Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

2

Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

3

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

4

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

5

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

6

Combined Heat and Power Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Assistance Combined Heat & Power Deployment Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration,...

7

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

8

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

9

Industrial Distributed Energy: Combined Heat & Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

10

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network [OSTI]

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT This report analyzes the potential market penetration of combined heat and power systems in California from 2011 to 2030. This analysis evaluates the potential contribution of new combined heat and power

11

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network [OSTI]

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT ABSTRACT This report analyzes the potential market penetration of combined heat and power systems the markets, applications, technologies, and economic competition for combined heat and power over

12

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

13

Investment in Combined Heat and Power: CHP  

Science Journals Connector (OSTI)

This study investigates the advantages of investing in plants for cogeneration, i.e., Combined Heat and Power (CHP), in case the heat is utilized ... in order to analyze the dimensioning of a CHP plant. Two main ...

Göran Bergendahl

2010-01-01T23:59:59.000Z

14

Benefits of Combined Heat and Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benefits of Combined Heat and Power Benefits of Combined Heat and Power Combined heat and power (CHP) positively impacts the health of local economies and supports national policy...

15

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER | Department...  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER...

16

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

Memorandum Encouraging Combined Heat and Power in California2012 ICF, 2012, “Combined Heat and Power: Policy AnalysisA New Generation of Combined Heat and Power: Policy Planning

Stadler, Michael

2014-01-01T23:59:59.000Z

17

Midwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

18

Northwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

19

Pacific Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

20

Northeast Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

22

Low-Cost Packaged Combined Heat and Power System | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

23

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

24

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

25

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

26

Promoting Combined Heat and Power (CHP) for Multifamily Properties...  

Broader source: Energy.gov (indexed) [DOE]

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and...

27

Combined Heat and Power (CHP) Resource Guide for Hospital Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007...

28

Energy Portfolio Standards and the Promotion of Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White...

29

Guide to Using Combined Heat and Power for Enhancing Reliability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in...

30

Combined Heat and Power: Expanding CHP in Your State | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program...

31

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

32

Survey of Emissions Models for Distributed Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models...

33

Opportunities for Combined Heat and Power in Data Centers, March...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities for Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities...

34

Energy Department Actions to Deploy Combined Heat and Power,...  

Broader source: Energy.gov (indexed) [DOE]

Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

35

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

36

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

37

Assessment of Combined Heat and Power Premium Power Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

38

National Association of Counties Webinar - Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Association of Counties Webinar - Combined Heat and Power: Resiliency Strategies for Critical Facilities National Association of Counties Webinar - Combined Heat and Power:...

39

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

40

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary ......

42

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

43

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

44

GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

45

Renewable Combined Heat and Power Dairy Operations  

E-Print Network [OSTI]

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

46

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

47

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

48

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

49

Assessment of Large Combined Heat and Power Market, April 2004...  

Broader source: Energy.gov (indexed) [DOE]

Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined...

50

HUD Combined Heat and Power (CHP) Guide #3, September 2010 |...  

Broader source: Energy.gov (indexed) [DOE]

HUD Combined Heat and Power (CHP) Guide 3, September 2010 HUD Combined Heat and Power (CHP) Guide 3, September 2010 This Level 2 analysis tool for multifamily buildings will help...

51

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

52

Alaska Gateway School District Adopts Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

53

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

54

FINAL STAFF PAPER A New Generation of Combined Heat  

E-Print Network [OSTI]

onsite or exporting it to the grid. The feasibility of meeting the state's combined heat and power goals FINAL STAFF PAPER A New Generation of Combined Heat and Power: Policy Planning. Neff , Bryan. A New Generation of Combined Heat and Power: Policy Planning for 2030. 2012. California

55

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

56

Combined Heat and Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

related to dilution and fuel selection Difficult for near-term Environmental heat loss * Low-temperature combustion techniques * Adiabatic approach increases thermal...

57

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

58

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. ”with or without combined heat and power (CHP) equipment,Carbon emissions; Combined heat and power; CHP; Distributed

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

59

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications,”Committee, Combined Heat and Power Workshop, CaliforniaJuly 23, 2009 Combined Heat and Power Installation

Stadler, Michael

2010-01-01T23:59:59.000Z

60

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. Lawrencegeneration, combined heat and power, and thermally drivenPacific Region Combined Heat and Power Application Center (

Norwood, Zack

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Combined Heat and Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

62

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

63

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

64

Combined Heat and Power (CHP) essentials  

Science Journals Connector (OSTI)

'CHP essentials' introduces the concept of power and heat 'production possibility sets', starting at the cradle of CHP, i.e., the thermal power generation plant. The latter always occasions 'fatal' heat that is either recovered (the 'merit' of CHP) or wasted (condensing). This split paves the way to defining the production possibility sets of CHP plants, shown for steam turbines, internal combustion engines and gas turbines as main CHP technologies. Three indicators are widely used to monitor CHP performance: the overall conversion efficiency (quantity indicator), the (mostly ill-defined) power to heat ratio (quality indicator), the 'quality norm' advertised by the EU Directive 2004/8/EC. The paper levels the field for discussing the crucial issue of identifying and quantifying CHP activity.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

65

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

66

Combined Heat and Power: Connecting the Gap between Markets and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006...

67

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

68

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov [DOE]

Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) and its uses, configurations, considerations, and more.

69

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

70

Combined Heat and Power System Enables 100% Reliability at Leading...  

Broader source: Energy.gov (indexed) [DOE]

Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal...

71

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

72

Combined Heat and Power System Enables 100% Reliability at Leading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

buildings on nearly 1,000 acres. Photo courtesy of Thermal Energy Corporation Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus Recovery Act...

73

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Broader source: Energy.gov (indexed) [DOE]

information. Project Objective Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs...

74

Mid-Atlantic Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

75

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

76

Combined Heat and Power Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Webinar Combined Heat and Power Webinar 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices,...

77

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

78

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

79

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

80

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED� COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

82

Qualifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

The EU 2002 draft and 2004 final CHP Directives propose qualifying CHP activity with the quality norm. This norm benchmarks the energy efficiency of CHP plant outputs on external reference power and heat efficiencies. Because the quality norm amalgamates cogeneration and condensing activity its application entails particular perverse effects for high-quality and adapted scale investment in CHP capacities and for operating available units. Operators get incentives to part-load or shut down their capacities and to avoid condensing activity (lucrative at spiky price conditions in the power market). The formula of the quality norm is only useful when CHP activity (heat recovery, cogenerated electricity, fuel consumption for cogeneration) is first quantified reliably.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

83

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

84

An algorithm for combined heat and power economic dispatch  

SciTech Connect (OSTI)

This paper presents a new algorithm for Combined Heat and Power (CHP) economic dispatch. The CHP economic dispatch problem is decomposed into two subproblems: the heat dispatch and the power dispatch. The subproblems are connected through the heat-power feasible region constraints of co-generation units. The connection can be interpreted by the unit heat-power feasible region constraint multipliers in the Lagrangian function, and the interpretation naturally leads to the development of a two-layer algorithm. The outer layer uses the Lagrangian Relaxation technique to solve the power dispatch iteratively. In each iteration, the inner layer solves the heat dispatch with the unit heat capacities passed by the outer layer. The binding constraints of the heat dispatch are fed back to the outer layer to move the CHP economic dispatch towards a global optimal solution.

