Sample records for heating cooling appliances

  1. Waste water heat recovery appliance. Final report

    SciTech Connect (OSTI)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21T23:59:59.000Z

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  2. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  3. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  4. Cooling by heating

    E-Print Network [OSTI]

    A. Mari; J. Eisert

    2011-04-01T23:59:59.000Z

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  5. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  6. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Office of Environmental Management (EM)

    HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies This thermoelastic system provides a promising...

  7. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  8. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  9. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  10. Towards Occupancy-Driven Heating and Cooling

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Burke Parabola Architects Galen Staengl Staengl Engineering h HEATING, VENTILATION, AND cooling (HVAC required for heating, ventilation, and cooling (HVAC) by 20%­30% by tailoring the conditioning of buildingsTowards Occupancy-Driven Heating and Cooling Kamin Whitehouse, Juhi Ranjan, Jiakang Lu, Tamim

  11. Cooling Flows or Heating Flows?

    E-Print Network [OSTI]

    James Binney

    2003-10-08T23:59:59.000Z

    It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

  12. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  13. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  14. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  15. An analysis of electrothermodynamic heating and cooling

    E-Print Network [OSTI]

    Honea, Mark Stephen

    1998-01-01T23:59:59.000Z

    , albeit at the expense of the Joule heating within the conductor. This investigation explores the dynamic nature of thermoelectrically cooled/heated regions in effort to gain a greater understanding of the transient application of thermoelectricity...

  16. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  17. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  18. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems - Fact Sheet, 2011 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power...

  19. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    LBL buildings, with the solar collectors on the roof, theCBB 757-5496 Figure 3: Solar Collectors Mounted· on the RoofSolar Heating and Cooling Systems. The components include Collectors (

  20. Space Heating and Cooling Basics | Department of Energy

    Office of Environmental Management (EM)

    Homes & Buildings Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and...

  1. The Asymptotic Cooling of Heat-Bath Algorithmic Cooling

    E-Print Network [OSTI]

    Sadegh Raeisi; Michele Mosca

    2014-12-02T23:59:59.000Z

    The purity of quantum states is a key requirement for many quantum applications. Improving the purity is limited by fundamental laws of thermodynamics. Here we are probing the fundamental limits for a natural approach to this problem, namely heat-bath algorithmic cooling(HBAC). The existence of the cooling limit for HBAC techniques was proved by Schulman et al. in, the limit however remained unknown for the past decade. Here for the first time we find this limit. In the context of quantum thermodynamics, this corresponds to the maximum extractable work from the quantum system.

  2. Natural Refrigerant, Geothermal Heating & Cooling Solutions

    E-Print Network [OSTI]

    Natural Refrigerant, Geothermal Heating & Cooling Solutions Lalit Chordia, PhD, Marc Portnoff 150.thargeo.com Thar Geothermal, LLC © 2013 All Rights Reserved CO2MFORT ADVANTAGE Nature's Talk Outline · Introduction to Thar Geothermal · Carbon Dioxide (R744) the Environmentally Exceptional Refrigerant · Thar

  3. Right-Size Heating and Cooling Equipment

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment size for heating and cooling to improve comfort and reduce costs, maintenance, and energy use.

  4. Retrospective Evaluation of Appliance Price Trends

    SciTech Connect (OSTI)

    Dale, Larry; Antinori, Camille; McNeil, Michael; McMahon, James E.; Fujita, K. Sydny

    2008-07-20T23:59:59.000Z

    Real prices of major appliances (refrigerators, dishwashers, heating and cooling equipment) have been falling since the late 1970s despite increases in appliance efficiency and other quality variables. This paper demonstrates that historic increases in efficiency over time, including those resulting from minimum efficiency standards, incur smaller price increases than were expected by Department of Energy (DOE) forecasts made in conjunction with standards. This effect can be explained by technological innovation, which lowers the cost of efficiency, and by market changes contributing to lower markups and economies of scale in production of higher efficiency units. We reach four principal conclusions about appliance trends and retail price setting: 1. For the past several decades, the retail price of appliances has been steadily falling while efficiency has been increasing. 2. Past retail price predictions made by DOE analyses of efficiency standards, assuming constant prices over time, have tended to overestimate retail prices. 3. The average incremental price to increase appliance efficiency has declined over time. DOE technical support documents have typically overestimated this incremental price and retail prices. 4. Changes in retail markups and economies of scale in production of more efficient appliances may have contributed to declines in prices of efficient appliances.

  5. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    production and space cooling at the same time. An answer to a dual energy demand is the heat pump, sinceModelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating

  6. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  7. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  8. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Systems Featured on NBC Nightly News Geothermal Heating and Cooling Systems Featured on NBC Nightly News April 13, 2009 - 11:24am Addthis NBC Nightly News...

  9. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground...

  10. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Power in the Nation's Colleges and Universities - Census, Survey, and Lessons Learned, February 2002 Cooling, Heating and Power in the Nation's Colleges and...

  11. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  12. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  13. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  14. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    passive solar heating and cooling" Technology development issolar heating and cooling systems, J TABLE II-3 TechnologyTechnology development for passive solar heating and cooling

  15. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    and Hybrid Heating Cooling Systems Michael]. Holtz, WayneHYBRID HEATING AND COOLING SYSTEMS Michael J. Holtz Solarspace heating and cooling systems. It is based upon the mode

  16. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentFuel and Technology Choice in Home Heating and Cooling," LBLTHE MARKET FOR HOME HEATING AND COOLING EQUIPMENT* David

  17. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    passive and hybrid space heating systems. Space Cooling Aand hybrid solar heating and cooling systems. Experimentspassive, and hybrid systems for heating, cooling, and

  18. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

  19. Heating Cooling Flows with Weak Shock Waves

    E-Print Network [OSTI]

    W. G. Mathews; A. Faltenbacher; F. Brighenti

    2005-11-05T23:59:59.000Z

    The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.

  20. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Common Passive and Hybrid Heating Cooling Systems Michael].THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

  1. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31T23:59:59.000Z

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  2. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  3. Solar heating and cooling diode module

    DOE Patents [OSTI]

    Maloney, Timothy J. (Winchester, VA)

    1986-01-01T23:59:59.000Z

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  4. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  5. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  6. ITP Industrial Distributed Energy: Cooling, Heating, and Power...

    Broader source: Energy.gov (indexed) [DOE]

    United States Government or any agency thereof. Abstract Investigators analyzed the energy consumption and end-user economics of Cooling, Heating, and Power (CHP) systems in...

  7. Cooling, Heating, and Power for Industry: A Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades,...

  8. Heat-activated cooling devices: A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1994-02-01T23:59:59.000Z

    Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

  9. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Estimating the Market for Home Heating and Cooling EquipmentBIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLINGESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

  10. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01T23:59:59.000Z

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  11. Secretary Chu Announces More Stringent Appliance Standards for...

    Energy Savers [EERE]

    Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home...

  12. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

  13. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  14. Desiccant-based, heat actuated cooling assessment for DHC systems

    SciTech Connect (OSTI)

    DiBella, F.; Patch, K.; Becker, F.

    1989-10-01T23:59:59.000Z

    The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant-based, heat actuated cooling system in a District Heating System. The results of this study will encourage the deployment of cooler transport temperatures in District Heating Systems. The proposed concept includes a liquid or solid desiccant-based air cooling and drying system that can be integrated with an existing HVAC system. 3 refs., 6 figs.

  15. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  16. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and Technology Choice in Home Heating and Cooling D.J. Wood,AND TECHNOLOGY CHOICE IN HOME HEATING AND COOLING* David J.nology choices in home heating and cooling is presented. We

  17. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Passive and Hybrid Heating Cooling Systems Michael]. Holtz,PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS Michael J.of passive and hybrid space heating and cooling systems are

  18. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  19. Cooling by heating in the quantum optics domain

    E-Print Network [OSTI]

    D. Z. Rossatto; A. R. de Almeida; T. Werlang; C. J. Villas-Boas; N. G. de Almeida

    2012-09-30T23:59:59.000Z

    A class of Hamiltonians that are experimentally feasible in several contexts within quantum optics and lead to so-called cooling by heating for fermionic as well as for bosonic systems has been analyzed numerically. We have found a large range of parameters for which cooling by heating can be observed either for the fermionic system alone or for the combined fermionic and bosonic systems. Analyzing the experimental requirements, we conclude that cooling by heating is achievable with present-day technology, especially in the context of trapped-ion and cavity QED, thus contributing to the understanding of this interesting and counterintuitive effect.

  20. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    indus- trial process heat, and solar. heating and coolingSolar Energy for Agricultural and Industrial Process Heat (and heat transfer processes which are appropriate to passive solar

  1. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models: aggregated by SMSA market share central cooling all gas space heat all oilmodels: aggregated by regions market share central cooling all gas space heat all oil

  2. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  3. BSU GHP District Heating and Cooling System (Phase I)

    Broader source: Energy.gov [DOE]

    Project objectives: Create a campus geothermal heating and cooling system; Validate the cost savings associated with a geothermal system; Reduce emissions of CO2, CO, PM, SO2, NOx.

  4. THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING...

    Office of Scientific and Technical Information (OSTI)

    (and-eventually, spray ponds) that are proposed to be used as ultimate heat sinks in nuclear power plant emergency core cooling systems. The need is derived from the concern...

  5. Special Property Assessment for Renewable Heating and Cooling Systems

    Broader source: Energy.gov [DOE]

    Title 8 of Maryland’s property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

  6. Policymakers' Guidebook for Geothermal Heating and Cooling (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Heating and Cooling with information directing people to the Web site for more in-depth information.

  7. Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

    SciTech Connect (OSTI)

    WRIGHT,STEVEN A.; HOUTS,MICHAEL

    2000-11-22T23:59:59.000Z

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

  8. Covered Product Category: Light Commercial Heating and Cooling

    Broader source: Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STAR®–qualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  9. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  10. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling 

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  11. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  12. The heating of the cooling flow (The feedback effervescent heating model)

    E-Print Network [OSTI]

    Nasser Mohamed Ahmed

    2007-10-13T23:59:59.000Z

    The standard cooling flow model has predicted a large amount of cool gas in the clusters of galaxies. The failure of the Chandra and XXM-Newton telescopes to detect cooling gas (below 1-2 keV) in clusters of galaxies has suggested that some heating process must work to suppress the cooling. The most likely heating source is the heating by AGNs. There are many heating mechanisms, but we will adopt the effervescent heating model which is a result of the interaction of the bubbles inflated by AGN with the intra-cluster medium(ICM). Using the FLASH code, we have carried out time dependent simulations to investigate the effect of the heating on the suppression of the cooling in cooling flow clusters. We have found that the effervescent heating model can not balance the radiative cooling and it is an artificial model. Furthermore, the effervescent heating is a function of the ICM pressure gradient but the cooling is proportional to the gas density square and square root of the gas temperature.

  13. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  14. Development and Field Testing of a Hybrid Water Heating and Dehumidification Appliance

    E-Print Network [OSTI]

    Aaron K. Ball; Chip Ferguson; William Mcdaniel

    standard system is replaced by a Heat Pump Water Heater (HPWH), the performance can be increased by 140

  15. Magnetars as cooling neutron stars with internal heating

    E-Print Network [OSTI]

    A. D. Kaminker; D. G. Yakovlev; A. Y. Potekhin; N. Shibazaki; P. S. Shternin; O. Y. Gnedin

    2006-05-18T23:59:59.000Z

    We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.

  16. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  17. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  18. Heating and cooling in the Perseus cluster core

    E-Print Network [OSTI]

    A. C. Fabian; J. S. Sanders

    2006-12-15T23:59:59.000Z

    It is well known that the radiative cooling time of the hot X-ray emitting gas in the cores of most clusters of galaxies is less than 10^10 yr. In many clusters the gas temperature also drops towards the centre. If we draw a causal connection between these two properties then we infer the presence of a cooling flow onto the central galaxy. High spectral resolution XMM-Newton data and high spatial resolution Chandra data, show however a lack of X-ray emitting gas below about one third of the cluster virial temperature. The explanation is that some form of heating balances cooling. The smoothness and similarity of the cooling time profiles and the flatness of the required heating profiles all indicate that we must seek a relatively gentle, quasi-continuous (on timescales heat source. The likely such source is the central black hole and its powerful jets which create bubble-like cavities in the inner hot gas. We briefly review the general heating and cooling statistics in an X-ray bright sample of cluster before we discuss the detailed situation in the Perseus cluster, the X-ray brightest cluster in the Sky.

  19. Rapid heating and cooling in two-dimensional Yukawa systems

    E-Print Network [OSTI]

    Yan Feng; Bin Liu; J. Goree

    2011-04-19T23:59:59.000Z

    Simulations are reported to investigate solid superheating and liquid supercooling of two-dimensional (2D) systems with a Yukawa interparticle potential. Motivated by experiments where a dusty plasma is heated and then cooled suddenly, we track particle motion using a simulation with Langevin dynamics. Hysteresis is observed when the temperature is varied rapidly in a heating and cooling cycle. As in the experiment, transient solid superheating, but not liquid supercooling, is observed. Solid superheating, which is characterized by solid structure above the melting point, is found to be promoted by a higher rate of temperature increase.

  20. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19T23:59:59.000Z

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  1. Mpemba effect, Newton cooling law and heat transfer equation

    E-Print Network [OSTI]

    Vladan Pankovic; Darko V. Kapor

    2012-12-11T23:59:59.000Z

    In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

  2. Bubbles as tracers of heat input to cooling flows

    E-Print Network [OSTI]

    J. Binney; F. Alouani Bibi; H. Omma

    2007-01-31T23:59:59.000Z

    We examine the distribution of injected energy in three-dimensional, adaptive-grid simulations of the heating of cooling flows. We show that less than 10 percent of the injected energy goes into bubbles. Consequently, the energy input from the nucleus is underestimated by a factor of order 6 when it is taken to be given by PVgamma/(gamma-1), where P and V are the pressure and volume of the bubble, and gamma the ratio of principal specific heats.

  3. PROGRAM SUPPORT FOR SOLAR HEATING AND COOLING RESEARCH AND DEVELOPMENT BRANCH

    E-Print Network [OSTI]

    Martin, M.

    2011-01-01T23:59:59.000Z

    of possible impact of passive cooling techniques for ene~·gyTechniques for EvaluaUon of Solar Heating and Cooling SysU•

  4. New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller

    Broader source: Energy.gov [DOE]

    Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. March 1, 2013. Campus Wide District Heating & Cooling System

    E-Print Network [OSTI]

    Units Chillers recovery Hot Water Heaters recovery Second Stage Heatpumps (HWH + DHW) 70 (tons) X 4;18 Energy Loop 18 Energy Loop Geothermal Cooling Units Chillers recovery Hot Water Heaters recovery Second,338 sq.ft) Heating: steam network at = 100 PSIG (328F) Approximitely 600m (2,000') of buried lines #12

  6. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Watson, Craig A.

    when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

  7. Heating & Cooling | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S.Heat Pumps

  8. Tips: Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar SolarHeat Pumps

  9. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips:Heat

  10. Method and apparatus for heat extraction by controlled spray cooling

    DOE Patents [OSTI]

    Edwards, Christopher Francis (5492 Lenore Ave., Livermore, Alameda County, CA 94550); Meeks, Ellen (304 Daisyfield Dr., Livermore, Alameda County, CA 94550); Kee, Robert (864 Lucille St., Livermore, Alameda County, CA 94550); McCarty, Kevin (304 Daisyfield Dr., Livermore, Alameda County, CA 94550)

    1999-01-01T23:59:59.000Z

    Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.

