at the top of the larger and outer vessel communicated to the interstitial annular volume; tubes communicated to the feedwater inlet plenum at the bottom of the vessels and to the steam outlet plenum at the top of the vessel; a first conduit; a large submersible electromagnetic pump; and a jet pump having an inlet, a venturi, and a diffusing outlet.

Boardman, C.E.; Maurer, J.P.

1990-03-06T23:59:59.000Z

345

Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky)  

E-Print Network (OSTI)

Thermal performance for any building in hot dry region depend on the external climatic factor, the ability of the construction materials used in gained heat through day time and loss this heat through night time through the nocturnal radiation. Roof is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go towards from north to south. This study evaluate the thermal performance of different test rooms with different roofs construction; uninsulated concrete, insulated concrete, double, plant, and active concrete roofs, constructed under the effect of external climatic condition of very hot and dry region in Egypt (Toshky region). The external climatic conditions and the temperature distribution inside the roof construction and the indoor air temperature were measured. The results of this study recognized that the thermal transmittance (UValue) has a major role in chosen the constructed materials. Also the thermal insulation considered the suitable manner for damping the thermal stresses through day time and makes the interior environment of the building near the comfort zone during most months of the year. Natural night and forced ventilation are more important in improving the internal conditions. The construction roof systems show that the indoor air temperature thermal damping reach to 96%, 90%, 89%, and 76% for insulated concrete, double, planted and uninsulated concrete roofs. The results also investigate the importance of using the earth as a cooling source through the active concrete system. Evaporative cooling and movable shading which are an integrated part of the guidelines for building design in hot dry region must be using.

Khalil, M. H.; Sheble, S.; Morsey, M. S.; Fakhry, S.

2010-01-01T23:59:59.000Z

346

2011 CERN Waste Heat EN-CV February 28th 2011 Power Dissipated by the Cooling Towers  

E-Print Network (OSTI)

2011 CERN Waste Heat EN-CV February 28th 2012 1 2011 Power Dissipated by the Cooling Towers The cooling circuits at CERN use evaporative open cooling towers to discharge into the atmosphere the heat towers per complex depend on the amount of cooling power required. LHC one cooling tower per even LHC

Wu, Sau Lan

347

Roof bolting improvements  

Science Conference Proceedings (OSTI)

Suppliers partner with mine operators to offer safer, more productive tools for roof bolting. 4 figs.

Fiscor, S.

2008-11-15T23:59:59.000Z

348

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

349

Cooling of X-ray Emitting Gas by Heat Conduction in the Center of Cooling Flow Clusters  

E-Print Network (OSTI)

We study the possibility that a large fraction of the gas at temperatures of ? 10 7 K in cooling flow clusters cools by heat conduction to lower temperatures, rather than by radiative cooling. We argue that this process, when incorporated into the so-called moderate cooling flow model, where the effective age of the intracluster medium is much lower than the age of the cluster, reduces substantially the expected X-ray luminosity from gas residing at temperatures of ? 10 7 K. In this model, the radiative mass cooling rate of gas at ? 10 7 K inferred from X-ray observations, which is heat conduction is regulated by reconnection between the magnetic field lines in cold ( ? 10 4 K) clouds and the field lines in the intracluster medium. A narrow conduction front is formed, which, despite the relatively low temperature, allows efficient heat conduction from the hot ICM to the cold clouds. The reconnection between the field lines in cold clouds and those in the intracluster medium occurs only when the magnetic field in the ICM is strong enough. This occurs only in the very inner regions of cooling flow clusters, at r ? 10 ? 30 kpc. The large ratio of the number of H? photons to the number of cooling hydrogen atoms is explained by this scenario. 1.

Noam Soker; L. Blanton; Craig L. Sarazin; Chandra Fellow

2003-01-01T23:59:59.000Z

350

Using Green Roofs to Minimize Roof Runoff Pollution  

E-Print Network (OSTI)

comparison for new construction: ­­ Green roofGreen roof -- $10$10--$30 per square foot$30 per square foot ­­ Traditional roofTraditional roof -- $5$5--$15 per square foot$15 per square foot Roof load evaluation required Roof Design ConsiderationsGreen Roof Design Considerations Cost comparison for new construction:Cost

Clark, Shirley E.

351

Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating  

SciTech Connect

BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Techs new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Techs design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

2010-09-01T23:59:59.000Z

352

Fuzzy incremental control algorithm of loop heat pipe cooling system for spacecraft applications  

Science Conference Proceedings (OSTI)

Reliable and high precision thermal control technologies are essential for the safe flight of advanced spacecraft. A fuzzy incremental control strategy is proposed for control of an LHP space cooling system comprising a loop heat pipe and a variable ... Keywords: Fuzzy incremental control, Loop heat pipe, Modeling and simulation, Space cooling system

Su-Jun Dong; Yun-Ze Li; Jin Wang; Jun Wang

2012-09-01T23:59:59.000Z

353

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

354

Aging of reflective roofs: soot deposition  

Science Conference Proceedings (OSTI)

Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

Berdahl, Paul; Akbari, Hashem; Rose, Leanna S.