Guo, T.; Henwood, M.I. [Henwood Energy Services, Inc., Sacramento, CA (United States)] [Henwood Energy Services, Inc., Sacramento, CA (United States); Ooijen, M. van [Eindhoven Univ. of Technology (Netherlands)] [Eindhoven Univ. of Technology (Netherlands)

1996-11-01T23:59:59.000Z

85

A PASSIVE SOLAR HEATING SYSTEM COMBINED WITH A HEATPUMP AND A LONG TERM HEAT STORAGE  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the design and the first preliminary performance results of a sunspace attached to an existent building, combined with a heatpump and a long term heat storage. The aim of the project is to study the possibility of storing the excess heat of the passive system in a low temperature storage, which is used as cold source for a heatpump. The advantages of the presented system are that the energy flows in the passive solar system can be controlled and that a rather high solar fraction can be obtained (around .7 to .8 in the climate of Ispra). KEYWORDS Passive solar energy, heat pump, heat storage

D. van Hattem; R. Colombo; P. Actis-Dato

1988-01-01T23:59:59.000Z

86

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy… even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

87

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

88

Portland Community College Celebrates Commissioning of Combined Heat and  

Broader source: Energy.gov (indexed) [DOE]

Portland Community College Celebrates Commissioning of Combined Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System October 3, 2011 - 4:43pm Addthis U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help Portland Community College save on its energy bills and help achieve its energy efficiency and sustainability goals. Students at the College will also learn about the fuel cell technology used in the project as part of a comprehensive alternative energy curriculum offered by the school. "The benefits of a combined heat and power fuel cell system, coupled with

89

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

90

Southeast Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

91

Midwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

92

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

93

Northwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

94

Southwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

95

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Büchner; Volker Lenz

2012-01-01T23:59:59.000Z

96

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Büchner; Volker Lenz

2013-01-01T23:59:59.000Z

97

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov [DOE]

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

98

ITP Industrial Distributed Energy: Promoting Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

1 Promoting Combined Heat and Power (CHP) for Multifamily Properties Robert Groberg, U.S. Department of Housing and Urban Development (HUD) Mike MacDonald and Patti Garland, Oak...

99

ITP Industrial Distributed Energy: HUD Combined Heat and Power...  

Broader source: Energy.gov (indexed) [DOE]

HUD COMBINED HEAT AND POWER (CHP) GUIDE 3 INTRODUCTION TO THE LEVEL 2 ANALYSIS TOOL FOR MULTIFAMILY BUILDINGS PREPARED FOR U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT BY U.S....

100

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network [OSTI]

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

of Commercial-Building Micro-grids,” IEEE Transactions onEffects of Carbon Tax on Micro-grid Combined Heat and Powerin this work, picks optimal micro-grid 3 /building equipment

Stadler, Michael

2014-01-01T23:59:59.000Z

102

ARM - PI Product - Combined Retrieval, Microphysical Retrievals & Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsCombined Retrieval, Microphysical Retrievals & ProductsCombined Retrieval, Microphysical Retrievals & Heating Rates Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Combined Retrieval, Microphysical Retrievals & Heating Rates 2011.10.11 - 2012.02.07 Site(s) GAN General Description Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval. The PNNL Combined Remote Sensor retrieval algorithm (CombRet) is designed to retrieve cloud and precipitation properties for all sky conditions. The retrieval is based on a combination of several previously published retrievals, with new additions related to the retrieval of cloud microphysical properties when only one instrument is able to detect cloud (i.e. radar only or lidar only).

103

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

solar thermal utilization photovoltaic solar thermal electric storage heatDER technologies as PV, solar thermal, electric and heat

Stadler, Michael

2014-01-01T23:59:59.000Z

104

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov (indexed) [DOE]

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

105

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network [OSTI]

of a Carbon Tax on Combined Heat and Power Adoption by aof a Carbon Tax on Combined Heat and Power Adoption by ainvolving combined heat and power (CHP). The expectation

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

106

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

107

Research on Heating Scope of Combined Heat and Power (CHP) Plant  

Science Journals Connector (OSTI)

Compilation Stipulation on heat-electricity cogeneration program (trial implementation) published recently says, “Under the condition of reasonable technical economy, heat resource shall be concentrated as far as...

Tai Lü; Zheng Wang; Hui Kang

2007-01-01T23:59:59.000Z

108

Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

109

Combined ICR heating antenna for ion separation systems  

SciTech Connect (OSTI)

A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-01-15T23:59:59.000Z

110

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

111

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

112

Energy efficient operation strategy design for the combined cooling, heating and power system.  

E-Print Network [OSTI]

??Combined cooling, heating and power (CCHP) systems are known as trigeneration systems, designed to provide electricity, cooling and heating simultaneously. The CCHP system has become… (more)

Liu, Mingxi

2012-01-01T23:59:59.000Z

113

National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities  

Broader source: Energy.gov [DOE]

Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

114

Experimental investigation on system with combination of ground-source heat pump and solar collector  

Science Journals Connector (OSTI)

This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by ...

Tao Hu ? ?; Jialing Zhu ???; Wei Zhang ? ?

2013-06-01T23:59:59.000Z

115

Combined Heat and Power - A Decade of Progress, A Vision for...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

116

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

117

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

118

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov (indexed) [DOE]

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

119

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

120

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

122

Combined Heat and Power: Is It Right For Your Facility? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how...

123

Assessing the Benefits of On-Site Combined Heat and Power During...  

Broader source: Energy.gov (indexed) [DOE]

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the...

124

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...  

Broader source: Energy.gov (indexed) [DOE]

Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

125

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT...  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section...

126

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

127

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

128

Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008  

Broader source: Energy.gov [DOE]

Presentation overview the arrow linen supply combined heat and power, its cost savings, success factors, and impacts

129

The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000  

Broader source: Energy.gov [DOE]

Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

130

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

131

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

132

Standby Rates for Combined Heat and Power Systems  

SciTech Connect (OSTI)

Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

2014-02-01T23:59:59.000Z

133

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

134

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network [OSTI]

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

135

A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat  

SciTech Connect (OSTI)

Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G. [ZAE Bayern, Garching/Muenchen (Germany)

1996-11-01T23:59:59.000Z

136

Combined Heat and Power: Expanding CHP in Your State  

Broader source: Energy.gov (indexed) [DOE]

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

137

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

photovoltaic solar thermal electric storage heat storageamount of PV, solar thermal, and electric storage needs toamount of PV, solar thermal, and electric storage needs to

Stadler, Michael

2014-01-01T23:59:59.000Z

138

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

for energy storage, chiller, PV and solar thermal equipmentsolar thermal electric storage heat storage absorption chillers zero net energyenergy resources (DER) technologies such as PV, solar thermal,

Stadler, Michael

2014-01-01T23:59:59.000Z

139

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

with or without combined heat and power (CHP) and contributein Microgrids with Combined Heat and Power Chris Marnay,Microgrids with Combined Heat and Power 1 Chris Marnay a) ,

Marnay, Chris

2010-01-01T23:59:59.000Z

140

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

142

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Broader source: Energy.gov [DOE]

The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

143

Opportunities for Combined Heat and Power at Wastewater Treatment...  