  11. On Heating of Cluster Cooling Flows by Sound Waves

    E-Print Network [OSTI]

    Yutaka Fujita; Takeru Ken Suzuki

    2005-08-10T23:59:59.000Z

    We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core. However, we find that if it is combined with thermal conduction from the hot outer layer of the cluster, the wave heating can reproduce the observational results.

  12. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07T23:59:59.000Z

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  13. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01T23:59:59.000Z

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  14. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer...

  15. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, A.

    2011-06-01T23:59:59.000Z

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  16. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01T23:59:59.000Z

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  17. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossaryProgramRussiaSpace Heating and Cooling Basics Space

  18. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01T23:59:59.000Z

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  19. REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles

    E-Print Network [OSTI]

    Coles, Cynthia

    REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles Memorial University of Newfoundland, St. John's, Canada Abstract The exponential growth that has been occurring in the geothermal heat harnessing of low temperature, renewable geothermal energy for hot water heating and heating and cooling

  20. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01T23:59:59.000Z

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  1. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect (OSTI)

    White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY

    2011-06-10T23:59:59.000Z

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  2. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    the choice of space heating technology is depen- dent on thefor Fuel and Technology Choice in Home Heating and Cooling,"fuel or technology for residential space heating. The

  3. An intelligent appliance control

    SciTech Connect (OSTI)

    Maher, C.A. Jr. [Tridelta Industries, Inc., Mentor, OH (United States)] [Tridelta Industries, Inc., Mentor, OH (United States); McMahon, G. [Pitco Frialator, Inc., Concord, NH (United States)] [Pitco Frialator, Inc., Concord, NH (United States)

    1998-05-01T23:59:59.000Z

    This paper describes the use of a microcontroller to implement an adaptive form of an ON/OFF-type control system. The principal benefits that this technique offers are the ability to self adjust automatically to the dynamics of the appliance being controlled and to minimize the cyclic wear and tear on the final heat-control elements. This technique is best applied to those systems with at least one large energy storage element (e.g., thermal mass), not needing fine control of the controlled variable, and ones using ON/OFF (relay type) rather than continuous final control outputs. This profile encompasses a large number of potential applications, particularly in the appliance field.

  4. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    for heating and cooling systems (setpoint deadband) ischair system’s maximum power is 4.8 watts for cooling (3.6Wsystems (PCS) are a promising technology for both improving occupants’ thermal comfort and simultaneously reducing buildings’ heating and cooling

  5. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  6. Solar Heating & Cooling: Energy for a Secure Future

    Broader source: Energy.gov [DOE]

    Today, more than 30,000 solar heating and cooling systems (SHC) are being installed annually in the United States, employing more than 5,000 American workers from coast to coast. These numbers are good – but they can be a lot better. Installing more SHC systems would provide a huge boost to the economy and help the environment, too. This first-of-its-kind SHC roadmap, developed by a task force made up of SEIA-member companies and BEAM Engineering, lays the groundwork – as well as makes a compelling case – for driving installed SHC capacity from 9 GW thermal to 300 GW thermal by 2050.

  7. Heating and cooling gas-gun targets: nuts and bolts

    SciTech Connect (OSTI)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Gehr, Russell J [HONEYWEL FM& T; Bucholtz, Scott M [HINEYWELL FM& T

    2009-01-01T23:59:59.000Z

    The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

  8. APPLIANCE STANDARDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCE STANDARDS How they

  9. AOSC 621AOSC 621 Radiative Heating/CoolingRadiative Heating/Cooling

    E-Print Network [OSTI]

    Li, Zhanqing

    ? Why drop off near sfc? 4 #12;Net flux Net flux: F = F+ - F- 1 2 F-(1) F+(1) F-(2) F+(2) Net energy at the top of the atmosphere is zero. Then we can write 1' ' )',( )'()0,()( 0 * dz dz zzdT zBzTBzF z z F F · The heating rate at z is defined as follows: )( )( d zdF zH net four termsofconsistwilland dz A

  10. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  11. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well a previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--1992 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space hearing systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report. 6 figs., 2 tabs.

  12. Heat Bath Algorithmic Cooling with Spins: Review and Prospects

    E-Print Network [OSTI]

    Daniel K. Park; Nayeli A. Rodriguez-Briones; Guanru Feng; Robabeh R. Darabad; Jonathan Baugh; Raymond Laflamme

    2015-01-05T23:59:59.000Z

    Application of multiple rounds of Quantum Error Correction (QEC) is an essential milestone towards the construction of scalable quantum information processing devices. However, experimental realizations of it are still in their infancy. The requirements for multiple round QEC are high control fidelity and the ability to extract entropy from ancilla qubits. Nuclear Magnetic Resonance (NMR) based quantum devices have demonstrated high control fidelity with up to 12 qubits. On the other hand, the major challenge in the NMR QEC experiment is to efficiently supply ancilla qubits in highly pure states at the beginning of each round of QEC. Purification of qubits in NMR, or in other ensemble based quantum systems can be accomplished through Heat Bath Algorithmic Cooling (HBAC). It is an efficient method for extracting entropy from qubits that interact with a heat bath, allowing cooling below the bath temperature. For practical HBAC, coupled electron-nuclear spin systems are more promising than conventional NMR quantum processors, since electron spin polarization is about $10^3$ times greater than that of a proton under the same experimental conditions. We provide an overview on both theoretical and experimental aspects of HBAC focusing on spin and magnetic resonance based systems, and discuss the prospects of exploiting electron-nuclear coupled systems for the realization of HBAC and multiple round QEC.

  13. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect (OSTI)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01T23:59:59.000Z

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  14. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01T23:59:59.000Z

    eliminating the need for compressor cooling. The plant modelunique design (using compressor cooling only when needed by

  15. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01T23:59:59.000Z

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  16. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    joint probability of a household choosing each particular heating/cooling technology combination is a function of the capital and operating

  17. "Cooling by heating" - demonstrating the significance of the longitudinal specific heat

    E-Print Network [OSTI]

    Jon J. Papini; Jeppe C. Dyre; Tage Christensen

    2012-06-26T23:59:59.000Z

    Heating a solid sphere at the surface induces mechanical stresses inside the sphere. If a finite amount of heat is supplied, the stresses gradually disappear as temperature becomes homogeneous throughout the sphere. We show that before this happens, there is a temporary lowering of pressure and density in the interior of the sphere, inducing a transient lowering of the temperature here. For ordinary solids this effect is small because c_p is almost equal to c_V. For fluent liquids the effect is negligible because their dynamic shear modulus vanishes. For a liquid at its glass transition, however, the effect is generally considerably larger than in solids. This paper presents analytical solutions of the relevant coupled thermoviscoelastic equations. In general, there is a difference between the isobaric specific heat, c_p, measured at constant isotropic pressure and the longitudinal specific heat, c_l, pertaining to mechanical boundary conditions that confine the associated expansion to be longitudinal. In the exact treatment of heat propagation the heat diffusion constant contains c_l rather than c_p. We show that the key parameter controlling the magnitude of the "cooling-by-heating" effect is the relative difference between these two specific heats. For a typical glass-forming liquid, when temperature at the surface is increased by 1 K, a lowering of the temperature in the sphere center of order 5 mK is expected if the experiment is performed at the glass transition. The cooling-by-heating effect is confirmed by measurements on a 19 mm diameter glucose sphere at the glass transition.

  18. Counter flow cooling drier with integrated heat recovery

    DOE Patents [OSTI]

    Shivvers, Steve D. (Prole, IA)

    2009-08-18T23:59:59.000Z

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  19. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    which, in the case of home heating appliances, could resultHeaters, Direct Heating Equipment, Mobile Home Furnaces,Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  20. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Broader source: Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

  1. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andH, Zhai Y. Enabling energy-efficient approaches to thermalEnergy-efficient comfort with a heated/cooled chair: results

  2. Impingement cooling and heat transfer measurement using transient liquid crystal technique

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01T23:59:59.000Z

    A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...

  3. A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING

    E-Print Network [OSTI]

    Tavana, Medhi

    2011-01-01T23:59:59.000Z

    on Heating Performance of Roof Pond XSL803-6664 Fig. 4.on Heating Performance of Roof Pond Phoenix, Arizona Auguston Cooling Performance of Roof Pond HOur of the doy (solar

  4. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15T23:59:59.000Z

    comprehensive study of several technical issues relative to radiant heating and cooling systems that have received little attention in previous research. The following aspects are covered in this dissertation: First, a heat transfer model of mullion radiators...

  5. Active solar heating and cooling information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  6. Mold heating and cooling microprocessor conversion. Final report

    SciTech Connect (OSTI)

    Hoffman, D.P.

    1995-07-01T23:59:59.000Z

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessor board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.

  7. ISSUANCE 2015-06-30: Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish the Central Air Conditioners and Heat Pumps Working Group ISSUANCE 2015-06-30: Appliance...

  8. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy...

  9. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 2 the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels. Unlike conventional air-source heat pumps, defrosting is carried out without stopping the heat production

  10. Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report

    SciTech Connect (OSTI)

    Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

    1981-03-01T23:59:59.000Z

    The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

  11. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    be glassified by cooling using hyper- quenching techniques (i.e., with rates of the order of 105 K/s [8Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process

  12. ANALYTICAL APPROACH TO TRANSIENT HEAT CONDUCTION IN COOLING LOAD CALCULATIONS

    E-Print Network [OSTI]

    Michal Duška; Martin Barták; František Drkal; Jan Hensen

    equation in cooling load calculations. The performance of nine different procedures (the four methods and

  13. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  14. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  15. Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment 

    E-Print Network [OSTI]

    Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

    2004-01-01T23:59:59.000Z

    the specified performance was realized at the heat-pump, e) whether the pipes for fan-coil units are suitably insulated. Output Heat loss from piping Upward and downward heat flow from hot-water mat Heat loss from piping (boiler - header) Heat loss from...Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment S. Hokoi*, H. Miura*, Y. Huang*, N. Nakahara** and A. Iwamae*** * Kyoto University, Kyoto 606-8501, Japan ** Nakahara Laboratory, Environmental Syst...

  16. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  17. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24T23:59:59.000Z

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  18. Arnold Schwarzenegger 2010 APPLIANCE

    E-Print Network [OSTI]

    : Appliance Efficiency Regulations, appliance standards, refrigerators, air conditioners, space heaters, water heaters, pool heaters, pool pumps, electric spas, pool pump motors, plumbing fittings, plumbing fixtures, showerheads, spray valves, faucets, tub spout diverters, water closets, urinals, ceiling fans, ceiling fan

  19. Dynamics of Circumstellar Disks II: Heating and Cooling

    E-Print Network [OSTI]

    Andrew F. Nelson; Willy Benz; Tamara Ruzmaikina

    1999-08-13T23:59:59.000Z

    We present a series of 2-d ($r,\\phi$) hydrodynamic simulations of marginally self gravitating disks around protostars using an SPH code. We implement simple dynamical heating and we cool each location as a black body, using a photosphere temperature obtained from the local vertical structure. We synthesize SEDs from our simulations and compare them to fiducial SEDs derived from observed systems. These simulations produce less distinct spiral structure than isothermally evolved systems, especially in the inner third of the disk. Pattern are similar further from the star but do not collapse into condensed objects. The photosphere temperature is well fit to a power law in radius with index $q\\sim1.1$, which is very steep. Far from the star, internal heating ($PdV$ work and shocks) are not responsible for generating a large fraction of the thermal energy contained in the disk matter. Gravitational torques responsible for such shocks cannot transport mass and angular momentum efficiently in the outer disk. Within $\\sim$5--10 AU of the star, rapid break up and reformation of spiral structure causes shocks, which provide sufficient dissipation to power a larger fraction of the near IR energy output. The spatial and size distribution of grains can have marked consequences on the observed near IR SED and can lead to increased emission and variability on $\\lesssim 10$ year time scales. When grains are vaporized they do not reform into a size distribution similar to that from which most opacity calculations are based. With rapid grain reformation into the original size distribution, the disk does not emit near infrared photons. With a plausible modification to the opacity, it contributes much more.

  20. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF) 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    This report provides the recommendations to calculate cooling and heating energy-input-ratio (EIR) for DOE-2 simulations excluding indoor fan energy, from the rated cooling and heating seasonal performance efficiency (i.e., ...

  1. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  2. High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

    E-Print Network [OSTI]

    High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

  3. Using heat demand prediction to optimise Virtual Power Plant production capacity

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    CHP) appliances, micro gas turbines, micro- windmills, heat exchangers, etc.) is expected. A microCHP appliance

  4. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

  5. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth

    E-Print Network [OSTI]

    Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations

  6. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  7. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  8. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  9. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  10. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01T23:59:59.000Z

    American Society of Heating, Refrigeration, and AirFOR PASSIVE DIRECT GAIN HEATING SYSTEMS Paul W. Sullivan,FOR PASSIVE DIRECT GAIN HEATING SYSTEMS* Paul W. Sullivan,t

  11. Cooling-load implications for residential passive-solar-heating systems

    SciTech Connect (OSTI)

    Jones, R.W.; McFarland, R.D.

    1983-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

  12. Cooling and Heating of the Quantum Motion of Trapped Cd+ Louis Deslauriers

    E-Print Network [OSTI]

    Monroe, Christopher

    ABSTRACT Cooling and Heating of the Quantum Motion of Trapped Cd+ Ions by Louis Deslauriers Chair information processor has seen tremendous progress in many fields of physics. In the last decade, trapped ions for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped

  13. Heat transfer and film-cooling for the endwall of a first stage turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    as the pressure side horseshoe vortex, develops as the flow is turned by the turbine vane or rotor bladeHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

  14. Thermal stability of a spherical shell heated by convection and cooled by boiling

    E-Print Network [OSTI]

    Qaim-Maqami, Hassan

    1973-01-01T23:59:59.000Z

    such high heat transfer rates by forced convection would require extremely high veloc- ities with subsequent high pressure dropsy With nuclee, boiling, however, such high heat transfe. rates an be obtained at much smaller velocities. Boiling heat...THERMAL STABILITY OF A. SPHERICAL SHELL HEATED BY CONVECTION AND COOLED BY BOILING A Thesis HASSAN @AIM-MAQAMI Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER...

  15. Use of an open-cycle absorption system for heating and cooling

    SciTech Connect (OSTI)

    Schlepp, D. R.; Collier, R. K.

    1981-03-01T23:59:59.000Z

    Solar cooling for commercial applications using open-cycle absorption refrigeration systems has been investigated and found to be feasible. If an open-cycle absorption system can be operated as a chemical heat pump for winter heating operation, the system would offer year-round operation that could make the system economically viable for many regions of the US. An analysis of heating operation for the open-cycle system is presented using a computer program that simulates heat and mass transfer processes for any environmental condition. The open-cycle absorption refrigeration system can be operated as a chemical heat pump. Simulations for winter heating operation were run for five US cities, with solar COP's in the range of .06 to .16. At these levels, the OCAR system can provide full heating and cooling operation for office buildings in many southern US cities.

  16. BSU GHP District Heating and Cooling System (Phase I)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Concept" completed * Borehole field designed using "Thermal Dynamics" software * Heat Pump Chiller requirements determined * Surveys conducted throughout campus to...