2001-05-01T23:59:59.000Z

355

Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump  

DOE Green Energy (OSTI)

Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

1983-06-22T23:59:59.000Z

356

Fluidized bed heat exchanger with water cooled air distributor and dust hopper  

DOE Patents (OSTI)

A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

1981-11-24T23:59:59.000Z

357

Ingredients for energy conservation: water cooled luminaires and the heat pump  

SciTech Connect

The energy crisis has focused attention on all aspects of building energy usage--particularly heating and cooling energy. The possibility of utilizing water-cooled luminaires in an area of high relative humidity is explored. Heating is done by a water source heat pump utilizing the water from the luminaires as source for the heat pump. The energy usage of the heat pump system is then compared with the energy usage of other heat reclaim systems thereby demonstrating the energy conservation capabilities of the system.

Dowless, E.C.

1976-01-01T23:59:59.000Z

358

Accelerated Aging of Roofing Surfaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated aging of roofing surfaces Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http://HeatIsland.LBL.gov April 4, 2013 Development of Advanced Building Envelope Surface Materials & Integration of Artificial Soiling and Weathering in a Commercial Weatherometer New York Times, 30 July 2009 2010 2012 Challenge: speed the development of high performance building envelope materials that resist soiling, maintain high solar reflectance, and save energy 2 | Building Technologies Office eere.energy.gov

359

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect

This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

1991-01-07T23:59:59.000Z

360

System design package for solar heating and cooling system installed at Akron, Ohio  

DOE Green Energy (OSTI)

This package contains information used to evaluate the design of Solaron's solar heating, cooling, and domestic hot water system. A conventional heat pump provides summer cooling and back-up heating (when solar energy is not available). Included in the package are such items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A Solaron solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

Not Available

1979-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

International Energy Agency Solar Heating and Cooling Programme. 1984 annual report  

Science Conference Proceedings (OSTI)

Progress is reported in the following areas: coordination of research and development on solar heating and cooling; performance testing of solar collectors; performance of solar heating, cooling, and hot water systems using evacuated collectors; central solar heating plants with seasonal storage; passive and hybrid solar low energy buildings; and solar radiation and pyranometry studies. Planning was also initiated for a proposed materials research and testing task. (LEW)

Blum, S.B. (ed.)

1985-01-01T23:59:59.000Z

362

A novel technique for the production of cool colored concrete tile and  

NLE Websites -- All DOE Office Websites (Extended Search)

A novel technique for the production of cool colored concrete tile and A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products Title A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., Hashem Akbari, Paul Berdahl, Kurt Wood, Wayne Skilton, and Jerry Petersheim Journal Solar Energy Materials and Solar Cells Volume 94 Start Page 946 Issue 6 Pagination 946-954 Date Published 06/2010 Keywords asphalt shingle, concrete tile, Cool colored roof, Cool Colored Roofs, cool roofs, Heat Island, Polyvinylidene fluoride, Solar reflectance, surface roughness Abstract The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a "cool" color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray.

363

Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization  

Science Conference Proceedings (OSTI)

The aim of this work is to optimize the layout of the heating/cooling channels for rapid heat cycle molding with hot medium heating and coolant cooling by using response surface methodology and optimization technique. By means of a Box-Behnken experiment ... Keywords: Injection molding, Particle swarm optimization (PSO), Rapid heat cycle molding (RHCM), Response surface methodology (RSM), Steam heating

Guilong Wang; Guoqun Zhao; Huiping Li; Yanjin Guan

2011-06-01T23:59:59.000Z

364

Energy Department Invests to Save on Heating, Cooling, and Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center (750,000 DOE investment): This project will help demonstrate a rotating heat exchanger technology for residential HVAC systems. The heat pump will improve HVAC...

365

Energy Department Invests to Save on Heating, Cooling and Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center (750,000 DOE investment): This project will help demonstrate a rotating heat exchanger technology for residential HVAC systems. The heat pump will improve HVAC...

366

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

367

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network (OSTI)

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

368

Solar energy collector and associated methods adapted for use with overlapped roof shingles on the roof of a building  

Science Conference Proceedings (OSTI)

A method and apparatus are disclosed for collecting solar energy adapted for use with overlapped roof shingles on the roof or side of a building comprising thin flexible metal plates interposed between the overlapped shingles in heat transfer relation therewith such that heat absorbed by the shingles is transferred to the metal plates. The plates extend through the roof via slots provided therein and are affixed in heat transfer relation with pipes containing a fluid.

Nevins, R.L.

1980-04-15T23:59:59.000Z

369

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2011-02-07T23:59:59.000Z

370

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40 percent of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, EIA has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. In AEO2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

Information Center

2008-09-24T23:59:59.000Z

371

Problems in suppressing cooling flows in clusters of galaxies by global heat conduction  

E-Print Network (OSTI)

I use a simple analytical model to show that simple heat conduction models cannot significantly suppress cluster cooling flows. I build a static medium where heat conduction globally balances radiative cooling, and then perturb it. I show that a perturbation extending over a large fraction of the cooling flow region will grow to the non-linear regime within a Hubble time. Such perturbations are reasonable in clusters which frequently experience mergers and/or AGN activity. This result strengthens previous findings which show that a steady solution does not exist for a constant heat conduction coefficient.