Broader source: Energy.gov (indexed) [DOE]

option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as fuel to generate electricity and heat in a CHP...

144

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

lifetime for energy storage, chiller, PV and solar thermalEnergy Storage can be stand-alone or paired with solar PV orsolar thermal electric storage heat storage absorption chillers zero net energy

Stadler, Michael

2014-01-01T23:59:59.000Z

145

Combined permeable pavement and ground source heat pump systems   

E-Print Network [OSTI]

The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

146

FACT SHEET: Energy Department Actions to Deploy Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

147

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

148

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

149

Combined heat and mass transfer device for improving separation process  

SciTech Connect (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

150

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

151

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Broader source: Energy.gov [DOE]

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

152

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008  

Broader source: Energy.gov [DOE]

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.

153

Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009  

Broader source: Energy.gov [DOE]

EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

154

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007  

Broader source: Energy.gov [DOE]

Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

155

PipelineMarch 2013 Volume 5, Issue 2 COMBINED HEAT  

E-Print Network [OSTI]

generates electricity while also producing heat that will be used to create steam for University buildings growth has increased steam demand. Without the plant, demand will exceed reliable steam production that are reliable, sustainable and cost-effective. The Southeast Steam plant is the campus' sole steam production

Webb, Peter

156

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network [OSTI]

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission… (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

157

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network [OSTI]

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

158

Anaerobic Digestion and Combined Heat and Power Study  

SciTech Connect (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz; Rob Taylor; Grant Davies

2011-12-30T23:59:59.000Z

159

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Technologies in a µGrid Application heat, usually in thethe µGrid. In this µGrid the heat loads are not that great,Combined Heat and Power Technologies in a µGrid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

160

A modified unit decommitment algorithm in combined heat and power production planning  

Science Journals Connector (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

162

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

163

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

164

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

165

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Broader source: Energy.gov (indexed) [DOE]

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

166

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

167

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2  

E-Print Network [OSTI]

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2 pH and recovery medium pH on the heat resistance of Salmonella typhimurium3 4 I. Leguérinel1 *, I +33 02 98 90 85 4410 E mail address: guerinel@univ-brest.fr11 Abstract12 The influence of heating

Paris-Sud XI, Université de

168

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

169

Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems  

SciTech Connect (OSTI)

The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. (Missouri Univ., Rolla, MO (USA). Dept. of Mechanical Engineering)

1990-05-01T23:59:59.000Z

170

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004  

Broader source: Energy.gov [DOE]

This June 2004 report summarizes the experiences of 12 combined heat and power facilities during the August 14, 2003, blackout

171

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

172

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

173

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

174

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

175

Analysis of a coal fired combined cycle with carried-heat gasification  

Science Journals Connector (OSTI)

In the research of a more efficient, less costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasification Combined Cycle (CG...

Xiangdong Xu; Weimin Zhu; Li Zhao; F. N. Fett

176

Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies  

Broader source: Energy.gov [DOE]

This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

177

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

178

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network [OSTI]

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

179

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

180

A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems  

SciTech Connect (OSTI)

The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

182

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network [OSTI]

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

183

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network [OSTI]

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for… (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

184

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT  

Broader source: Energy.gov (indexed) [DOE]

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether a change in those laws

185

The Influence of Building Location on Combined Heat and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are relatively high risk due to uncertainty of demand Combining hydrogen production with CHP capability may reduce upfront costs and reduce investment risks Fuel Cell with CHP...

186

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

187

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

188

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

189

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network [OSTI]

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair source equipment is much less. The source for this kind of heat pump

Pelka, Walter

2010-01-01T23:59:59.000Z

190

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

Norwood, Zack

2010-01-01T23:59:59.000Z

191

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

192

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network [OSTI]

P.C. (2001), “Introduction to Advancd Batteries for EmergingPV) and solar thermal collectors; • conventional batteries,flow batteries, and heat storage; • heat exchangers for

Stadler, Michael

2010-01-01T23:59:59.000Z

193

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

194

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

195

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network [OSTI]

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously… (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

196

The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000  

Broader source: Energy.gov [DOE]

Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

197

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

draft, 2001. Danish Energy Agency (1998). Combined Heat andpolicies and measures, Danish Energy Agency. Hirschenhofer,demand in 1996 (Danish Energy Agency 1998). Reliance on CHP

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

198

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

199

A Partial Load Model for a Local Combined Heat and Power Plant  

E-Print Network [OSTI]

A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg and power (CHP) plants constitute a not insignificant share of the power production in Denmark, particularly using data from a typical local CHP plant and the years 2003 through 2006 are simulated to assess

200

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings  

Broader source: Energy.gov [DOE]

During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

202

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

203

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

204

Investigation And Evaluation Of The Systemwide Economic Benefits Of Combined Heat And Power Generation In The New York State Energy Market.  

E-Print Network [OSTI]

??Combined Heat and Power (CHP) is the production of electricity and the simultaneous utilization of the heat produced by the generator prime mover. The energy… (more)

Baquero, Ricardo

2008-01-01T23:59:59.000Z

205

5 Questions for an Expert: Bob Gemmer on Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy and slashing carbon pollution. CHP systems capture energy that is normally lost in centralized power generation and convert that energy to heat and cool manufacturing facilities and businesses. Unlike central power generation, CHP systems are distributed energy generation systems and that means that they are located close to where energy is consumed. The proximity of power generation to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. Bob Gemmer of EERE’s Advanced Manufacturing Office is one of the Energy Department’s primary experts on CHP technologies with more than 40 years of related expertise. We sat down with Bob to learn more about him and what makes him such a passionate advocate for CHP.

206

A detailed MILP optimization model for combined cooling, heat and power system operation planning  

Science Journals Connector (OSTI)

Abstract A detailed optimization model is presented for planning the short-term operation of combined cooling, heat and power (CCHP) energy systems. The purpose is, given the design of a cogeneration system, to determine an operating schedule that minimizes the total operating and maintenance costs minus the revenue due to the electricity sold to the grid, while taking into account time-varying loads, tariffs and ambient conditions. The model considers the simultaneous use of different prime movers (generating electricity and heat), boilers, compression heat pumps and chillers, and absorption chillers to satisfy given electricity, heat and cooling demands. Heat and cooling load can be stored in storage tanks. Units can have one or two operative variables, highly nonlinear performance curves describing their off-design behavior, and limitations or penalizations affecting their start-up/shut-down operations. To exploit the effectiveness of state-of-the-art Mixed Integer Linear Program (MILP) solvers, the resulting Mixed Integer Nonlinear Programming (MINLP) model is converted into a MILP by appropriate piecewise linear approximation of the nonlinear performance curves. The model, written in the AMPL modeling language, has been tested on several plant test cases. The computational results are discussed in terms of the quality of the solutions, the linearization accuracy and the computational time.