  17. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOE Patents [OSTI]

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30T23:59:59.000Z

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  18. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01T23:59:59.000Z

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  19. St. Paul -West Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    's cooling system is scheduled to be on. Status Color Code: On In Progress Not started Building Name BuildingSt. Paul - West Bank District Heating-to-Cooling Conversion Plan Check the date your building # Date Central Cooling On Status Date Window A/C Units installed Status 19th ave ramp 217 N/A N/A N/A 21

  20. Health Sciences District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    system is scheduled to be on. Status Color Code: On In Progress Not started *** - Typically between May 1Health Sciences District Heating-to-Cooling Conversion Plan Check the date your building's cooling-15, as requested. Building Name Building # Date Central Cooling On Status Date Window A/C Units installed Status

  1. East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on. Status Color Code: On In Progress Not started Building Name Building # Date Central Cooling On Status Date Window A/C Units installed Status 1425 University Ave. 127 1901 University Ave SE

  2. Heating and cooling of a two-dimensional electron gas by terahertz radiation

    SciTech Connect (OSTI)

    Budkin, G. V.; Tarasenko, S. A., E-mail: tarasenko@coherent.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2011-04-15T23:59:59.000Z

    The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.

  3. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

    1997-01-01T23:59:59.000Z

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  4. Appliance Efficiency Regulations

    Broader source: Energy.gov [DOE]

    Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  5. Asymmetric crystallization during cooling and heating in model glass-forming systems

    E-Print Network [OSTI]

    Minglei Wang; Kai Zhang; Zhusong Li; Yanhui Liu; Jan Schroers; Mark D. Shattuck; Corey S. O'Hern

    2015-01-09T23:59:59.000Z

    We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature $T_l$ and cooled each sample to zero temperature at rate $R_c$. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate $R_p$ and then heated the samples to temperature $T > T_l$ at rate $R_h$. We measured the critical heating and cooling rates $R_h^*$ and $R_c^*$, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that $R_h^* > R_c^*$, and that the asymmetry ratio $R_h^*/R_c^*$ includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as $R_p \\rightarrow R_c^*$ from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate $R_p$ from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.

  6. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect (OSTI)

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

    2010-11-15T23:59:59.000Z

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  7. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating data for use in building energy simulations by EnergyPlus. Two types of residential buildings and seven

  8. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOE Patents [OSTI]

    Farrington, Robert B. (Golden, CO); Anderson, Ren (Broomfield, CO)

    2001-01-01T23:59:59.000Z

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  9. air cooled heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: was made against the two datasets recently downloaded from the California Energy Commission (CEC) database (CEC 2012) and the 2012 Air- Conditioning, Heating, and...

  10. Crosslinked crystalline polymer and methods for cooling and heating

    SciTech Connect (OSTI)

    Salyer, Ival O. (Dayton, OH); Botham, Ruth A. (Dayton, OH); Ball, III, George L. (West Carrollton, OH)

    1980-01-01T23:59:59.000Z

    The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

  11. 5 Cool Things about Solar Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    or deductions for solar energy systems. Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for...

  12. Cooling, Heating, and Power for Commercial Buildings - Benefits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this paper, an analysis was performed to determine that the increased production of waste heat associated with lower generation efficiencies cannot compensate for the lower...

  13. Impact of urban heat island on cooling and environment: A demonstration project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Landscaping has been shown in simulation and field studies to reduce building cooling loads by affecting microclimatic factors such as solar radiation, wind speed and air temperature. A demonstration project was undertaken to determine the magnitude of landscape induced changes in microclimate on building cooling loads and water use on four typical residences in Phoenix, Arizona. The energy use and microclimate of three unlandscaped (bare soil, rock mulch) and one landscaped (turf) home were monitored during summer 1990. In the fall, turf was placed around one of the unlandscaped houses, and shade trees planted on the west and south sides of another. Measurements continued during the summer of 1991. Total house air conditioning and selected appliance electrical data were collected, as well as inside and outside air temperatures. Detailed microclimate measurements were obtained for one to two week periods during both summers. Maximum reductions of hourly outside air temperatures of 1 to 1.5{degrees}C, and of daily average air temperatures of up to 1{degrees}C, resulted from the addition of turf landscaping. Addition of small trees to the south and west sides of another treatment did not have a noticeable effect on air temperature. Cooling load reductions of 10% to 17% were observed between years when well-watered turf landscaping was added to a house previously surrounded by bare soil. Addition of small trees to another bare landscape did not produce a detectable change in cooling load. The results of the study are used as input to a standard building energy use simulation model to predict landscape effects on cooling load and water usage for three typical houses, and to develop guidelines for use of energy efficient residential landscapes in Phoenix, Arizona.

  14. Directly connected heat exchanger tube section and coolant-cooled structure

    DOE Patents [OSTI]

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01T23:59:59.000Z

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  15. Time variability of AGN and heating of cooling flows

    E-Print Network [OSTI]

    Carlo Nipoti; James Binney

    2005-05-03T23:59:59.000Z

    There is increasing evidence that AGN mechanical feedback is important in the energetics of cooling flows in galaxies and galaxy clusters. We investigate the implications of the variability of AGN mechanical luminosity L_m on observations of cooling flows and radio galaxies in general. It is natural to assume that l=ln(L_m/L_x) is a Gaussian process. Then L_m will be log-normally distributed at fixed cooling luminosity L_x, and the variance in a measure of L_m will increase with the time-resolution of the measure. We test the consistency of these predictions with existing data. These tests hinge on the power spectrum of l(t). Monitoring of Seyfert galaxies combined with estimates of the duty cycle of quasars imply flicker noise spectra, similar to those of microquasars. We combine a sample of sources in cooling flows that have cavities with the assumption that the average mechanical luminosity of the AGN equals L_x. Given that the mechanical luminosities are characterized by flicker noise, we find that their spectral amplitudes lie between the estimated amplitudes of quasars and the measured values for the radio luminosities of microquasars. The model together with the observation that powerful radio galaxies lie within a narrow range in optical luminosity, predicts the luminosity function of radio galaxies, in agreement with observations. Forthcoming radio surveys will test the prediction that the luminosity function turns over at about the smallest luminosities so far probed. [Abridged

  16. Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

  17. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1 40 51 ABSTRACT This article presents the concepts of an air-source Heat Pump for Simultaneous heating using a two-phase thermosiphon. Unlike conventional air-source heat pumps, defrosting is carried out

  18. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30T23:59:59.000Z

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  19. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Lf.20 i 2.4E (1) Cumulative heating and cooling loads only.at the American Society of Heating, Refrigerating, and AirDecember 3-5, 1979 ANNUAL HEATING AND COOLING REQUIREMENTS

  20. A spin based heat engine: demonstration of multiple rounds of algorithmic cooling

    E-Print Network [OSTI]

    C. A. Ryan; O. Moussa; J. Baugh; R. Laflamme

    2008-04-23T23:59:59.000Z

    We show experimental results demonstrating multiple rounds of heat-bath algorithmic cooling in a 3 qubit solid-state nuclear magnetic resonance quantum information processor. By dynamically pumping entropy out of the system of interest and into the heat-bath, we are able show purification of a single qubit to a polarization 1.69 times that of the heat-bath and thus go beyond the Shannon bound for closed system cooling. The cooling algorithm implemented requires both high fidelity coherent control and a deliberate controlled interaction with the environment. We discuss the improvements in control that allowed this demonstration. This experimental work shows that given this level of quantum control in systems with sufficiently large polarizations, nearly pure qubits should be achievable.

  1. District Heating and Cooling Technology Development Program: Phase 2, Investigation of reduced-cost heat-actuated desiccant cooling systems for DHC applications

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1992-02-01T23:59:59.000Z

    A detailed assessment has been completed of the use of desiccant-based customer-sited heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that introduction of a reduced-cost desiccant cooling system would result in widespread market penetration. This program consisted of three principal components: a market study of existing and future reduced-cost liquid desiccant cooling (LDC) systems; an examination of the installed costs of these existing and reduced-cost LDC systems; and four detailed case studies. Both the installed cost and equivalent chilled water cost of existing large LDC systems were found to be quite competitive with district chilled water, while the high capital cost of small LDC systems made them more expensive than district chilled water. Potential total system sales in this existing large-scale LDC market are quite low, since most of the market for DHC space conditioning is in smaller equipment sizes. Cost savings realized from producing a reduced-cost LDC system would result in small LDC systems (sized well below 6,000 cfm) becoming competitive with the current range of district chilled water costs.

  2. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    heat-pump heating, both of which have 1.5 ton (18,000 Btu/hr) cooling capacities and are marketed for PV

  3. Parametric modelling of a bellows heat pipe for electronic component cooling

    E-Print Network [OSTI]

    Patnaik, Preetam

    1987-01-01T23:59:59.000Z

    of the fluid. Conduction of heat is governed by Eourier's lcm which is given mathematically as qs = -5. 7'T where q" = heat flux (W/ms) K = conductivity of the material {W/m C) 9 = the three - dimensional del operator T = scalar temperature field. Thus.... Convection is governed by Newton'a Low of Cooling which is given mathemat- ically as lI" = /i(T ? T ) where q" = heat flux (W/m'C) h = heat transfer coefficient (W/ms C) T~ = temperature of body (sC) T~ = temperature of ambient surroundings ( C...

  4. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22T23:59:59.000Z

    MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

  5. Heat transfer and film cooling with steam injection

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    . The cooling medium was injected through the side of the test section into the blade. The apparatus and test section are shown in Figure 3. Great care was taken in the design of the wind tunnel which was designed to be subsonic with uniform flow and a low... 48 inch overall length. The blade was positioned 24 inches from the leading edge of the test section. D. Test Material The aluminum blade was a straight airfoil with a cir- cular leading edge and three staggered rows of injection holes. Using...

  6. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads intoMansoor Ghassem )DepartmentUppingDepartmentCool Roof

  7. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  8. Heat pipe cooled reactors for multi-kilowatt space power supplies

    SciTech Connect (OSTI)

    Ranken, W.A.; Houts, M.G.

    1995-01-01T23:59:59.000Z

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  9. The Difficulty of the Heating of Cluster Cooling Flows by Sound Waves and Weak Shocks

    E-Print Network [OSTI]

    Yutaka Fujita; Takeru Ken Suzuki

    2006-10-23T23:59:59.000Z

    We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves and weak shocks excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core.

  10. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

    2014-01-01T23:59:59.000Z

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

  11. Rehabilitation of Secondary Heating and Cooling Systems - Case Study 

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Hugghins, J.; Brundidge, T.; Claridge, D.; Turner, W. D.; Bruner, H., Jr.

    2002-01-01T23:59:59.000Z

    VAV boxes use hot water reheat coils and supply air dampers, which are pneumatically controlled. A schematic diagram of the chilled water system in the building is shown in Figure 2. A schematic diagram of the heating water system... than the dynamic or modulating rating. The close-off pressure value is proportional to the size of actuator and inverse to valve size. The close-off pressure for electronic actuator is 3 ~ 5 times the values for pneumatic actuator. The pressure...

  12. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01T23:59:59.000Z

    Considering a heating/cooling coil with adjustable heat-exchange area, an unequal type is put forward in this paper. Aiming at the application of such heat exchanger in an air-handling unit, restriction conditions are given for the minimum heat...

  13. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1.3. Components of Ground Source Heat Pump Systems..........................................3 1.4. Types of Ground

  14. "Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"

    E-Print Network [OSTI]

    Shepard, Kenneth

    "Potential for Combined Heat and Power and District Heating and Cooling from Waste- to Engineering Center and the Henry Krumb School of Mines May 2007 #12;1 Executive Summary In District Heating is used for the generation of electricity. The advantages of district heating using WTE plants are

  15. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts

    E-Print Network [OSTI]

    King, William P.

    Nanoscale Joule heating, Peltier cooling and current crowding at graphene­metal contacts Kyle L are the Joule and Peltier effects. The Joule effect9 occurs as charge carriers dissipate energy within the lattice, and is pro- portional to resistance and the square of the current. The Peltier effect17

  16. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOE Patents [OSTI]

    Bennion, Kevin; Lustbader, Jason

    2013-09-24T23:59:59.000Z

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  17. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  18. Guidelines for selecting a solar heating, cooling or hot water design

    SciTech Connect (OSTI)

    Kelly, C.J. Jr.

    1981-12-01T23:59:59.000Z

    Guidelines are presented for the professional who may have to choose between competing solar heating and cooling designs for buildings. The experience of the National Solar Data Network in monitoring over 100 solar installations are drawn upon. Three basic principles and a design selection checklist are developed which will aid in choosing the most cost effective design.

  19. Cedarville School District Retrofit of Heating and Cooling Systems with

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: EnergyGeothermal Heat Pumps and

  20. Cool Roofs and Heat Islands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to: navigation, search Tool

  1. IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL A Renardières ­ Ecuelles, 77818 MORET-SUR- LOING Cedex, France ABSTRACT In the context of low energy buildings we study the impact of the incoming radiation through a window (sun patch) on the heating and cooling

  2. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01T23:59:59.000Z

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  3. White Dwarf Heating and Subsequent Cooling in Dwarf Nova Outbursts

    E-Print Network [OSTI]

    Anthony L. Piro; Phil Arras; Lars Bildsten

    2005-03-30T23:59:59.000Z

    We follow the time dependent thermal evolution of a white dwarf (WD) undergoing sudden accretion in a dwarf nova outburst, using both simulations and analytic estimates. The post-outburst lightcurve clearly separates into early times when the WD flux is high, and late times when the flux is near the quiescent level. The break between these two regimes, occurring at a time of order the outburst duration, corresponds to a thermal diffusion wave reaching the base of the freshly accreted layer. Our principal result is that long after the outburst, the fractional flux perturbation about the quiescent flux decays as a power law with time (and {\\it not} as an exponential). We use this result to construct a simple fitting formula that yields estimates for both the quiescent flux and the accreted column, i.e. the total accreted mass divided by WD surface area. The WD mass is not well constrained by the late time lightcurve alone, but it can be inferred if the accreted mass is known from observations. We compare our work with the well-studied outburst of WZ Sge, finding that the cooling is well described by our model, giving an effective temperature $T_{\\rm eff}=14,500 {\\rm K}$ and accreted column $\\Delta y\\approx10^6 {\\rm g cm^{-2}}$, in agreement with the modeling of Godon et al. To reconcile this accreted column with the accreted mass inferred from the bolometric accretion luminosity, a large WD mass $\\gtrsim1.1M_\\odot$ is needed. Our power law result is a valuable tool for making quick estimates of the outburst properties. We show that fitting the late time lightcurve with this formula yields a predicted column within 20% of that estimated from our full numerical calculations.

  4. Micro-scale heat-exchangers for Joule-Thomson cooling.

    SciTech Connect (OSTI)

    Gross, Andrew John

    2014-01-01T23:59:59.000Z

    This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX as part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.

  5. Mist/steam cooling in a heated horizontal tube -- Part 2: Results and modeling

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01T23:59:59.000Z

    Experimental studies on mist/steam cooling in a heated horizontal tube have been performed. Wall temperature distributions have been measured under various main steam flow rates, droplet mass ratios, and wall heat fluxes. Generally, the heat transfer performance of steam can be significantly improved by adding mist into the main flow. An average enhancement of 100% with the highest local heat transfer enhancement of 200% is achieved with 5% mist. When the test section is mildly heated, an interesting wall temperature distribution is observed: the wall temperature increases first, then decreases, and finally increases again. A three-stage heat transfer model with transition boiling, unstable liquid fragment evaporation, and dry-wall mist cooling has been proposed and has shown some success in predicting the wall temperature of the mist/steam flow. The PDPA measurements have facilitated better understanding and interpreting of the droplet dynamics and heat transfer mechanisms. Furthermore, this study has shed light on how to generate appropriate droplet sizes to achieve effective droplet transportation, and has shown that it is promising to extend present results to a higher temperature and higher pressure environment.

