Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

2

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

3

Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

4

Absorption Heat Pump Water Heater  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

5

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

6

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

7

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

8

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

9

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

Franco, Victor

2011-01-01T23:59:59.000Z

10

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

11

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

12

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

13

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

14

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

15

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

16

CO2 Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heater CO2 Heat Pump Water Heater CO2 Heat Pump Water Heater Prototype
Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab...

17

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

18

Residential Absorption Heat Pump Water Heater | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pump Water Heater Residential Absorption Heat Pump Water Heater Photo credit: Oak Ridge National Lab Photo credit: Oak Ridge National Lab Diagram of absorption heat...

19

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: EnergyA Specification for Residential Heat Pump Water Heaters

Franco, Victor

2011-01-01T23:59:59.000Z

20

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Absorption Heat Pump Water Heater - 2013 Peer Review | Department...  

Energy Savers [EERE]

Absorption Heat Pump Water Heater - 2013 Peer Review Absorption Heat Pump Water Heater - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's...

22

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and...

23

Heat Pump Water Heaters Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

24

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

25

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

26

Cryostat including heater to heat a target  

DOE Patents [OSTI]

A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

Pehl, R.H.; Madden, N.W.; Malone, D.F.

1990-09-11T23:59:59.000Z

27

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

28

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect (OSTI)

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

29

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

30

AWSWAH - the heat pipe solar water heater  

SciTech Connect (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

31

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network [OSTI]

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

32

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

33

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

34

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

35

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

36

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

37

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

38

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

39

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

40

Heat Pump Swimming Pool Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

42

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

43

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect (OSTI)

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

44

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

as conventional electric resistance water heaters, with thetwo technologies: (1) an electric resistance storage watertransfers heat from the electric resistance element to the

Franco, Victor

2011-01-01T23:59:59.000Z

45

FS: heat pump water heaters | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

46

Heat Pump Water Heater Performance in  

Broader source: Energy.gov (indexed) [DOE]

searc searc e er tra A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida searc e er tra Heat Pump Water Heater Performance in Laboratory House Building America Technical Update 2013 ACI National Home Performance Conference April 29- 30 , 2013 Carlos J. Colon carlos@fsec.ucf.edu A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Grounds, Florida (east coast) 2009 -Present (Currently fourth testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida

47

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

48

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

49

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

50

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

51

Split system CO2 heat pump water heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Split-system-CO2-heat-pump-water-heaters- Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE...

52

District heating campaign in Sweden  

SciTech Connect (OSTI)

During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted during two weeks of November 1994 and comprised advertising on commercial TV and in the press.

Stalebrant, R.E. [Swedish District Heating Association, Stockholm (Sweden)

1995-09-01T23:59:59.000Z

53

Utilization of Heat Pump Water Heaters for Load Management  

SciTech Connect (OSTI)

The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

2014-01-01T23:59:59.000Z

54

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Broader source: Energy.gov [DOE]

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

55

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network [OSTI]

#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

Oak Ridge National Laboratory

56

Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration  

DOE Patents [OSTI]

A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

2010-11-09T23:59:59.000Z

57

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

58

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

59

Elko County School District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal Facility Facility Elko County School District Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

60

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network [OSTI]

communications). Heat transfer fluid is 60% o-o1vco1 bycharacteristics, heat transfer fluids, flow resistances,of a non- freezing heat transfer fluid circulating in a loop

Mertol, Atila

2012-01-01T23:59:59.000Z

62

Field Monitoring Protocol: Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

63

Heat Pump Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

64

Covered Product Category: Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

65

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

Sparn, B.; Hudon, K.; Christensen, D.

2014-06-01T23:59:59.000Z

66

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

67

Electric Blanket vs. Space Heater: #EnergyFaceoff Round 3 Heats...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up Electric Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up November 17, 2014 - 9:49am Q&A Which appliance do you...

68

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Broader source: Energy.gov [DOE]

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

69

Advances in the Research of Heat Pump Water Heaters  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-2 1 Advances in the Research of Heat Pump Water Heaters Shangli Shan Dandan Wang Ruixiang Wang Master Master Professor Beijing...) [21] Wang sui-lin . Affection on fin-and-tube Heat Exchanger's Properties by non azeotropic mixtures[J] . Fluid machinery , 1996 , 24 (5) [22] Ge run-ting . Foundation of Dynamic Parameter Model and Theoritical Calculation of Evaporator...

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

70

Induction heaters used to heat subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

2012-04-24T23:59:59.000Z

71

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

72

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network [OSTI]

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat (more)

PRESTON, NATHANIEL

73

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

74

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

75

Electrically heated particulate filter embedded heater design  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

76

BSU GHP District Heating and Cooling System (Phase I) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BSU GHP District Heating and Cooling System (Phase I) BSU GHP District Heating and Cooling System (Phase I) Project objectives: Create a campus geothermal heating and cooling...

77

District Heating with Renewable Energy Webinar  

Broader source: Energy.gov [DOE]

This no cost Community Renewable Energy Success Stories webinar on "District Heating with Renewable Energy" presented by the Energy Department will feature two presentations. The first will discuss...

78

Three-phase heaters with common overburden sections for heating subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

Vinegar, Harold J. (Bellaire, TX)

2012-02-14T23:59:59.000Z

79

DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures  

Broader source: Energy.gov [DOE]

The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

80

Annual Operating Characteristics of Solar Central Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

The solar central water heater (SCWH) could supply ... massive users effectively and reliably. A SCWH assisted by heat pump (SCWHP) was proposed...

Wei Hu; Zhaolin Gu; Shiyu Feng; Xiufeng Gao

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

82

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

83

New Mexico State University District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

84

Buffalo district heating system design and construction  

SciTech Connect (OSTI)

This report addresses the introduction of district heating in Buffalo, NY from feasibility study to implementation. The reemergence of district heating in the US and associated advantages are reviewed. Advanced piping technology which has enabled district heating to compete economically with alternative technologies is summarized. Identification and analysis of the customer heat load considered in downtown Buffalo for the pilot system and future expansion is discussed. Various options for initiating construction of a district heating system were considered as exemplified by the configuration for the pilot system which was selected to serve five downtown buildings. A conceptual plan is presented which permits the system to expand in an economically viable manner. The report concludes with an economic analysis which simulates the operation and expansion of the system. 4 figs., 8 tabs.

Oliker, I.

1987-11-01T23:59:59.000Z

85

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

86

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

87

Development and Application of Engineering-Scale Solar Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

An engineering-scale solar water heater system assisted by heat pump was developed based on ... . The subunits of modularized system include vacuum solar energy collectors, air source heat pump, ... Energy source...

Xiufeng Gao; Shiyu Feng; Wei Hu

2009-01-01T23:59:59.000Z

88

Enhancement of Heat Transfer in an Artificially Roughened Solar Air Heater  

E-Print Network [OSTI]

Abstract: solar air heater is one of the basic equipment through which solar energy is converted into thermal energy. Solar air heaters, because of their simple in design, are cheap and most widely used collection devices of solar energy. The thermal efficiency of a solar air heater is significantly low because of the low value of the convective heat transfer coefficient between the absorber plate and the air, leading to high absorber plate temperature and high heat losses to the surroundings. This paper presents the study of heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD). The effect of Reynolds number on Nusselt number is investigated. A commercial finite volume package ANSYS FLUENT 12.1 is used to analyze and visualize the nature of the flow across the duct of a solar air heater.

unknown authors

89

Heat pump water heater and storage tank assembly  

DOE Patents [OSTI]

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

90

First university owned district heating system using biomass heat  

E-Print Network [OSTI]

Components 4.3 m diameter gasifier 4.4 MW flue gas boiler 60 t hog fuel storage Electrostatic precipitator Residue Gasifier Oxidizer Flue Gas Boiler Electrostatic Precipitator Heat to campus district energy loop

Northern British Columbia, University of

91

Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

92

Critical Question #8: When are Heat Pump Water Heaters the Best Solution? |  

Broader source: Energy.gov (indexed) [DOE]

8: When are Heat Pump Water Heaters the Best 8: When are Heat Pump Water Heaters the Best Solution? Critical Question #8: When are Heat Pump Water Heaters the Best Solution? What do we know about actual performance compared to promised performance? What is the best way to manage the space conditioning impacts on a home? Is there an easy decision tree for deciding if this is the best solution for a particular home (Climate? Utility prices? Accessibility? Physical space constraints? Workforce?)? cq8_residential_hpwh_costs_maguire.pdf cq8_hpwh_performance_colon.pdf cq8_hpwhs_multifamily_weitzel.pdf More Documents & Publications Track A - Energy Systems Innovations Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Standing Technical Committee Working Sessions

93

A Small Scale Solar Agricultural Dryer with Biomass Burner and Heat Storage Back-Up Heater  

Science Journals Connector (OSTI)

This paper describes a small scale solar agricultural dryer with a simple biomass burner and heat storage back-up heater. The key design features ... are the combination of direct and indirect type solar dryer, t...

Elieser Tarigan; Perapong Tekasakul

2009-01-01T23:59:59.000Z

94

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

95

Swimming Pool Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Homes Water Heating Swimming Pool Heaters Swimming Pool Heaters July 10, 2014 Gas Swimming Pool Heaters Selecting the right kind of swimming pool heater...

96

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project...

97

Regional Variation in Residential Heat Pump Water Heater Performance in the United States  

Broader source: Energy.gov (indexed) [DOE]

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Regional Variation in Residential Heat Pump Water Heater Performance in the US Jeff Maguire 4/30/13 Outline * Why HPWHs? * US Water Heating Market * Overview of HPWHs * Model Description * Results o HPWH Performance o Energy Savings Potential o Breakeven Cost 2 Heat Pump Water Heaters Save $300 a year over standard electric? Save $100 a year over standard gas? Heat Pump Electric Gas 3 Questions about HPWHs * Are HPWHs a good replacement for typical gas and electric storage water heaters? o In different locations across the country? o In conditioned/unconditioned space? o Source energy savings?

98

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

99

Podhale (South Poland) geothermal district heating system  

Science Journals Connector (OSTI)

The search for geothermal resources in the Podhale Region began in the late 1980s. The Banska IG-1 well, drilled in 1981, served as the starting point for an expansion of those research activities. A geothermal pilot plant was put into operation in 1993. During that same year the company Geotermia Podhalanska (GP) was founded and the pilot project, including the first distribution network for 20 customers, was constructed. After the initial phase of project implementation from 1993 to 1995, during which a pilot plant was constructed and put into operation for demonstration purposes by the Polish Academy for Sciences using the first geothermal doublet (a production well in Banska Nizna and a reinjection well in Bialy Dunajec), and connection of 200 households through a small district heating network, the World Bank got involved in the geothermal district heating project. Since then, significant progress has been made, increasing the overall heat capacity and geothermal output as well as the service area to the City of Zakopane, approx. 14 km from the production wells. In November 2001 the first geothermal heat was delivered to customers in Zakopane.

Piotr Dlugosz

2003-01-01T23:59:59.000Z

100

Fuzzy predictive control of district heating network  

Science Journals Connector (OSTI)

This paper presents a concept for controlling the supply temperature in district heating networks (DHNs) using model predictive control. Due to the inherent non-linearity in the response characteristics caused by varying flow rates the use of fuzzy dynamic matrix control (DMC) is proposed. The fuzzy partitions of the local finite impulse response (FIR) models are constructed by an axis-orthogonal, incremental partitioning scheme. Furthermore, a novel approach for determining future fuzzy trajectory based on heat load forecasts is implemented. It is demonstrated that the fuzzy DMC performs well for the case study considered. In addition, different set point strategies are applied and the results are evaluated with respect to operational costs. In this context it is shown that the trade-off between pumping and heat loss cost plays an important role in minimising overall costs.

S. Grosswindhager; M. Kozek; Andreas Voigt; Lukas Haffner

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance of Heat Pump Water Heaters: Initial Findings of Draw Profile Effect on HPWH Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Performance of Heat Pump Water Heaters Performance of Heat Pump Water Heaters © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Evaluation Overview  2000-2002 Evaluated 20 installations with CL&P  Product had problems; not ready for prime time (average COPs of 1.67 was not the problem)  New batch of heaters available, including:  GE's GeoSpring Hybrid (50 gal)  A.O.Smith's Voltex Hybrid (60 & 80 gal)  Stiebel-Eltron's Accelera 300 (80 gal)  Evaluating 14 installations for National Grid, NSTAR, & Cape Light Compact. © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved.

102

Tushino - 3 district heating project/Moscow  

SciTech Connect (OSTI)

The contract for supply and installation of Honeywell control equipment at the district heating plant in Moscow suburb of Tushino was signed between the Mayor of Moscow and Honeywell in December 1991. Total contract value is US$3 million. The aim is to demonstrate on a pilot project the potential energy savings and improved pleat safety which can be achieved by means of electronic control of latest design. The Honeywell contract basically covers modernization of instrumentation and control of the gas fired heating plant, comprising water preparation and 4 boilers, of 100 Gcal/h each, i.e., 400 Gcal/h total. The plant is feeding the hot water network which has 60 heat exchanger stations connected. The heat exchangers (thermal rating between 2 to 10 Gcal/h each) supply hot water mainly to residential building blocks for apartment heating and domestic hot water. Honeywell`s responsibility covers engineering, supply of TDC 3000 micro-processor based control system for the boilers and DeltaNet Excel control for the Heat Exchangers. The contract also includes installation and start-up of the total control system.

Mayer, H.W.

1995-09-01T23:59:59.000Z

103

NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

2012-04-01T23:59:59.000Z

104

BSU GHP District Heating and Cooling System (Phase I)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BSU GHP District Heating and Cooling System (Phase I) James Lowe Ball State University May 03, 2010 This presentation does not contain any proprietary confidential, or otherwise...

105

District Wide Geothermal Heating Conversion Blaine County School...  

Broader source: Energy.gov (indexed) [DOE]

Conversion Blaine County School District This project will impact the geothermal energy development market by showing that ground source heat pump systems using production...

106

November 20, 2012 Webinar: District Heating with Renewable Energy |  

Broader source: Energy.gov (indexed) [DOE]

November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy This webinar was held November 20, 2012, and provided information on Indiana's Ball State University geothermal heat pump system, and a hot-water district heating system in St. Paul, Minnesota. Download the presentations below, watch the webinar (WMV 194 MB), or view the text version. Find more CommRE webinars. Paradigm Shift-Coal to Geothermal Ball State University in Indianapolis, Indiana, is converting its campus district heating and cooling system from a coal-fired steam boiler to a ground source geothermal system that produces simultaneously hot water for heating and chilled water for cooling. It will be the largest ground source

107

ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

108

Enhanced heat transfer tubes for film absorbers of absorption chiller/heater  

SciTech Connect (OSTI)

Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

Sasaki, Naoe; Nosetani, Tadashi [Sumitomo Light Metal Industry, Ltd., Nagoya, Aichi (Japan); Furukawa, Masahiro; Kaneko, Toshiyuki [Sanyo Electric Co., Ltd., Ora, Gunma (Japan). Commercial Air-Conditioning Div.

1995-12-31T23:59:59.000Z

109

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used for many years for space heating and cooling. It can be found in small and large products alike, such as window air conditioners used in homes through large rooftop units...

110

District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, March 1, 1980-January 31, 1984. Volume IV  

SciTech Connect (OSTI)

This volume contains the following: discussion of cost estimating methodology, detailed cost estimates of Hudson No. 2 retrofit, intermediate thermal plant (Kearny No. 12) and local heater plants; transmission and distribution cost estimate; landfill gas cost estimate; staged development scenarios; economic evaluation; fuel use impact; air quality impact; and alternatives to district heating.

Not Available

1984-01-31T23:59:59.000Z

111

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

112

Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen  

E-Print Network [OSTI]

July 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5 in soil 28 5.3 Other experienced constructions: 30 6 Consequences of establishing solar heat in CHP areas

113

Selecting a new water heater  

SciTech Connect (OSTI)

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

114

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

115

Performance Analysis of a Transcritical CO2 Heat Pump Water Heater Incorporating a Brazed-Plate Gas-cooler.  