Noam Soker

2003-02-19T23:59:59.000Z

372

Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor  

Science Conference Proceedings (OSTI)

A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

2006-07-01T23:59:59.000Z

373

Passive solar roof ice melter  

Science Conference Proceedings (OSTI)

An elongated passive solar roof ice melter is placed on top of accumulated ice and snow including an ice dam along the lower edge of a roof of a heated building and is held against longitudinal movement with respect to itself. The melter includes a bottom wall having an upper surface highly absorbent to radiant solar energy; a first window situated at right angles with respect to the bottom wall, and a reflecting wall connecting the opposite side edges of the bottom wall and the first window. The reflecting wall has a surface facing the bottom wall and the window which is highly reflective to radiant solar energy. Radiant solar energy passes through the first window and either strikes the highly absorbent upper surface of the bottom wall or first strikes the reflecting wall to be reflected down to the upper surface of the bottom wall. The heat generated thereby melts through the ice below the bottom wall causing the ice dam to be removed between the bottom wall and the top of the roof and immediately adjacent to the ice melter along the roof. Water dammed up by the ice dam can then flow down through this break in the dam and drain out harmlessly onto the ground. This prevents dammed water from seeping back under the shingles and into the house to damage the interior of the house.

Deutz, R.T.

1981-09-29T23:59:59.000Z

374

Heating Up While Staying Cool? | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating Up While Staying Cool? Heating Up While Staying Cool? Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.30.13 Heating Up While Staying Cool? Exotic effects at the nanoscale could help shape the future of electronics. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo An image of a remote Joule heating. Image courtesy of John Cumings Artist's rendering of remote Joule heating. Silver blocks are palladium plates. Carbon nanotube is shown in dark blue. If you had to summarize the biggest challenge confronting the field of electronics in a single word today, you might well say, "heat." With the

375

Cool-down and frozen start-up behavior of a grooved water heat pipe  

SciTech Connect

A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was investigated under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

Jang, J.H.

1990-12-01T23:59:59.000Z

376

Cooling-load implications for residential passive-solar-heating systems  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

377

Global Cool Cities Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

378

Interaction of lighting, heating, and cooling systems in buildings  

SciTech Connect

The interaction of building lighting and HVAC systems, and the effects on cooling load and lighting system performance, are being evaluated using a full-scale test facility at the National Institute of Standards and Technology. The results from a number of test configurations are described, including lighting system efficiency and cooling load due to lighting. The effect of lighting and HVAC system design and operation on performance is evaluated. Design considerations are discussed.

Treado, S.J.; Bean, J.W.

1992-03-01T23:59:59.000Z

379

The estimation of base temperature for heating and cooling degree days for Korea  

Science Conference Proceedings (OSTI)

In Korea, heating degree days (HDD) and cooling degree days (CDD) have been widely used as climatic indicators for the assessment of the impact of climate change, but arbitrary or customary base temperatures have been used for calculation of HDD ...

Kyoungmi Lee; Hee-Jeong Baek; ChunHo Cho

380

Heat transfer and film-cooling for the endwall of a first stage turbine vane  

E-Print Network (OSTI)

the turbine. Turbine inlet conditions in a gas turbine engine gen- erally consist of temperature and velocityHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

Thole, Karen A.

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Most homes have central thermostats on heating and cooling ...  

U.S. Energy Information Administration (EIA)

... solar, wind , geothermal ... Quarterly Coal Report Monthly Energy Review Residential Energy ... main heating equipment is a portable heater, ...

382

Prototype solar heating and cooling systems, including potable hot water. Quarterly report  

DOE Green Energy (OSTI)

The progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. Included is a comparison of the proposed Solaron-Heat Pump and Solaron-Desiccant Heating and Cooling Systems, Installation Drawings, data on the Akron House at Akron, Ohio, and other program activities from July 1, 1977 through November 9, 1977.

Not Available

1977-12-01T23:59:59.000Z

383

Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign  

DOE Green Energy (OSTI)

This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

Not Available

1978-12-01T23:59:59.000Z

384

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network (OSTI)

quad. The estimates for total energy usage are within 12% ofthe total heating and cooling energy usages represented bythe total heating and cooling energy usages represented by

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

385

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

DOE Green Energy (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

Not Available

1981-03-01T23:59:59.000Z

386

Geothermal district heating and cooling system for the city of Calistoga, California  

DOE Green Energy (OSTI)

Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

Frederick, J.