  6. Dual Heating and Cooling Sorption Heat Pump for a Food Plant

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

  7. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  8. Use of cooling-temperature heat for sustainable food production

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01T23:59:59.000Z

    Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based “renewable” energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between today’s food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of society’s organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

  9. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  10. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    2007): “Market Barriers Affecting Water Heating in Norway. ”heating and cooling energy consumed by centrally installed equipment in order to verify whether a marketheating and cooling. The non-existence of the equipment efficiency-related market

  11. A comparison of the heat transfer capabilities of two manufacturing methods for high heat flux water-cooled devices

    SciTech Connect (OSTI)

    McKoon, R.H.

    1986-10-01T23:59:59.000Z

    An experimental program was undertaken to compare the heat transfer characteristics of water-cooled copper devices manufactured via conventional drilled passage construction and via a technique whereby molten copper is cast over a network of preformed cooling tubes. Two similar test blocks were constructed; one using the drilled passage technique, the other via casting copper over Monel pipe. Each test block was mounted in a vacuum system and heated uniformly on the top surface using a swept electron beam. From the measured absorbed powers and resultant temperatures, an overall heat transfer coefficient was calculated. The maximum heat transfer coefficient calculated for the case of the drilled passage test block was 2534 Btu/hr/ft/sup 2///sup 0/F. This corresponded to an absorbed power density of 320 w/cm/sup 2/ and resulted in a maximum recorded copper temperature of 346/sup 0/C. Corresponding figures for the cast test block were 363 Btu/hr/ft/sup 2///sup 0/F, 91 w/cm/sup 2/, and 453/sup 0/C.

  12. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    cells as a heat and electrical power source for residential combined heat and power (CHP characterization provided data to assess the CHP potential of the Nexa and validate the model used ambient temperature. #12;iv To improve performance as a CHP heat engine, the Nexa and other air-cooled PEM

  13. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01T23:59:59.000Z

    : 2,900kW TR1,2 Centrifugal Chiller (Constant Speed ) Cooling Capacity : 3,516kW (1,000RT) 2 TR3,4 Inverter Centrifugal Chiller Cooling Capacity : 1,758kW (500RT) 2 BTR1,2 Centrifugal Chiller for Ice Storage Cooling Capacity : 1,571kW (447RT) 2 Ice... Making Capacity : 1297kW (369RT) IST1,2 Ice Storage Tank Capacity of Thermal Storage :11,603kWh (3,300RTh) 2 BO1,2 Hot Water Boiler Heating Capacity : 465kW 2 7 ABOUT THE DHC PLANT ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  14. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01T23:59:59.000Z

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore »evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  15. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    Cooling Coil Efficiency Water viscosity at the water bulk temperature Water fluid viscosity at the pipe wall temperature Fin Pitch ix TABLE OF CONTENTS... of the analysis will be compared with the weather data and chilled water system data of the DFW Airport during 2010. Other possible causes of the reduced delta-T at low loads exist and will be investigated. 8 2 LITERATURE REVIEW 2.1 Heat transfer...

  16. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01T23:59:59.000Z

    effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

  17. Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling

    E-Print Network [OSTI]

    Daniel K. Park; Guanru Feng; Robabeh Rahimi; Stephane Labruyere; Taiki Shibata; Shigeaki Nakazawa; Kazunobu Sato; Takeji Takui; Raymond Laflamme; Jonathan Baugh

    2015-05-13T23:59:59.000Z

    The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another, and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $^{13}$C-labeled malonic acid provides up to 5 spin qubits: 1 spin-half electron and 4 spin-half nuclei. The nuclei are strongly hyperfine coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron-nuclear double resonance (ENDOR) techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron's thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both 3-qubit and 5-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

  18. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, August 1, 1989--October 31, 1989

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1989-01-01T23:59:59.000Z

    This is Second Quarterly Report for DOE Project {number_sign} FG01-89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of a application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from August 1, 1989 to October 31, 1989. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating ad cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 1 fig.

  19. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, November 1, 1989--January 31, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the Third Quarterly Report for DOE Project Number FG01- 89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from November 1, 1989 to January 31, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 36 figs.

  20. Frictional heating and convective cooling of polycrystalline diamond drag tools during rock cutting

    SciTech Connect (OSTI)

    Ortega, A.; Glowka, D.A.

    1982-01-01T23:59:59.000Z

    A numerical-analytical model is developed to predict temperatures in stud-mounted polycrystalline diamond compact (PDC) drag tools during rock cutting. Experimental measurements of the convective heat transfer coefficient for PDC cutters are used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is shown that mean cutter wearflat temperatures can be maintained below the critical value of 750{sup 0}C only under conditions of low friction at the cutter/rock interface. This is true, regardless of the level of convective cooling. In fact, a cooling limit is established above which increases in convective cooling do not further reduce cutter temperatures. The ability of liquid drilling fluids to reduce interface friction is thus shown to be far more important in preventing excessive temperatures than their ability to provide cutter cooling. Due to the relatively high interface friction developed under typical air drilling conditions, it is doubtful that temperatures can be kept subcritical at high rotary speeds in some formations when air is employed as the drilling fluid, regardless of the level of cooling achieved.

  1. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect (OSTI)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01T23:59:59.000Z

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  2. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat... source -Utilize waste heat discharged from substation, and supply in large difference of temperature Water intake Heat exchangers Water discharge Turbo chiller Screw heat pump pumps ESL-IC-14-09-19 Proceedings of the 14th International Conference...

  3. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21T23:59:59.000Z

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  4. Empirical Modeling of a Rolling-Piston Compressor Heat Pump for Predictive Control in Low-Lift Cooling

    E-Print Network [OSTI]

    Gayeski, Nicholas

    Inverter-driven variable-capacity air conditioners, heat pumps, and chillers can provide energy-efficient cooling, particularly at part-load capacity. Varying the capacity of vapor compression systems enables operation at ...

  5. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

    2012-08-21T23:59:59.000Z

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  6. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, Therese K. (Knoxville, TN); Tomlinson, John J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  7. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26T23:59:59.000Z

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  8. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect (OSTI)

    Barnes, P.R.; Shapira, H.B.

    1980-01-01T23:59:59.000Z

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  9. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    SciTech Connect (OSTI)

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P. [CEA Grenoble INAC/SBT, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2014-01-29T23:59:59.000Z

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  10. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect (OSTI)

    Perkins, R. M.

    1980-06-01T23:59:59.000Z

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  11. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF)

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    in the simulations. For a simulation input, a SEER or a HSPF rating needs to be converted to COP95 (i.e., Energy Efficiency Ratio (EER)/3.412) or COP47, respectively, which is the steady-state efficiency at certain test conditions specified in the ANSI.../AHRI Standard 210/240-2008 (AHRI 2008). Issue 2: Fan Energy Removal • The system efficiency ratings currently available (i.e., SEER, EER, or HSPF) are based on net cooling or heating capacity (i.e., total cooling capacity less supply fan heat for cooling...

  12. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01T23:59:59.000Z

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  13. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18T23:59:59.000Z

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  14. Load control in low voltage level of the electricity grid using CHP appliances

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    1 Load control in low voltage level of the electricity grid using µCHP appliances M.G.C. Bosman, V.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed on the transformers and, thus, on the grid. In this work we study the influence of introducing µCHP appliances

  15. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Gain on Radiant Floor Cooling System Design. Proceedings ofWater-based radiant cooling systems are gaining popularityGain on Radiant Floor Cooling System Design. Proceedings of

  16. Heat-transfer characteristics of a dry and wet/dry advanced condenser for cooling towers

    SciTech Connect (OSTI)

    Fricke, H.D.; McIlroy, K.; Webster, D.J.

    1982-06-01T23:59:59.000Z

    An EPRI-funded, experimental evaluation of two types of advanced, air-cooled ammonia condensers for a phase-change dry/wet cooling system for electric power plants is described. Condensers of similar design, but much bigger, are being tested in a 15 MWe demonstration plant at the Pacific Gas and Electric Kern Power Station in Bakersfield, California. These condensers, featuring different air-side augmentation, were tested in Union Carbide's ammonia phase-change pilot plant (0.3 MWe). The first unit consisted of the Curtiss-Wright integral shaved-fin extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face velocities (600 to 1000 FPM) and initial temperature differences, ITD (20 to 60/sup 0/F). Overall heat transfer coefficients (based on air-side surface), U, ranged between 7.0 to 8.6 Btu/hr ft/sup 2/ F. The second configuration constituted the Hoterv aluminum plate-fin/tube assembly of which two different sizes (5 ft/sup 2/ and 58 ft/sup 2/ frontal area) were performance tested; in both dry and wet modes at 200 to 800 FPM air face velocities, ITD's of 10 to 60/sup 0/F and at water deluge rates up to 3.0 gpm/ft. of core width. In the dry mode, U's ranged from 7.0 to 12.0 Btu/hr ft/sup 2/ F. Increasing water deluge greatly enhanced the heat rejection capacity over dry operation - as high as 4 times, depending on operating conditions. This deluge augmentation was greater for lower air relative humidities and lower ITD's. A brief description of the recently completed ammonia phase-change dry/wet-dry cooling demonstration plant at the Kern Power Station concludes this document.

  17. Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes

    E-Print Network [OSTI]

    Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

    2005-08-24T23:59:59.000Z

    We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

  18. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  19. Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems

    SciTech Connect (OSTI)

    DeVault, Robert C [ORNL; Hudson II, Carl Randy [ORNL

    2006-01-01T23:59:59.000Z

    Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

  20. How a liquid becomes a glass both on cooling and on heating

    E-Print Network [OSTI]

    Xinhui Lu; S. G. J. Mochrie; S. Narayanan; A. R. Sandy; M. Sprung

    2008-02-04T23:59:59.000Z

    The onset of structural arrest and glass formation in a concentrated suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point is studied by exploiting the near-critical fluid degrees of freedom to control the strength of an attraction between particles and multispeckle x-ray photon correlation spectroscopy to determine the particles' collective dynamics. This model system undergoes a glass transition both on cooling and on heating, and the intermediate liquid realizes unusual logarithmic relaxations. How vitrification occurs for the two different glass transitions is characterized in detail and comparisons are drawn to recent theoretical predictions for glass formation in systems with attractive interactions.

  1. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  2. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    across the hot water control valve is 5 psi and 2 psi for the coil and pipeline. The flow coefficient of the control valves are 9 GPIW~S~~,~ for hot water valve and 13 GPIW~S~~.~ for the chilled water control valve. The designed loop pressure is 7... 14: Using dry coil model will introduce certain error for the cooling coil simulation since the heat transfer coefficient is higher when the coil is wet. Thermostat Model: The thermostat generates a pneumatic pressure signal from 3 to 15 psig...

  3. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  4. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  5. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  6. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  7. Streamlining ENERGY STAR Appliance Testing

    Broader source: Energy.gov [DOE]

    To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances.

  8. A spatially resolved study of photoelectric heating and [CII] cooling in the LMC

    E-Print Network [OSTI]

    D. Rubin; S. Hony; S. C. Madden; A. G. G. M Tielens; M. Meixner; R. Indebetouw; W. Reach; A. Ginsburg; S. Kim; K. Mochizuki; B. Babler; M. Block; S. B Bracker; C. W. Engelbracht; B. -Q. For; K. Gordon; J. L. Hora; C. Leitherer; M. Meade; K. Misselt; M. Sewilo; U. Vijh; B. Whitney

    2008-12-12T23:59:59.000Z

    (abridged) We study photoelectric heating throughout the Large Magellanic Cloud. We quantify the importance of the [CII] cooling line and the photoelectric heating process of various environments in the LMC and investigate which parameters control the extent of photoelectric heating. We use the BICE [CII] map and the Spitzer/SAGE infrared maps. We examine the spatial variations in the efficiency of photoelectric heating: photoelectric heating rate over power absorbed by grains. We correlate the photoelectric heating efficiency and the emission from various dust constituents and study the variations as a function of H\\alpha emission, dust temperatures, and the total infrared luminosity. From this we estimate radiation field, gas temperature, and electron density. We find systematic variations in photoelectric efficiency. The highest efficiencies are found in the diffuse medium, while the lowest coincide with bright star-forming regions (~1.4 times lower). The [CII] line emission constitutes 1.32% of the far infrared luminosity across the whole of the LMC. We find correlations between the [CII] emission and ratios of the mid infrared and far infrared bands, which comprise various dust constituents. The correlations are interpreted in light of the spatial variations of the dust abundance and by the local environmental conditions that affect the dust emission properties. As a function of the total infrared surface brightness, S_{TIR}, the [CII] surface brightness can be described as: S_{[CII]}=1.25 S_{TIR}^{0.69} [10^{-3} erg s^{-1} cm^{-2} sr^{-1}]. The [CII] emission is well-correlation with the 8 micrometer emission, suggesting that the polycyclic aromatic hydrocarbons play a dominant role in the photoelectric heating process.

  9. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; Hughes, Patrick [ORNL

    2001-01-01T23:59:59.000Z

    At a military base in the Southeastern United States, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  10. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, J.A.

    2001-07-12T23:59:59.000Z

    At a military base in the Southeastern US, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  11. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01T23:59:59.000Z

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  12. Single family heating and cooling requirements: Assumptions, methods, and summary results

    SciTech Connect (OSTI)

    Ritschard, R.L.; Hanford, J.W.; Sezgen, A.O. (Lawrence Berkeley Lab., CA (United States))

    1992-03-01T23:59:59.000Z

    The research has created a data base of hourly building loads using a state-of-the-art building simulation code (DOE-2.ID) for 8 prototypes, representing pre-1940s to 1990s building practices, in 16 US climates. The report describes the assumed modeling inputs and building operations, defines the building prototypes and selection of base cities, compares the simulation results to both surveyed and measured data sources, and discusses the results. The full data base with hourly space conditioning, water heating, and non-HVAC electricity consumption is available from GRI. In addition, the estimated loads on a per square foot basis are included as well as the peak heating and cooling loads.

  13. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  14. District heating and cooling technology development program: Phase 2, Investigation of reduced-cost heat-actuated, desiccant cooling systems for DHC applications; Quarterly report, August 20, 1990--November 24, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the first Quarterly Report for DOE Project Number FG01-90CE26603. The principal objective of this program is to perform a more detailed study aimed at producing lower-cost heat-actuated liquid desiccant cooling system for use with two-pipe District Heating (DH) systems. This quarterly report covers project work conducted from August 20, 1990 to November 24, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a DH system, but still enable cooling via that transport medium. At this time a district heating and cooling (DHC) system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing DH systems that already have a two-pipe system installed.

  15. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    of the end nodes as shown in Figure 4. 2. Tn + Tn + r 2 (4 6) The first law was then applied to each element during the on-cycle: mc(T +T~, i) ? hPdz(T. ? T ) =ply. (4. 7) T +T dt This said that the energy entering the element by advection minus... that the energy removed by the heat putnp, Q. , must equal the load on the home, Qc. The energy balance when the unit is on is given by: f Q ddt ? f g. dt = mC(T2 ? Ti) (4. 1 1) The right side of equation 4, 11 yields the energy removed from the home during...