E-Print Network [OSTI]

??This study focuses on the experimental testing and numerical modeling of a 4.5 kW transcritical CO2 heat pump water heater at Queens University in the (more)

Murray, PORTIA

2015-01-01T23:59:59.000Z

116

Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

2012-02-01T23:59:59.000Z

117

Oregon Institute of Technology District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

New Mexico State University District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State University District Heating Low Temperature Geothermal State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New Mexico State University Sector Geothermal energy Type District Heating Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Idaho Capitol Mall District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Capitol Mall District Heating Low Temperature Geothermal Facility Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Facility Idaho Capitol Mall Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Warren Estates District Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warren Estates District Heating Low Temperature Geothermal Facility Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility Warren Estates Sector Geothermal energy Type District Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Facility Fort Boise Veteran's Hospital Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Manzanita Estates District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Manzanita Estates District Heating Low Temperature Geothermal Facility Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility Facility Manzanita Estates Sector Geothermal energy Type District Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

Litchfield Correctional Center District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Facility Litchfield Correctional Center Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

125

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Energy Accounting for District Heating and Cooling Plants  

E-Print Network [OSTI]

ENERGY ACCOUNTING FOR DISTRICT HEATING AND COOLING PLANTS John A. Barrett, P.E. Manager, Central Plant Utilities University of Houston Houston, Texas Introduction Energy accounting combines engineering science with the insights of cost... Energy Technology Conference Houston, TX, April 22-25, 1979 The Science of Plant Utilities Control While the Weiss papers are not as specific to district heating and cooling plants as the preceding papers, they do treat other problem areas of interest...

Barrett, J. A.

1979-01-01T23:59:59.000Z

127

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

128

District Wide Geothermal Heating Conversion Blaine County School District  

Broader source: Energy.gov [DOE]

This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of ownership of available HVAC replacement options.

129

Community Renewable Energy Success Stories Webinar: District Heating with  

Broader source: Energy.gov (indexed) [DOE]

District District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hi, good afternoon everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche, and I'm here with Devin Egan. We're broadcasting live from the National Renewable Energy Lab in Golden, Colorado. And we're going to give everyone a few minutes to call in and log on, but while we do that, Devin's going to go over some of the logistics, and then we'll get started. Devin?

130

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect (OSTI)

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

131

Development of Environmentally Benign Heat Pump Water Heaters for the US Market  

SciTech Connect (OSTI)

Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

2012-01-01T23:59:59.000Z

132

New energy and exergy parameters for geothermal district heating systems  

Science Journals Connector (OSTI)

This paper introduces four new parameters, namely energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio, and exergetic reinjection ratio for geothermal district energy systems. These parameters are applied to Edremit Geothermal District Heating System (GDHS) in Balikesir, Turkey for daily, monthly and yearly assessments and their variations are studied. In addition, the actual data are regressed to obtain some applied correlations for practical use. Some results follow: (i) Both energetic and exergetic renewability ratios decrease with decreasing temperature in heating season and increasing temperature in the summer. (ii) Both energetic and exergetic reinjection ratios increase with decreasing temperature for heating season and increase with increasing temperature for summer season.

C. Coskun; Zuhal Oktay; I. Dincer

2009-01-01T23:59:59.000Z

133

Simulation and analysis of district-heating and -cooling systems  

SciTech Connect (OSTI)

A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

Bloomster, C.H.; Fassbender, L.L.

1983-03-01T23:59:59.000Z

134

Co-sponsored second quarter progress review conference on district heating  

SciTech Connect (OSTI)

A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

None

1980-01-01T23:59:59.000Z

135

District cooling and heating development in Stamford, CT. Final report  

SciTech Connect (OSTI)

This report summarizes the development options for introducing district cooling and heating in downtown Stamford, Connecticut. A district energy system as defined for the Stamford project is the production of chilled and hot water at a central energy plant, and its distribution underground to participating building in the vicinity. The objective of the study was to investigate implementation of a district energy system in conjunction with cogeneration as a means to encourage energy conservation and provide the city with an economic development tool. Analysis of the system configuration focused on selecting an arrangement which offered a realistic opportunity for implementation. Three main alternatives were investigated: (1) construction of an 82 MW cogeneration plant and a district heating and cooling system to serve downtown buildings, (2) construction of a small (4 MW) in-fence cogeneration plant combined with cooling and heating, and (3) construction of a district cooling and heating plant to supply selected buildings. Option (1) was determined to be unfeasible at this time due to low electricity prices. The analysis demonstrated that alternatives (2) and (3) were feasible. A number of recommendations are made for detailed cost estimates and ownership, leasing, and financial issues. 12 figs., 10 tabs.

NONE

1994-12-01T23:59:59.000Z

136

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

137

Achieving low return temperatures from district heating substations  

Science Journals Connector (OSTI)

Abstract District heating systems contribute with low primary energy supply in the energy system by providing heat from heat assets like combined heat and power, waste incineration, geothermal heat, wood waste, and industrial excess heat. These heat assets would otherwise be wasted or not used. Still, there are several reasons to use these assets as efficiently as possible, i.e., ability to compete, further reduced use of primary energy resources, and less environmental impact. Low supply and return temperatures in the distribution networks are important operational factors for obtaining an efficient district heating system. In order to achieve low return temperatures, customer substations and secondary heating systems must perform without temperature faults. In future fourth generation district heating systems, lower distribution temperatures will be required. To be able to have well-performing substations and customer secondary systems, continuous commissioning will be necessary to be able to detect temperature faults without any delays. It is also of great importance to be able to have quality control of eliminated faults. Automatic meter reading systems, recently introduced into district heating systems, have paved the way for developing new methods to be used in continuous commissioning of substations. This paper presents a novel method using the temperature difference signature for temperature difference fault detection and quality assurance of eliminated faults. Annual hourly datasets from 140 substations have been analysed for temperature difference faults. From these 140 substations, 14 were identified with temperature difference appearing or eliminated during the analysed year. Nine appeared during the year, indicating an annual temperature difference fault frequency of more than 6%.

Henrik Gadd; Sven Werner

2014-01-01T23:59:59.000Z

138

District of Columbia | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and appliance recycling. Certain efficiency standards must be met in order to receive a rebate for water heaters or windows. Vera Irrigation District also provides a $450 rebate for the installation of energy-efficient heat pumps; ductless heat pumps are eligible incentives of up to $1,500. See the program web site or contact the utility for more information about this program. October 16, 2013 Underground Storage Tank Management (District of Columbia)

139

On flow and supply temperature control in district heating systems  

Science Journals Connector (OSTI)

This paper discusses how the control of the flow and the supply temperature in district heating systems can be optimized, utilizing stochastic modelling, prediction and control methods. The main objective is to reduce heat production costs and heat losses in the transmission and distribution net by minimizing the supply temperature at the district heating plant. This control strategy is reasonable, in particular, if the heat production takes place at a combined heat and power (CHP) plant. The control strategy is subject to some restrictions, e.g. that the total heat requirement for all consumers is supplied at any time, and each individual consumer is guaranteed some minimum supply temperature at any time. Another important restriction is that the variation in time of the supply temperature is kept as small as possible. This concept has been incorporated in the program package, PRESS, developed at the Technical University of Denmark. PRESS has been applied and tested, e.g. at Vestkraft in Esbjerg, Denmark, and significant saving potentials have been documented. PRESS is now distributed by the Danish District Heating Association.

Henrik Madsen; Ken Sejling; Henning T. Sgaard; Olafur P. Palsson

1994-01-01T23:59:59.000Z

140

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exergoeconomic evaluation on the optimum heating circuit system of Simav geothermal district heating system  

Science Journals Connector (OSTI)

Simav is one of the most important 15 geothermal areas in Turkey. It has several geothermal resources with the mass flow rate ranging from 35 to 72kg/s and temperature from 88 to 148C. Hence, these geothermal resources are available to use for several purposes, such as electricity generation, district heating, greenhouse heating, and balneological purposes. In Simav, the 5000 residences are heated by a district heating system in which these geothermal resources are used. Beside this, a greenhouse area of 225,000m2 is also heated by geothermal. In this study, the working conditions of the Simav geothermal district heating system have been optimized. In this paper, the main characteristics of the system have been presented and the impact of the parameters of heating circuit on the system are investigated by the means of energy, exergy, and life cycle cost (LCC) concepts. As a result, the optimum heating circuit has been determined as 60/49C.

Oguz Arslan; M.Arif Ozgur; Ramazan Kose; Abtullah Tugcu

2009-01-01T23:59:59.000Z

142

SMUD - Solar Water Heater Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heater Rebate Program Solar Water Heater Rebate Program SMUD - Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount 500 - 1,500 per system, depending on energy savings Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the rebate depends on how much electricity the system will offset annually: * 800 - 1,399 kWh: $500 * 1,400 - 2,199 kWh: $1,000 * 2,200 kWh or greater: $1,500 . All solar water-heating units must meet standards set by the Solar Rating

143

Convective heater  

DOE Patents [OSTI]

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

Thorogood, Robert M. (Macungie, PA)

1983-01-01T23:59:59.000Z

144

Convective heater  

DOE Patents [OSTI]

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

Thorogood, Robert M. (Macungie, PA)

1986-01-01T23:59:59.000Z

145

Combustion air preheating for refinery heaters using plate-type heat exchangers  

SciTech Connect (OSTI)

Combustion air preheating by recovering heat from combustion gases is a cost effective method of increasing the overall thermal efficiency of the refining and petrochemical processes. This paper presents the advantages of the plate-type air preheaters made of smooth plates without extended surfaces. These exchangers provide a relatively high heat transfer coefficient at a relatively low pressure drop, resulting in a flexible and compact design. The air preheater design can easily be integrated into the heater design. Top mounting with natural draft becomes possible for many applications, eliminating the need for I.D. fan and expensive ductwork. The economical extent of heat recovery function of the fuel fired is presented based on practical experience. The use of porcelain enameled (glass coated) plates and of stainless steel materials allows the operation of the air preheater below the acidic and water dew point. Finally the paper presents the experience of the Canadian refineries and petrochemical plants with plate-type heat exchangers used for combustion air preheating.

Dinulescu, M.

1987-01-01T23:59:59.000Z

146

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

147

Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)  

Broader source: Energy.gov [DOE]

To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

148

Experimental study of heat transfer in an electric arc gas heater with vortex stabilization of the discharge  

Science Journals Connector (OSTI)

The results of an experimental investigation into heat transfer in the discharge chamber of an electric-arc gas heater are presented. For the anode...an=f(I, d), St=f(l/d, Re, N/GH0). The energy losses in the bas...

V. L. Sergeev

1971-01-01T23:59:59.000Z

149

Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

150

Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array  

E-Print Network [OSTI]

The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first...

Paik, Sokwon

2006-08-16T23:59:59.000Z

151

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulation model helps researchers evaluate real-world simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy Laboratory (NREL) developed a simulation model to study the inter- actions of HPWHs and space conditioning equipment, related to climate and installa- tion location in the home. This model was created in TRNSYS and is based on data from HPWHs tested at NREL's Advanced HVAC Systems Laboratory. The HPWH model accounts for the condenser coil wrapped around the outside of the storage tank, and uses a data-based performance map. Researchers found that simulated energy use was within 2% of lab results, which confirms

152

School of Architecture, Design and the Built Environment Delta T optimisation of district heating network  

E-Print Network [OSTI]

School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

Evans, Paul

153

Portable Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portable Heaters Portable Heaters Portable Heaters November 26, 2013 - 2:41pm Addthis Portable heaters can be an efficient way to supplement inadequate heating. | Photo courtesy iStockphoto.com Portable heaters can be an efficient way to supplement inadequate heating. | Photo courtesy iStockphoto.com What does this mean for me? A portable heater is a good choice if you have a space that requires supplemental heating or is infrequently occupied. You should carefully follow all the manufacturer's installation and operation instructions. Small space heaters are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. In some cases, small space heaters can be less expensive to use if you only want to heat one room or supplement inadequate heating in one room. They

154

Return temperature influence of a district heating network on the CHP plant production costs.  

E-Print Network [OSTI]

?? The aim of this Project is to study the influence of high return temperatures in district heating on the costs for heat and power (more)

Sallent, Roger

2009-01-01T23:59:59.000Z

155

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network [OSTI]

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

156

District heating and cooling feasibility study, Dunkirk, New York  

SciTech Connect (OSTI)

The objective of this project is to perform a preliminary investigation of the technical and economic feasibility of implementing a district heating and cooling (DHC) system in the City of Dunkirk, New York. The study was conducted by first defining a heating and cooling (HC) load service area. Then, questionnaires were sent to prospective DHC customers. After reviewing the owners responses, large consumers of energy were interviewed for more detail of their HC systems, including site visits, to determine possibilities of retrofitting their systems to district heating and cooling. Peak HC loads for the buildings were estimated by Burns and Roe's in-house computer programs. Based on the peak loads, certain customers were determined for suitability as anchor customers. Various options using cogeneration were investigated for possible HC sources. Equipment for HC sources and HC loads were sized and their associated costs estimated. Finally, economic analyses were performed. The conclusion is that it is technically and economically feasible to implement a district heating and cooling system in the City of Dunkirk. 14 figs., 15 tabs.

Not Available

1988-06-01T23:59:59.000Z

157

Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater  

Science Journals Connector (OSTI)

A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.

X.Q. Kong; D. Zhang; Y. Li; Q.M. Yang

2011-01-01T23:59:59.000Z

158

Feasibility analysis of geothermal district heating for Lakeview, Oregon  

SciTech Connect (OSTI)

An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

Not Available

1980-12-23T23:59:59.000Z

159

CHP, Waste Heat & District Energy  

Broader source: Energy.gov (indexed) [DOE]

CHP Technologies and Applications CHP Technologies and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream." * CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use. * CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations. 11/1/2011 Slide 6 5/20/11 Slide 7 What is CHP? * On-site generation of Power and Thermal Energy from a single fuel source * 'Conventional' grid based generators are located remote from thermal applications while CHP plants are located close to thermal applications

160

Thermodynamic analysis of a geothermal district heating system  

Science Journals Connector (OSTI)

Thermoeconomic analysis is considered a useful tool for investigators in engineering and other disciplines due to its methodology based on the quantities exergy, cost, energy and mass. This study deals with an investigation of capital costs and thermodynamic losses for devices in the Balcova Geothermal District Heating Systems (BGDHS). Thermodynamic loss rate-to-capital cost ratios are used for components and the overall system, and a systematic correlation is found between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful district heating system are configured so as to achieve an overall optimal design, by balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and their devices. The results provide insights into the relations between thermodynamics and economics and help demonstrate the merits of exergy analysis.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal district heating system feasibility analysis, Thermopolis, Wyoming  

SciTech Connect (OSTI)

The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

1982-04-26T23:59:59.000Z

162

A key review on performance improvement aspects of geothermal district heating systems and applications  

Science Journals Connector (OSTI)

This paper deals with a comprehensive analysis and discussion of geothermal district heating systems and applications. In this regard, case studies are presented to study the thermodynamic aspects in terms of energy and exergy and performance improvement opportunities of three geothermal district heating systems, namely (i) Balcova geothermal district heating system (BGDHS), (ii) Salihli geothermal district heating system (SGDHS), and (iii) Gonen geothermal district heating system (GGDHS) installed in Turkey. Energy and exergy modeling of geothermal district heating systems for system analysis and performance evaluation are given, while their performances are evaluated using energy and exergy analysis method. Energy and exergy specifications are presented in tables. In the analysis, the actual system operational data are utilized. In comparison of the local three district heating systems with each other, it is found that the SGDHS has highest energy efficiency, while the GGDHS has highest exergy efficiency.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2007-01-01T23:59:59.000Z

163

Exergoeconomic analysis of geothermal district heating systems: A case study  

Science Journals Connector (OSTI)

An exergoeconomic study of geothermal district heating systems through mass, energy, exergy and cost accounting analyses is reported and a case study is presented for the Salihli geothermal district heating system (SGDHS) in Turkey to illustrate the present method. The relations between capital costs and thermodynamic losses for the system components are also investigated. Thermodynamic loss rate-to-capital cost ratios are used to show that, for the devices and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. Furthermore, a parametric study is conducted to determine how the ratio of thermodynamic loss rate to capital cost changes with reference temperature and to develop a correlation that can be used for practical analyses. The correlations may imply that devices in successful district heating systems such as the SGDHS are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic (cost) characteristics of the overall systems and their devices.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer; Marc A. Rosen

2007-01-01T23:59:59.000Z

164

Conventional and advanced exergoeconomic analyses of geothermal district heating systems  

Science Journals Connector (OSTI)

Abstract The present study deals with analyzing, assessing and comparing conventional and advanced exergoeconomic analyses to identify the direction and potential for energy savings of a geothermal district heating system in future conditions/projections. As a real case study, the Afyon geothermal district heating system in Afyonkarahisar, Turkey, is considered while its actual operational thermal data on 8 February 2011 are utilized in the analysis, which is based on the specific exergy costing method. In this study for the first time, based on the concepts of avoidable/unavoidable and endogenous/exogenous parts, cost rates associated with both exergy destruction and capital investment of the geothermal district heating system are determined first, and the obtained results are then evaluated. The results indicate that the internal design changes play a more essential role in determining the cost of each component. The cost rate of unavoidable part within the components of the system is lower than that of the avoidable one. For the overall system, the value for the conventional exergoeconomic factor is determined to be 5.53% while that for the modified one is calculated to be 9.49%. As a result, the advanced exergoeconomic analysis makes more sense given the additional information in splitting process of the components.