1982-01-01T23:59:59.000Z

387

Title and author(s) REMI/HEAT COOL A COMPUTER PROGRAMME FOR CALCULATION  

E-Print Network (OSTI)

.2. The Temperature Distribution in the Fuel 8 2.3. The Two-Phase Flow in the Primary System ·· lo 2.1 *. The Steam core coolant, i.e. spray cooling. REMI/HEAT COOL is based on separate description of the steam plays an essential role in the overall heat transfer. Steam flow through a fuel element is calculated

388

Cooling Strings of Superconducting Devices below 2 K the Helium II Bayonet Heat Exchanger  

E-Print Network (OSTI)

High-energy particle accelerators and colliders contain long strings of superconducting devices - acceleration RF cavities and magnets - operating at high field, which may require cooling in helium II below 2 K. In order to maintain adequate operating conditions, the applied or generated heat loads must be extracted and transported with minimum temperature difference. Conventional cooling schemes based on conductive or convective heat transport in pressurized helium II very soon reach their intrinsic limits of thermal impedance over extended lengths. We present the concept of helium II bayonet heat exchanger, which has been developed at CERN for the magnet cooling scheme of the Large Hadron Collider (LHC), and describe its specific advantages as a slim, quasi-isothermal heat sink. Experimental results obtained on several test set-ups, and a prototype magnet string have permitted to validate its performance and sizing rules, for transporting linear heat loads in the W.m-1 range over distances of several tens o...

Lebrun, P; Tavian, L; Van Weelderen, R

1998-01-01T23:59:59.000Z

389

STABLE HEATING OF CLUSTER COOLING FLOWS BY COSMIC-RAY STREAMING  

SciTech Connect

We study heating of cool cores in galaxy clusters by cosmic-ray (CR) streaming using numerical simulations. In this model, CRs are injected by the central active galactic nucleus (AGN) and move outward with Alfven waves. The waves are excited by the streaming itself and become nonlinear. If magnetic fields are large enough, CRs can prevail in and heat the entire core because of a large Alfven velocity. We find that the CR streaming can stably heat both high- and low-temperature clusters for a long time without the assistance of thermal conduction, and it can prevent the development of massive cooling flows. If there is even a minor contribution from thermal conduction, the heating can be stabilized further. We discuss the reason for the stability and indicate that the CR pressure is insensitive to changes in the intracluster medium (ICM) and that the density dependence of the heating term is similar to that of radiative cooling.

Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Ohira, Yutaka, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp [Theory Centre, Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

2011-09-10T23:59:59.000Z

390

Soior-Earlgy, Vol. 19, pp 195-199. Pe~gsmonPress 1977 Plinted m Cleat Biitain DIMENSIONINC 06; THE SOLAR HEATING SYSTEM  

E-Print Network (OSTI)

components under the roof surface. The heat can increase the building's air conditioning load, resultingSolar Reflectance Index (SRI) Calculation Worksheet SRI-WS Computer Generated Form Date: Climate Zone: Building Type: Residential Nonresidential Project Name: Project Address: Roofing Products (Cool

Mosegaard, Klaus

391

Use of an open-cycle absorption system for heating and cooling  

DOE Green Energy (OSTI)

Solar cooling for commercial applications using open-cycle absorption refrigeration systems has been investigated and found to be feasible. If an open-cycle absorption system can be operated as a chemical heat pump for winter heating operation, the system would offer year-round operation that could make the system economically viable for many regions of the US. An analysis of heating operation for the open-cycle system is presented using a computer program that simulates heat and mass transfer processes for any environmental condition. The open-cycle absorption refrigeration system can be operated as a chemical heat pump. Simulations for winter heating operation were run for five US cities, with solar COP's in the range of .06 to .16. At these levels, the OCAR system can provide full heating and cooling operation for office buildings in many southern US cities.

Schlepp, D. R.; Collier, R. K.

1981-03-01T23:59:59.000Z

392

Heating and cooling of a two-dimensional electron gas by terahertz radiation  

Science Conference Proceedings (OSTI)

The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.

Budkin, G. V.; Tarasenko, S. A., E-mail: tarasenko@coherent.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

2011-04-15T23:59:59.000Z

393

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

394

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

395

How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting about 4°F with no reduction in comfort. Ceiling fans don't just cool in the summer; you can also reverse the direction in the winter to provide an updraft and force warm air down into the room. How has a ceiling fan affected the way you heat and cool your home? Each Thursday, you have the chance to share your thoughts on a question

396

Method and system for simulating heat and mass transfer in cooling towers  

DOE Patents (OSTI)

The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

1997-01-01T23:59:59.000Z

397

Building Technologies Office: Space Heating and Cooling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

(HVAC) and refrigeration. DOE is conducting research into integration of optimized heat exchanger designs into new products and space conditioning systems. DOE projects...

398

Influence of Heat Source Cooling Limitation on ORC System Layout ...  

Science Conference Proceedings (OSTI)

... compensates for the temperature loss induced by a second heat exchanger. ... Abart CDS - a New Compact Multi-pollutant Pot Gas and Alumina Handling...

399

Crosslinked crystalline polymer and methods for cooling and heating  

SciTech Connect

The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

Salyer, Ival O. (Dayton, OH); Botham, Ruth A. (Dayton, OH); Ball, III, George L. (West Carrollton, OH)

1980-01-01T23:59:59.000Z

400

Contact-cooled U-monochromators for high heat load x-ray beamlines  

SciTech Connect

This paper describes the design, expected performance, and preliminary test results of a contact-cooled monochromator for use on high heat load x-ray beamlines. The monochromator has a cross section in the shape of the letter U. This monochromator should be suitable for handing heat fluxes up to 5 W/square millimeter. As such, for the present application, it is compatible with the best internally cooled crystal monochromators. There are three key features in the design of this monochromator. First, it is contact cooled, thereby eliminating fabrication of cooling channels, bonding, and undesirable strains in the monochromator due to coolant-manifold-to-crystal-interface. Second, by illuminating the entire length of the crystal and extracting the central part of the reflected beam, sharp slope changes in the beam profile and thus slope errors are avoided. Last, by appropriate cooling of the crystal, tangential slope error can be substantially reduced.