  16. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01T23:59:59.000Z

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  17. Appliance and Equipment Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support DocumentAppliance and

  18. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    SciTech Connect (OSTI)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Williamson, Joshua [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Peters, Curtis D.; Brown, Nicholas [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87108 (United States); Jablonski, Jennifer [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Department of Education, University of New Mexico, Albuquerque, NM 87108 (United States)

    2005-02-06T23:59:59.000Z

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  19. A gas-cooled-reactor closed-Brayton-cycle demonstration with nuclear heating.

    SciTech Connect (OSTI)

    Jablonski, Jennifer A.; Williamson, Joshua J.; Wright, Steven Alan; Dorsey, Daniel John; Brown, Nicholas; Peters, Curtis D.; Lipinski, Ronald J.

    2004-09-01T23:59:59.000Z

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  20. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

  1. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    and Tech- nology Choice in Home Heating and Cooling," LBLTechnology Choice in Home Heating and Cooling" for a more

  2. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

    1997-12-16T23:59:59.000Z

    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

  3. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, Frederick K. (Ballston Spa, NY); Wilkinson, Jay C. (Ballston Spa, NY); Wooding, David R. (Saratoga Springs, NY)

    1997-01-01T23:59:59.000Z

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  4. Proposal for the award of a contract for maintenance work on heating, ventilating and cooling installation and on fluid distribution systems

    E-Print Network [OSTI]

    1985-01-01T23:59:59.000Z

    Proposal for the award of a contract for maintenance work on heating, ventilating and cooling installation and on fluid distribution systems

  5. Study of local heat/mass transfer distributions in multipass channels for turbine blade cooling

    SciTech Connect (OSTI)

    Chandra, P.R.

    1987-01-01T23:59:59.000Z

    The heat transfer and friction characteristics of turbulent air flow in a two-pass square channel were experimentally investigated via the naphthalene sublimation technique. The test section, which consists of two straight square channels joined by a sharp 180/sup 0/ turn, simulates the internal cooling passages of gas-turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The effects of Reynolds number (between 10,000 and 60,000), rib pitch-to-height ratio (P/e = 10 and 20), rib height-to-hydraulic diameter ratio (e/D = 0.063 and 0.094) and rib angle-of-attack (..cap alpha.. = 90/sup 0/, 60/sup 0/ and 45/sup 0/) were studied. The local heat transfer coefficients were measured both on the ribbed side walls and on the smooth side walls along the channel. The friction factors in the before-turn, in-turn, and after-turn regions were also calculated. Average Sherwood number ratios and average friction results were correlated and compared with the published heat transfer and pressure drop data.

  6. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01T23:59:59.000Z

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  7. The Effect of Optimal Tuning of the Heating/Cooling Curve in AHU of HVAC System in Real Practice

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Paper 81, ICEBO 2004 TNO Bouw, The Netherlands Page: 1 of 12 THE EFFECT OF OPTIMAL TUNING OF THE HEATING-/ COOLING CURVE IN AHU OF HVAC SYSTEM IN REAL PRACTISE P.A. (Bert) Elkhuizen(1), J.E. (Jan Ewout) Scholten(1), H.C. (Henk) Peitsman(1... to the settings of the heating/ cooling curve in the central Air Handling Unit?s (AHU?s) of HVAC systems without loss of comfort. In most cases the number of complaints will also be reduced. The method can be used in both new and existing buildings...

  8. The Effect of Optimal Tuning of the Heating/Cooling Curve in AHU of HVAC System in Real Practice 

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Paper 81, ICEBO 2004 TNO Bouw, The Netherlands Page: 1 of 12 THE EFFECT OF OPTIMAL TUNING OF THE HEATING-/ COOLING CURVE IN AHU OF HVAC SYSTEM IN REAL PRACTISE P.A. (Bert) Elkhuizen(1), J.E. (Jan Ewout) Scholten(1), H.C. (Henk) Peitsman(1... to the settings of the heating/ cooling curve in the central Air Handling Unit?s (AHU?s) of HVAC systems without loss of comfort. In most cases the number of complaints will also be reduced. The method can be used in both new and existing buildings...

  9. Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems

    SciTech Connect (OSTI)

    Freeman, T.L. (ed.)

    1981-03-01T23:59:59.000Z

    A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

  10. Energy Star Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR Appliances

    E-Print Network [OSTI]

    Energy Star® Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR® Appliances ENERGY STAR®-labeled appliances save you money by using less electricity and water than other appliances. Better appliance energy efficiency comes from quality materials and technologically advanced materials. Although energy efficient

  11. Incorporating Experience Curves in Appliance Standards Analysis

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2012-01-01T23:59:59.000Z

    appliance price projections than the assumption-basedrepresentative projection of future prices than the constant

  12. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    E-Print Network [OSTI]

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01T23:59:59.000Z

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  13. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07T23:59:59.000Z

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  14. Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe

    E-Print Network [OSTI]

    McCarthy, Matthew

    We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

  15. Laser-controlled vibrational heating and cooling of oriented H This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Thumm, Uwe

    Laser-controlled vibrational heating and cooling of oriented H + 2 molecules This article has been-controlled vibrational heating and cooling of oriented H+ 2 molecules Thomas Niederhausen1, Uwe Thumm2 and Fernando Mart-second infrared control-laser pulses. For our three-dimensional calculations, we use infrared laser pulses of 800

  16. Materials Reliability Program: Development of a New Process for Calculating RPV Heat-Up and Cool-Down Curves - Proof of Concept

    SciTech Connect (OSTI)

    M. EricksonKirk

    2005-04-30T23:59:59.000Z

    A strategy and framework were developed for incorporating best-estimate, fracture toughness models and methodologies into procedures for fracture safety assessment of nuclear RPVs during normal heat-up and cool-down operations. The process included detailed process flow diagramming to identify all details of the current process for obtaining heat-up and cool-down curves.

  17. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect (OSTI)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01T23:59:59.000Z

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  18. Indoor design condition and the cooling load calculation

    SciTech Connect (OSTI)

    Sun, T.Y. [Sun (Tseng-Yao), Rancho Palos Verde, CA (United States)

    1997-12-01T23:59:59.000Z

    Cooling load calculation involves two steps. The first is to determine the basic building load. This consists of external loads through the building envelope and internal loads from people, lights, appliances, and other heat sources. The required supply air quantity for each conditioned space generally is determined in the first step. This is because each relates only to the coil leaving and required room dry bulb temperatures (unless reheat is required to control the humidity level in the conditioned space). The second step, after completing the above, is to calculate the system cooling load. This step adapts the selected air distribution system to the building load and involves the introduction of the required outdoor air volume into the air conditioning system for ventilation. Proper psychrometric analysis is required to calculate the entering and leaving wet bulb conditions of the air passing through the cooling coil. These, together with the corresponding dry bulb temperatures, will determine the system cooling load.

  19. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14T23:59:59.000Z

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  20. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    energy market penetration for passive solar heating systemsMarket field test the feasibility of passive solar heating andand market aggregation). Technology development for passive solar heating and

  1. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    are conventional air conditioning and heat pump, given thein heat pump alternative Dummy for oil forced air choiceair choice Dummy for electric baseboard choice Dummy for heat pump

  2. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    air choice elec forced air choice heat pump choice elecwith ac elecforced air, with ac heat pump elec baseboard,central air conditioning (including heat pumps), and eight

  3. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15T23:59:59.000Z

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  4. Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant

    SciTech Connect (OSTI)

    Faletti, D.W.

    1981-03-01T23:59:59.000Z

    Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

  5. Local heat transfer and film effectiveness of a film cooled gas turbine blade tip

    E-Print Network [OSTI]

    Adewusi, Adedapo Oluyomi

    1999-01-01T23:59:59.000Z

    Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

  6. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andtechnology for both improving occupants’ thermal comfort and simultaneously reducing buildings’ heating and

  7. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    all zones equally. Remote heating systems can be designed toremote from the building envelope proper. South wall heating

  8. Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards Environmentally Friendly Seawater Cooling Systems

    E-Print Network [OSTI]

    Binmahfouz, Abdullah

    2012-10-19T23:59:59.000Z

    FOR SEAWATER-COOLED POWER AND DESALINATION PLANTS....................................................... 127 5.1 Overview .............................................................................................. 127 5.2 Introduction... 5.2 Representation of a Once-Thorough Cooling System................................ 141 5.3 An Overall Representation of the Power/Desalination Plant ..................... 152 5.4 The Cooling System for the Case Study...

  9. District Heating and Cooling Technology Development Program: Phase 2, Investigation of reduced-cost heat-actuated desiccant cooling systems for DHC applications. Final report, August 20, 1990--January 1, 1992

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1992-02-01T23:59:59.000Z

    A detailed assessment has been completed of the use of desiccant-based customer-sited heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that introduction of a reduced-cost desiccant cooling system would result in widespread market penetration. This program consisted of three principal components: a market study of existing and future reduced-cost liquid desiccant cooling (LDC) systems; an examination of the installed costs of these existing and reduced-cost LDC systems; and four detailed case studies. Both the installed cost and equivalent chilled water cost of existing large LDC systems were found to be quite competitive with district chilled water, while the high capital cost of small LDC systems made them more expensive than district chilled water. Potential total system sales in this existing large-scale LDC market are quite low, since most of the market for DHC space conditioning is in smaller equipment sizes. Cost savings realized from producing a reduced-cost LDC system would result in small LDC systems (sized well below 6,000 cfm) becoming competitive with the current range of district chilled water costs.

  10. Identification of Convection Heat Transfer Coefficient of Secondary Cooling Zone of CCM based on Least Squares Method and Stochastic Approximation Method

    E-Print Network [OSTI]

    Ivanova, Anna

    2010-01-01T23:59:59.000Z

    The detailed mathematical model of heat and mass transfer of steel ingot of curvilinear continuous casting machine is proposed. The process of heat and mass transfer is described by nonlinear partial differential equations of parabolic type. Position of phase boundary is determined by Stefan conditions. The temperature of cooling water in mould channel is described by a special balance equation. Boundary conditions of secondary cooling zone include radiant and convective components of heat exchange and account for the complex mechanism of heat-conducting due to airmist cooling using compressed air and water. Convective heat-transfer coefficient of secondary cooling zone is unknown and considered as distributed parameter. To solve this problem the algorithm of initial adjustment of parameter and the algorithm of operative adjustment are developed.

  11. GE Appliances: Order (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with General Electric Appliances after finding GE Appliances had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  12. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC Conversion Loss Savings of Appliances Running on DirectConversion Loss Savings of Appliances Running on Direct DCrunning on AC and, in column B, the avoided AC-DC conversions losses

  13. Cooling System Basics | Department of Energy

    Energy Savers [EERE]

    Homes & Buildings Space Heating & Cooling Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings...

  14. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01T23:59:59.000Z

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  15. Proposal for the Award of a Contract for the Heating, Ventilation and Cooling Installations for the LHC Surface Buildings

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    This document concerns the award of a contract for the heating, ventilation and cooling installations for the LHC surface buildings. Following a market survey carried out among 80 firms in fifteen Member States, a call for tenders (IT-2524/ST/LHC) was sent on 14 January 1999 to four firms and five consortia, two consisting of three firms and three consisting of two firms, in five Member States. By the closing date, CERN had received five tenders. The Finance Committee is invited to agree to the negotiation of a contract for the heating, ventilation and cooling installations for the LHC surface buildings with the consortium DSD (DE), AIR ET CHALEUR (BE) and SPIE TRINDEL (FR) for a total amount not exceeding 14 500 000 Swiss francs, not subject to revision until 31 December 2001. The consortium has announced that the work will be distributed as follows: DSD (DE) 67% - Air et Chaleur (BE) 21% - Spie Trindel (FR) 12%.

  16. CSU Solar Housee III solar heating and cooling system performance. Annual report: technical summary, 1 October 1978-30 September 1979

    SciTech Connect (OSTI)

    Ward, D.S.; Ward, J.C.; Oberoi, H.S.

    1980-10-01T23:59:59.000Z

    The objective of this study was to test and evaluate the practicality of an integrated flat-plate state-of-the-art liquid-heating solar collector and absorption cooling system installed on Colorado State University (CSU) Solar House III. This objective was accomplished by designing and installing a complete solar heating and cooling system (including appropriate data acquisition equipment and instrumentation), performing a detailed analysis and evaluation of all aspects of the solar system, and comparing the seasonal performance of the system with two other solar heating and cooling systems installed in adjacent buildings with virtually identical thermal characteristics.

  17. Appliance Standards and Rulemaking Federal Advisory Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  18. Appliance Standards and Rulemaking Federal Advisory Committee...

    Energy Savers [EERE]

    of the National Energy Laboratories Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

  19. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    subcooling vol volumetric w water 1. Context and objectives Nowadays, global warming being a major concern and the large temperature glide at heat rejection used for DHW production. Keywords: design, simulation, heating;2 NOMENCLATURE c relative clearance volume (-) C electricity consumption (Wh) Cp specific heat (J kg-1 K-1 ) h

  20. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

    1983-01-01T23:59:59.000Z

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  1. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

  2. Impingement cooling and heat transfer measurement using transient liquid crystal technique 

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01T23:59:59.000Z

    is used in this study to obtain the detailed heat transfer coefficient. Results show that a higher Reynolds number increases heat transfer over the entire impingement target surface. The flow exit orientation with crossflow affects the heat transfer...

  3. Modeling of GE Appliances: Final Presentation

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31T23:59:59.000Z

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  4. air-cooled heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 66 Dealing with...

  5. Hot gaseous atmospheres in galaxy groups and clusters are both heated and cooled by X-ray cavities

    E-Print Network [OSTI]

    Brighenti, Fabrizio; Temi, Pasquale

    2015-01-01T23:59:59.000Z

    Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. However, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, $\\sim 10^8-10^9$ yrs, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the h...

  6. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26T23:59:59.000Z

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  7. Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2010-12-01T23:59:59.000Z

    Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber. The low sensitivity of the autoignition reactions to variations of the local fuel concentration allows the temperature variations to govern the combustion event. This results in a sequential autoignition event from leaner and hotter zones to richer and colder zones, lowering the overall combustion rate compared to operation with a uniform fuel/air mixture. The amount of partial fuel stratification was varied by adjusting the fraction of fuel injected late to produce stratification, and also by changing the timing of the late injection. The experiments show that a combination of 60-70% premixed charge and injection of 30-40 % of the fuel at 80{sup o}CA before TDC is effective for smoothing the HRR. With CA50 held fixed, this increases the burn duration by 55% and reduces the maximum pressure-rise rate by 40%. Combustion stability remains high but engine-out NO{sub x} has to be monitored carefully. For operation with strong reduction of the peak HRR, ISNO{sub x} rises to around 0.20 g/kWh for an IMEP{sub g} of 440 kPa. The single-cylinder HCCI research engine was operated naturally aspirated without EGR at 1200 rpm, and had low residual level using a CR = 14 piston.