Aldo Bischi; Leonardo Taccari; Emanuele Martelli; Edoardo Amaldi; Giampaolo Manzolini; Paolo Silva; Stefano Campanari; Ennio Macchi

2014-01-01T23:59:59.000Z

207

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

208

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

209

Multi-objective optimization of a combined cooling, heating and power system driven by solar energy  

Science Journals Connector (OSTI)

Abstract This paper presented a multi-objective optimization of a combined cooling, heating and power system (CCHP) driven by solar energy. The flat-plate solar collector was employed to collect the solar radiation and to transform it into thermal energy. The thermal storage unit was installed to storage the thermal energy collected by the collectors to ensure a continuous energy supplement when solar energy was weak or insufficient. The CCHP system combined an organic Rankine cycle with an ejector refrigeration cycle to yield electricity and cold capacity to users. In order to conduct the optimization, the mathematical model of the solar-powered CCHP system was established. Owing to the limitation of the single-objective optimization, the multi-objective optimization of the system was carried out. Four key parameters, namely turbine inlet temperature, turbine inlet pressure, condensation temperature and pinch temperature difference in vapor generator, were selected as the decision variables to examine the performance of the overall system. Two objective functions, namely the average useful output and the total heat transfer area, were selected to maximize the average useful output and to minimize the total heat transfer area under the given conditions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) was employed to achieve the final solutions in the multi-objective optimization of the system operating in three modes, namely power mode, combined heat and power (CHP) mode, and combined cooling and power (CCP) mode. For the power mode, the optimum average useful output and total heat transfer area were 6.40 kW and 46.16 m2. For the CCP mode, the optimum average useful output and total heat transfer area were 5.84 kW and 58.74 m2. For the CHP mode, the optimum average useful output and total heat transfer area were 8.89 kW and 38.78 m2. Results also indicated that the multi-objective optimization provided a more comprehensive solution set so that the optimum performance could be achieved according to different requirements for system.

Man Wang; Jiangfeng Wang; Pan Zhao; Yiping Dai

2015-01-01T23:59:59.000Z

210

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

211

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

212

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

213

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81 m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64 m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%–7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

214

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

215

Ultra Efficient Combined Heat, Hydrogen, and Power System- Fact Sheet, 2015  

Broader source: Energy.gov [DOE]

FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be utilized in a low-temperature, bottoming cycle fuel cell incorporated into the CHHP system to increase overall efficiency.

216

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

217

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

218

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

219

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

220

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of combined cooling, heating, and power systems based on source primary energy consumption  

Science Journals Connector (OSTI)

Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.

Nelson Fumo; Louay M. Chamra

2010-01-01T23:59:59.000Z

222

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

223

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

224

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

225

"Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"  

E-Print Network [OSTI]

is used for the generation of electricity. The advantages of district heating using WTE plants are heating and cooling system in Indianapolis. However, there are few U.S. hot water district heating systems,800 district heating and cooling systems, providing 320 million MWh of thermal energy. Currently, 28 of the 88

Shepard, Kenneth

226

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

227

Combined use of adiabatic calorimetry and heat conduction calorimetry for quantifying propellant cook-off hazards  

Science Journals Connector (OSTI)

Recent work performed at DERA (now QinetiQ) has shown how accelerating rate calorimetry (ARC) can be used to obtain time to maximum rate curves using larger samples of energetic materials. The use of larger samples reduces the influence of thermal inertia, permitting experimental data to be gathered at temperatures closer to those likely to be encountered during manufacture, transportation or storage of an explosive device. However, in many cases, extrapolation of the time to maximum rate curve will still be necessary. Because of its low detection limit compared to the ARC, heat conduction calorimetry can be used to obtain data points at, or below, the region where an explosive system might exceed its temperature of no return and undergo a thermal explosion. Paired ARC and heat conduction calorimetry experiments have been conducted on some energetic material samples to explore this possibility further. Examples of where both agreement and disagreement are found between the two techniques are reported and the significance of these discussed. Ways in which combining ARC and heat conduction calorimetry experiments can enhance, complement and validate the results obtained from each technique are examined.

P.F. Bunyan; T.T. Griffiths; V.J. Norris

2003-01-01T23:59:59.000Z

228

Waste Heat Management Options for Improving Industrial Process...  

Broader source: Energy.gov (indexed) [DOE]

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

229

CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript  

Broader source: Energy.gov [DOE]

Kurmit Rockwell:Welcome.  I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program.  In this presentation we will introduce you to the basics of combined heat and...

230

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

231

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect (OSTI)

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

232

Combined cooling, heating and power: A review of performance improvement and optimization  

Science Journals Connector (OSTI)

Abstract This paper presents a review on combined cooling, heating, and power (CCHP) systems. This work summarizes the methods used to perform energetic and exergetic analyses, system optimization, performance improvement studies, and development and analysis of CCHP systems, as reported in existing literature. In addition, this work highlights the most current research and emerging trends in CCHP technologies. It is envisioned that the information collected in this review paper will be a valuable source of information, for researchers, designers, and engineers, and provides direction and guidance for future research in CCHP technology.

Heejin Cho; Amanda D. Smith; Pedro Mago

2014-01-01T23:59:59.000Z

233

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

234

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect (OSTI)

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

235

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike…

1994-01-01T23:59:59.000Z

236

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

237

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

238

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

239

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

heat and power, and thermally activated cooling equipment.and power system provides electricity and cooling to a dataand power system provides electricity and cooling to a data

Norwood, Zack

2010-01-01T23:59:59.000Z

240

Low-Cost Packaged Combined Heat and Power System with Reduced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monoxide (CO), and volatile organic compounds (VOCs) * Yearly reduction of carbon dioxide emissions by 950 tons com- pared to separate generation of electricity and heat,...

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

242

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

243

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

244

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

245

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

246

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

247

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

248

A combined heat-transfer analysis of a single-fiber CVD reactor  

SciTech Connect (OSTI)

In high-temperature applications, structural fibers such as SiC are currently being considered for reinforcement of both ceramic and intermetallic matrices. A combined-conjugated heat-transfer and fluid-flow analysis is presented for coating fibers by CVD in a vertical cylindrical quartz reactor. The numerical model focuses on radiation and natural convection. Three case studies are performed, and the wall temperature predictions are compared to experimental measurements. In the first case, the flowing gas is hydrogen, and conduction is more important than both radiation and convection, in which case measured and predicted wall temperatures agree excellently. In the second, hydrogen is replaced by argon, thus making radiation heat transfer more important than the previous situation. Three radiation models with increasing degrees of sophistication are compared: an approximate nongray model (no wavelength dependence of emissivity), an approximate semigray model, and a rigorous semigray model with view factor calculations. Comparison with experiments suggest that a semigray radiative analysis is needed for correct determination of wall temperatures. The third involves argon at a lower flow rate, where natural convection effects are more pronounced. Checking the validity of the Boussinesq approximation by incorporating the explicit dependence of density on temperature in the model shows a slight difference between the velocity fields predicted using the Boussinesq approximation and those obtained using the explicit dependence of density on temperature. However, there is negligible difference between the temperature fields predicted in the two cases.