Khounsary, A.; Yun, W.; Trakhtenberg, E.; Xu, S.; Assoufid, L.; Lee, W.K.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar heating and cooling results for the Los Alamos study center  

DOE Green Energy (OSTI)

The solar energy system for the Study Center consists of an 8000 ft/sup 2/ array of selectively coated, single-glazed collectors, a 5000 gallon pressurized tank for hot storage in the cooling mode, and a 10,000 gallon tank, which is used for hot storage in the heating mode and cold storage in the cooling mode. Either of two chillers may be used in series with the cold storage tank, an 85 ton absorption unit, or a 77 ton Rankine cycle unit. Night evaporative cooling is also used to cool the 10,000 gallon tank. A heat recovery unit is used to preheat fresh air in the winter, and, by means of spraying the exhaust air, to pre-cool fresh air in the summer. Daily, monthly, and seasonal energy summaries are presented for the system. Performance data for the two chillers include tabulation of thermal and system coefficients of performance.

Hedstrom, J.C.; Murray, H.S.; Balcomb, J.D.

1978-01-01T23:59:59.000Z

402

Experimental study on corrugated cross-flow air-cooled plate heat exchangers  

SciTech Connect

Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

2010-11-15T23:59:59.000Z

403

Heat Transfer from Rotating Blade Platforms with and without Film Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer from Rotating Blade Transfer from Rotating Blade Platforms with and without Film Cooling J.C. Han and M.T. Schobeiri SCIES Project 03-01-SR113 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Texas A&M University Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded 07/01/2003 (36 Month Duration) $461,024 Total Contract Value ($361,024 DOE) Turbine Heat Transfer Laboratory Texas A&M University SR 113 - 10-2005 - JCHan Gas Turbine Needs Need Detailed Heat Transfer Data on Rotating Blade Platforms Improve Current Rotor Blade Cooling Schemes Provide Options for New Rotor Blade Cooling Designs Need Accurate and Efficient CFD Codes to Improve Flow and Heat Transfer Predictions and Guide Rotor Blade Cooling Designs Improved Turbine Power Efficiency by Increasing Turbine

404

Application Research of Evaporative Cooling in the Waste Heat Recovery  

Science Conference Proceedings (OSTI)

Evaporative condenser is one kind of high-efficient and energy-water saving heat exchange equipment, which has been widely applied in many engineering fields. The theory and product characteristic of evaporative condenser is introduced in this paper. ... Keywords: Evaporative condenser, Waste heat recovery, Energy saving, Water saving

Zhijiang Wu; Nan Wang; Gongsheng Zhu

2010-12-01T23:59:59.000Z

405

Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows  

DOE Patents (OSTI)

The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

2001-01-01T23:59:59.000Z

406

Prototype solar heating and cooling systems including potable hot water. Quarterly reports, November 1976--June 1977  

DOE Green Energy (OSTI)

This report covers the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Not Available

1978-12-01T23:59:59.000Z

407

Prototype solar heating and cooling systems including potable hot water. Quarterly reports  

DOE Green Energy (OSTI)

The activities conducted by Solaron Corporation from November 1977 through September 1978 are summarized and the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is covered. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Williamson, R.

1978-10-01T23:59:59.000Z

408

Roofing Moisture Tolerance  

NLE Websites -- All DOE Office Websites (Extended Search)

Moisture Control in Low-Slope Roofing: Moisture Control in Low-Slope Roofing: A New Design Requirement A.O. Desjarlais and J.E. Christian, Oak Ridge National Laboratory N. A. Byars, University of North Carolina Charlotte This calculator performs the calculations described in Moisture Control in Low-Slope Roofing: A New Design Requirement. This calculator allows the roofing practitioner to determine if a roofing system design requires a vapor retarder or if the system can be modified to enhance its tolerance for small leaks. To use the calculator, simply supply the following information and click on the "Check Roof" button at the bottom of the form. Insulation Type and Thickness (in inches): Fiberboard Polyisocyanurate 0.5 1.0 1.5 2.0 2.5 3.0 Layer 1 None Fiberboard Polyisocyanurate 0.5 1.0 1.5 2.0 2.5 3.0 Layer 2

409

Solar heating and cooling in the Los Alamos National Security and Resources Study Center  

DOE Green Energy (OSTI)

A description is given of the solar energy system for the National Security and Resources Study Center, a conference center and library at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico. The solar heating and cooling system makes use of selectively coated collectors, hot storage, cold storage, night evaporative cold storage, heat recovery, a lithium bromide chiller, and a Rankine-cycle chiller. Data are given for the performance of the system for the years 1978 and 1979. The solar energy system has provided 76% of the energy required to heat the building and 97% of the thermal energy required to cool the building.