  8. THE CHANDRA DEEP PROTOCLUSTER SURVEY: Ly{alpha} BLOBS ARE POWERED BY HEATING, NOT COOLING

    SciTech Connect (OSTI)

    Geach, J. E.; Alexander, D. M.; Lehmer, B. D.; Matsuda, Y. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smail, Ian; Bower, R. G. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chapman, S. C. [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Scharf, C. A.; Bauer, F. E.; Basu-Zych, A. [Columbia Astrophysics Laboratory, Columbia University, Pupin Laboratories, 550 West 120th Street, Room 1418, New York, NY 10027 (United States); Ivison, R. J. [SUPA, Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Volonteri, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Yamada, T. [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Blain, A. W. [Department of Astronomy, California Institute of Technology, MC 105-24, 1200, East California Boulevard, Pasadena, CA 91125 (United States)], E-mail: j.e.geach@durham.ac.uk

    2009-07-20T23:59:59.000Z

    We present the results of a 400 ks Chandra survey of 29 extended Ly{alpha} emitting nebulae (Ly{alpha} Blobs, LABs) in the z = 3.09 protocluster in the SS A22 field. We detect luminous X-ray counterparts in five LABs, implying a large fraction of active galactic nuclei (AGN) in LABs, f{sub AGN} = 17{sup +12}{sub -7}% down to L{sub 2-32keV} {approx} 10{sup 44} erg s{sup -1}. All of the AGN appear to be heavily obscured, with spectral indices implying obscuring column densities of N{sub H} > 10{sup 23} cm{sup -2}. The AGN fraction should be considered a lower limit, since several more LABs not detected with Chandra show AGN signatures in their mid-infrared (mid-IR) emission. We show that the UV luminosities of the AGN are easily capable of powering the extended Ly{alpha} emission via photoionization alone. When combined with the UV flux from a starburst component, and energy deposited by mechanical feedback, we demonstrate that 'heating' by a central source, rather than gravitational cooling is the most likely power source of LABs. We argue that all LABs could be powered in this manner, but that the luminous host galaxies are often just below the sensitivity limits of current instrumentation, or are heavily obscured. No individual LABs show evidence for extended X-ray emission, and a stack equivalent to a {approx}>9 Ms exposure of an average LAB also yields no statistical detection of a diffuse X-ray component. The resulting diffuse X-ray/Ly{alpha} luminosity limit implies there is no hot (T {approx}> 10{sup 7} K) gas component in these halos, and also rules out inverse Compton scattering of cosmic microwave background photons, or local far-IR photons, as a viable power source for LABs.

  9. Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser

    E-Print Network [OSTI]

    Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

    1981-01-01T23:59:59.000Z

    This paper describes an EPRI-funded experimental evaluation of advanced air-cooled ammonia condensers for a phase. Change dry/wet cooling system for power plants. Two condenser surfaces with different air-side augmentation were tested in an ammonia...

  10. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part One: Basic Structure and Characteristics Analysis

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01T23:59:59.000Z

    An AHU's energy performance is greatly influenced by its heating/cooling coil energy performance, which is also greatly influenced by the different kinds of control methodologies such as PID control and fuzzy logic control. The conventional...

  11. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

  12. Thermal mass assessment: an explanation of the mechanisms by which building mass influences heating and cooling energy requirements

    SciTech Connect (OSTI)

    Childs, K.W.; Courville, G.E.; Bales, E.L.

    1983-09-01T23:59:59.000Z

    The influence that building mass has on energy consumption for heating and cooling has been the subject of some controversy. This controversy is, in part, due to a lack of understanding of the heat transfer mechanics occurring within a building and of how they affect energy usage. This report offers a step-by-step development of the principles of heat transfer in buildings as they pertain to thermal mass. The report is targeted for persons who are unfamiliar with the topic of thermal mass, but who possess some technical background. It is concluded that for the mass of a building to reduce energy usage, the building must undergo alternating periods of net energy gain and loss. In other words, during the heating season the indoor temperature must at times float above the thermostat set point temperature to reduce energy consumption. During the cooling season, the indoor temperature must occasionally drop below the set point temperature. Other issues addressed include the effects of mass on peak loads, equipment cycling, thermostat setback, and comfort. Strategies to maximize benefits of mass are discussed.

  13. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    62440 Appliances, Lighting, Electronics, and MiscellaneousAppliances, Lighting, Electronics, and Miscellaneoususes (appliances, lighting, electronics, and miscellaneous

  14. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  15. A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London

    SciTech Connect (OSTI)

    Kolokotroni, Maria; Bhuiyan, Saiful [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge (United Kingdom); Davies, Michael; Croxford, Ben; Mavrogianni, Anna [The Bartlett School of Graduate Studies, University College London (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found that site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)

  16. Municipal District Heating and Cooling Co-generation System Feasibility Research 

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01T23:59:59.000Z

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  17. Design of compact intermediate heat exchangers for gas cooled fast reactors

    E-Print Network [OSTI]

    Gezelius, Knut, 1978-

    2004-01-01T23:59:59.000Z

    Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

  18. Development of an air-cooled, loop-type heat pipe with multiple condensers

    E-Print Network [OSTI]

    Kariya, H. Arthur (Harumichi Arthur)

    2012-01-01T23:59:59.000Z

    Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

  19. Municipal District Heating and Cooling Co-generation System Feasibility Research

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01T23:59:59.000Z

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  20. Appliance Standard Program - The FY 2003 Priority -Setting Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Issuance: Energy Conservation Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and...

  1. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01T23:59:59.000Z

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  2. Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.

    2006-01-01T23:59:59.000Z

    With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

  3. Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards Environmentally Friendly Seawater Cooling Systems 

    E-Print Network [OSTI]

    Binmahfouz, Abdullah

    2012-10-19T23:59:59.000Z

    the heat exchanger tubes in the system. In some instances, even a 250 micrometer thickness of fouling film can reduce the heat exchanger's heat transfer coefficient by 50 percent. On the other hand, macrofouling is the blockage caused by relatively large...

  4. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance 

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01T23:59:59.000Z

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  5. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01T23:59:59.000Z

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  6. Modeled and measured effects of compressor downsizing in an existing air conditioner/heat pump in the cooling mode

    SciTech Connect (OSTI)

    Levins, W.P.; Rice, C.K.; Baxter, V.D.

    1996-05-01T23:59:59.000Z

    It is not uncommon to find oversized central air conditioners in residences. HVAC contractors sometimes oversize central air conditioners for one reason or another--some to the point that they may be 100% larger than needed to meet the load. Retrofit measures done to improve house envelope and distribution system efficiency also contribute to HVAC oversizing, as they reduce house heating and cooling loads. Proper sizing of an air conditioner or heat pump allows more efficient operation and provides a more comfortable environment than a highly oversized unit. Another factor that lowers operating efficiency is an improper refrigerant charge. Field inspections have revealed that about half of the units checked were not properly charged. An option available to homeowners with oversized air conditioners is to replace the existing compressor with a smaller, more efficient compressor, rather than purchasing a new, smaller unit. Such a retrofit may be economically justified, especially during a compressor failure, provided the oversizing of the existing unit is not too great. A used, 15-year old, single-package heat pump with a capillary tube expansion device on the indoor coil was purchased and tested in a set of environmental chambers to determine its cooling performance at various conditions. The system was also modeled to estimate its existing performance, and that with two different types of retrofitted state-of-the-art (SOA) efficient compressors with about 30% less capacity than the original compressor. This reduced the overall system cooling capacity by about 25%. Modeling estimated that the retrofit would increase system EER at 95 F by 30%, SEER by 34%, and reduce power demand by 39% compared to the existing unit. Reduced cycling losses account for the higher increase in SEER.

  7. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01T23:59:59.000Z

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  8. Turbulent heat transfer and friction in a segmental channel that simulates leading-edge cooling channels of modern turbine blades

    E-Print Network [OSTI]

    Spence, Rodney Brian

    1995-01-01T23:59:59.000Z

    TURBULENT HEAT TRANSFER AND FRICTION IN A SEGMENTAL CkhQPKL THAT SIMULATES LEADING-EDGE COOLING C~LS OF MODERN TURBINE BLADES A Thesis by RODNEY BRIAN SPENCE Submitted to the Office of Graduate Studies of Texas A&M University m partial... Thesis by RODNEY BRIAN SPENCE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: S. C. Lau (Chair of Committee...

  9. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  10. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    concepts for space heating using remote col- lection withheating systems in terms of the fan owing matrix: DIRECT INDIRECT ISOLATED SOUTH APERTURE SHADED ROOF APERTURE ROOF APERTURE REMOTE

  11. Heat transfer in the trailing edge cooling channels of turbine blades

    E-Print Network [OSTI]

    Kumaran, T. K.

    1989-01-01T23:59:59.000Z

    Foundation and from the funded research contract (RF5810) through Dr. Han. NOMENCLATURE A area of heat transfer in the pin fin channel AI, area of heat transfer in the long ejection segments Az cross-sectional area, of trailing edge ejection holes A..., ?minimum flow cross-sectional area in the pin fin channel C'~ discharge coefficient Cp specific heat of air 1 diameter of trailing edge ejection holes D diameter of pins f overall friction factor h?heat transfer coefficient in the n th segment...

  12. Title and author(s) REMI/HEAT COOL A COMPUTER PROGRAMME FOR CALCULATION

    E-Print Network [OSTI]

    -Hydraulic Model 5 2.1. The Energy Production 5 2.1.1. The Decay Heat 5 2.1.2. Metal-Water Reaction 5 2 of the cross section in the down- comer region. The energy production in the fuel is the decay heat, specified

  13. Distinctive Appliances: Proposed Penalty (2014-CE-23020)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Distinctive Appliances Distributing Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  14. Smart Domestic Appliances Provide Flexibility for Sustainable...

    Open Energy Info (EERE)

    benefits and difficulties associated with smart grid appliances. The presenter discusses demand response and load management and how users of smart grid can benefit renewable...

  15. Appliance and Equipment Energy Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  16. Earthjustice, Appliance Standards Awareness Project, Natural...

    Energy Savers [EERE]

    Council - Comments in response to DOE solicitation of views on the implementation of test procedure waivers for large capacity clothes washers Earthjustice, Appliance Standards...

  17. GE Appliances: Proposed Penalty (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that General Electric Appliances failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  18. Sideband cooling an ion to the quantum ground state in a Penning trap with very low heating rate

    E-Print Network [OSTI]

    J. F. Goodwin; G. Stutter; R. C. Thompson; D. M. Segal

    2014-08-23T23:59:59.000Z

    We report the laser cooling of a single $^{40}\\text{Ca}^+$ ion in a Penning trap to the motional ground state in one dimension. Cooling is performed in the strong binding limit on the 729-nm electric quadrupole $S_{1/2}\\leftrightarrow D_{5/2}$ transition, broadened by a quench laser coupling the $D_{5/2}$ and $P_{3/2}$ levels. We find the final phonon number to be $\\bar{n}=0.014\\pm0.009$. We measure the heating rate of the trap to be very low with $\\dot{\\bar{n}}=2.5\\pm 0.3\\textrm{s}^{-1}$ and a scaled spectral noise density of $\\omega S_{E}(\\omega)\\sim1.6^{-8}\\textrm{V}^2\\textrm{m}^{-2}\\textrm{Hz}^{-1}\\textrm{s}^{-1}$, which is consistent with the large ion-electrode distance. We perform Rabi oscillations on the sideband-cooled ion and observe a coherence time of $0.7\\pm 0.1\\textrm{ms}$, noting that the practical performance is currently limited by the intensity noise of the probe laser.

  19. Turbine Vane Film Cooling and Internal Rotating Coolant Passage Heat Transfer

    E-Print Network [OSTI]

    Yang, Shangfeng

    2014-12-17T23:59:59.000Z

    foreign gases N2, CO2 and Argon/ SF6 mixture are selected to study the effects of three coolant-to-mainstream density ratios, 1.0, 1.5, and 2.0 on film cooling. Four averaged coolant blowing ratios in the range, 0.7, 1.0, 1.3 and 1.6 are investigated...

  20. Appliance energy efficiency in new home construction. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-30T23:59:59.000Z

    A survey of 224 builders was conducted to which 160 builders responded. Each respondent completed between one and seven separate questionnaires. Each of the seven questionnaires were designed to collect information about one type of equipment or major appliance. These are: heat pump; heating system; air conditioner; domestic water heater; dishwasher; range; and refrigerator. Analysis of the resulting 406 questionnaires indicated that builders were primarily responsible for brand selection. These choices were made primarily without regard for the energy efficiency of the product. A similar apparent lack of consideration of energy efficiency during brand and model selection was found among home buyers and specialized subcontractors.

  1. Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy

    E-Print Network [OSTI]

    Hughes, T M; Schirm, M R P; Parkin, T J; De Looze, I; Wilson, C D; Bendo, G J; Baes, M; Fritz, J; Boselli, A; Cooray, A; Cormier, D; Karczewski, O ?; Lebouteiller, V; Lu, N; Madden, S C; Spinoglio, L; Viaene, S

    2014-01-01T23:59:59.000Z

    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 $\\mu$m, [NII] 122, 205 $\\mu$m, [OI] 63, 145 $\\mu$m, and [OIII] 88 $\\mu$m. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ ratio, varies from a mean of 3.5$\\times$10$^{-3}$ in the centre up to 8$\\times$10$^{-3}$ at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ but constant ([CII]+[OI]63)/$F_{\\mathrm{PAH}}$ with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$. Resolving details on physical scales of ~0.6 kpc, a p...

  2. Appliance remanufacturing and life cycle energy and economic savings

    E-Print Network [OSTI]

    Boustani, Avid

    In this paper we evaluate the energy and economic consequences of appliance remanufacturing relative to purchasing new. The appliances presented in this report constitute major residential appliances: refrigerator, dishwasher, ...

  3. Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton

    E-Print Network [OSTI]

    Rocco Piffaretti; Jelle Kaastra

    2006-05-15T23:59:59.000Z

    We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

  4. THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    high heat fluxes. The high temperature helium can then be used to power a gas turbine for high the high efficiency power conversion available from new generation gas turbines. It is envisioned

  5. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

  6. Near-wall reaction effects on film-cooled surface heat transfer

    E-Print Network [OSTI]

    Kirk, Daniel Robert, 1975-

    2003-01-01T23:59:59.000Z

    As commercial and military aircraft engines approach higher total temperatures and increasing overall fuel-to-air ratios, there exists a potential for significant heat release to occur in the turbine if energetic species ...

  7. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations 

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01T23:59:59.000Z

    with austempering cycles have been conducted with excellent results. A unique fluid bed bath which is used for preheating, weld positioning and post-heating of castings has also been produced. Substantial energy and material handling savings have been obtained...

  8. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    for thermal comfort. Energy and Buildings 2002;34:593-9.IEA. Technology Roadmap. Energy-efficient Buildings: HeatingH, Arens E, Webster T. Energy Savings from Extended Air

  9. State Energy Efficient Appliance Rebate Program (SEEARP) American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 State Energy Efficient Appliance...

  10. Sales Tax Holiday for Energy-Efficient Appliances

    Broader source: Energy.gov [DOE]

    In November 2007, Maryland enacted legislation creating a sales and use tax "holiday" for certain energy-efficient appliances, beginning in 2011. Under the law, qualifying appliances purchased...

  11. Four-County EMC- Residential Energy Efficiency Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Four-County EMC offers its customers $50 rebates for purchasing certain Energy Star appliances. Eligible appliances include refrigerators, dishwashers, clothes washers and freezers. The rebates are...

  12. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect (OSTI)

    Clifford, J E; Diegle, R B

    1980-04-11T23:59:59.000Z

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  13. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    embedded heating and cooling systems. Brussels, Belgium,of radiant heating/cooling systems for non-residentalSimulations of floor cooling system capacity." Applied

  14. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofof radiant heating and cooling systems versus air systems,Gain on Radiant Floor Cooling System Design, in: Proceedings

  15. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  16. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  17. MC Appliance: Order (2012-CE-1508)

    Broader source: Energy.gov [DOE]

    DOE ordered CNA International Inc. d/b/a MC Appliance Corporation to pay a $8,000 civil penalty after finding MC Appliance had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

  18. APPLIANCE EFFICIENCY REGULATIONS FOR REFRIGERATORS AND FREEZERS

    E-Print Network [OSTI]

    CENTRAL AIR CONDITIONERS GAS SPACE HEATERS WATER HEATERS PLUMBING FITTINGS FLUORESCENT LAMP BALLASTS LUMINAIRES GAS COOKING APPLIANCES AND GAS POOL HEATERS SEPTEMBER 1992 #12;TABLE OF CONTENTS APPLIANCE) Gas space heaters, excluding the following types: (1) gravity type central furnaces; (2) heaters

  19. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in whichGCHP program was developed by a previous MS student to optimize the design of hybrid systems. The current design changes when actual yearly weather data are used and develop a means to increase the optimization

  20. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01T23:59:59.000Z

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  1. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01T23:59:59.000Z

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  2. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  3. Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer

    E-Print Network [OSTI]

    Narzary, Diganta P.