Kassemi, M.; Gokoglu, S.A.; Panzarella, C.H.; Veitch, L.C. (NASA Lewis Research Center, Cleveland, OH (United States))

1993-10-01T23:59:59.000Z

249

Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units  

Science Journals Connector (OSTI)

For each time period and sector, big-M constraints 13 model the heat (generated by the energy generator installed in the sector) transferred to the heat storage tank of the sector (Q?sit). ... Heat and electricity demand data for the reference case have been taken from the Milton Keynes Energy Park data set provided by the U.K. Energy Research Centre Energy Data Centre. ... Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; Deforest, N.; Barbosa-Póvoa, A.; Ferrão, P.Microgrid reliability modeling and battery scheduling using stochastic linear programming Electric Power Syst. ...

Nikolaos E. Koltsaklis; Georgios M. Kopanos; Michael C. Georgiadis

2014-03-05T23:59:59.000Z

250

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Broader source: Energy.gov (indexed) [DOE]

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

251

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

252

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

SciTech Connect (OSTI)

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

253

Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners  

Science Journals Connector (OSTI)

Three new developments have now occurred making economical TPV systems possible. The first development is the diffused junction GaSb cell that responds out to 1.8 microns producing over 1 W/cm2 electric given a blackbody IR emitter temperature of 1250 C. This high power density along with a simple diffused junction cell makes an array cost of $0.50 per Watt possible. The second development is new IR emitters and filters that put 75% of the radiant energy in the cell convertible band. The third development is a set of commercially available ceramic radiant tube burners that operate at up to 1250 C. Herein we present near term and longer term spectral control designs leading to a 1.5 kW TPV generator / furnace incorporating these new features. This TPV generator / furnace is designed to replace the residential furnace for combined heat and power for the home.

Lewis Fraas; James Avery; Enrico Malfa; Joachim G. Wuenning; Gary Kovacik; Chris Astle

2003-01-01T23:59:59.000Z

254

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

255

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

256

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Broader source: Energy.gov [DOE]

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

257

Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels  

E-Print Network [OSTI]

This dissertation presents a numerical simulation of three-dimensional flow and heat transfer in a channel with a backward-facing step. Flow was considered to be steady, incompressible, and laminar. The flow medium was treated to be radiatively...

Ko, Min Seok

2009-05-15T23:59:59.000Z

258

Combined Heat and Power for Federal Facilities and the DOE CHP...  

Broader source: Energy.gov (indexed) [DOE]

technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, andor district energy with CHP in their facility and to help them through...

259

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

260

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electronic copy available at: http://ssrn.com/abstract=2014739 Published as: Amir Nosrat and Joshua M. Pearce, "Dispatch Strategy and Model for Hybrid Photovoltaic and Combined Heating,  

E-Print Network [OSTI]

combined heat and power (CHP) systems has provided the opportunity for in- house power backup. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat that accounts for electric, domestic hot water, space heating, and space cooling load categories. The dispatch

Paris-Sud XI, Université de

262

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

263

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

264

Heating and cooling system  

SciTech Connect (OSTI)

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

265

HEAT AND MOISTURE TRANSFER THROUGH CLOTHING  

E-Print Network [OSTI]

J. & Cheng, X. -Y. 2005. Heat and moisture transfer withof the combined diffusion of heat and water vapor throughMathematical simulation of heat and moisture transfer in a

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

266

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

267

1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

Broader source: Energy.gov [DOE]

This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

268

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network [OSTI]

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

269

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

270

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

271

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

272

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

273

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

274

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

275

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

276

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect (OSTI)

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

277

Combined heat and power's potential to meet New York City's sustainability goals  

Science Journals Connector (OSTI)

Abstract Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800 MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800 MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360 MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development.

Bianca Howard; Alexis Saba; Michael Gerrard; Vijay Modi

2014-01-01T23:59:59.000Z

278

Analysis of combined cooling, heating, and power systems under a compromised electric–thermal load strategy  

Science Journals Connector (OSTI)

Abstract Following the electric load (FE) and following the thermal load (FT) strategies both have advantages and disadvantages for combined cooling, heating and power (CCHP) systems. In this paper, the performance of different strategies is evaluated under operation cost (OC), carbon dioxide emission (CDE) and exergy efficiency (EE). Analysis of different loads in one hour is conducted under the assumption that the additional electricity is not allowed to be sold back to the grid. The results show that FE produces less OC, less CDE, and FT produces higher EE when the electric load is larger. However, FE produces less OC, less CDE and higher EE when the thermal load is larger. Based on a hybrid electric–thermal load (HET) strategy, compromised electric–thermal (CET) strategies are innovatively proposed using the efficacy coefficient method. Additional, the CCHP system of a hotel in Tianjin is analyzed for all of the strategies. The results for an entire year indicate the first CET strategy is the optimal one when dealing with OC, CDE and EE. And the second CET is the optimal one when dealing with OC and EE. Moreover, the laws are strictly correct for different buildings in qualitative terms.

Gang Han; Shijun You; Tianzhen Ye; Peng Sun; Huan Zhang

2014-01-01T23:59:59.000Z

279

Combined heat and power: How much carbon and energy can it save for manufacturers?  

SciTech Connect (OSTI)

As part of a September 1997 National Laboratory study for the US Department of Energy, the authors estimated the potential for reducing industrial energy consumption and carbon emissions using advanced technologies for combined heat and power (CHP) for the year 2010. In this paper the authors re-analyze the potential for CHP in manufacturing only. The authors also refine the assessment by more accurately estimating the average efficiency of industrial boilers most likely to be replaced by CHP. The authors do this with recent GRI estimates of the age distribution of industrial boilers and standard age-efficiency equations. The previous estimate was based on use of the best CHP technology available, such as the about-to-be commercialized industrial advanced turbine system (ATS). This estimate assumes the use of existing off-the-shelf CHP technologies. Data is now available with which to develop a more realistic suite of penetration rates for existing and new CHP technologies. However, potential variation in actions of state and federal electricity and environmental regulators introduces uncertainties in the use of existing and potential new CHP far greater than those in previous technology penetration estimates. This is, thus, the maximum cost-effective technical potential for the frozen technology case. The authors find that if manufacturers in 1994 had generated all their steam and electric needs with existing CHP technologies, they could have reduced carbon equivalent (carbon dioxide) emissions by up to 30 million metric tons of carbon equivalent (MtC) or nearly 20%. This result is consistent with carbon and energy savings found in other studies. For example, the aforementioned laboratory study found that just three CHP technologies, fuel cells, advanced turbines, and integrated combined cycle technologies, accounted for nearly 10% of the study's projected carbon savings of 400 MtC by 2010--enough to reduce projected US 2010 emissions to 1990 levels.

Kaarsberg, T.M.; Roop, J.M.