Hedstrom, J.C.; Murray, H.S.

1980-12-01T23:59:59.000Z

410

Catastrophic cooling and cessation of heating in the solar corona  

E-Print Network (OSTI)

Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the l...

Peter, H; Kamio, S

2011-01-01T23:59:59.000Z

411

Solar heating and cooling demonstration project at the Florida Solar Energy Center  

DOE Green Energy (OSTI)

The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

Hankins, J.D.

1980-02-01T23:59:59.000Z

412

Performance Assessment of 239 Series Sub-cooling Heat Exchangers for the Large Hadron Collider  

E-Print Network (OSTI)

Helium sub-cooling heat exchangers of the counter-flow type are used to minimize the vapor fraction produced in the final expansion of the 1.9 K distributed cooling loops used for cooling the superconducting magnets of the Large Hadron Collider (LHC). These components are of compact design, featuring low-pressure drop and handling very low pressure vapor at low temperature. Following a qualification phase of prototypes, a contract has been placed in European industry for the supply of 239 heat exchanger units. Different levels of extracted heat load require three different variants of heat exchangers. This paper will describe the manufacturing phase with emphasis on the main difficulties encountered to keep the production quality after a brief recall of the prototype phase. Finally, the acceptance tests performed at room temperature and at the nominal cryogenic condition at the factory and at CEA-Grenoble will be presented.

Riddone, G; Roussel, P; Moracchioli, R; Tavian, L

2006-01-01T23:59:59.000Z

413

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

414

Composite synthetic roofing structure with integral solar collector  

Science Conference Proceedings (OSTI)

A form-molded synthetic foam roofing section or structure is described, having a solar-collecting insert or panel incorporated therein with a relatively broad undersurface and an exposed surface configured to resemble interlocked and overlapping roofing shingles which are united to support a surface such as wood, metal, etc. During the molding process. The roofing structure may be affixed by any conventional means, such as nails or adhesives, to roof boards, rafters or over old existing roof structures with adjacent roofing sections interconnected by appropriate inlets and outlets for the solar panel insert. Solar heat-collecting fluid may be circulated through the solar panel inserts in a conventional manner. Connecting tubes are provided for connecting the solar panel inserts in adjacent roofing sections and terminal connectors are compatible with all circulating systems.

Gould, W.M.

1981-06-16T23:59:59.000Z

415

Roof Photovoltaic Test Facility  

Science Conference Proceedings (OSTI)

... In addition measurements of diffuse and beam solar irradiance are made by an adjacent meteorological station. The nine PV roofing products ...

2011-11-15T23:59:59.000Z

416

Remote Measurement of Heat Flux from Power Plant Cooling Lakes  

Science Conference Proceedings (OSTI)

Laboratory experiments have demonstrated a correlation between the rate of heat loss q? from an experimental fluid to the air above and the standard deviation ? of the thermal variability in images of the fluid surface. These experimental results ...

Alfred J. Garrett; Robert J. Kurzeja; Eliel Villa-Aleman; James S. Bollinger; Malcolm M. Pendergast

2013-06-01T23:59:59.000Z

417

Quasilinear theory of ion-cyclotron resonance heating of plasmas and associated longitudinal cooling  

SciTech Connect

It is shown from quasilinear theory that an initially isotropic magnetized plasma will be forced into an anisotropic state in ion-cyclotron resonance heating. Strong heating of perpendicular ion temperature and strong cooling of longitudinal temperature should occur simultaneously. The maximum temperature ratio predicted by quasilinear theory is in exact agreement with that predicted from basic thermodynamic arguments by Busnardo--Neto, Dawson, Kamimura and Lin. Heating by fast hydromagnetic wave is also examined. (auth)

Arunasalam, V.

1976-02-01T23:59:59.000Z

418

Design and technology of heat pipes for cooling and heat exchange  

SciTech Connect

This new book presents a comprehensive account of heat pipe design, technology, and operation. It is based on insights and techniques developed by the author during more than twenty years of investigating high-performance heat pipe systems. The book provides information on a unique device with the capability to transport heat isothermally at high rates with no external power input. Emphasis is on high-performance liquid metal heat pipes, although nonliquid metal heat pipes are treated, as well. The first three chapters deal with the nonmathematical background for understanding heat pipe operation and heat transport capability. Remaining chapters detail heat pipe characteristics and design methods. Of special interest are simplified equations for obtaining heat pipe heat transport limits, heat pipe heat exchangers, heat pipe transient behavior, and inverted (nonwetting) heat pipes. Operational boundaries on heat pipe temperature and heat transport rate are described, and step-by-step procedures are given for involved calculations.

Silverstein, C.C.

1992-01-01T23:59:59.000Z

419

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

420

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network (OSTI)

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

422

Solar heating and cooling systems design and development. Quarterly report, 9 October 1976-9 January 1977  

DOE Green Energy (OSTI)

Honeywell is to develop twelve prototype solar heating/cooling systems. Six of these are to be heating and six are to be heating/cooling systems, two each for single family, multi-family, and commercial applications. Schedules and technical discussions are given, along with illustrations on the progress made from October 9, 1976 through January 9, 1977.