Ali Keeba?; Arif Hepbasli

2014-01-01T23:59:59.000Z

165

Tankless Gas Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Gas Water Heaters Tankless Gas Water Heaters Standardized Templates for Reporting Test Results tanklessgaswaterheaterv12.xlsx More Documents & Publications Heat Pump...

166

Geothermal district heating in Turkey: The Gonen case study  

Science Journals Connector (OSTI)

The status of geothermal district heating in Turkey and its future prospects are reviewed. A description is given of the Gonen project in Balikesir province, the first system to begin citywide operation in the country. The geology and geothermal resources of the area, the history of the project's development, the problems encountered, its economic aspects and environmental contributions are all discussed. The results of this and other such systems installed in Turkey have confirmed that, in this country, heating an entire city based on geothermal energy is a significantly cleaner, cheaper option than using fossil fuels or other renewable energy resources.

Zuhal Oktay; Asiye Aslan

2007-01-01T23:59:59.000Z

167

Life cycle assessment of base-load heat sources for district heating system options  

SciTech Connect (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

168

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov [DOE]

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

169

Grays Harbor PUD - Solar Water Heater Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $600 Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square feet or more. Only customers who currently use electricity for hot water are eligible. This rebate is available on a case-by-case basis, so you must contact the utility in order to take advantage of it. Customers may choose a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA09F&re=1&ee=1

170

Grays Harbor PUD - Solar Water Heater Loan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heater Loan Solar Water Heater Loan Grays Harbor PUD - Solar Water Heater Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount not specified Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a low-interest loan program (currently 4.0%) for the installation of solar water heaters. Loans are available for the installation of solar collectors of 40 square feet or more. The loans are provided through local lenders, with interest subsidized by the PUD. Only customers who currently use electricity for hot water are eligible. Pre-approval is required for this loan and loan amounts are determined on a case-by-case basis.

171

Potential of the Power-to-Heat Technology in District Heating Grids in Germany  

Science Journals Connector (OSTI)

Abstract The increasing amount of power generation from weather-dependent renewable sources in Germany is projected to lead to a considerable number of hours in which power generation exceeds power demand. One possibility to take advantage of this power surplus is through the Power-to-Heat technology. As combined heat and power (CHP)-plants can be upgraded relatively easily with a Power-to-Heat facility, a huge potential can be developed in German district heating grids which are mainly served by CHP-plants. In this paper the potential of the Power-to-Heat technology in district heating grids in Germany is evaluated for the years 2015 to 2030 under different assumptions.

Diana Bttger; Mario Gtz; Nelly Lehr; Hendrik Kondziella; Thomas Bruckner

2014-01-01T23:59:59.000Z

172

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

173

Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters  

Science Journals Connector (OSTI)

Abstract In this study, a novel solar-assisted auto-cascade heat pump cycle (SAHPC) operating with the zeotropic mixture of R32/R290 for small water heaters is proposed. In the SAHPC system, a cascade heat exchanger (CHEX) associated with a phase separator is used to achieve auto cascade cycle and enhance the overall system performance. The performances of the SAHPC are evaluated by using the developed mathematical model, and then compared with the conventional air-sourced heat pump cycle (CAHPC). Simulation results show the SAHPC has 4.239.85% and 4.379.68% improvements in COP and volumetric heating capacity compared with those of the CAHPC, respectively, under the same operating conditions. However, the improvement of performance of this novel cycle largely depends on the absorbing heat ratio and the zeotropic composition. It is expected that this new cycle will be beneficial to developing dual-source coupled heat pump applications.

Xiaolong Lv; Gang Yan; Jianlin Yu

2015-01-01T23:59:59.000Z

174

Marketing the Klamath Falls Geothermal District Heating system  

SciTech Connect (OSTI)

The Klamath Falls Geothermal District Heating system was completed in 1981 and, until 1992, there was no formal marketing plan for the system. This lack of marketing and the system history of poor availability combined to reduce or eliminate interest in connecting on the part of local building owners and it served only the original 14 government buildings connected at start up. The revenue from these buildings, however, did not cover the entire cost of operating the system. As a result, the city was faced with a difficult decision - develop the revenue required to make the system self-supporting or shut it down. As a result, a marketing strategy for the system was developed. A flat rate was developed in which the rate is negotiable, but for most customers approximates 50% of the gas bill. In addition, the flat rate reduced customer retrofit costs because it is not necessary to buy a meter. Finally, the flat rate is a guaranteed value for the first 10 years of the contract. To reduce retrofit costs, the new marketing plan eliminates the requirement for a customer heat exchanger. New customers are now connected directly into the distribution system with district loop water used as the building heating medium. The state operates two programs which have been used in the marketing plan. The first of these is available only to taxable entities and is referred to as the Business Energy Tax Credit (BETC). This program offers business a 35% tax credit on the costs associated with connection to the geothermal district heat system (retrofit, design, permits, etc.). The second state program is the Small Energy Loan Program (SELP). This program will loan the entire cost of the energy project to the customer. The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for this building along with an attractive package of financing and tax credits. 1 tab.

Rafferty, K. (Geo-Heat Center, Klamath Falls, OR (United States))

1993-08-01T23:59:59.000Z

175

Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

Broader source: Energy.gov [DOE]

For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a heat pump water heater in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

176

Heat exchanger optimization for geothermal district heating systems: A fuel saving approach  

Science Journals Connector (OSTI)

One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered.

Ahmet Dagdas

2007-01-01T23:59:59.000Z

177

Vera Irrigation District #15 - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate $1,500 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Water Heaters: $100 Windows: $6/sq. ft. Heat Pumps: $450 Duct Sealing: $400 - $500 Clothes Washer: $30 Ductless Heat Pumps: $1,500 Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters,

178

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network [OSTI]

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

179

Grouped exposed metal heaters  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

2010-11-09T23:59:59.000Z

180

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters  

Science Journals Connector (OSTI)

The effects of night heat losses on the performance of thermosyphon solar water heaters have been experimentally examined. Three typical thermosyphon solar water heating systems with different storage tank sizes were tested by utilising the method suggested by ISO 9459-2:95. The results were analysed to quantify the night heat losses and to investigate the effect that these may have on the system daily performance. Analysis of the results showed that a linear behavior of the heat losses with the night mean ambient temperature exists. The correlation coefficients of the linearity for the three systems under consideration range from 0.93 to 0.97 with the losses reaching almost 8000 kJ at a mean ambient air temperature of 10 C. This value represents a significant percentage of the daily collected energy making the night losses one of the most important sources of energy loss in thermosyphonic systems.

Ioannis Michaelides; Polyvios Eleftheriou; George A. Siamas; George Roditis; Paraskevas Kyriacou

2011-01-01T23:59:59.000Z

182

Twenty-year progress report on the Copper Development Association do-it-yourself solar swimming pool heating manual and on the associated prototype heater  

SciTech Connect (OSTI)

A prototype do-it-yourself solar swimming pool heater was built of copper parts in 1973, combining the solar collector and a copper roof of the flat seam type. It has now heated a pool in Pasadena, California successfully for over 20 years. During those years the associated do-it-yourself manual has been distributed to about 100,000 readers, who have used to make an unknown number of heaters. Some have used the manual as the basis for a business, building repeated customer heater installations. The present paper represents a progress report.

De Winter, F. (Altas Corp., Santa Cruz, CA (United States))

1994-07-01T23:59:59.000Z

183

Auto-Calibration and Control Strategy Determination for a Variable-Speed Heat Pump Water Heater Using Optimization  

SciTech Connect (OSTI)

This paper introduces applications of the GenOpt optimizer coupled with a vapor compression system model for auto-calibration and control strategy determination towards the development of a variable-speed ground-source heat pump water heating unit. The GenOpt optimizer can be linked with any simulation program using input and output text files. It effectively facilitates optimization runs. Using our GenOpt wrapper program, we can flexibly define objectives for optimizations, targets, and constraints. Those functionalities enable running extensive optimization cases for model calibration, configuration design and control strategy determination. In addition, we describe a methodology to improve prediction accuracy using functional calibration curves. Using the calibrated model, we investigated control strategies of the ground-source heat pump water heater, considering multiple control objectives, covering the entire operation range.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2012-01-01T23:59:59.000Z

184

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

185

Skyscrapers and District Heating, an inter-related History 1876-1933.  

E-Print Network [OSTI]

in the United States in the late 1850s.1 A district heating system produces energy in a boiler plant - steam and electricity. This system needs a heavy infrastructure - boiler plant, pumps, and mains laid out beneath of skyscrapers is well-known;3 but the history of district heating systems less well known, this article

Boyer, Edmond

186

"Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"  

E-Print Network [OSTI]

is used for the generation of electricity. The advantages of district heating using WTE plants are heating and cooling system in Indianapolis. However, there are few U.S. hot water district heating systems,800 district heating and cooling systems, providing 320 million MWh of thermal energy. Currently, 28 of the 88

Shepard, Kenneth

187

District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984  

SciTech Connect (OSTI)

The potential for district heating was examined in terms of a total (regional) system and two subsystems of overlapping scales. The basis of the economic analysis of district heating was that the utility's electric and gas customers would not be economically burdened by the implementation of district heating, and that any incremental costs due to district heating (e.g. district heating capital and operating costs, replacement electric power, abandonment of unamortized gas mains) would be charged to district heating customers.

Not Available

1984-01-01T23:59:59.000Z

188

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

189

Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report  

SciTech Connect (OSTI)

This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

Jenkins, H. II; Giddings, M.; Hanson, P.

1982-09-01T23:59:59.000Z

190

Performance investigation of two geothermal district heating systems for building applications: Energy analysis  

Science Journals Connector (OSTI)

The energetic performance of Balcova geothermal district heating system (BGDHS) and Salihli geothermal district heating system (SGDHS) installed in Turkey is investigated for building applications in this study. The essential components (e.g., pumps, heat exchangers) of these geothermal district heating systems are also included in the modeling. The present model is employed for system analysis and energetic performance evaluation of the geothermal district heating systems. Energy flow diagrams are drawn to exhibit the input and output energies and losses to the surroundings by using the 2003 and 2004 heating season actual data. In addition, energy efficiencies are studied for comparison purposes, and are found to be 39.36% for BGDHS and 59.31% for SGDHS, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2006-01-01T23:59:59.000Z

191

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

192

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network [OSTI]

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

193

Truckee Donner Public Utility District - Energy Conservation Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Public Utility District - Energy Conservation Rebate Public Utility District - Energy Conservation Rebate Program Truckee Donner Public Utility District - Energy Conservation Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting (Residential): see program web site Lighting (Commercial): $10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washers: $100 Refrigerators/Freezers: $100 Dishwashers: $100 Electric Water Heaters: $2/gallon Geothermal Heat Pumps: $200/ton Lighting (Residential): $2/fluorescent bulb Lighting (Commercial): 1/3 of project costs

194

Small Space Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

195

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

196

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect (OSTI)

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

197

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

198

Floating solar pool heater  

SciTech Connect (OSTI)

A floating solar heater for swimming pools is disclosed which includes a top cover, a vertical outer side wall with inclined inner side wall segments connected thereto, an outside rim and a bottom wall. The inner side wall segments are octagonal, coated with light reflective material, and aid in reflecting the sun's rays to heat the space inside the walls formed by the cover which dead air space also provides for floatation of the heater. The bottom wall is heated by direct sun inpingement and by the air in contact with it and is formed of a material having high heat conductivity.

McCluskey, J.E.

1981-08-18T23:59:59.000Z

199

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

200

Retro-Commissioning and Improvement for District Heating and Cooling System Using Simulation  

E-Print Network [OSTI]

In order to improve the energy performance of a district heating and cooling (DHC) system, retro-commissioning was analyzed using visualization method and simulation based on mathematical models, and improved operation schemes were proposed...

Shingu, H.; Nakajima, R.; Yoshida, H.; Wang, F.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems  

Science Journals Connector (OSTI)

Abstract This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems including 100 percent renewable energy systems but the present generation of district heating and cooling technologies will have to be developed further into a new generation in order to play such a role. Unlike the first three generations, the development of 4GDH involves meeting the challenge of more energy efficient buildings as well as being an integrated part of the operation of smart energy systems, i.e. integrated smart electricity, gas and thermal grids.

Henrik Lund; Sven Werner; Robin Wiltshire; Svend Svendsen; Jan Eric Thorsen; Frede Hvelplund; Brian Vad Mathiesen

2014-01-01T23:59:59.000Z

202

A Study on the Failure of Industrial Electric Heater  

E-Print Network [OSTI]

The break down mechanism of a cylindrical electric heater is investigated by studying the uneven heating behavior of the heater by measuring the surface temperature variation of the heater when it is subjected to a boundary condition of constant...

Chyu, M. C.

203

Economics of power plant district and process heating in Richland, Washington  

SciTech Connect (OSTI)

The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

Fassbender, L.L.; Bloomster, C.H.

1981-04-01T23:59:59.000Z

204

An internal winding high temperature heater  

Science Journals Connector (OSTI)

An internal winding high temperature heater ... General principles are outlined for the construction of compact heaters that are suitable for heating small containers or reaction vessels at constant temperature and up to about 1000 C. ...

A. J. Delbouille; E. G. Derouane

1973-01-01T23:59:59.000Z

205

Energy conversion by an electric space heater  

Science Journals Connector (OSTI)

By means of measuring the temperature of the air blown by an electric space heater one can show students that the air is heated at a rate approximately equal to the rated wattage of the heater.

Willem H. van den Berg

1998-01-01T23:59:59.000Z

206

Exergy analysis of two geothermal district heating systems for building applications  

Science Journals Connector (OSTI)

This study evaluates the exergetic performance of two local Turkish geothermal district heating systems through exergy analysis. The exergy destructions in these geothermal district heating systems are quantified and illustrated using exergy flow diagrams for a reference temperature of 1C using the 2003 and 2004 actual seasonal heating data. The results indicate that the exergy destructions in these systems particularly occur due to losses in pump, heat exchangers, pipelines, and the reinjection of thermal water. Exergy efficiencies of the two systems are investigated for the system performance analysis and improvement and are determined to be 42.89% and 59.58%, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2007-01-01T23:59:59.000Z

207

Piping network design of geothermal district heating systems: Case study for a university campus  

Science Journals Connector (OSTI)

Geothermal district heating system design consists of two parts: heating system and piping network design. District heating system design and a case study for a university campus is given in Yildirim etal. [1] in detail. In this study, piping network design optimisation is evaluated based on heat centre location depending upon the cost and common design parameters of piping networks which are pipe materials, target pressure loss (TPL) per unit length of pipes and installation type. Then a case study for the same campus is presented.

Nurdan Yildirim; Macit Toksoy; Gulden Gokcen

2010-01-01T23:59:59.000Z

208

Heater head for Stirling engine  

SciTech Connect (OSTI)

This patent describes a heater head for a Stirling engine comprising: a housing for enclosing the heater head with gas at a substantial elevated pressure; insulator means attached to the housing for insulating the heater head; inlet means attached to a regenerator in the housing for admission of relatively high pressure working fluid from the regenerator of a Stirling engine; a first annular heating wall in the housing attached to the inlet means for heating the working fluid; and, a second annular heating wall in the housing concentric with the first heating wall but of lesser diameters so that an annular space is formed between the first heating wall and the second heating wall for heating working fluid; and a third heating wall in the housing concentric with and smaller in diameter than the second heating wall forming the condensing area of a heat pipe between the second heating wall and the third heating wall.