1998-07-01T23:59:59.000Z

280

Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines  

SciTech Connect (OSTI)

Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

Finnis, P.J. [Procedair Industries Corp., Louisville, KY (United States); Heap, B.M. [Procedair Limited, Wombourne (United Kingdom)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

282

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov [DOE]

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

283

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network [OSTI]

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

284

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

285

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

286

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

287

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

288

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

289

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

290

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

SciTech Connect (OSTI)

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

291

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Broader source: Energy.gov (indexed) [DOE]

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

292

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

293

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

294

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

295

Thulium-170 heat source  

SciTech Connect (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

296

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

297

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

298

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

299

1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-10 kW Stationary Combined Heat 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-48265 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

300

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Järvinen

2014-01-01T23:59:59.000Z

302

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

303

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

304

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

305

Wound tube heat exchanger  

DOE Patents [OSTI]

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

306

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

307

The radiative and combined mode heat transfer within the L-shaped nonhomogeneous and nongray participating media  

SciTech Connect (OSTI)

The solutions of pure radiative and combined radiative and conductive heat transfer within a L-shaped enclosure are presented. The enclosure contains a mixture of pulverized carbon particles, CO{sub 2}, and N{sub 2}. Three different types of problems are solved: homogeneous radiative properties, nonhomogeneous radiative properties, and combined conduction-radiation problem with nonhomogeneous radiative properties. To obtain solutions for these problems, the YIX method is used. The YIX quadrature uses piecewise constant interpolation of the integrands. To handle the L-shaped enclosure, an ad hoc approach of searching the struck surface node in the line-of-sight is developed. The general approach of handling any arbitrary complex geometry is briefly described. A single point, implicit, quasi-Newton scheme is used to solve the energy equation when both the radiation and conduction heat transfer modes are present. The quasi-Newton works well for a wide range of dimensionless conduction-radiation parameter except when the parameter is less than 0.2, i.e., radiation is the dominant heat transfer mode.

Hsu, P.F. [Florida Inst. of Tech., Melbourne, FL (United States). Mechanical and Aerospace Engineering Programs; Tan, Z. [Univ. of Texas, Austin, TX (United States). Aerospace Engineering and Engineering Mechanics Dept.

1996-11-01T23:59:59.000Z

308

Exergy and exergoeconomic analysis and optimisation of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm  

Science Journals Connector (OSTI)

In the present study, a diesel engine based Combined Heat and Power (CHP) system is optimised using exergoeconomic concept and genetic algorithm. For this purpose, the CHP system is first thermodynamically analysed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. Finally an objective function representing fuel cost, cost of exergy loss and destruction and purchase and maintenance cost of the system components is considered for the optimisation study. Furthermore the above procedure is applied for a case study that produces 277 kW of electricity and 282 kW of heat. Also exergetic and exergoeconomic parameters are calculated in optimum case and compared with the base case. The results show that by applying the optimisation approach for our case study, 8.02% reduction in objective function is achieved which is might be considerable in CHP systems optimisation.

Farzad Mohammadkhani; Shahram Khalilarya; Iraj Mirzaee

2013-01-01T23:59:59.000Z

309

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

310

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

311

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

312

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

313

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

314

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

315

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

316

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

317

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh?1 electricity and $0.03 kWh?1 thermal, for a system with a life cycle global warming potential of ~80 gCO2eq kWh?1 of electricity and ~10 gCO2eq kWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

318

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

319

Ductless Heat Pumps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

320

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

322

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

323

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

324

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

325

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

326

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

327

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

328

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

329

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

330

Convective heat and mass transfer and evolution of the moisture distribution in combined convection and radio frequency drying  

SciTech Connect (OSTI)

In a previous study (Dostie and Navarri, 1994), experiments indicated that a non-uniform moisture distribution could develop in radio frequency drying depending on the applied power and initial conditions, making the design and scale-up of such a dryer a more difficult task. Consequently, a thorough study of the combined convection and RF drying process was undertaken. Experimental results have shown that the values of the heat and mass transfer coefficients decrease with an increase in evaporation rate caused by RF energy. This effect is adequately taken into account by the boundary layer theory. Furthermore, the usual analogy between heat and mass transfer has been verified to apply in RF drying. Experiments have also shown that a different mass transfer resistance on both sides of the product should not result in non-uniform drying. However, it appears that non-uniform drying is dependent upon the initial moisture distribution and the relative intensity of heat transfer by convection and RF. It was shown that the maximum drying rate occurs at a higher average water content and that the total drying time increases with non-uniformity of the initial moisture distribution.

Poulin, A.; Dostie, M.; Kendall, J. [LTEE d`Hydro-Quebec, Shawinigan, Quebec (Canada); Proulx, P. [Univ. de Sherbrooke, Quebec (Canada)

1997-10-01T23:59:59.000Z

331

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

332

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

333

The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods  

Science Journals Connector (OSTI)

Abstract The scope of the HIGH-COMBI project is the development of high solar fraction systems by innovative combination of optimized solar heating, cooling and storage technologies as well as control strategies, in order to contribute and assist the further deployment of the solar energy market. Within this project, six demonstration plants were installed in four European countries (Greece, Italy, Spain and Austria). The purpose of this article is to assess the result achieved in the technical field of the project and to present the technical aspects of the six innovative demonstration systems realised during the project period.

Vassiliki N. Drosou; Panagiotis D. Tsekouras; Th.I. Oikonomou; Panos I. Kosmopoulos; Constantine S. Karytsas

2014-01-01T23:59:59.000Z

334

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

335

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

336

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

337

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network [OSTI]

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

338

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect (OSTI)

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

339

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

340

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

342

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

343

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

344

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

345

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89 W (total of 776 kW h/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of £2700–£3900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89 W (776 kW h/year) vs. 80 W (701 kW h/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

346

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

347

heat pump | OpenEI  

Open Energy Info (EERE)

heat pump heat pump Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

348

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

349

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

350

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

351

Flameless heat generator  

SciTech Connect (OSTI)

A heating device generates heat by working a liquid in a closed container with a rotating stack of finely perforate square plates and recovering the heat from the thus heated liquid. In one embodiment a stack of a multiplicity of flat square plates radially offset one from another is rotated in an oil bath in a container under an inner perforate non-rotating cover over which is a similar non-rotating cover that is imperforate. The thermal energy developed through the mechanical working of the liquid is transferred to the main liquid bath and is then removed, as for example, by circulating air or a liquid around the outside of the container with the thus heated air or liquid being used to heat a house or the like.

Leary, C. L.; Leary, G. C.

1983-12-13T23:59:59.000Z

352

Waste Heat Management Options: Industrial Process Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

353

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

354

Sorption heat engines  

E-Print Network [OSTI]

For a simple free energy generating device - driven by thermal cycling and based on alternating adsorption and desorption - that has not been explicitly recognized as heat engine the name sorption heat engine is proposed. The mechanism is generally applicable to the fields of physics, chemistry, geology, and possibly, if relevant to the origin of life, biology. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in composition of the adsorbent or adsorbate during the thermal cycle.

Muller, A W J; Muller, Anthonie W. J.; Schulze-Makuch, Dirk

2005-01-01T23:59:59.000Z

355

An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

1999-07-01T23:59:59.000Z

356

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

357

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar… (more)

Blomqvist, Emelie; Häger, Klara

2012-01-01T23:59:59.000Z

358

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

359

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

360

Photovoltaic roof heat flux  

E-Print Network [OSTI]

Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

362

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

363

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

364

ARM - Atmospheric Heat Budget  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

365

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

366

Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

367

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich…

2006-03-01T23:59:59.000Z

368

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

369

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

370

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

371

Steady response to heating: Gaussian heat source  

E-Print Network [OSTI]

+ prescribed latent heating => "Matsuno-Gill model" Moisture equation for precipitation term ¡ Can make. of Equatorial Waves Filter out "background spectrum": ¡ Can see all different wave types! Especially Kelvin #12;Equatorial Waves Alternative theory for wave speed: ¡ Higher vertical mode structure causes phase

Frierson, Dargan

372

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

373

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

374

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

375

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

376

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

377

Microchannel heat sink assembly  

DOE Patents [OSTI]

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

378

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled “Recommendations for the Computation of Heat Requirements for Buildings” (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

379

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

380

Methods for providing heat to electric operated LNG plant.  