Not Available

1977-01-01T23:59:59.000Z

423

Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems  

SciTech Connect

Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. (Los Alamos National Lab., NM (United States)); Silverstein, C.C. (CCS Associates, Bethel Park, PA (United States))

1992-01-01T23:59:59.000Z

424

Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems  

SciTech Connect

Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

1992-06-01T23:59:59.000Z

425

Design, construction, and testing of a residential solar heating and cooling system  

DOE Green Energy (OSTI)

The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

Ward, D.S.; Loef, G.O.G.

1976-06-01T23:59:59.000Z

426

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

427

How and why side cooling of high-heat-load optics works.  

SciTech Connect

The temperature gradients in a side-cooled mirror would create a thermal bending moment along the mirror length. For a slender side-cooled mirror with longitudinally uniform incident beam, the tangential slope error is primarily due to the bowing deformation caused by this thermal bending moment. The thermal bending moment depends on the temperature distribution, which is a function of the mirror geometry, heat load, and cooling design. Optimal design of a side-cooled mirror can achieve a 'favorable' temperature profile to make the thermal bending moment, with respect to the substrate neutral plane, approach zero, so that the bowing deformation of the mirror is minimized. To understand the deformation of a side-cooled mirror and achieve an optimal design, a theoretical formulation is developed.

Li, Y.; Khounsary, A.; Nair, S.; Experimental Facilities Division (APS); IIT

2004-01-01T23:59:59.000Z

428

GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs  

DOE Green Energy (OSTI)

GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

Fassbender, L.L.; Bloomster, C.H.

1981-06-01T23:59:59.000Z

429

A Review of Methods for the Manufacture of Residential RoofingMaterials  

DOE Green Energy (OSTI)

Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

2003-06-01T23:59:59.000Z

430

Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer  

E-Print Network (OSTI)

Modern gas turbine engines require higher turbine-entry gas temperature to improve their thermal efficiency and thereby their performance. A major accompanying concern is the heat-up of the turbine components which are already subject to high thermal and mechanical stresses. This heat-up can be reduced by: (i) applying thermal barrier coating (TBC) on the surface, and (ii) providing coolant to the surface by injecting secondary air discharged from the compressor. However, as the bleeding off of compressor discharge air exacts a penalty on engine performance, the cooling functions must be accomplished with the smallest possible secondary air injection. This necessitates a detailed and systematic study of the various flow and geometrical parameters that may have a bearing on the cooling pattern. In the present study, experiments were performed in three regions of a non-rotating gas turbine blade cascade: blade platform, blade span, and blade tip. The blade platform and blade span studies were carried out on a high pressure turbine rotor blade cascade in medium flow conditions. Film-cooling effectiveness or degree of cooling was assessed in terms of cooling hole geometry, blowing ratio, freestream turbulence, coolant-to-mainstream density ratio, purge flow rate, upstream vortex for blade platform cooling and blowing ratio, and upstream vortex for blade span cooling. The blade tip study was performed in a blow-down flow loop in a transonic flow environment. The degree of cooling was assessed in terms of blowing ratio and tip clearance. Limited heat transfer coefficient measurements were also carried out. Mainstream pressure loss was also measured for blade platform and blade tip film-cooling with the help of pitot-static probes. The pressure sensitive paint (PSP) and temperature sensitive paint (TSP) techniques were used for measuring film-cooling effectiveness whereas for heat transfer coefficient measurement, temperature sensitive paint (TSP) technique was employed. Results indicated that the blade platform cooling requires a combination of upstream purge flow and downstream discrete film-cooling holes to cool the entire platform. The shaped cooling holes provided wider film coverage and higher film-cooling effectiveness than the cylindrical holes while also creating lesser mainstream pressure losses. Higher coolant-to-mainstream density ratio resulted in higher effectiveness levels from the cooling holes. On the blade span, at any given blowing ratio, the suction side showed better coolant coverage than the pressure side even though the former had two fewer rows of holes. Film-cooling effectiveness increased with blowing ratio on both sides of the blade. Whereas the pressure side effectiveness continued to increase with blowing ratio, the increase in suction side effectiveness slowed down at higher blowing ratios (M=0.9 and 1.2). Upstream wake had a detrimental effect on film coverage. 0% and 25% wake phase positions significantly decreased film-cooling effectiveness magnitude. Comparison between the compound shaped hole and the compound cylindrical hole design showed higher effectiveness values for shaped holes on the suction side. The cylindrical holes performed marginally better in the curved portion of the pressure side. Finally, the concept tip proved to be better than the baseline tip in terms of reducing mainstream flow leakage and mainstream pressure loss. The film-cooling effectiveness on the concept blade increased with increasing blowing ratio and tip gap. However, the film-coverage on the leading tip portion was almost negligible.

Narzary, Diganta P.