White, M.A.; Emigh, S.G.

1987-06-09T23:59:59.000Z

209

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network [OSTI]

September 16, 2014 NIKKEN SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International... of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 District heating and cooling system in Nakanoshima 4 Characteristics of heat supply plant in Nakanoshima district -River water is utilized as heat...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

210

Varying properties along lengths of temperature limited heaters  

DOE Patents [OSTI]

A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX); Ginestra, Jean Charles (Richmond, TX)

2011-07-26T23:59:59.000Z

211

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network [OSTI]

. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

212

District heating/feasibility study for Jamestown, New York. Phase two. Final report  

SciTech Connect (OSTI)

This report details an investigation to implement district heating in Jamestown, New York. It is a technical and economic feasibility study of a hot-water district-heating system, using a municipal electric plant as the heat source and the downtown area as a source for customers. As a result of the project, the City of Jamestown built a district-heating system that was a service to four customers in 1984 and expanded to 14 customers in 1985. The City expects it to grow in 1986 and beyond. Customers are realizing a 20 to 30% savings in heating costs. The municipal electric plant burns coal and the system so far has displaced the equivalent of 1 million gallons of oil per year.

Oliker, I.

1986-04-01T23:59:59.000Z

213

Geothermal district heating applications in Turkey: a case study of IzmirBalcova  

Science Journals Connector (OSTI)

Turkey is located on the Mediterranean sector of the AlpineHimalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the IzmirBalcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the IzmirBalcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in BalikesirGonen since 1987. Recently, the total installed capacity has reached 820 \\{MWt\\} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases.

A Hepbasli; C Canakci

2003-01-01T23:59:59.000Z

214

Tankless Coil and Indirect Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters May 16, 2013 - 7:21pm Addthis An indirect water heater. An indirect water heater. How does it work? Tankless coil and indirect water heaters use your home's heating system to heat water. Tankless coil and indirect water heaters use a home's space heating system to heat water. They're part of what's called integrated or combination water and space heating systems. How They Work A tankless coil water heater provides hot water on demand without a tank. When a hot water faucet is turned on, water is heated as it flows through a heating coil or heat exchanger installed in a main furnace or boiler. Tankless coil water heaters are most efficient during cold months when the heating system is used regularly but can be an inefficient choice for many

215

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coil and Indirect Water Heater Basics Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called the boiler heat source. Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system. How Tankless Coil and Indirect Water Heaters Work A tankless coil water heater uses a heating coil or heat exchanger

216

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

217

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

Kronberg, J.W.

1995-07-11T23:59:59.000Z

218

Solar Swimming Pool Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Swimming Pool Heaters Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool A flow control valve -- automatic or manual device that diverts pool

219

Solar Swimming Pool Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Swimming Pool Heaters Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool

220

Heating of a testing room by use of a hydrogen-fueled catalytic heater  

Science Journals Connector (OSTI)

Space heating experiments were carried out using flameless (catalytic) combustion of hydrogen with atmospheric oxygen on Pt and oxide catalyst pads. The heating rate required for warming of a testing room was calculated and material balance equations for oxygen depletion and steam production were derived. The following parameters have been investigated: 1. (a) change of the oxygen and water vapour contents in the testing room in comparison with the calculated values, 2. (b) the established thermal regime in the testing room is discussed in comparison with conventional heating. The following conclusions are drawn: 1. (1) The hydrogen combustion can be adjusted to produce the desired temperature level, 2. li(2) in order to maintain the oxygen concentration at the comfort level, the free ventilation in the room should be supplemented by short, periodic, forced ventilation, 3. (3) the comfort limits of humidity require the condensation of the surplus water vapour by using a suitable device.

J. Mercea; E. Grecu; T. Fodor

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Simple models of district heating systems for load and demand side management  

E-Print Network [OSTI]

Simple models of district heating systems for load and demand side management and operational heating systems for load and demand side management and operational optimisation Simple modeller and demand side management and operational optimisation © 2004 by the authors, Department of Mechanical

222

Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap  

SciTech Connect (OSTI)

During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

Bopche, Santosh B.; Sridharan, Arunkumar [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2010-11-15T23:59:59.000Z

223

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and PoolConservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool

Lutz, Jim

2012-01-01T23:59:59.000Z

224

Table 5a. Total District Heat Consumption per Effective Occupied Square  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total District Heat Consumption per Effective a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 94 429 84 93 Building Floorspace (Square Feet) 1,001 to 5,000 18 Q Q Q 5,001 to 10,000 11 Q Q Q 10,001 to 25,000 28 65 144 155 25,001 to 50,000 16 Q Q Q 50,001 to 100,000 9 50 79 81 100,001 to 200,000 6 59 76 79 200,001 to 500,000 5 109 71 77 Over 500,000 1 65 62 80 Principal Building Activity Education 22 50 71 78 Food Sales and Service Q Q Q Q Health Care 3 57 100 142 Lodging 9 66 112 116 Mercantile and Service 9 Q Q Q Office 24 110 63 70 Public Assembly 10 23 64 66 Public Order and Safety Q Q Q Q Religious Worship Q Q Q Q Warehouse and Storage

225

Table 5b. Relative Standard Errors for Total District Heat Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total District Heat Consumption per b. Relative Standard Errors for Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 11 16 16 16 Building Floorspace (Square Feet) 1,001 to 5,000 27 78 76 76 5,001 to 10,000 38 60 51 51 10,001 to 25,000 18 43 36 35 25,001 to 50,000 24 68 51 51 50,001 to 100,000 18 40 30 30 100,001 to 200,000 27 33 35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging 30 40 30 29 Mercantile and Service 40 74 59 58 Office 23 28 26 27 Public Assembly 25 33 25 26 Public Order and Safety

226

Dehumidifying water heater  

SciTech Connect (OSTI)

The indoor swimming pool at the Glen Cove YMCA in Glen Cove, New York, has been selected for the dehumidification/water heating system demonstration project. This report provides the specifications for this system which includes a dehumidifier/air handler, condenser/water heater, and outdoor condenser. Current progress underway includes construction, vendor selection, and control system selection. (SM)

Stark, W.

1991-05-31T23:59:59.000Z

227

District Heating and Cooling feasibility study, Salt Lake City, Utah: Final report  

SciTech Connect (OSTI)

The following is a general description of the Burns and Roe study of District Heating and Cooling Feasibility for Salt Lake City, Utah. The study assesses District Heating and Cooling (DHC) and develops a conceptual district system for Salt Lake City. In assessing District Heating and Cooling in Salt Lake City, the system conceived is evaluated to determine whether it is technically and economically viable. To determine technical viability, aspects such as implementation, pipe routing, and environmental restrictions are reviewed to foresee any technical problems that would arise as a result of DHC. To determine economic feasibility, the conceived system is priced to determine the capital cost to construct, and modeled in an economic analysis using anticipated operating and fuel costs to produce the required revenue necessary to run the system. Technical and Economic feasibility are predicated on many variables, including heating and cooling load, pipe routing, system implementation, and fuel costs. These variables have been investigated and demonstrate a substantial potential for DHC in Salt Lake City. Areas of consideration include the Downtown Area, Metropolitan Hall of Justice and surrounding area, and the Hotel District.

Not Available

1988-09-09T23:59:59.000Z

228

District Heating and Cooling Feasiblity Study, Salt Lake City, Utah: Final report  

SciTech Connect (OSTI)

The following is a general description of the Burns and Roe study of District Heating and Cooling Feasibility for Salt Lake City, Utah. The study assesses District Heating and Cooling (DHC) and develops a conceptual district system for Salt Lake city. In assessing District Heating and Cooling in Salt Lake City, the system conceived is evaluated to determine whether it is technically and economically viable. To determine technical viability, aspects such as implementation, pipe routing, and environmental restrictions are reviewed to foresee any technical problems that would arise as a result of DHC. To determine economic feasibility, the conceived system is priced to determine the capital cost to construct, and modeled in an economic analysis using anticipated operating and fuel costs to produce the required revenue necessary to run the system. Technical and Economic feasibility are predicated on many variables, including heating and cooling load, pipe routing, system implementation, and fuel costs. These variables have been investigated and demonstrate a substantial potential for DHC in Salt Lake City. Areas of consideration include the Downtown Area, Metropolitan Hall of Justice and surrounding area, and the Hotel District.

Not Available

1988-09-09T23:59:59.000Z

229

Alaska Gateway School District Adopts Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

230

Sizing a New Water Heater | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sizing a New Water Heater Sizing a New Water Heater Sizing a New Water Heater May 29, 2012 - 7:16pm Addthis Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems: Tankless or demand-type water heaters Solar water heating system Storage and heat pump (with tank) water heaters. For sizing combination water and space heating systems -- including some heat pump systems, and tankless coil and indirect water heaters -- consult a qualified contractor.

231

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Performance of a Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- ily available and more widely adopted in the marketplace. A key feature of an HPWH unit is that it is a hybrid system. When conditions are favorable, the unit will operate in heat pump mode (using a vapor compression system that extracts heat from the surrounding air) to efficiently provide domestic hot water (DHW). Homeowners need not adjust their behavior to conform to the heat pump's capabilities. If a heat pump cannot meet a higher water draw demand, the heater will switch to electric resistance to provide a higher heating rate. This flexibility

232

Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops  

Broader source: Energy.gov [DOE]

Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

233

Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network  

Science Journals Connector (OSTI)

Abstract Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat losses, pumping energy, and surplus energy from the heat recovery system) are reduced from 4.4% to 3.1%.

Tatu Laajalehto; Maunu Kuosa; Tapio Mkil; Markku Lampinen; Risto Lahdelma

2014-01-01T23:59:59.000Z

234

Storage Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

235

Performance investigation of the Afyon geothermal district heating system for building applications: Exergy analysis  

Science Journals Connector (OSTI)

This paper deals with an energy and exergy evaluation and modeling of geothermal district heating systems for their system analysis, performance evaluation and optimization. As a comprehensive case study, the Afyon geothermal district heating system (AFJET) in Afyon, Turkey is considered and actual thermal data are collected and employed for analysis. Using actual system data, an evaluation of the district heating system performance, energy and exergy efficiencies, and exergy destructions in the system are conducted in this regard. This study is also conducted to show how energy and exergy efficiencies of the \\{GDHSs\\} will change with the reference temperature and how exergy losses will affect by the temperature difference between the geothermal resource and the supply temperature of the district heating distribution network. In addition, the negative effects of discharge waters of the AFJET are presented. The energy and exergy efficiencies of the entire AFJET are found to be 37.59% and 47.54%, respectively. The results are expected to be helpful to researchers and engineers in the area.

Ali Keeba?; Muhammet Kayfeci; Engin Gedik

2011-01-01T23:59:59.000Z

236

Substations for Decentralized Solar District Heating: Design, Performance and Energy Cost  

Science Journals Connector (OSTI)

Abstract The development of solar district heating is gaining more and more interest, but, in some case the space available for the integration of solar collectors on the ground is limited and the use of decentralized systems is necessary. For decentralized solar district heating systems different hydraulic schemes at the substation level, with or without local use of solar energy, are possible. The present paper detailed an advanced study on decentralized solar district heating system using dynamic simulation software. Nine different hydraulic schemes for substations have been investigated with a return to return feed in. For each scheme many parameters that influence the performance of the solar installation have been studied such as the district heating network return temperature, the solar collector area and the type of solar collector (low temperature or high temperature solar collector). The comparison between the different hydraulic schemes is based on thermal efficiency but also on solar energy cost using the methodology of the Levelized Cost Of Energy (LCOE).

Cedric Paulus; Philippe Papillon

2014-01-01T23:59:59.000Z

237

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

238

Geothermal energy and district heating in Ny-lesund, Svalbard .  

E-Print Network [OSTI]

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-lesund. The current energy supply in Ny-lesund is a diesel generator, (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

239

Solar Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

240

Low Temperature Direct Use District Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Heating Geothermal Facilities Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Barriers and enablers to geothermal district heating system development in the United States  

Science Journals Connector (OSTI)

According to the US Energy Information Administration, space and hot water heating represented about 20% of total US energy demand in 2006. Given that most of this demand is met by burning natural gas, propane, and fuel oil, an enormous opportunity exists for directly utilizing indigenous geothermal energy as a cleaner, nearly emissions-free renewable alternative. Although the US is rich in geothermal energy resources, they have been frequently undervalued in America's portfolio of options as a means of offsetting fossil fuel emissions while providing a local, reliable energy source for communities. Currently, there are only 21 operating GDHS in the US with a capacity of about 100MW thermal. Interviews with current US district heating operators were used to collect data on and analyze the development of these systems. This article presents the current structure of the US regulatory and market environment for GDHS along with a comparative study of district heating in Iceland where geothermal energy is extensively utilized. It goes on to review the barriers and enablers to utilizing geothermal district heating systems (GDHS) in the US for space and hot water heating and provides policy recommendations on how to advance this energy sector in the US.

Hildigunnur H. Thorsteinsson; Jefferson W. Tester

2010-01-01T23:59:59.000Z

242

Prospects for District Heating in the United States  

Science Journals Connector (OSTI)

...population, climate, and the insulation and floor space characteristics...systems received heat from thermal plants which employed large...5) were buried to the specifications of the cold water industry...adjusted to accommo-date the insulation cost and greater di-mensions...

J. Karkheck; J. Powell; E. Beardsworth

1977-03-11T23:59:59.000Z

243

Tankless or Demand-Type Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver hot water as it is needed, eliminating the need for storage tanks. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what criteria to use when selecting the right model. Check out the Energy Saver 101: Water Heating infographic to learn if a tankless water heater is right for you.

244

Selecting a New Water Heater | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Selecting a New Water Heater Selecting a New Water Heater Selecting a New Water Heater August 29, 2012 - 7:30pm Addthis Water heater testing facility at Oak Ridge National Laboratory. Water heater testing facility at Oak Ridge National Laboratory. When selecting a new water heater for your home, choose a water heating system that will not only provide enough hot water but also that will do so energy efficiently, saving you money. This includes considering the different types of water heaters available and determining the right size and fuel source for your home. Check out the Energy Saver 101: Water Heating infographic to learn more about the different types of water heaters and how to select the right model for your home. Types of Water Heaters It's a good idea to know the different types of water heaters available

245

Field Demonstration of High Efficiency Gas Heaters  

Broader source: Energy.gov [DOE]

For many buildings that do not require space cooling, non-centralized equipment such as unit heaters provide space heating to building occupants. Unit heaters are a major source of energy use nationally, accounting for nearly 18% of primary space heating energy use for commercial buildings, and most prominently appear in warehouses, distribution centers, loading docks, etc.

246

Life Cycle Assessment of district heat production in a straw fired CHP plant  

Science Journals Connector (OSTI)

Abstract Due to concerns about the sustainability of the energy sector, conversion of biomass to energy is increasing its hold globally. Life Cycle Impact Assessment (LCIA) is being adopted as an analytical tool to assess the environmental impacts in the entire cycle of biomass production and conversions to different products. This study deals with the LCIA of straw conversion to district heat in a Combined Heat and Power (CHP) plant and in a district heating boiler (producing heat only). Environmental impact categories are Global Warming Potential (GWP), Acidification Potential (AP), aquatic and terrestrial Eutrophication Potential (EP) and Non-Renewable Energy (NRE) use. In the case of CHP, the co-produced electricity is assumed to displace the marginal Danish electricity mix. The current study showed that straw fired in the CHP plant would lead to a GWP of ?187gCO2-eq, AP 0.01m2UES (un-protected ecosystem), aquatic EP 0.16gNO3-eq, terrestrial EP 0.008m2UES, and NRE use ?0.14MJ-primary per 1MJ heat production. Straw conversion to heat in the CHP plant showed better environmental performances compared to the district heating boiler. Furthermore, removing straw from the field is related to the consequence e.g. decline in soil carbon sequestration, limiting soil nutrient availability, and when compared with natural gas the conversion of straw to heat would lead to a higher aquatic and terrestrial EP and AP. The study also outlays spaces for the detail sustainability assessment of straw conversion in a biorefinery and compare with the current study.