    2010-10-12T23:59:59.000Z

    thermal and mechanical stresses. This heat-up can be reduced by: (i) applying thermal barrier coating (TBC) on the surface, and (ii) providing coolant to the surface by injecting secondary air discharged from the compressor. However, as the bleeding off...

  4. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    SciTech Connect (OSTI)

    Bragg-Sitton, S.M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Godfroy, T.J. [Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2004-02-04T23:59:59.000Z

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

  5. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  6. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  7. Effect of nonuniform inlet air flow on air-cooled heat-exchanger performance

    SciTech Connect (OSTI)

    Soler, A.I.; Singh, K.P.; Ng, T.L.

    1983-01-01T23:59:59.000Z

    Blowers used to propel air across tube bundles generate a non-uniform flow field due to their construction details. A formalism to evaluate heat transfer degradation due to non-uniform airflow has been developed. Certain symmetry relations for cross flowheat exchangers, heretofore unavailable in the open literature, have been derived. The solution presented here was developed to model a 4 tube pass air blast heat exchanger for the Clinch River Breeder Reactor Plant Project. This case is utilized to show how this method can be used as a design tool to select the most suitable blower construction for a particular application. A numerical example is used to illustrate the salient points of the solution.

  8. Novel Controls for Time-Dependent Economic Dispatch of Combined Cooling Heating and Power (CCHP)

    SciTech Connect (OSTI)

    Samuelsen, Scott; Brouwer, Jack

    2013-08-31T23:59:59.000Z

    The research and development effort detailed in this report directly addresses the challenge of reducing U.S. industrial energy and carbon intensity by contributing to an increased understanding of potential CCHP technology, the CCHP market and the challenges of widespread adoption. This study developed a number of new tools, models, and approaches for the design, control, and optimal dispatch of various CCHP technologies. The UC Irvine campus served as a ‘living laboratory’ of new CCHP technologies and enabled the design and demonstration of several novel control methods. In particular, the integration of large scale thermal energy storage capable of shifting an entire day of cooling demand required a novel approach to the CCHP dispatch optimization. The thermal energy storage proved an economically viable resource which reduced both costs and emissions by enabling generators and chillers to operate under steady high efficiency conditions at all times of the day.

  9. Film cooling and heat transfer of steam through an inclined injection hole

    E-Print Network [OSTI]

    Chen, Hun Way

    1983-01-01T23:59:59.000Z

    transfer coefficient at blowing rate M 0. 5 . . . . . . . . . . . . . . . . 37 NOMENCLATURE Symbol Description area circumference of the cross sectional area Cp D E, , Es, Es drag coefficient specific heat diameter of the injection hole minor... the experimental data at low blowing rates; however, the extension to higher injection rates is not correct, and an injected fluid other than air is not discussed. Goldstein [2] reviewed a number of semi- empirical correlations and predictions for two...

  10. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-09-01T23:59:59.000Z

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  11. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    SciTech Connect (OSTI)

    Rodolfo Vaghetto; Luigi Capone; Yassin A. Hassan

    2011-05-31T23:59:59.000Z

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  12. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect (OSTI)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15T23:59:59.000Z

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  13. Experimental study of gas turbine blade film cooling and internal turbulated heat transfer at large Reynolds numbers

    E-Print Network [OSTI]

    Mhetras, Shantanu

    2009-06-02T23:59:59.000Z

    on Blade Span under No Wake .....52 3.5.2. Showerhead Film Cooling Effectiveness under No Wake.................................56 3.5.3. Film Cooling Effectiveness on Blade Span without Showerhead Ejection and without Wake... ..............................................................................................59 3.5.4. Film Cooling Effectiveness Distribution from Individual Row Ejection..........62 3.5.5. Effect of Stationary, Unsteady Wake on Full Coverage Film Cooling Effectiveness...

  14. Mon. Not. R. Astron. Soc. 371, 477483 (2006) doi:10.1111/j.1365-2966.2006.10680.x Magnetars as cooling neutron stars with internal heating

    E-Print Network [OSTI]

    Gnedin, Oleg Y.

    2006-01-01T23:59:59.000Z

    the effects of magnetic fields on thermal conduction and neutrino emission. In the blanket- ing envelope We study thermal structure and evolution of magnetars as cooling neutron stars with a phe as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent

  15. Market assessment for active solar heating and cooling products. Category B: A survey of decision makers in the HVAC market place. Survey instruments

    SciTech Connect (OSTI)

    Lilien, G. L.; Johnston, P. E.

    1980-09-01T23:59:59.000Z

    Telephone screener questionnaires and mail-out questionnaires for marketing surveys for solar heating and cooling equipment are presented. Questionnaires are included for the residential segment, industrial segment, HVAC professionals segment, builder/developer segment, and the commercial segment. No results are reported. (WHK)

  16. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    effect on the market for space heating technologies. EPRIeffect on the market for space heating technologies, makingpredicted market shares for three different heating/cooling

  17. The effect of injection hole geometry on flat plate film cooling and heat transfer

    E-Print Network [OSTI]

    Madsen, Eric Perry

    1994-01-01T23:59:59.000Z

    conducted at 50 000 Reynolds number , wi th bo th a ir and C02 inject ion and at f our b lowing ratios for r\\ and a l l five b lowing ratios for h . Each slot con f igurat ion was designed to give a total cross-sectional area equal to that of the holes... Averaged Heat Trans fer Coeff icient Ratio for 45? Hole Injection 20 approx imate ly 1.05. In contrast to 0? hole injection, 45? hole inject ion projects a larger cross-sect ional area to the mainf low, wh i ch results i n h igher turbu lence...

  18. An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling

    E-Print Network [OSTI]

    Choi, Jungho

    2005-02-17T23:59:59.000Z

    and turbulence intensity, respectively. The cascade inlet Reynolds number based on blade chord length was varied from 15,700 to 105,000, and the Strouhal number was varied from 0 to 2.96 by changing the rotating wake passing frequency (rod speed) and cascade... on the trailing edge (m) d rotating rod diameter e rib height h local heat transfer coefficient ( K2 ) k thermal conductivity of air at C (0.02598 mKW /) M Blowing ratio ( m c V V ) N RPM of rotating rod Nu local Nusselt number based on blade...

  19. Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment

    E-Print Network [OSTI]

    Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

    2004-01-01T23:59:59.000Z

    are 100 mm (GW 10 K) and 145 mm (85 mm GW and 60 mm styrol-sponge), respectively. Figure 2 shows the structure of the floor. Low-E pair glasses, whose overall heat transfer coefficient is 2.7 W/m2K, glaze all windows and the solar transmittance is 0... of the water temperature is easy while water flow rate is difficult. 5.5 Usage of Resident 1) design intent and commissioned items: solar shading is controlled by suitably operating the electrically driven blind installed on the outside, which also serves...

  20. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  1. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    SciTech Connect (OSTI)

    Al-Sallal, K.A.

    1999-07-01T23:59:59.000Z

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy cost in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.

  2. Electrical Appliances Students may use clocks, sound equipment, computers, electric razors, hair dryers,

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    with a heating coil *Torchiere type lamps with a halogen bulb, and other lamps with a halogen bulb greater than there is specific UL approval for a higher wattage. Violators of any of the above policies will be charged $50, Prohibited Appliances, and Halogen Torchiere Lamps 1st offense: $50.00 fine and the student will be called

  3. A Texas Study of the Effects of the National Appliance Energy Conservation Act of 1987

    E-Print Network [OSTI]

    Bachmeier, R.

    1987-01-01T23:59:59.000Z

    on the amount of energy which can be consumed by major new household appliances. The efficiency standards mandated by the NAECA will be phased in between 1988 and 1993 and will focus on space heating equipment, air conditioners, water heaters, refrigerators...

  4. West Virginia Consumers Have Appliance Rebate 'Trifecta'

    Broader source: Energy.gov [DOE]

    West Virginians didn’t waste any time in taking advantage of the Energy Efficient Appliance Rebate Program. Only three months in, and almost half of the available $1.7 million is already spoken for.

  5. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    main conclusions about off-grid markets for DC appliances,and power systems. Mature Off-Grid Markets for DC Appliancesapplications include off-grid residential, telecom, remote

  6. 2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY

    E-Print Network [OSTI]

    data, household energy consumption data and weather information to calculate average annual information on appliances, equipment, and general consumption patterns. Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 electric and 10 natural gas

  7. Equator Appliance: ENERGY STAR Referral (EZ 3720)

    Broader source: Energy.gov [DOE]

    DOE referred Equator Appliance clothes washer EZ 3720 to EPA, brand manager of the ENERGY STAR program, for appropriate action after DOE testing revealed that the model does not meet ENERGY STAR requirements.

  8. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  9. MC Appliance: Proposed Penalty (2014-CE-20002)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that MC Appliance Corporation failed to certify residential clothes washers and residential clothes dryers as compliant with the applicable energy conservation standards.

  10. Investigating the use of nanofluids to improve high heat flux cooling systems

    E-Print Network [OSTI]

    Barrett, T R; Flinders, K; Sergis, A; Hardalupas, Y

    2013-01-01T23:59:59.000Z

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrated for nanofluid synthesis and quality assessment, and the fluid sample analysis methods are described. The end results from this long-running experiment are expected to allow an initial assessment of the suitability of nanofluids as coolants in a fusion reactor.

  11. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

  12. Impact of Natural Gas Appliances on Pollutant Levels in California Homes

    E-Print Network [OSTI]

    Mullen, Nasim A.

    2014-01-01T23:59:59.000Z

    35): 5661-67. Impact of Natural Gas Appliances on PollutantO-. ! Natural Gas Appliances on PollutantA! =? >7! =::! Impact of Natural Gas Appliances on Pollutant

  13. State Appliance Standards (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

  14. Non-intrusive appliance monitor apparatus

    DOE Patents [OSTI]

    Hart, George W. (Natick, MA); Kern, Jr., Edward C. (Lincoln, MA); Schweppe, Fred C. (Carlisle, MA)

    1989-08-15T23:59:59.000Z

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each.

  15. Non-intrusive appliance monitor apparatus

    DOE Patents [OSTI]

    Hart, G.W.; Kern, E.C. Jr.; Schweppe, F.C.

    1989-08-15T23:59:59.000Z

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each. 9 figs.

  16. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    61–65° F (16–18°C) cooling supply air temperatures requiredprovide appropriate cooling with supply water no cooler thancirculation of the cooling/heating supply water through the

  17. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31T23:59:59.000Z

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  18. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M. [International Air Technologies, Inc., Savoy, IL (United States); Rymkevich, A.A. [St. Petersburg Academy of Refrigeration and Food Technology (Russian Federation). Dept. of Refrigeration Machines and Air-Conditioning Systems

    1998-12-31T23:59:59.000Z

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  19. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOE Patents [OSTI]

    Schmidt, Mark Christopher (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  20. Super Cool Appliance Design Wins Student Competition | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 Career DaySunShot NewsSunilBowl

  1. Presenting a New (and Cool) Appliance Efficiency Standard | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment DOE-STD-3009-94Committee

  2. Super Cool Appliance Design Wins Student Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy Begins ExtendedSummitBowl City Leads onSuper

  3. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    SciTech Connect (OSTI)

    Beirao, P.; Armus, L. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. N. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Smith, J.-D. T.; Croxall, K. V. [Department of Physics and Astronomy, Mail Drop 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Murphy, E. J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Draine, B. T.; Aniano, G. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolfire, M. G.; Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Crocker, A. F. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Kennicutt, R. C., E-mail: pedro@ipac.caltech.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2012-06-01T23:59:59.000Z

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 {mu}m and [O I]63 {mu}m lines and mid-infrared H{sub 2} emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 {mu}m+[O I]63 {mu}m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 {mu}m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 {mu}m/PAH(5.5-14 {mu}m) is found. PAHs in the ring are responsible for a factor of two more [C II]158 {mu}m and [O I]63 {mu}m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G{sub 0} {approx} 10{sup 2.3} and n{sub H} {approx} 10{sup 3.5} cm{sup -3} in the ring. For these values of G{sub 0} and n{sub H}, PDR models cannot reproduce the observed H{sub 2} emission. Much of the H{sub 2} emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  4. Issues in federal preemption of state appliance energy efficiency regulations

    SciTech Connect (OSTI)

    Fang, J.M.; Balistocky, S.; Schaefler, A.M.

    1982-12-01T23:59:59.000Z

    The findings and conclusions of the analysis of the various issues involved in the federal preemption of state regulations for the DOE no standard rule on covered appliances are summarized. The covered products are: refrigerators, refrigerator-freezers, freezers, clothes dryers, kitchen ranges and ovens, water heaters (excluding heat pump water heaters), room air conditioners, central air conditioners (excluding heat pumps), and furnaces. A detailed discussion of the rationale for the positions of groups offering comment for the record is presneted. The pertinent categories of state and local regulations and programs are explained, then detailed analysis is conducted on the covered products and regulations. Issues relating to the timing of preemption of state regulations are discussed, as well as issues relating to burden of proof, contents of petitions for exemptions from preemption, criteria for evaluating petitions, and procedural and other issues. (LEW)

  5. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    E-Print Network [OSTI]

    Rapp, Vi H.

    2014-01-01T23:59:59.000Z

    and Spillage for Natural-Draft Gas Combustion Appliances:and Spillage for Natural-Draft Gas Combustion Appliances: A

  6. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  7. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  8. Energy Efficient Appliance Sales Soar in North Carolina | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficient Appliance Sales Soar in North Carolina Energy Efficient Appliance Sales Soar in North Carolina July 23, 2010 - 11:00am Addthis Joshua DeLung What does this mean...

  9. Reading Municipal Light Department- Residential ENERGY STAR Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers rebates to residential customers who install Energy Star appliances in eligible homes. The offer is limited to one rebate per appliance or a maximum...