2009-08-01T23:59:59.000Z

431

Solar heating and cooling of mobile homes, Phase II. Final report  

DOE Green Energy (OSTI)

The specific objectives of the Phase II program were: (1) through system testing, confirm the feasibility of a solar heated and cooled mobile home; (2) update system performance analysis and provide solar heating and cooling computer model verification; (3) evaluate the performance of both an absorption and a Rankine air conditioning system; (4) perform a consumer demand analysis through field survey to ascertain the acceptance of solar energy into the mobile home market; and (5) while at field locations to conduct the consumer demand analysis, gather test data from various U.S. climatic zones. Results are presented and discussed. (WHK)

Jacobsen, A.A.

1976-12-01T23:59:59.000Z

432

Modeling Free Convection Flow of Liquid Hydrogen within a Cylindrical Heat Exchanger Cooled to 14 K  

DOE Green Energy (OSTI)

A liquid hydrogen in a absorber for muon cooling requires that up to 300 W be removed from 20 liters of liquid hydrogen. The wall of the container is a heat exchanger between the hydrogen and 14 K helium gas in channels within the wall. The warm liquid hydrogen is circulated down the cylindrical walls of the absorber by free convection. The flow of the hydrogen is studied using FEA methods for two cases and the heat transfer coefficient to the wall is calculated. The first case is when the wall is bare. The second case is when there is a duct some distance inside the cooled wall.

Green, Michael A.; Oxford U.; Yang, S.W.; Green, M.A.; Lau, W.

2004-05-08T23:59:59.000Z

433

Central unresolved issues in thermal energy storage for building heating and cooling  

DOE Green Energy (OSTI)

This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

Swet, C.J.; Baylin, F.

1980-07-01T23:59:59.000Z

434

Are X-ray Clusters Cooled by Heat Conduction to the Surrounding Intergalactic Medium?  

E-Print Network (OSTI)

We show that X-ray clusters would have cooled substantially over a Hubble time by transport of heat from their hot interior to the their envelope, if the heat conductivity had not been heavily suppressed relative to the Spitzer value due to magnetic fields. The suppression is required in order for the observed abundance of hot X-ray clusters to be consistent with predictions from popular cosmological models. If a similar or stronger suppression factor applies to cluster cores, then thermal conduction can not be the mechanism that prevents cooling flows there.

Abraham Loeb

2002-03-26T23:59:59.000Z

435

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

436

Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System .  

E-Print Network (OSTI)

??Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of (more)

Abaalkhail, Rana

2012-01-01T23:59:59.000Z

437

Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report  

DOE Green Energy (OSTI)

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

Not Available

1979-06-01T23:59:59.000Z

438

Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads  

E-Print Network (OSTI)

The temperature differential of chilled water is an important factor used for evaluating the performance of a chilled water system. A low delta-T may increase the pumping energy consumption and increase the chiller energy consumption. The system studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer coefficients at different water and air flow rates are calculated. The coefficients are used to analyze the heat transfer performance of the cooling coils at conditions ranging from very low loads to design conditions. The effectiveness-number of transfer units (NTU) method is utilized to analyze the cooling coil performance under different flow conditions, which also helps to obtain the cooling coil chilled water temperature differential under full load and partial load conditions. When the water flow rate drops to 1ft/s, laminar flow occurs; this further decreases the heat transfer rate on the water side. However, the cooling coil effectiveness increases with the drop of water flow rate, which compensates for the influence of the heat transfer performance under laminar flow conditions. Consequently, the delta-T in the cooling coil decreases in the transitional flow regime but increases in the laminar flow regime. Results of this thesis show that the laminar flow for the chilled water at low flow rate is not the main cause of the low delta-T syndrome in the chilled water system. Possible causes for the piping strategy of the low delta-T syndrome existing in the chilled water system under low flow conditions are studied in this thesis: (1) use of two way control valves; and (2) improper tertiary pump piping strategy.

Li, Nanxi 1986-

2012-12-01T23:59:59.000Z

439

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network (OSTI)

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates annual dynamic load of a real project to calculate the first investments, annual operation cost and LCC (life cycle cost) of the four schemes, which are electric chillers, electric chillers with ice-storage system, absorption refrigerating machines using excess heat from power plant and absorption refrigerating machines using excess heat from power plant along with ice-storage system. On the basis of the results, the paper analyzes the prospect of the absorption refrigeration using municipal excess heat, as well as the reasonable heat price, which provides a theoretical basis for municipal heating and cooling co-generation development.

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

440

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forsberg, Charles W. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating cooling roof" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vegetable oils: liquid coolants for solar heating and cooling applications  

DOE Green Energy (OSTI)

It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

Ingley, H A

1980-02-01T23:59:59.000Z

442

Heat Island Research at the University of Athens  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Island Research at the University of Athens Heat Island Research at the University of Athens Speaker(s): Mattheos Santamouris Date: June 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Hashem Akbari Athens, as many other metropolitan areas, is experiencing a severe summer heat island. We will present measurements of urban canyon heat islands in Athens and discuss the effects on building energy use, urban environment, and air quality. Appropriate heat-island mitigation technologies include use of cool materials for urban surfaces (roofs and pavements) and shade trees. Advances in development of cool roofing and paving materials including traditional cool surfaces (white and light-colored materials), near-infrared cool colored materials, and experimental highly reflecting thermochromic coatings will be discussed. Finally, we will discuss the