Ranjan Parajuli; Sren Lkke; Poul Alberg stergaard; Marie Trydeman Knudsen; Jannick H. Schmidt?; Tommy Dalgaard

2014-01-01T23:59:59.000Z

247

Artificial neural network modeling of geothermal district heating system thought exergy analysis  

Science Journals Connector (OSTI)

This paper deals with an artificial neural network (ANN) modeling to predict the exergy efficiency of geothermal district heating system under a broad range of operating conditions. As a case study, the Afyonkarahisar geothermal district heating system (AGDHS) in Turkey is considered. The average daily actual thermal data acquired from the AGDHS in the 20092010 heating season are collected and employed for exergy analysis. An ANN modeling is developed based on backpropagation learning algorithm for predicting the exergy efficiency of the system according to parameters of the system, namely the ambient temperature, flow rate and well head temperature. Then, the recorded and calculated data conducted in the AGDHS at different dates are used for training the network. The results showed that the network yields a maximum correlation coefficient with minimum coefficient of variance and root mean square values. The results confirmed that the ANN modeling can be applied successfully and can provide high accuracy and reliability for predicting the exergy performance of geothermal district heating systems.

Ali Keeba?; ?smail Yabanova; Mehmet Yumurtac?

2012-01-01T23:59:59.000Z

248

Energy and exergy analysis of geothermal district heating systems: an application  

Science Journals Connector (OSTI)

In this study we present an energy and exergy assessment and modeling of geothermal district heating systems for their system analysis, performance evaluation and optimization. A comprehensive case study is conducted in Balcova geothermal district heating system (BGDHS) in Izmir, Turkey and actual thermal data are collected and employed for analysis. Using actual system data, an assessment of the district heating system performance, energy and exergy efficiencies, and exergy destructions in the system is conducted in this regard. The exergy destructions in the overall BGDHS are quantified and illustrated using exergy flow diagram. Furthermore, both energy and exergy flow diagrams are exhibited for comparison purposes. It is observed through analysis that the exergy destructions in the system particularly take place as the exergy of the fluid lost in the pumps, the heat exchanger losses, the exergy of the thermal water (geothermal fluid) reinjected and the natural direct discharge (hot water distribution losses) of the system, accounting for 1.64%, 8.57%, 14.84% and 28.96%, respectively, of the total exergy input to the BGDHS. For system performance analysis and improvement, both energy and exergy efficiencies of the overall BGDHS are investigated and are determined to be 41.9% and 46%, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2005-01-01T23:59:59.000Z

249

Thermal monitoring and optimization of geothermal district heating systems using artificial neural network: A case study  

Science Journals Connector (OSTI)

This paper deals with determine the energy and exergy efficiencies and exergy destructions for thermal optimization of a geothermal district heating system by using artificial neural network (ANN) technique. As a comprehensive case study, the Afyonkarahisar geothermal district heating system (AGDHS) in Afyonkarahisar/Turkey is considered and its actual thermal data as of average weekly data are collected in heating seasons during the period 20062010 for ANN based monitoring and thermal optimization. The measured data and calculated values are used at the design of Levenberg-Marquardt (LM) based multi-layer perceptron (MLP) in Matlab program. The results of the study are described graphically. The results show that the developed model is found to quickly predict the thermal performance and exergy destructions of the AGDHS with good accuracy. In addition, two main factors play important roles in the thermal optimization: (i) ambient temperature and (ii) flow rates in energy distribution cycle of the AGDHS. Various cases are investigated to determine how to change the energy and exergy efficiencies of the AGDHS for the temperature and flow rate. Finally, a monitoring and performance evaluation of a geothermal district heating system and its components by ANN will reduce the losses and human involvement and make the system more effective and efficient.

Ali Keeba?; ?smail Yabanova

2012-01-01T23:59:59.000Z

250

Experimental evaluation of radiator control based on primary supply temperature for district heating substations  

Science Journals Connector (OSTI)

In this paper, we evaluate whether the primary supply temperature in district heating networks can be used to control radiator systems in buildings connected to district heating; with the purpose of increasing the ?T. The primary supply temperature in district heating systems can mostly be described as a function of outdoor temperature; similarly, the radiator supply temperature in houses, offices and industries can also be described as a function of outdoor temperature. To calibrate the radiator control system to produce an ideally optimal radiator supply temperature that produces a maximized ?T across the substation, the relationship between the primary supply temperature and outdoor temperature must be known. However, even if the relation is known there is always a deviation between the expected primary supply temperature and the actual temperature of the received distribution media. This deviation makes the radiator control system incapable of controlling the radiator supply temperature to a point that would generate a maximized ?T. Published simulation results show that it is possible and advantageous to utilize the primary supply temperature for radiator system control. In this paper, the simulation results are experimentally verified through implementation of the control method in a real district heating substation. The primary supply temperature is measured by the heat-meter and is shared with the radiator control system; thus no additional temperature sensors were needed to perform the experiments. However additional meters were installed for surveillance purposes. To maintain a stable indoor temperature at times when the primary supply and outdoor temperatures deviates from their assumed relation, the radiator system flow must be controlled by an additional control-loop. The results confirms that it is possible to control the radiator system based on the primary supply temperature while maintaining comfort; however, conclusions regarding improvements in ?T were hard to distinguish.

Jonas Gustafsson; Jerker Delsing; Jan van Deventer

2011-01-01T23:59:59.000Z

251

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

252

Assessment of district heating and cooling supply from Goudey Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the New York State Electric and Gas (NYSEG) Goudey Generating Station for district heating and cooling supply to the SUNY-Binghamton Campus. The project involved detailed analysis of the power plant retrofit, dispatch analysis of the retrofitted Goudey Station in the New York Power Pool, environmental and permitting assessment, retrofit analysis of the SUNY campus to low temperature hot water and economic analysis.

McIntire, M.E.; Hall, D.; Beal, D.J. [New York State Electric & Gas Corporation, Binghamton, NY (United States)] [and others

1995-06-01T23:59:59.000Z

253

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

254

Finding of No Significant Impact for the I'SOT Canby District Heating Project, Modoc County, California Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Coiorado 80401-3393 Coiorado 80401-3393 March 7, 2003 DOEEA-1460 FINDING OF NO SIGNIFICANT IMPACT For the IN SEARCH OF TRUTH CANBY DISTRICT HEATING PROJECT CANBY, MODOC COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental ,4ssessment (EA) of the In Search of Truth (I'SOT) Canby District Heating Project, Modoc County, California, to evaluate potential environmental impacts of project construction and operations for three years. DOE would provide partial fundin g, through its National Renewable Energy Laboratory (NREL), to I'SOT for the development and field verification of a small-scale, geothermal district heating system. Local district heating projects have the potential for widespread

255

Coefficient of performance (COP) analysis of geothermal district heating systems (GDHSs): Salihli GDHS case study  

Science Journals Connector (OSTI)

The purpose of this survey is about to analyze the heating coefficient of performance (COP) of geothermal district heating systems. Actual system data are taken from the Salihli GDHS, Turkey. The collected data are quantified and illustrated in tables, particularly for a reference temperature for comparison purposes. In this study, firstly energy and COP analysis of the \\{GDHSs\\} is introduced and then Salihli GDHS coefficient of performance results is given as a case study. Moreover, this paper offers an interesting empirical study of certain geothermal systems.

Leyla Ozgener

2012-01-01T23:59:59.000Z

256

Temperature limited heaters using phase transformation of ferromagnetic material  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.

Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN

2009-10-06T23:59:59.000Z

257

Design, Stress Analysis and Operating Experience in Feedwater Heaters  

E-Print Network [OSTI]

The performance of feedwater heaters has a direct bearing on the thermal efficiency of the plant. A typical feedwater heater may have three distinct regions of heat transfer, namely desuperheating, condensing and subcooling zones. The design...

Singh, K. P.; Libs, T.

1980-01-01T23:59:59.000Z

258

Subsurface connection methods for subsurface heaters  

DOE Patents [OSTI]

A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

2010-12-28T23:59:59.000Z

259

Economic analysis of exergy efficiency based control strategy for geothermal district heating system  

Science Journals Connector (OSTI)

Abstract In this study, the exergy efficiency based control strategy (ExEBCS) for exergy efficiency maximization in geothermal district heating systems (GDHSs) is economically evaluated. As a real case study, the Afyon GDHS in the city of Afyonkarahisar/Turkey is considered. Its actual thermal data as of average weekly data are collected in heating seasons during the period 20062010 for artificial neural network (ANN) modeling. The ANN modeling of the Afyon GDHS is used as a test system to demonstrate the effectiveness and economic impact of the ExEBCS under various operating conditions. Then, the ExEBCS is evaluated economically in case of application to real Afyon GDHS of the ExEBCS. The results show that the initial cost for the ExEBCS is more expensive than that for the old one by 6.33kUS$/year as a result of replacing automatic controller. The saving in heat production makes the ExEBCS profitable by up to 7% of annual energy saving as a result of the increase in the heat production by 88% when the control system is operated. This results in a short payback period of 3.8years. This study confirms that the use of ExEBCS in district heating systems (especially GDHS) is quite suitable.

Ali Keeba?; ?smail Yabanova

2013-01-01T23:59:59.000Z

260

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar heater for swimming pools  

SciTech Connect (OSTI)

A solar heater for swimming pools is provided having one or more heating panels installable on a roof or the like and arranged to discharge into a pool equipped with an apron without need for disturbing or obstructing the apron. This is accomplished by the provision of an elevated bistable dumper adjacent the perimeter of the apron having a dispensing spout normally inclined upwardly but pivoting at intervals to discharge into the pool across the apron without obstructing it. Water to be heated is diverted from the pool filtering system to the solar heater via a pressure regulator and a solar responsive flow control.

Babcock, H.W.

1984-12-04T23:59:59.000Z

262

Economic assessment of geothermal district heating systems: A case study of BalcovaNarlidere, Turkey  

Science Journals Connector (OSTI)

Geothermal energy is an important renewable energy resource in Turkey. The aim of this research is to evaluate the BalcovaNarlidere geothermal district heating system from an economic perspective. The system is the largest one in Turkey in terms of heating capacity and located in Izmir. Although there are some assessments regarding energy and exergy analysis for the BalcovaNarlidere geothermal district heating system, an economic assessment was not performed, previously. The profitability of the investment is investigated by using internal rate of return method. Seven hundred and eighty different scenarios are developed in this assessment. In order to estimate the potential cash flows in the remaining project life, operating cost in 2002 is decreased and increased, alternatively, between 5% and 30% by 5% in each step, while monthly energy utilization price is changed between US$ 17 and 72 in those scenarios. The energy utilization prices are suggested according to zero IRR value for all scenarios due to the consideration of social and environmental concerns in this investment. It is found that, the proper monthly energy utilization price for a 100m2 household would be US$ 55.5 when the operating cost and heating capacity in 2002 were remained constant.

Berkan Erdogmus; Macit Toksoy; Baris Ozerdem; Niyazi Aksoy

2006-01-01T23:59:59.000Z

263

Assessment of district heating/cooling potential for the Frenchman's Cove redevelopment project. Final report  

SciTech Connect (OSTI)

A study undertaken to evaluate the potential for district heating/cooling (DHC) in the City of Ecorse, Michigan is documented. the purpose of the study was to assess the concept of delivering energy from a centralized source (or several sources) through a piping network to many end users for heating domestic (tap) hot water, space heating, and space cooling. The primary focus of the study was the proposed redevelopment of eighty acres in Ecorse along the Detroit River waterfront known as Frenchman's Cove. As planned, the complete development would place nearly 2 million square feet of new, mixed use structures/facilities on the site and an eighteen acre undeveloped island located 300 feet offshore. Other areas of the city were also examined to identify and evaluate existing supply and end use possibilities. In addition, several neighboring communities were examined to determine the feasibility of downriver DHC network. Six large thermal energy producers identified in the study area include the Detroit Edison River Rouge power plant (DECo.-RR), the Wyandotte Municipal Services Commission (WMSC) power plant, a BASF/Wyandotte Corporation plant, a Marathon Oil refinery, the Great Lakes Steel complex, and the E.C. Levy Company slag processing site. Each was examined for potential as a thermal supplier on a district heating network.

Not Available

1982-10-01T23:59:59.000Z

264

Potential benefits of a resource-recovery facility coupled with district heating in Detroit, Michigan  

SciTech Connect (OSTI)

The City of Detroit, Michigan, announced plans for a 2.7-Gg/d (3000-ton/d) Resource Recovery Facility to be located in the central part of the city. The facility will process and burn waste collected by the municipal forces. Steam generated in the facility's boilers will be used to produce electricity; the surplus electricity will be sold to the Detroit Edison Company. When needed by the Central Heating System (CHS), large portions of the steam can be extracted from the turbine and sold to the Detroit Edison Company. The facility will meet its primary purpose of greatly relieving Detroit's solid waste disposal problem. A second very important benefit is that it will be a source of reasonably priced steam for the CHS, which serves the downtown area. Detroit is now in a local depression, and the downtown areas have suffered urban decay. The city is focusing on the redevelopment of these areas, and a viable, cost-effective district heating system would be a major asset. Currently, the CHS is losing money, although it charges relatively high rates for steam, because it uses primarily natural gas to generate steam. The economic feasibility of converting the CHS's relatively oil boiler units to burn coal, a much cheaper fuel, is doubtful. The Resource Recovery Facility can provide CHS with a major part of its steam needs at competitive prices in the near future. This would do much to relieve the CHS's financial problems and help it to become a viable system. This, in turn, would assist the city in the redevelopment of the downtown areas. An overall strategy for district heating in Detroit is being developed. It is suggested that a comprehensive study of a regional district heating system in the city be made.

McLain, H.A.; Brinker, M.J.; Gatton, D.W.

1982-09-01T23:59:59.000Z

265

Parallel heater system for subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

2011-10-25T23:59:59.000Z

266

Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application  

Science Journals Connector (OSTI)

This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

Ali Keeba?

2013-01-01T23:59:59.000Z

267

Tankless Water Heaters: Do They Really Work?  

Broader source: Energy.gov (indexed) [DOE]

Tankless Water Heaters: Do They Tankless Water Heaters: Do They Really Work? Center for Energy and Environment, NorthernSTAR, Ben Schoenbauer Context * Domestic Water Heating is the next big residential energy in efficiency. - Space heating loads are being reduced - Largest peak load in almost all homes is water heating - Annual water heating load is larger than annual space heating load in many homes - Most DHW equipment is inefficiency 50-60% Technical Approach * TWHs and condensing TWHs have significant energy savings potential - Do these ratings relate to real world performance? - How do TWHs compare to standard water heaters? - What performance/install issues do they have? * 10 home 26 water heater alternating mode field study was conducted Recommended Guidance * In situations where economics are

268

Investigation of some renewable energy and exergy parameters for two Geothermal District Heating Systems  

Science Journals Connector (OSTI)

In this study, three new exergy parameters, namely total exergy destruction ratio, component exergy destruction ratio and dimensionless exergy destruction are introduced in addition to energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio and exergetic reinjection ratio, and compared for Edremit and Bigadic Geothermal District Heating Systems (GDHSs) based on their actual data. The respective daily graphs of these parameters are presented. Also, regression analyses using the actual data are performed to obtain some correlations for practical use. In brief, these parameters help us to identify the degree of renewability and other aspects and provide some insights.

C. Coskun; Z. Oktay; I. Dincer

2011-01-01T23:59:59.000Z

269

Power Generation Using District Heat: Energy Efficient Retrofitted Plus-energy School Rostock  

Science Journals Connector (OSTI)

Abstract The Mathias-Thesen-School in Rostock/Germany is one of few schools which has been retrofitted as an Energy Plus building as part of the energy-efficient school research project EnEff:Schule sponsored by the German Ministry of Economics and Technology. The original building complex (build 1960, useful area 2200sqm) is being converted into a compact building by extending the main building with two new buildings connected by light-flooded buffer spaces. Both the existing building and the new buildings will be highly insulated. The low remaining heating demand will be covered using an innovative concept, made reasonable by the low primary energy factor of the district heat in Rostock: A small-scale Organic Rankine Cycle system generates electricity using high-temperature district heat. The excess heat of the generator is then used to heat the building via low-temperature distribution systems. In combination with two small-scale onsite wind turbines and building integrated photovoltaics a positive primary energy balance is achieved. For this balance, the development of the primary energy factors (PEF) of the German electricity mix is crucial: With rising generation from renewable energies the PEF of electricity in Germany is going to descent, leading to higher primary energy factors of cogeneration systems. In the Mathias-Thesen-School in Rostock a detailed monitoring system was installed, which has been checked and reworked for proper functioning. First measures to optimize the HVAC system and user comfort have been taken. The second construction phase will take place in 2014, after which the performance of the ORC system and the Energy Balance will be analyzed in detail.