E-Print Network [OSTI]

??Hammerfest LNG plant, located at Melkøya outside Hammerfest, is supplied with heat and power from an on-site combined heat and power (CHP-) plant. This natural… (more)

Tangås, Cecilie Magrethe

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

382

Residential heating conservation in Krakow  

SciTech Connect (OSTI)

A four-building conservation experiment was conducted in Krakow, Poland, during the 1992--1993 and 1993--1994 winters, aimed at determining potential savings of heat in typical multifamily residential buildings connected to the district heat network. Four identical multifamily buildings were selected for measurement and retrofitting. Together with the U.S. team, the local district heat utility, the Krakow development authority, and a Polish energy-efficiency foundation designed and conducted the 264-residence test of utility, building, and occupant conservation strategies during the 1992--1993 winter Baseline data were collected on each building prior to any conservation work. A different scope of work was planned and executed for each building, ranging from controls at the building level only to thermostatic valve control and weatherization. The project team has identified and demonstrated affordable and effective conservation technologies that can be applied to Krakow`s existing concrete-element residential housing. The results suggest that conservation strategies will be key to many alternatives in Krakow`s plan to eliminate low-emission air pollution sources. Conservation can allow connecting more customers to the utility network and eliminating local boilers without requiring construction of new combined heat and power plants. It can reduce heat costs for customers converting from solid-fuel heat sources to less polluting sources. By reducing heat demand, more customers can be served by existing gas and electric distribution systems.

Markel, L.C. [Electrotek Concepts, Knoxville, TN (United States); Reeves, G. [George Reeves Associates, Lake Hopatcong, NJ (United States); Gula, A.; Szydlowski, R.F. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1995-08-01T23:59:59.000Z

383

Radiant Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

384

Radiant Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

385

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

386

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

387

Heating Oil Reserve | Department of Energy  

Energy Savers [EERE]

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

388

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

389

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network [OSTI]

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

390

Chemical heat pump cools as well as heats  

Science Journals Connector (OSTI)

Chemical heat pump cools as well as heats ... Innovative heat pump uses methanol refrigerant, calcium chloride absorber to use and store solar energy for heating, air conditioning, hot water ... Though the EIC heat pump is similar in concept to other chemical heat pumps now being used or developed, it does offer a number of innovations, not the least of which are its novel refrigerant (methanol) and absorption medium (calcium chloride). ...

RON DAGANI

1980-10-20T23:59:59.000Z

391

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

392

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers [EERE]

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

393

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

394

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

395

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Office of Environmental Management (EM)

Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

396

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

397

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

398

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

399

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

400

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2659 heat insulation [n] (2)  

Science Journals Connector (OSTI)

constr....(Protection against heat provided by heat-shielding materials in the outer walls of a building to prevent heat build-up in hot regions or in temperate climates during the summer. In tempera...

2010-01-01T23:59:59.000Z

402

Heat Transfer and Convection Currents  

Science Journals Connector (OSTI)

...October 1965 research-article Heat Transfer and Convection Currents D. C...convection in a medium with internal heat generation is discussed semi-quantitatively...States English United Kingdom 1966 Heat transfer and convection currents Tozer D...

1965-01-01T23:59:59.000Z

403

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

404

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

405

Advances in induction heating  

SciTech Connect (OSTI)

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

406

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

407

Solar heated swimming pool  

SciTech Connect (OSTI)

A swimming pool construction incorporating solar heating means to heat the pool water to a desired level. The pool includes a surrounding safety fence supported by a plurality of fence supports which are hollow and which include internal passageways. The pool water is passed through the pool support passageways whereupon it absorbs heat from the sidewalls of the fence supports, the surfaces of which have been heated by solar radiation. The fence supports can be made of plastic or other materials, but preferably are dark for improved absorptivity. The pool water can be passed serially through each of the fence supports and suitable thermostat control means can be provided to limit the water temperature increase.

Pettit, F.M.

1984-10-02T23:59:59.000Z

408

Electron Heat Transport Measured  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, J. K. Anderson, G. Fiksel, B. Hudson, S. C. Prager, J. S. Sarff, and J. C. Wright...

409

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

410

Absorption Heat Pump Developments  

Science Journals Connector (OSTI)

The implementation of both new thermodynamic cycles and new suitable fluids makes it possible to considerably widen the capacity to recover and upgrade low level heat contained particularly in industrial therm...

G. Cohen; A. Rojey

1983-01-01T23:59:59.000Z

411

Curling in the heat  

Science Journals Connector (OSTI)

... heat sensor, shown here, has been developed by Jim Gimzewski and colleagues at IBM Riis-chlikon specifically for studies of surface reactions . A spin-off of the scanning probe ...

David A. King

1994-04-21T23:59:59.000Z

412

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

413

Heat flux limiting sleeves  

DOE Patents [OSTI]

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

414

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

415

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

416

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

417

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

418

FEMP--Geothermal Heat Pumps  

Broader source: Energy.gov (indexed) [DOE]

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

419

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network [OSTI]

@comp.lancs.ac.uk ABSTRACT Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more, and measuring actual gas consumption and occupancy. In UK homes PreHeat both saved gas and reduced MissTime (the Home heating uses more energy than any other residential energy expenditure including air conditioning

Krumm, John

420

Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan  

Science Journals Connector (OSTI)

Abstract As an efficient measure for rational use of energy, the combined cooling, heating and power (CCHP) system plays an increasingly important role in commercial buildings in Japan. In this study, aiming at examining the influences of building type and climate condition on the introduction of CCHP systems, four representative commercial building categories (hotel, hospital, store and office) located in six major climate zones in Japan are compared and evaluated. In order to have a comprehensive understanding about the performances of the assumed CCHP systems, besides simple assessment from energy, economic and environmental aspects, a multi-criteria evaluation method has been employed for the final determination. According to the assessment results, the CCHP systems in hotels and hospitals enjoy better overall performances than those in stores and offices. On the other hand, the potentials of energy-saving and CO2 emission reduction of the CCHP systems in the mild climate zones are smaller than that in other climate zones. In addition, the performances of CCHP systems in stores and offices located in Kagoshima are superior to those in other cities; while, CCHP systems in hospitals and hotels located in Sapporo illustrate better overall performance.