  10. 2012 APPLIANCE EFFICIENCY REGULATIONS Edmund G. Brown Jr., Governor

    E-Print Network [OSTI]

    : Appliance Efficiency Regulations, appliance standards, refrigerators, air conditioners, space heaters, water heaters, pool heaters, pool pumps, electric spas, pool pump motors, plumbing fittings, plumbing fixtures, showerheads, spray valves, faucets, tub spout diverters, water closets, urinals, ceiling fans, ceiling fan

  11. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25T23:59:59.000Z

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  12. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  13. Low-cost Appliance State Sensing for Energy Disaggregation

    E-Print Network [OSTI]

    Wu, Tianji

    2012-01-01T23:59:59.000Z

    and Steven B. Leeb. “Non-intrusive electrical load monitor-in recent years, namely non-intrusive appliance load

  14. Experimental comparison of zone cooling load between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Olesen, Radiant floor cooling systems, ASHRAE Journal, 50 (radiant heating and cooling systems -- Part 2: Determinationradiant heating and cooling systems -- Part 4: Dimensioning

  15. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    Radiant Heating and Cooling Systems. Olesen, B. (2012). "surface heating and cooling systems: . Brussels, Europeanperformance in radiant cooling systems (Babiak, Olesen et

  16. Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China

    SciTech Connect (OSTI)

    Lin, Jiang

    2006-07-10T23:59:59.000Z

    China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

  17. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  18. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  19. Assessment of Literature Related to Combustion Appliance Venting

    E-Print Network [OSTI]

    1 Assessment of Literature Related to Combustion Appliance Venting Systems V.H. Rapp, B.C. Singer., Assessment of Literature Related to Combustion Appliance Venting Systems. LBNL-5798E 3 ABSTRACT In many by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing

  20. Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers

    E-Print Network [OSTI]

    Liu, Yao-Hsien

    2009-05-15T23:59:59.000Z

    The gas turbine blade/vane internal cooling is achieved by circulating the compressed air through the cooling passages inside the turbine blade. Leading edge and trailing edge of the turbine blade are two critical regions which need to be properly...

  1. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    chillers that use waste heat for cooling (see also Stadlerfired natural gas chillers, waste heat or solar heat; •with HX can utilize waste heat for heating or cooling

  2. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofInc, Altanta,GA, 2009. Cooling load differences betweensurface level 24-hour total cooling energy between radiant

  3. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  4. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  5. Results of the Grid Friendly Appliance Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2010-04-14T23:59:59.000Z

    As part of the Pacific Northwest GridWise™ Testbed Demonstration funded by the U.S. Department of Energy and others, Pacific Northwest National Laboratory (PNNL) collaborated with Whirlpool Corporation, Invensys Controls, the Bonneville Power Administration, PacifiCorp, Portland General Electric and several smaller utilities to install 150 new Sears Kenmore clothes dryers and to retrofit 50 existing electric water heaters in homes in Washington and Oregon. Each dryer and water heater was configured to respond to the Grid Friendly™ appliance controller, a small electronic circuit that sensed underfrequency grid conditions and requested that electric load be shed by the appliances. These controllers and appliances were observed for over a year in residences spread over a wide geographic area. The controllers were found to respond predictably and reliably despite their geographic separation. Over 350 minor underfrequency events were observed during the experiment. This paper presents the distributions of these events by season and by time of day. Based on measured load profiles for the dryers and water heaters, the average electrical load that can be shed by each of the two appliance types was estimated by time of day and by season. Battelle Memorial Institute and PNNL have been assembling a suite of grid-responsive functions and benefits that can be achieved through the control of relatively small, distributed loads and resources on a power grid. These controllers should eventually receive acceptance for the opportunities they offer for circuit protection, regulation services, facilitation of demand responsiveness, and even power quality.

  6. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  7. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19T23:59:59.000Z

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  8. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed...

  9. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect (OSTI)

    Brand, L.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  10. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    resistance heating and incandescent lighting, the technologyresistance heating or by DC-favoring heat pump technology (technology (electronic fluorescent and LED). Similarly, heating

  11. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  12. Incorporating Experience Curves in Appliance Standards Analysis

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2012-01-01T23:59:59.000Z

    residential central air condi- tioners, central heat pumps, and furnaces, collectively referred to as heating,

  13. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect (OSTI)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01T23:59:59.000Z

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  14. Prediction of convective heat transfer coefficients and their effects on distortion and mechanical properties of cylinder steel bodies quenched by gas cooling

    SciTech Connect (OSTI)

    Thuvander, A.; Melander, A.; Lind, M.; Lior, N.; Bark, F.H.

    1999-07-01T23:59:59.000Z

    The primary objectives of this study are to model the nature of the complex high-turbulence quenching cooling-gas flow, and to examine its effects on the resulting distortions and mechanical properties of the quenched piece, here bearing steel tubes and solid cylinders. A {kappa}-{epsilon} turbulent flow and heat transfer model adopted was found to predict the convective heat transfer coefficient (h) distribution reasonably well for Reynolds number up to about (0.3)10{sup 6}. At higher Reynolds number (to 10{sup 6}) it still predicts the nature of the flow well, but overpredicts h by up to 100% in the transition zone. The distributions of h around the body surface were used as the boundary condition for computing the temperature distribution history, phase transformations, distortions and mechanical properties of the quenched bodies. Increasing variation in h was found to increase the probability of large out-of-roundness, and nonuniformity in the properties.

  15. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  16. Power electronics cooling apparatus

    SciTech Connect (OSTI)

    Sanger, P.A.; Lindberg, F.A.; Garcen, W.

    2000-01-18T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  17. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect (OSTI)

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31T23:59:59.000Z

    In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the water tanks. The limited simulation of heat transfer in cavities presented in Section 4.0, strongly underscores the need of experimental work to validate CFD codes, and heat transfer correlations for system codes, and to support the analysis and design of the RCCS. Based on the conclusions of the scaling analysis, a schematic that illustrates key attributes of the experiment system is shown in Fig. 4. This system contains the same physical elements as the PBMR RCCS, plus additional equipment to facilitate data gathering to support code validation. In particular, the prototype consists of a series of oval standpipes surrounding the reactor vessel to provide cooling of the reactor cavity during both normal and off-normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is included to quantify the boiling rate, thereby providing additional validation data. This sys

  18. Appliances & Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle ReductionOfficesActive SolarAnnualAppliances &

  19. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  20. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  1. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  2. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  3. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    fraction (SPF) of cooling Supply Plenum SPF heat transfer bythrough the supply ple- Figure 2: Design day cooling loadsupply represent the????????????????????????????????????????????? air temperature, diffuser type and number, room setpoint instantaneous cooling

  4. Heat pump simulation model and optimal variable-speed control for a wide range of cooling conditions

    E-Print Network [OSTI]

    Zakula, Tea

    2010-01-01T23:59:59.000Z

    The steady-state air-to-air heat pump model presented in this thesis was developed from the first principles. The main objective was to develop a heat pump model that can be used as a part of larger simulation models, and ...

  5. Hydrophilic structures for condensation management in refrigerator appliances

    DOE Patents [OSTI]

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21T23:59:59.000Z

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  6. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    SciTech Connect (OSTI)

    Fitzgerald, J.; Bohac, D.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofits including tightening and changes to distribution and ventilation systems to proceed.

  7. City of Tallahassee Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City of Tallahassee Utilities (CTU) offers residential customers rebates for the purchase of ENERGY STAR appliances and heating and cooling equipment. Qualifying appliances include refrigerators,...

  8. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  9. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  10. appliances current situation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for copies of this document are available from: Public Reference Action Final Rule 66 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  11. appliance ownership survey: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 87 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  12. appliance labeling rule: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 54 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  13. appliances maeleudstyr og: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 129 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  14. appliance markettransformation program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 42 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  15. appliance efficiency program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California eScholarship Repository Summary: 2002. Commercial Cooking Appliance Technology Assessment.technology costs reported in Table 1 are not included in these plots...

  16. Appliance Standards Program Schedule - CCE Overview and Update...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting CCE Overview and Update Presenation, dated April 13, 2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05242011 Appliance Standards Program...

  17. Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  18. appliances walking sticks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    themselves and adolescents, children and adolescents have not provided any substantial data. (more) Walton, Daniel K. 2010-01-01 23 Appliance remanufacturing and life cycle...

  19. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities Case study details the U.S. Department of Defense (DOD) Exchange (formerly the Army and Air Force...

  20. Webinar: Appliance Standards and Rulemaking Federal Advisory Committee

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC). For more information, please visit the ASRAC page. 

  1. State Energy Efficient Appliance Rebate Program (SEEARP) reports...

    Open Energy Info (EERE)

    The successes and challenges of SEEARP provide valuable lessons for designing and running a consumer-focused appliance rebate program. In addition to the SEEARP reports...

  2. BSH Home Appliances: Proposed Penalty (2014-CE-23013)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that BSH Home Appliances Corporation failed to certify cooking products as compliant with the applicable energy conservation standards.

  3. T-588: HP Virtual SAN Appliance Stack Overflow

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in HP StorageWorks P4000 Virtual SAN Appliance Software, which can be exploited by malicious people to compromise a vulnerable system.

  4. Buying an Appliance this Holiday Season? ENERGY STAR Products...

    Office of Environmental Management (EM)

    Freezers Room air conditioners Televisions Clothes washers Dishwashers Battery chargers Water heaters Fluorescent lamp ballasts Incandescent reflector lamps If your appliance has...

  5. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  6. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling 

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed... to unpredictable daily habits; for example opening or closing window blinds which have a direct impact on solar gains, or the inconsistent use of lights and office equipment. Tenant influence was also observed in Kaplan et al. (1990a) as reported in Section 2...

  7. Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment

    SciTech Connect (OSTI)

    Kuntysh, V.B.; Fedotova, L.M.

    1983-01-01T23:59:59.000Z

    Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

  8. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    source electric heat-pump water heater is 2.2 9 or greater,other than Heat Pumps Electric Water Heaters FreezersGeothermal Heat Pumps Solar Water Heaters Electric Heat

  9. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  11. Optimization of Cooling Water

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  12. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Links Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Cool Links Los Alamos National Laboratory links Los...

  13. 9th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 9th Semi-Annual Report to Congress on Appliance Energy...

  14. 3rd Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 3rd Semi-Annual Report to Congress on Appliance...

  15. 17TH SEMI-ANNUAL REPORT TO CONGRESS ON APPLIANCE ENERGY EFFICIENCY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TO CONGRESS ON APPLIANCE ENERGY EFFICIENCY RULEMAKINGS - IMPLEMENTATION REPORT: ENERGY CONSERVATION STANDARDS ACTIVITIES 17TH SEMI-ANNUAL REPORT TO CONGRESS ON APPLIANCE ENERGY...

  16. 16th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 16th Semi-Annual Report to Congress on Appliance Energy...

  17. 5th Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 5th Semi-Annual Report to Congress on Appliance...

  18. 7th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 7th Semi-Annual Report to Congress on Appliance Energy...

  19. 14th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy Efficiency Rulemakings Implementation Report: Energy Conservation Standards Activities 14th Semi-Annual Report to Congress on Appliance Energy...

  20. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    E-Print Network [OSTI]

    Rapp, Vi H.

    2014-01-01T23:59:59.000Z

    for Natural-Draft Gas Combustion Appliances: Validatingfor Natural-Draft Gas Combustion Appliances: A Validation ofs ability to predict combustion gas spillage events due to

  1. Data Availability in Appliance Standards and Labeling Program Development and Evaluation

    E-Print Network [OSTI]

    Romankiewicz, John

    2014-01-01T23:59:59.000Z

    by design option) Data Availability and Use InternationallyData Availability in Appliance Standards and Labelingemployer. Data Availability in Appliance Standards and

  2. Trends in the cost of efficiency for appliances and consumer electronics

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2013-01-01T23:59:59.000Z

    appliances and consumer electronics Louis-Benoit Desroches,appliances and consumer electronics have decreased in realappliances and consumer electronics are likely to diminish

  3. U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

    Broader source: Energy.gov (indexed) [DOE]

    7: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

  4. Tips: Shopping for Appliances | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips: Shopping for

  5. Tips: Smart Appliances | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:

  6. Appliance Standards Awareness Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor a Clean EnergyAppliance

  7. Appliance Equipment Standards Northwest Impact Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 TableimpurityAppeals8I.1,,AttachmentAppliance

  8. Appliances and Commercial Equipment Standards: Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance and Equipment Standards Fact

  9. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    decline 0.96?0.86?0.71?0.52? 0.29?0.11?0.01 under ration 0%,20%, 30%, 40%, 50%, 60%, 70%. After 20 years operation, the COP reduce to 3.5 under ration 0%,20%, 30%?this is not energy-saving. Other cases remained at a high value. 3.3 Energy consumption... in Fig.9. Table 2. The system energy consumption in 20 years operation under different ratio Cooling storage ratio Total energy consumption ?kWh? Annual energy consumption ?kWh? Annual operating costs ?RMB? Total operating costs ?RMB...

  10. Growth and mortality of the oyster, Crassostrea virginica (Gmelin) in an electric generating station cooling lake receiving heated discharge water

    E-Print Network [OSTI]

    Oja, Robert Kenneth

    1974-01-01T23:59:59.000Z

    throughout the tudy. STUDY ARZA AND ?)vTHODS Studg Area Thi. study was conducted at the Houston Lighting and Power Camp- y's Cedar Bayou Generating Station in Baytown, Texas. The plant comprises two 750-mcg watt units with individual water circulating... group, was located at the . intake canal of the power plant. The remaining four stations were located within the cooling lake (I'ig. 2, p. ll ). The station oositions were selected to encompass th maximum water temperature range within the lake. Prior...

  11. appliance energy testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appliance energy testing First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Star Appliances 1 Texas...

  12. Utility Rebates for ENERGY STAR Appliances: Are They Effective?

    E-Print Network [OSTI]

    cost. The World Energy Outlook 2009, published by the International Energy Agency (IEA), highlightsUtility Rebates for ENERGY STAR Appliances: Are They Effective? Souvik Datta Sumeet Gulati CEPE;UTILITY REBATES FOR ENERGY STAR APPLIANCES: ARE THEY EFFECTIVE? SOUVIK DATTA ETH Z¨urich SUMEET GULATI

  13. Introducing a digital library reading appliance into a reading group

    E-Print Network [OSTI]

    Marshall, Cathy

    Introducing a digital library reading appliance into a reading group Catherine C. Marshall, Morgan will we read digital library materials? This paper describes the reading practices of an on-going reading group, and how these practices changed when we introduced XLibris, a digital library reading appliance

  14. Study on the use of adaptive control for energy conservation in large solar heated and cooled buildings

    SciTech Connect (OSTI)

    Farris, D.R.; Melsa, J.L.

    1980-01-01T23:59:59.000Z

    The National Security and Resources Study Center at LASL provides the basis for a general model used in this simulation. The NSRSC is a 59,000 ft/sup 2/ library and conference facility. A simplified model of the solar heating system is used. The adaptive optimal control technique is described and applied and the results are discussed. (MHR)

  15. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heat transfer for cooling load calculation.heat gain is well recognized by cooling load calculationload calculation approach for radiant systems, Corgnati [17] also tackled the direct radiant heat

  16. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24T23:59:59.000Z

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  17. Incorporating Experience Curves in Appliance Standards Analysis

    SciTech Connect (OSTI)

    Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery; Kantner, Colleen; Lekov, Alex; Meyers, Stephen; Rosenquist, Gregory; Buskirk, Robert Van; Yang, Hung-Chia; Desroches, Louis-Benoit

    2011-10-31T23:59:59.000Z

    The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners, clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.

  18. New analysis techniques for estimating impacts of federal appliance efficiency standards

    SciTech Connect (OSTI)

    McMahon, James E.

    2003-06-24T23:59:59.000Z

    Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

  19. COOL03 Workshop September 27, 2003 Muon Cooling Channels

    E-Print Network [OSTI]

    Keil, Eberhard

    , Japan 19 to 23 May 2003 My WWW home directory: http://keil.home.cern.ch/keil/ MuMu/Doc/COOL03/talk03.pdf and II and have ­ no dispersion ­ transverse cooling ­ no wedge-shaped absorbers ­ longitudinal heating and heating by multiple scattering and straggling rate of change per unit length of RMS relative momentum

  20. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC solar-powered DC air-conditioning heat pump produced byRoom Air Conditioners Geothermal Heat Pumps Lighting-efficiency of an air source electric heat-pump water heater