Simon Winiger; Sebastian Herkel; Gesa Haroske

2014-01-01T23:59:59.000Z

270

Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system  

SciTech Connect (OSTI)

Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

McKay, F.; McKay, G.; McKay, S.; Flynn, T. [McKay Pump and Drilling, Reno, NV (United States)

1995-12-31T23:59:59.000Z

271

Oil and Gas Air Heaters  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies for energy efficiency Vol.III-1-2 Oil and Gas Air Heaters1 Guangxiao Kou Hanqing Wang Jiemin Zhou Doctoral Ph.D Ph.D Candidate Professor Professor Hunan University of Technology Hunan...

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

272

Local Option - Special Improvement Districts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Special Improvement Districts Special Improvement Districts Local Option - Special Improvement Districts < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Program Info Start Date 5/28/2009 State Nevada Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property

273

District heating and cooling feasibility study for Dover, Delaware: Final report (September 2, 1986-May 31, 1988)  

SciTech Connect (OSTI)

The following is a general description of the Burns and Roe study for Dover, Delaware. The study assesses the feasibility of district heating in Dover, Delaware, and develops a conceptual district heating system. The system would use the McKee Run Station, and a new boiler plant as the heat source, and the area surrounding the plant and the legislative areas as the heat load. The study assesses the available heat load for the city, determines the available heat from the McKee Run Station, and develops a conceptual distribution network and system implementation plan. The study analyzes the environmental impacts, institutional issues, and project economics of the conceptual system. 24 figs., 26 tabs.

Not Available

1988-04-11T23:59:59.000Z

274

Energetic and economic evaluations of geothermal district heating systems by using ANN  

Science Journals Connector (OSTI)

This paper proposes an artificial neural network (ANN) technique as a new approach to evaluate the energy input, losses, output, efficiency, and economic optimization of a geothermal district heating system (GDHS). By using ANN, an energetic analysis is evaluated on the Afyon geothermal district heating system (AGDHS) located in the city of Afyonkarahisar, Turkey. Promising results are obtained about the economic evaluation of that system. This has been used to determine if the existing system is operating at its optimal level, and will provide information about the optimal design and profitable operation of the system. The results of the study show that the ANN model used for the prediction of the energy performance of the AGDHS has good statistical performance values: a correlation coefficient of 0.9983 with minimum RMS and MAPE values. The total cost for the AGDHS is profitable when the PWF is higher than 7.9. However, the PWF of the AGDHS was found to be 1.43 for the given values. As a result, while installing a GDHS, one should take into account the influences of the PWF, ambient temperature and flow rate on the total costs of the system in any location where it is to be established.

Ali Keeba?; Mehmet Ali Alkan; ?smail Yabanova; Mehmet Yumurtac?

2013-01-01T23:59:59.000Z

275

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

276

Solar Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heaters Solar Water Heaters Solar Water Heaters May 7, 2012 - 9:52am Addthis Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use -- sunshine -- is free. How They Work Solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don't. Active Solar Water Heating Systems There are two types of active solar water heating systems: Direct circulation systems Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes. Indirect circulation systems

277

Multi-step heater deployment in a subsurface formation  

DOE Patents [OSTI]

A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

Mason, Stanley Leroy (Allen, TX)

2012-04-03T23:59:59.000Z

278

Accumulated CFC-11 in polyurethane foam insulation: an estimate of the total amount in district heating installations in Sweden  

Science Journals Connector (OSTI)

In rigid polyurethane foam used for thermal insulation, CFC-11 has been the main blowing agent for many years, but is now subject to phase-out regulations. During ageing of this foam, air diffuses into it and blowing agents leak into the atmosphere, resulting in a decreased insulating capacity. Determinations of the cell gas composition and the total content of CFC-11 in foam from district heating installations of different ages are reported in this paper. The total amount of CFC-11 in old district heating schemes in Sweden is estimated at 2000 tonnes. The amount in refrigeration equipment in Sweden is about twice as large.

M. Svanstrom

1996-01-01T23:59:59.000Z

279

Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method  

Science Journals Connector (OSTI)

Abstract This study presents the exergoeconomic analysis and evaluation in order to provide cost based information and suggests possible locations/components in a GDHS (geothermal district heating system) for improving the cost effectiveness. The analysis is based on the SPECO (specific exergy costing) method, and used to calculate exergy-related parameters and display cost flows for all streams and components. As a real case study, the Afyon GDHS in Turkey is considered based on actual operational data. The obtained results show that the unit exergy cost of heat produced by the Afyon GDHS is calculated as average 5624$/h. The HEX (heat exchanger)-III among all components should be improved quickly due to the high total operating cost rate and relative cost difference. The HEX-I and PM (pump)-V have the highest exergoeconomic factors among all other system components due to the high owning and operating costs of these components. The heat production costs per exergy unit for all the \\{HEXs\\} decrease due to the high exergy destruction cost rate of the system, while the well head temperature and ambient temperature increase. The SPECO method may be used to improve the cost effectiveness according to exergy rates in \\{GDHSs\\} as a thermal system.

Mehmet Ali Alkan; Ali Keeba?; Nurettin Yamankaradeniz

2013-01-01T23:59:59.000Z

280

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

water heaters water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the

282

Equilibrium Model and Performances of an IsopropanolAcetoneHydrogen Chemical Heat Pump with a Reactive Distillation Column  

Science Journals Connector (OSTI)

The acetone and hydrogen are then fed into the exothermic reactor after being heated up to the temperature TH in the heater. ... Ajah, A. N.; Mesbah, A.; Grievink, J.; Herder, P. M.; Falcao, P. W.; Wennekes, S.On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: A comparative simulation-based analysis and evaluation Energy 2008, 33, 908 929 ... heat pump is best suited for high energy demand space heating. ...

Min Xu; Fang Xin; Xunfeng Li; Xiulan Huai; Jiangfeng Guo; Hui Liu

2013-02-25T23:59:59.000Z

283

Space Heaters The University recognizes that individuals have different levels of comfort associated with  

E-Print Network [OSTI]

used must be currently UL (Underwriters Laboratory) approved. 4. Approved space heaters must be fan driven. Space heaters with heated coils are not permitted. 5. Space heaters must have a thermostat that shuts unit off when a certain temperature is reached. 6. Space heaters must have a tip-over shutdown

de Lijser, Peter

284

I'SOT Canby District Heating Project, Modoc County, California Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

March 17, 2003 Dear Stakeholder: SUBJECT: NOTICE OF AVAILABILITY OF FINAL ENVIRONMENTAL ASSESSMENT OF THE PROPOSED IN SEARCH OF TRUTH CANBY DISTRICT HEATING PROJECT, MODOC COUNTY, CALIFORNIA (DOE/EA 1460) The U.S. Department of Energy's (DOE's) Golden Field Office (GO) has issued the final Environmental Assessment (EA) and a Finding of No Significant Impact (FONSI) for the subject geothermal project. These documents are available online in the GO electronic reading room at www.golden.doe.gov. Copies of the documents can be obtained by contacting Steve Blazek at the address and telephone number listed below. GO has prepared the final EA and FONSI in accordance with the National Environmental Policy Act (NEPA) and DOE's NEPA implementation guidance.

285

Comparing advanced exergetic assessments of two geothermal district heating systems for residential buildings  

Science Journals Connector (OSTI)

Abstract Advanced exergy analysis method has been increasingly utilized in analyzing and assessing the performance of energy-related systems in recent years due to more deeply investigating the exergy destructions. In this study, two various geothermal district heating systems (GDHSs), the Afyon and Bigadi GDHSs, which have been operated in Turkey, were considered to perform their advanced exergy analyses and assessments. The \\{GDHSs\\} studied were also compared with each other for the first time in terms of advanced exergetic aspects. In the analyses and calculations of the GDHS, the actual operational data obtained from the measurements and technical staff were utilized. The overall conventional and advanced exergetic efficiency values for the Afyon GDHS are determined to be 27.53% and 34.72% while those for the Bigadi GDHS are obtained to be 21.03% and 32.52%, respectively. Considering both the interactions among components and the potential for improving components, more effective and efficient improvement priorities were proposed.

Ali Keeba?; Can Coskun; Zuhal Oktay; Arif Hepbasli

2014-01-01T23:59:59.000Z

286

District heating/cooling potential in New York City. phase 1. Final report  

SciTech Connect (OSTI)

New York City through its Energy Office has identified and evaluated the technical and economic feasibility of district heating and cooling at three locations: Brooklyn Navy Yard, Kings County Medical Complex, and the S.W. Brooklyn Incinerator. Of these the Navy Yard has the most immediate potential for implementation. The Navy Yard has an extensive steam and electrical system that has not been used since the Navy turned most of the property over to New York City more than a decade ago. By remodeling several of the smaller boilers still in place or purchasing new boilers, an ample supply of steam and hot water can be produced. The steam will be used for heating and industrial process for the industrial tenants now occupying the former yards. Hot water will be sold to the New York City Housing Authority to heat between 3,500 and 5,000 nearby public housing units operated by the authority. Electricity will be cogenerated using present generators that will be overhauled. It is expected that some of the electricity will be used directly to supply power to a planned nearby Red Hook Sewage Treatment plant, while most will be sold to the industrial tenants of the Navy Yard. Studies will continue to determine the best market for excess power.

McLoughlin, G.T.; Kuo, R.P.; Karol, J.

1983-02-01T23:59:59.000Z

287

Energetic and exergetic performance investigation of the Bigadic Geothermal District Heating System in Turkey  

Science Journals Connector (OSTI)

In this study a comprehensive performance analysis of the Bigadic Geothermal District Heating System (GDHS) in Balikesir, Turkey is performed through thermodynamic assessment in terms of energy and exergy efficiencies. The actual thermal data taken from the Technical Department of the GDHS are utilized in the analysis to determine the exergy destructions in each component of the system and the overall energy and exergy efficiencies of the system for two reference temperatures taken as 15.6C for November (e.g., case 1) and 11C for December (e.g., case 2). The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. The average energy and exergy efficiencies are found to be 30% and 36% for case 1, and 40% and 49% for case 2, respectively. The key reason as to why the exergy efficiencies are higher is because the heat recovery option is used through the reinjection processes which make use of waste heat. A parametric study is also conducted to show how energy and exergy flows change with the environment temperature. The results are expected to be helpful to researchers and engineers in the area.

Z. Oktay; C. Coskun; I. Dincer

2008-01-01T23:59:59.000Z

288

Burbank Water and Power - Solar Water Heater Rebate Program (California) |  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Solar Water Heater Rebate Program Burbank Water and Power - Solar Water Heater Rebate Program (California) Burbank Water and Power - Solar Water Heater Rebate Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount $1,500 Provider Rebates Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one solar water heater per year per property. Applicants must provide access to their residence for a pre-inspection to verify the existing use of an electric water heater. Customers must comply with all code and permit requirements. More

289

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

290

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

291

Effect of reference state on the exergoeconomic evaluation of geothermal district heating systems  

Science Journals Connector (OSTI)

Abstract The exergy cost structure of the geothermal district heating system (GDHS) is investigated by using an exergoeconomic method called as the modified productive structure analysis (MOPSA). A parametric study is also conducted to show how exergy cost flow rates change with the reference state (ambient temperature). As a comprehensive case study, the Afyon GDHS in Afyonkarahisar, Turkey is considered. The actual thermal data taken from the technical staffs as 2.3C for January (case 1) and 10.2C for February (case 2), 2010 in 100% load condition are collected for this study. Mechanical and thermal exergy flow rates, entropy production rates and exergy cost flow rates for each component in the Afyon GDHS are calculated using these two actual data sets. The results show that the exergy efficiencies of the overall system for these two cases are found to be 25.34% and 22.78%, respectively. And, the largest exergy cost loss occurs in the heat exchangers with 52.49% and 64.91% for cases 1 and 2, respectively. The unit exergy costs are found as cP>cT>cS>cQ for the actual data sets in each case. In addition, ambient temperature has a big impact on the exergies and costs of GDHSs.

Ali Keeba?

2013-01-01T23:59:59.000Z

292

Testing residential energy pricing in the Krakow, Poland, municipal district heat system  

SciTech Connect (OSTI)

While understanding of the operation of the price and rebate mechanism may be imperfect in the United States, in Poland most of the necessary infrastructure simply does not exist. Of all the former Soviet-bloc countries, Poland has moved the quickest to a market economy; however, the stresses have been and continue to be significant, particularly on the pensioned. The energy sector of the economy is still centrally planned while the legal framework for a transition to a regulated market is created. Some utilities have made more rapid progress than others in the transition. This paper describes the first year of an experiment involving design, implementation, and analysis of a pilot pricing, conservation, and heating system control experiment in 264 apartments in four buildings. The results--and experience in the United States--will be used to guide the pricing decisions of the municipal district heat utility and the conservation and air quality strategies of the Krakow development authority. Development of a price incentive strategy involved considerations of public policy toward fixed-income occupants and ownership of energy metering. Thermostats were installed to permit occupant control, and building-level conservation and control techniques were implemented. Physical constraints required the use of German ``cost allocator`` metering technology at the apartment level. Final subsidy or ``pseudo-pricing`` design included-building-level incentives as well as apartment performance inducements. Results include insights on communication and cultural impacts and guidance for future testing as well as energy conservation effectiveness values.

Wisnewski, R.; Reeves, G. [George Reeves Associates, Inc., Lake Hopatcong, NJ (United States); Markiewicz, J. [Fundacja na Rzecz Efektywnego Wykorzystania Energii w Krakowie, Krakow (Poland)

1995-08-01T23:59:59.000Z

293

Exergoeconomic analysis of the Gonen geothermal district heating system for buildings  

Science Journals Connector (OSTI)

This paper presents an application of an exergoeconomic model, through exergy and cost accounting analyses, to the Gonen geothermal district heating system (GDHS) in Balikesir, Turkey for the entire system and its components. This exergoeconomic model is used to reveal the cost formation process and the productive interaction between components. The exergy destructions in the overall Gonen GDHS are quantified and illustrated for a reference temperature of 4C. The results indicate that the exergy destructions in the system occur primarily as a result of losses in the cooled geothermal water injected back into the reservoir, pumps, heat exchangers, and pipelines. Total exergy destruction and reinjection exergy of the cooled geothermal water result in 1010kW (accounting for 32.49%), 320.3kW (accounting for 10%) of the total exergy input to the Gonen GDHS, respectively. Both energy and exergy efficiencies of the overall Gonen GDHS are also investigated to analyze the system performance, as these efficiencies are determined to be 42% and 50%, respectively. It is found that an increase of the load condition leads to a decrease in the overall thermal costs, which will result in more cost-effective energy systems for buildings.

Z. Oktay; I. Dincer

2009-01-01T23:59:59.000Z

294

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

295

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

296

Performance and thermo-economic assessments of geothermal district heating system: A case study in Afyon, Turkey  

Science Journals Connector (OSTI)

In this study energy, exergy and exergoeconomic analysis of the Afyon geothermal district heating system (AGDHS) in Afyon, Turkey is performed through thermodynamic performances and thermo-economic assessments. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, exergy losses and loss cost rates. Energy and exergy losses throughout the AGDHS are quantified and illustrated in the flow diagram. The energy and exergy efficiencies of the overall system are found to be 37.59% and 47.54%, respectively. The largest exergy loss occurs in the heat exchangers with 14.59% and then in the reinjection wells with 14.09%. Besides, thermo-economic evaluations of the AGDHS are given in table. Energy and exergy loss rates for the AGDHS are estimated to be 5.36kW/$ and 0.2 kW/$, respectively.

Ali Keeba?