Qiong Wu; Hongbo Ren; Weijun Gao; Jianxing Ren

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heat exchanger-accumulator  

DOE Patents [OSTI]

What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

Ecker, Amir L. (Dallas, TX)

1980-01-01T23:59:59.000Z

422

Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth of large silicon  

E-Print Network [OSTI]

of large silicon crystals with radiation on diffuse and specular surfaces Zhixiong Guo , Shigenao Maruyama-8577, Japan Komatsu Electronic Metals Co., Ltd., 2612 Shinomiya, Hiratsuka, Kanagawa 254, Japan Received 30. The radiation element method, REM2, is employed to determine the radiative heat exchange, in which the view

Guo, Zhixiong "James"

423

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

424

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

425

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect (OSTI)

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

426

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

427

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

428

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

429

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

430

Optical heat flux gauge  

DOE Patents [OSTI]

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MaCarthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

431

Optical heat flux gauge  

DOE Patents [OSTI]

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

432

Optical heat flux gauge  

DOE Patents [OSTI]

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

433

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

434

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

435

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Details Activities (4) Areas (2) Regions (0) Abstract: High heat flow in the Zuni Mountains, New Mexico, U.S.A., has been explained by the possible presence of a buried felsic pluton. Alternately, high K, U, Th abundances have been proposed to account for part of the high heat flow. The mean radiogenic heat contribution for 60 samples of Precambrian core rocks is 7.23 μcal/gm-yr, which is slightly

436

Heat driven heat pump using paired ammoniated salts  

SciTech Connect (OSTI)

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

437

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network [OSTI]

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

438

Planetary heat flow measurements  

Science Journals Connector (OSTI)

...ESA's Rosetta mission towards comet Churyumov-Gerasimenko. It...Heat flow measurements on comets have a different motivation...penetrator is by no means limited to comets; it has also been tested in...measurement. Currently, a landing on Mercury within the framework...

2005-01-01T23:59:59.000Z

439

Solar Heating and Cooling  

Science Journals Connector (OSTI)

...radiation during good weather are not very high, and...Atmospheric Administration weather ser-vice measures total...largely to experi-mental operation of 3-ton LiBr-H2O...a million solar water heaters are in use in these countries...air House heating load Cold air return 'S T~rgeo...

John A. Duffie; William A. Beckman

1976-01-16T23:59:59.000Z

440

Water-Heating Dehumidifier  

Energy Innovation Portal (Marketing Summaries) [EERE]

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on “Thermal Insulation at Medium Temperature” on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

442

Exotic heat PDE's  

E-Print Network [OSTI]

Exotic heat equations that allow to prove the Poincar\\'e conjecture, some related problems and suitable generalizations too are considered. The methodology used is the PDE's algebraic topology, introduced by A. Pr\\'astaro in the geometry of PDE's, in order to characterize global solutions.

Agostino Prástaro

2010-06-23T23:59:59.000Z

443

Roberts's “Heat and Thermodynamics”  

Science Journals Connector (OSTI)

... the last edition of the late Dr. J. K. Roberts's "Heat and Thermodynamics" appeared. The new material incorporated in this, the fourth edition, by Dr. ... ', but simply because new problems have afforded such excellent examples of the application of thermodynamics that their study must surely help the reader to a better understanding of the subject ...

G. R. NOAKES

1952-01-12T23:59:59.000Z

444

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

445

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

446

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

447

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications”,End-Use Survey combined heat and power Consolidated Edisonengine genset with combined heat and power (CHP) and power

Stadler, Michael

2009-01-01T23:59:59.000Z

448

Integrated solar heating unit  

SciTech Connect (OSTI)

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

449

HEATING 7. 1 user's manual  

SciTech Connect (OSTI)

HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1991-07-01T23:59:59.000Z

450

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

451

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

452

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

453

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

454

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

455

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

457

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

458

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network [OSTI]

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

459

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov…

1978-01-01T23:59:59.000Z

460

Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications  

Science Journals Connector (OSTI)

This article concerns the local structure of flow and temperature fields as well as overall heat transfer coefficients and pressure drops in flow passages of relevance for heat exchangers. Results from investi...

Bengt Sundén

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar Heating with Annual Heat Storage — Modelling and Practice  

Science Journals Connector (OSTI)

Central solar heating systems with seasonal heat storage are recognized as one of the most potential forms of solar energy utilization at northern latitudes. Because of ... and energy flows of a full-scale distri...

P. D. Lund; S. S. Peltola

1984-01-01T23:59:59.000Z

462

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

463

Waste Heat Management Options: Industrial Process Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

itself * Waste heat recovery or auxiliary or adjoining systems within a plant * Waste heat to power conversion Recycle Copyrighted - E3M Inc. August 20, 2009 Arvind Thekdi, E3M...

464

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

465

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

466

Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects  

Science Journals Connector (OSTI)

Abstract Recently, dimple and protrusion structure has been proved as an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. A compound heat transfer enhancement technique, the combination of ribs, dimples or protrusions, is applied to a U-shaped square channel similar with the gas turbine blade internal passage. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel in order to approximate more to the real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of turbine blade similar U-shaped channel with the combination structure of ribs, dimples or protrusions. The investigated Reynolds number is 1.25 million and considered rotational number includes 0, 0.4 and 0.6. From the results, the fluid patterns of two-pass channel with compound heat transfer enhancement structure are presented for none-rotating and rotating cases. Meanwhile, spatially Nusselt distributions of roughened walls are obtained to reveal the heat transfer rates. Finally, the area averaged Nusselt number ratio and channel friction penalty are evaluated. The results indicate that rib-protrusion structure seems to be the most effective structure while rib-dimple structure has only slight advantage than ribbed channel. Furthermore, the additional friction penalty by dimple and protrusion structure is tiny. It can also be expected that, the thermal performance of this compound structure can be even improved after a denser arrangement of dimple/protrusion structure and optimal shape design.

Zhongyang Shen; Yonghui Xie; Di Zhang

2015-01-01T23:59:59.000Z

467

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

468

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

469

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

470

Heat pulse propagation studies in TFTR  

SciTech Connect (OSTI)

The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

1986-02-01T23:59:59.000Z

471

Optimal joule heating of the subsurface  

DOE Patents [OSTI]

A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

Berryman, J.G.; Daily, W.D.

1994-07-05T23:59:59.000Z

472

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

473

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

474

Faculty Positions Heat Transfer and  

E-Print Network [OSTI]

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

475

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. Özil

1987-01-01T23:59:59.000Z

476

Complex Compound Chemical Heat Pumps  

E-Print Network [OSTI]

industrial heat pumps. The main emphasis was directed towards a conceptual temperature amplifier bench scale prototype design, which allows for the conversion to heat amplifier operation by the mere exchange of adsorbent working fluid component without...

Rockenfeller, U.; Langeliers, J.; Horn, G.

477

Heat Pumps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhotoYinYang. If you live in a...

478

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

479

Residential heating oil price decreases  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ago, based on the...

480

Residential heating oil price decreases  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

Note: This page contains sample records for the topic "heating combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Residential heating oil price decreases  

Gasoline and Diesel Fuel Update (EIA)

heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

482

Residential heating oil prices decline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

483

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the...

484

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

485

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

486

Residential heating oil prices decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ago, based on the...

487

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ago, based on the...

488

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

489

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

490

Residential heating oil prices decline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

491

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

492

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

493

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

494

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

495

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

496

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

497

Residential heating oil prices available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at 3.48 per gallon,...

498

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

499

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

500

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z