2011-01-01T23:59:59.000Z

297

Solar pool heaters: The simplest use of active solar energy  

SciTech Connect (OSTI)

Solar pool heating is the most attractive solar water heating market today, because most pool heaters pay back their purchase price in lower utility bills in two to three years. This article describes why solar pool heaters are popular and their design, operation, and return on investment. 1 fig.

Sheinkopf, K. [Florida Solar Energy Center, Cocoa, FL (United States)

1997-11-01T23:59:59.000Z

298

Solar Water Heater Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heater Rebate Solar Water Heater Rebate Solar Water Heater Rebate < Back Eligibility Commercial Fed. Government Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type State Rebate Program Rebate Amount Residential Solar Water Heating: $1,000 upfront, or Residential Solar Water Heating Interest Loan Buy-Down: $1,000 Residential Solar Attic Fans: $50 Commercial: $250 per 12,000 Btu/hr derated capacity Provider Hawaii Energy Hawaii Energy, a third-party administered public benefits fund, provides incentives for energy efficiency and conservation to customers of the Hawaiian Electric Company (HECO) and its subsidiaries, Maui Electric Company (MECO) and Hawaii Electric Light Company (HELCO). This incentive is available for installations on the islands of Oahu, Hawaii, Maui, Lanai and

299

Tankless Demand Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

300

Tankless Demand Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TVA Partner Utilities - Energy Right' Water Heater Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Right' Water Heater Program Right&#039; Water Heater Program TVA Partner Utilities - Energy Right' Water Heater Program < Back Eligibility Installer/Contractor Residential Utility Savings Category Appliances & Electronics Water Heating Maximum Rebate Member utility water heater rebate programs can range from $25 to total cost. Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Energy Efficient Water Heater: $50 from TVA Provider Tennessee Valley Authority The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each installation. Power Companies may pass these incentives on to customers. Customers should contact their local power company to see what programs are

302

Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network  

SciTech Connect (OSTI)

The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F. [ZAE Bayern, Garching/Munich (Germany)

1998-10-01T23:59:59.000Z

303

Reduction in air emissions attainable through implementation of district heating and cooling  

SciTech Connect (OSTI)

District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

1996-12-31T23:59:59.000Z

304

Effects of different operating conditions of Gonen geothermal district heating system on its annual performance  

Science Journals Connector (OSTI)

Abstract In this paper, the effects of different operating conditions of the Gonen geothermal district heating system (GDHS) on its annual energy and exergy performance are investigated. The system parameters such as temperature, pressure and flow rate are monitored by using fixed and portable measuring instruments over a one-year period. Thus the main differences in the annual system operation are detected. The measurements show that the Gonen GDHS has six different operating cases depending on the outside temperature throughout the year. The energy and exergy analysis of the system is carried out for each case using the actual system parameters at the corresponding reference temperatures, which are 3.86, 7.1, 8.88, 11.83, 15.26 and 20.4C. The highest and lowest energy (57.32%, 35.64%) and exergy (55.76%, 41.42%) efficiencies of the overall system are calculated at the reference temperatures of 15.26C and 3.86C, respectively. Besides, taking the six case-based energy and exergy analyses into account, the annual average energy and exergy efficiencies are determined to be 45.24% and 47.33%, respectively.

Asiye Aslan; Bedri Yksel; Tu?rul Akyol

2014-01-01T23:59:59.000Z

305

An economic comparison and evaluation of two geothermal district heating systems for advanced exergoeconomic analysis  

Science Journals Connector (OSTI)

Abstract This paper refers to an economic comparison and evaluation of two geothermal district heating systems (GDHSs) under same reference state condition and mechanic/economic parameters by using an advanced exergoeconomic analysis. In this analysis, costs of investment and exergy destruction of each component for the thermal systems such as the Afyon and Sarayky \\{GDHSs\\} were split into endogenous/exogenous and unavoidable/avoidable parts, and were also compared with each other for the first time. The results obtained show that the advanced exergoeconomic analysis makes the information more accurate and useful, and supplies additional information that cannot be provided by the conversional analysis. Furthermore, the Afyon GDHS can be made more cost effectiveness, removing the system components irreversibilities, technical-economic limitations, and poorly chosen manufacturing methods, according to the Sarayky GDHS. The majority of the components in the Sarayky GDHS are to operate more economically than those in the Afyon GDHS. As a result, the usefulness of this method was clearly demonstrated comparing both the systems.

P?nar Keeba?; Harun Gkgedik; Mehmet Ali Alkan; Ali Keeba?

2014-01-01T23:59:59.000Z

306

Thermodynamic and economic evaluations of a geothermal district heating system using advanced exergy-based methods  

Science Journals Connector (OSTI)

Abstract In this paper, a geothermal district heating system (GDHS) is comparatively evaluated in terms of thermodynamic and economic aspects using advanced exergy-based methods to identify the potential for improvement, the interactions among system components, and the direction and potential for energy savings. The actual operational data are taken from the Sarayky GDHS, Turkey. In the advanced exergetic and exergoeconomic analyses, the exergy destruction and the total operating cost within each component of the system are split into endogenous/exogenous and unavoidable/avoidable parts. The advantages of these analyses over conventional ones are demonstrated. The results indicate that the advanced exergy-based method is a more meaningful and effective tool than the conventional one for system performance evaluation. The exergetic efficiency and the exergoeconomic factor of the overall system for the Sarayky GDHS were determined to be 43.72% and 5.25% according to the conventional tools and 45.06% and 12.98% according to the advanced tools. The improvement potential and the total cost-savings potential of the overall system were also determined to be 2.98% and 14.05%, respectively. All of the pumps have the highest improvement potential and total cost-savings potential because the pumps were selected to have high power during installation at the Sarayky GDHS.

Mehmet Tan; Ali Keeba?

2014-01-01T23:59:59.000Z

307

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Solar Water Heater: $750 New Homes Solar Water Heater: $1,250 - $1,500 Provider Coweta-Fayette Electric Membership Corporation Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties. Currently, Coweta-Fayette EMC offers rebates on solar water heaters from $750 up to $1,500 as part of the Touchstone Energy Home Program. Solar

308

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program < Back Eligibility Agricultural Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $500 Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial, residential, and agricultural customers. Owners of both new construction and existing buildings are eligible for a $500 rebate for solar water heaters. The water heaters must have an auxiliary tank of at least 40 gallons and the solar water heater

309

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network [OSTI]

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. LawSingle Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

310

Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report  

SciTech Connect (OSTI)

Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

NONE

1997-07-01T23:59:59.000Z

311

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

312

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

313

Differential rates for district heating and the influence on the optimal retrofit strategy for multi-family buildings  

Science Journals Connector (OSTI)

When renovating existing multi-family buildings it is very important to implement the best retrofit strategy possible in order to minimize the remaining life-cycle cost for the building. If the building is heated with district heating this strategy of course changes due to the energy rate used by the utility. It is also very important for the utility that the consumer is encouraged to save energy when there is a need for it, i.e. during peak load conditions. Our paper shows that an accurate cost differential rate provides all these facilities.

Stig-Inge Gustafsson; Bjrn G. Karlsson; Bertil H. Sjholm

1987-01-01T23:59:59.000Z

314

District Energy Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district...

315

Community Renewable Energy Success Stories Webinar: District...  

Broader source: Energy.gov (indexed) [DOE]

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

316

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

SciTech Connect (OSTI)

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

317

A comparative study on substation types and network layouts in connection with low-energy district heating systems  

Science Journals Connector (OSTI)

The study deals with low-energy District Heating (DH) networks operating in low temperatures such as 55C in terms of supply and 25C in terms of return. The network layout, additional booster pumps, and different substation types such as storage tanks either equipped or not equipped in domestic hot water production site were examined. Effects of booster pumps on pipe dimensions in the latter case were investigated. Temperature drops during the summer months due to low heat demands of consumers were explored. Use of approaches such as looped networks and branched network layouts with bypasses for end-consumers were also studied, heat loss from these networks and the drop in temperature in the heat-carrier-supply medium being compared.

Hakan ?brahim Tol; Svend Svendsen

2012-01-01T23:59:59.000Z

318

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate  

Broader source: Energy.gov (indexed) [DOE]

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $600 Program Info State Florida Program Type Utility Rebate Program Rebate Amount 0.01 per BTU output Provider Clay Electric Co-op Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per system, or $600. Eligible solar water heaters can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to install solar water heating

319

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy Savers [EERE]

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

320

DOE Publishes Notice of Proposed Rulemaking for Direct Heating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Heating Equipment and Pool Heater Test Procedures DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures October 24, 2013 -...

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Free high efficiency water Heater; $200 installation fee Water heater and timer with normal installation: $2.50 credit for 10 years Timer only: $200 cash payment and $2.50 credit for 10 years New construction contract home: $250 Provider Aiken Electric Cooperative Aiken Electric Cooperative offers residential members rebates for installing high-efficiency electric water heaters and/or timers in their homes. Customers have four rebate options:

322

The Trials and Tribulations of Testing Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Trials and Tribulations of Testing Water Heaters The Trials and Tribulations of Testing Water Heaters Speaker(s): James Lutz Date: August 14, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn During our work on efficiency standards for electric water heaters, we discovered significant discrepancies between the rated and tested efficiencies of the highest rated electric resistance water heaters. For high efficiency electric resistance water heaters with an Energy Factor above .92, the heat losses are so small that minor flaws in the tank or obscure problems in the test procedure become more apparent. This seminar reports on our investigation into the causes of inconsistent results obtained during testing of high efficiency electric resistance water heaters at different test labs. We discovered some reasons for the

323

Explosives tester with heater  

DOE Patents [OSTI]

An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

Del Eckels, Joel (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Whipple, Richard E. (Livermore, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

2010-08-10T23:59:59.000Z

324

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

325

Phase change material storage heater  

DOE Patents [OSTI]

A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

Goswami, D. Yogi (Gainesville, FL); Hsieh, Chung K. (Gainesville, FL); Jotshi, Chand K. (Gainesville, FL); Klausner, James F. (Gainesville, FL)

1997-01-01T23:59:59.000Z

326

City of Vineland, New Jersey district heating/cooling feasibility study: Final report  

SciTech Connect (OSTI)

This study assesses the available heat load, determines the available heat from the heat sources, develops a distribution network, develops a system implementation plan, assesses the environmental impacts, addresses institutional issues, and analyzes the economics of the conceptual system.

Not Available

1986-11-01T23:59:59.000Z

327

Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate  

Broader source: Energy.gov (indexed) [DOE]

Tri-County Electric Cooperative - Energy Efficient Water Heater Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $75 Provider Tri-County Electric Cooperative Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating of 0.90 or higher. The minimum tank size is 40 gallons, with a minimum 4,500 watt heating element. For validation purposes, a copy of the sales or installation receipt must accompany the [http://www.tcectexas.com/Forms/water%20heater%20rebate%20form.pdf

328

Ductless Heat Pumps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

329

Condensing Hybrid Water Heater Monitoring Field Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Condensing Hybrid Water Heater Condensing Hybrid Water Heater Monitoring Field Evaluation Jeff Maguire, Lieko Earle, and Chuck Booten National Renewable Energy Laboratory C.E. Hancock Mountain Energy Partnership Produced under direction of the Sacramento Municipal Utilities District by the National Renewable Energy Laboratory (NREL) under Interagency Agreement CRD-05-168 and Task No WR49.3000. Technical Report NREL/TP-5500-52234 October 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

330

Advanced refinery process heater. Final report, (October 1983-September 1988)  

SciTech Connect (OSTI)

A prototype refinery process heater was designed, built and successfully tested, demonstrating the improvements available to heater design through the use of Zone-Controlled Pyrocore radiant gas burners. The 10 MMBtu/hr rated heater released 17 ppm NOx (corrected to 3% oxygen) under full load operation, the lowest NOx emissions technically and commercially achieved in this type of equipment without the use of post-combustion flue-gas processing. Operating with 400F combustion air preheat and a 500F process fluid outlet temperature, the heater achieved overall thermal efficiencies of 92.8% on a LHV basis due in part to the significantly improved performance of the radiant heat exchange section. The radiant burners used in the heater have been proven in performance and reliability, and have also been shown to be applicable to both new heater designs and retrofits into existing heaters. The improved radiant performance of the heater and the use of 'flameless' radiant burners eliminates tube burn-out failures in both the radiant and convective tube coils, further improving the reliability of equipment based on this design. Three separate U.S. Patents have been issued covering the heater design and the use of Zone-Controlled Pyrocore burners in this application.

Minden, A.C.; Buckley, G.G.

1989-04-01T23:59:59.000Z

331

Department of Energy - Swimming Pool Heaters  

Broader source: Energy.gov (indexed) [DOE]

736189 en Gas Swimming Pool Heaters http:energy.govenergysaverarticlesgas-swimming-pool-heaters heaters" class"title-link">

332

Combined Systems with Tankless Water Heaters  

Broader source: Energy.gov (indexed) [DOE]

Combined Systems with Tankless Water Heaters Combined Systems with Tankless Water Heaters Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas More builder's wanting to use gas-fired tankless water heaters, and with solar pre-heat  Endless hot water  Helps HERS Index  Space saving 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Problem with elevated TWH inlet temperature 60 70 80 90 100 110 120 130 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Maximum Inlet Temperature (F) DHW flow rate (gpm) Maximum TWH inlet temperature to stay below 125 F delivered temperature, with 15 kBtu/h minimum firing rate Typical shower temperature 4 Residential Energy Efficiency Stakeholder Meeting

333

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

as conventional electric resistance water heaters. Atwo technologies: (1) an electric resistance storage waterin heat pump or in electric resistance mode. The electric

Lekov, Alex

2011-01-01T23:59:59.000Z

334

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

335

Energy Conservation in Process Heaters  

E-Print Network [OSTI]

ENERGY CONSERVATION IN PROCESS HEATERS Roger l~. Bagge Neste Engineering Porvoo, Finland ABSTRACT OPTIMIZATION OF EMER~Y USE Energy savings in refinery and petrochemical fired heaters can basically be achieved in two ways: Thru optimization...

Bagge, R. W.

1982-01-01T23:59:59.000Z

336

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

337

Determination of optimum pipe diameter along with energetic and exergetic evaluation of geothermal district heating systems: Modeling and application  

Science Journals Connector (OSTI)

This study deals with determination of optimum pipe diameters based on economic analysis and the performance analysis of geothermal district heating systems along with pipelines using energy and exergy analysis methods. In this regard, the Dikili geothermal district heating system (DGDHS) in Izmir, Turkey is taken as an application place, to which the methods presented here are applied with some assumptions. The system mainly consists of three cycles, namely (i) the transportation network, (ii) the Danistay region, and (iii) the Bariskent region. The thermal capacities of these regions are 21,025 and 7975kW, respectively, while the supply (flow) and return temperature values of those are 80 and 50C, respectively. Based upon the assessment of the transportation network using the optimum diameter analysis method, minimum cost is calculated to be US$ 561856.906year?1 for a nominal diameter of DN 300. The exergy destructions in the overall DGDHS are quantified and illustrated using exergy flow diagram. Furthermore, both energy and exergy flow diagrams are exhibited for comparison purposes. It is observed through analysis that the exergy destructions in the system particularly take place due to the exergy of the thermal water (geothermal fluid) reinjected, the heat exchanger losses, and all pumps losses, accounting for 38.77%, 10.34%, 0.76% of the total exergy input to the DGDHS. Exergy losses are also found to be 201.12817kW and 1.94% of the total exergy input to the DGDHS for the distribution network. For the system performance analysis and improvement, both energy and exergy efficiencies of the overall DGDHS are investigated, while they are determined to be 40.21% and 50.12%, respectively.

Yildiz Kalinci; Arif Hepbasli; Ismail Tavman

2008-01-01T23:59:59.000Z

338

Novel Column Heater for Fast Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......expected advantage of radial heating with the coaxial heater...with other "coated" heating elements, differences...Louisiana light crude oil; 3 m 0.1 mm phenyl...expansion coefficient, and price imposed substantial practical...existing standard column heating technology. Thus, chromatographic......

E.U. Ehrmann; H.P. Dharmasena; K. Carney; E.B. Overton

1996-12-01T23:59:59.000Z

339

Thermodynamic evaluation of the Afyon geothermal district heating system by using neural network and neuro-fuzzy  

Science Journals Connector (OSTI)

In this study, energy and exergy analysis of the Afyon geothermal district heating system (AGDHS) in Afyon, Turkey using artificial neural network (ANN) and adaptive neuro-fuzzy (ANFIS) methods is carried out. Actual system data in the analysis of the AGDHS are used. The results of ANN are compared with ANFIS in which the same data sets are used. ANN model is slightly better than ANFIS in determining the energy and exergy rates. In addition, new formulations obtained from ANN are presented for the determination of the energy and exergy rates of the AGDHS. The R2-values obtained when unknown data were used in the networks were 0.999999847 and 0.99999997 for the energy and exergy rates respectively, which are very satisfactory.

Arzu ?encan ?ahin; Hilmi Yaz?c?

2012-01-01T23:59:59.000Z

340

A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data  

Science Journals Connector (OSTI)

This paper comparatively evaluates exergy destructions of a geothermal district heating system (GDHS) using both conventional and advanced exergetic analysis methods to identify the potential for improvement and the interactions among the components. As a real case study, the Afyon GDHS in Afyonkarahisar, Turkey, is considered based on actual operational data. For the first time, advanced exergetic analysis is applied to the GDHSs, in which the exergy destruction rate within each component is split into unavoidable/avoidable and endogenous/exogenous parts. The results indicate that the interconnections among all the components are not very strong. Thus, one should focus on how to reduce the internal inefficiency (destruction) rates of the components. The highest priority for improvement in the advanced exergetic analysis is in the re-injection pump (PM-IX), while it is the heat exchanger (HEX-III) in the conventional analysis. In addition, there is a substantial influence on the overall system as the total avoidable exergy destruction rate of the heat exchanger (HEX-V) has the highest value. On the overall system basis, the value for the conventional exergetic efficiency is determined to be 29.29% while that for the modified exergetic efficiency is calculated to be 34.46% through improving the overall components.

Arif Hepbasli; Ali Keeba?

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices  

SciTech Connect (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

342

Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant  

E-Print Network [OSTI]

Heating Water Suuply Chilled Water Return Heating Water Return To User New System ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 attract attention due..., R6 450 1, 1 ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3 (one office building and one building with hotel rooms and leisure facilities) since November...

Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

343

Energy efficiency and carbon dioxide emissions reduction opportunities in district heating source in Tianjin  

Science Journals Connector (OSTI)

Building a trading market can promote energy conservation provided that the trading method is determined. Energy consumption for heat supply is huge. Tianjin Municipal Government is planning to establish an energ...

Gaofeng Chen; Xuejing Zheng; Lin Cong

2012-09-01T23:59:59.000Z

344

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

345

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

346

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

347

Slurry fired heater cold-flow modelling  

SciTech Connect (OSTI)

This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

Moujaes, S.F.

1983-07-01T23:59:59.000Z

348

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

349

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

3. Heating Equipment, Floorspace, 1999" 3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,679,2271,1183,"Q",463,1779,250 "5,001 to 10,000 ..............",8238,7090,745,2848,1350,"Q",1040,2301,"Q" "10,001 to 25,000 .............",11153,9865,1288,3047,3021,307,2047,3994,401

350

List of Water Heaters Incentives | Open Energy Information  

Open Energy Info (EERE)

Heaters Incentives Heaters Incentives Jump to: navigation, search The following contains the list of 973 Water Heaters Incentives. CSV (rows 1-500) CSV (rows 501-973) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

351

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

352

Do You Have a Solar Water Heater?  

Broader source: Energy.gov [DOE]

Earlier this week, Ernie wrote about theeconomics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

353

Testing and analysis of the Semiscale Mod-1 heater rod design  

SciTech Connect (OSTI)

The use of electrically heated nuclear fuel rod simulators in the Semiscale Program is traced from a historical viewpoint. The design of the Semiscale Mod-1 electrical heater rod and core simulator is discussed. Heater rod thermal response during transient thermal-hydraulic depressurization experiments conducted in the Mod-1 system, and analysis techniques and tests conducted to help quantify heater rod characteristics and behavior are presented.

Larson, T.K.

1980-01-01T23:59:59.000Z

354

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

355

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

356

Commercial Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Commercial Water Heaters Standardized DOE Testing Templates commercialwaterheater v1.0.xlsx More Documents & Publications Refrigerators and Refrigerator-Freezers...

357

Storage Gas Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

358

District cooling gets hot  

SciTech Connect (OSTI)

Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

Seeley, R.S.

1996-07-01T23:59:59.000Z

359

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect (OSTI)

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

360

Outdoor Outfitter Gets Greener With Solar Water Heater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater October 8, 2010 - 12:51pm Addthis L.L. Bean’s flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | L.L. Bean's flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | Lindsay Gsell L.L. Bean is known for its outdoor apparel- jackets, backpacks and cozy winter sweaters. However, the company does more than just dress for the outdoors, it also works to protect and preserve it. For nearly 100 years, L.L. Bean has been committed to environmental conservation and

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Methods for forming long subsurface heaters  

DOE Patents [OSTI]

A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

Kim, Dong Sub

2013-09-17T23:59:59.000Z

362

Residential Water Heaters Webinar  

Broader source: Energy.gov [DOE]

Jerone Gagliano presents information on water heating technology for U.S Department of Energy Sustainable Energy Resources for Consumers grant program

363

Heater head for stirling engine  

DOE Patents [OSTI]

A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

Corey, John A. (R.D. #2, Box 101 E, North Troy, NY 12182)

1985-07-09T23:59:59.000Z

364

Performance characteristics of solar air heater with surface mounted obstacles  

Science Journals Connector (OSTI)

Abstract The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (Pl/e) from 3/2 to 11/2, relative obstacle transverse pitch (Pt/b) from 1 to 7/3 and the angle of incidence (?) varied from 30 to 90. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters.

Adisu Bekele; Manish Mishra; Sushanta Dutta

2014-01-01T23:59:59.000Z

365

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

SciTech Connect (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

366

Immersible solar water heater  

SciTech Connect (OSTI)

The invention consists in an immersible solar heat collecting means capable of being laid at the bottom of a pool where it can be walked upon. The substantially laminar portions of the collector each includes a surface of higher light absorbence than the other side thereof so that by folding or otherwise overlapping and rearranging the various portions a different number of higher light absorbence surfaces can be presented to the sun to heat the water at any particular time. Such an apparatus makes possible the controlled solar heating of a pool.

Caroon, R.S.

1980-12-09T23:59:59.000Z

367

DistrictHeating Nuevasaladecalderasydistribucin  

E-Print Network [OSTI]

­ EMISIONES SOx=0% - BAJA EMISI?N NOx y ahorro de emisiones de 202 Ton CO2/año. - Mejora paisajística del

Fraguela, Basilio B.

368

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Broader source: Energy.gov (indexed) [DOE]

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

369

Dehumidifying water heater  

SciTech Connect (OSTI)

Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

Not Available

1992-08-18T23:59:59.000Z

370

Electric Storage Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy can be wasted even when a hot water tap isn't running. This is called standby heat loss. The American Council for an Energy Efficient Economy provides a helpful...

371

Improving Fired Heater Efficiency  

E-Print Network [OSTI]

, Oxygen and carbon monoxide can be monitored in the stack gases, Also, a critical tube temperature can be monitored for a limit or an override, When the heat release exceeds the available combustion air being pulled in with the fuel flow... the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 heat release and furnace draft controller. On this type of furnace, it is advisable to use oxygen and carbon monoxide monitors for warning and burner balancing. A...

Shriver, J. E.

1983-01-01T23:59:59.000Z

372

Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe, Denmark  

Science Journals Connector (OSTI)

Abstract This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55C in supply and 25C in return regularly while the supply temperature levels are being boosted in cold winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization method was performed under different mass flow limitations that were formed with various temperature configurations. The results showed that reduction in the mass flow rate requirement of a district is possible by increasing the supply temperature in cold periods with significant reduction in heat loss from the DH network. Sensitivity analysis was carried out in order to evaluate the area of applicability of the proposed method. Hence varied values of the original capacity and the current capacity of the existing radiators were evaluated with the design temperature values that were defined by two former radiator sizing standards.

Hakan ?. Tol; Svend Svendsen

2014-01-01T23:59:59.000Z

373

District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A  

SciTech Connect (OSTI)

This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

Not Available

1984-01-31T23:59:59.000Z

374

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

375

U. K. consortium Stirling engine regenerator effectiveness and heater performance  

SciTech Connect (OSTI)

This paper covers results of measurements of effectiveness of regenerator materials by use of a dynamic test rig. The rig enables measurements to be made of enthalpy flux through the regenerator under simulated Stirling engine conditions of fluid flow and heat transfer. The paper also discusses the design and operation of the 60 kw heat-pipe heater head of the U.K. Consortium Stirling engine.

Rice, G.; Dadd, M.W.; Jones, J.D.; Thonger, J.

1983-08-01T23:59:59.000Z

376

A performance correlation of horizontal solar heaters  

E-Print Network [OSTI]

The solar heaters are shown tn Figure VI, page 31 30 Figure VI Horizontal Solar Heaters ~GLAZING AND FRAME ~~ POLYETHYLENE HEATERS THERMAL IN S U LA T I N 8 CELLS THERMOCOUPLES HORIZONTAL TABLE TOP THERMOCOUPLES COPPER LEADS TO CONTROL... The solar heaters are shown tn Figure VI, page 31 30 Figure VI Horizontal Solar Heaters ~GLAZING AND FRAME ~~ POLYETHYLENE HEATERS THERMAL IN S U LA T I N 8 CELLS THERMOCOUPLES HORIZONTAL TABLE TOP THERMOCOUPLES COPPER LEADS TO CONTROL...

Gopffarth, Wilford Hugo

2012-06-07T23:59:59.000Z

377

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers [EERE]

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

378

Heat Pump Water Heater Performance in  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

379

ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million  

Broader source: Energy.gov (indexed) [DOE]

STAR Residential Water Heaters to Save Americans Up to $823 STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years December 31, 2008 - 9:18am Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the availability of ENERGY STAR® residential water heaters. With today's announcement, the ENERGY STAR® program now addresses every major residential appliance found in most American homes. Introduction of this product provides significant potential savings to consumers. Water heating represents up to 15.5 percent of national residential energy consumption, the second largest end use of energy in homes, following heating and cooling. Using one of five specified water heating technologies, ENERGY

380

Conventional Storage Water Heater Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another valve near the bottom of the outside of the tank is the thermostat and gas valve. A cutout shows the parts inside the tank, which include a large tube called a flue tube/heat exchanger. Inside this tube is a jagged insert called a flue baffle. Beside the flue tube/heat exchanger is a thin tube called the anode rod. At the bottom of the tank is a gas burner, and beneath the burner are combustion air openings.

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

382

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

383

Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler  

Science Journals Connector (OSTI)

A cogenerating thermophotovoltaic (TPV) device for hot water hydronic space heating and electric power generation was developed designed fabricated and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank radiant baseboard heaters or both. As part of this program QGI developed a microprocessor-based control system to address the safety issues as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics a technology borrowed from QGIs Quantum Control safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W with power drawn from the combustion air blower hydronic system pump three-way switching valve and the control system resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management Districts (California) limit of 40 ng/J for NOx and carbon monoxide emissions were measured at less than 50 dppm.

Aleksandr S. Kushch; Steven M. Skinner; Richard Brennan; Pedro A. Sarmiento

1997-01-01T23:59:59.000Z

384

Empire District Electric - Residential Energy Efficiency Rebate |  

Broader source: Energy.gov (indexed) [DOE]

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

385

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

386

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

387

Welding shield for coupling heaters  

DOE Patents [OSTI]

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

388

Regenerative Boiler Feedwater Heater Economics  

E-Print Network [OSTI]

REGENERATIVE BOILER FEEDWATER HEATER ECONOMICS William L. Viar, PE waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT The basic Rankine Vapor Cycle has been r,~peatedly modified to improve efficiency. Always, the objective....g., first and second laws of thermodynamics) have improved and contributed to the evolution. The demands for larger systems with higher performance have been persistent. Progress i ve changes in the app1icat ion of the fundamental Rankine cycle have...

Viar, W. L.

389

Chiller-heater unit nets building 2-yr payback  

SciTech Connect (OSTI)

A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

Duffy, J.

1983-05-09T23:59:59.000Z

390

Development of a Market Optimized Condensing Gas Water Heater  

SciTech Connect (OSTI)

This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize the design for manufacturing. This work included the initiation of a large field testing program (over 125 units) and an in-depth reliability program intended to minimize the risks associated with a new product introduction. At the time of this report, A.O. Smith plans to introduce this product to the marketplace in the early 2006 time period.

Peter Pescatore

2006-01-11T23:59:59.000Z

391

District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II  

SciTech Connect (OSTI)

This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE and G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.

Not Available

1984-01-31T23:59:59.000Z

392

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

water heating Technologies Electric heater Gas boilerCoal Boiler Small cogen Stove District heating Heat pumpElectric water heater Gas boiler Coal Boiler Small cogen Oil

Fridley, David G.

2008-01-01T23:59:59.000Z

393

Performance improvement of direct- and indirect-fired heaters  

SciTech Connect (OSTI)

The operating performance of direct and indirect heaters is discussed, and principles and guidelines that can be applied to effect improvements in efficiency are presented. This paper also discusses the associated heater efficiencies and several useful operating techniques to approach the maximum, steady-state heater efficiency. The techniques presented apply to all types of direct-and indirect-fired heaters: salt bath heaters, propane vaporizers, heater/treaters, production heaters, and glycol and amine regenerators.

Sams, G.W.; Hunter, J.D.

1988-08-01T23:59:59.000Z

394

Adjusting alloy compositions for selected properties in temperature limited heaters  

DOE Patents [OSTI]

Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

Brady; Michael Patrick (Oak Ridge, TN), Horton, Jr.; Joseph Arno (Oak Ridge, TN), Vitek; John Michael (Oak Ridge, TN)

2010-03-23T23:59:59.000Z

395

Performance of unglazed solar ventilation air pre-heaters for broiler barns  

Science Journals Connector (OSTI)

Solar radiation is an interesting heat source for applications requiring a limited amount of energy, such as pre-heating cold fresh air used in venting livestock barns. The objective of this study was to evaluate the energy recovery efficiency of a solar air pre-heater consisting of an unglazed perforated black corrugated siding where the incoming fresh ventilation air picks up heat from its face and back. Installed on the southeast wall of two broiler barns located 40km east of Montreal, Canada, the performance of solar air pre-heaters was monitored over 2years. Sensors inside the barns monitored the temperature of the ambient air, that pre-heated by the solar collector and that exhausted by one of the three operating fans. An on-site weather station measured ambient air temperature, wind direction and velocity and radiation energy absorbed on a vertical plane parallel to the unglazed solar air pre-heaters. The measured vertical solar radiation value was used to evaluate the heat recovery efficiency of the unglazed solar air pre-heaters. Using data from the Varennes Environment Canada weather station located 30km northwest, the solar sensors were found to measure the absorbed solar radiation with a maximum error of 7%, including differences in exterior air moisture. Unglazed, the efficiency of the solar air pre-heaters reached 65% for wind velocities under 2m/s, but dropped below 25% for wind velocities exceeding 7m/s. Nevertheless, the unglazed solar air pre-heaters were able to reduce the heating load especially in March of both years. Over a period starting in November and ending in March, the solar air heaters recovered an energy value equivalent to an annual return on investment of 4.7%.

Sbastien Cordeau; Suzelle Barrington

2011-01-01T23:59:59.000Z

396

Property Assessed Clean Energy Financing (District of Columbia) |  

Broader source: Energy.gov (indexed) [DOE]

Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Solar Program Info State District of Columbia Program Type PACE Financing Provider District Department of the Environment The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. In order to receive financing through the commercial PACE

397

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

398

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

399

International District Energy Association | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

400

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

Geothermal Heat Pump Room AC Heat Pump Stove Electric Heater Small Cogen Gas Boiler Boiler District Heating

Zhou, Nan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

402

Lightning Dock Geothermal Space Heating Project: Lightning Dock...  

Open Energy Info (EERE)

and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It...

403

CO2 Conversion By Nano Heaters  

SciTech Connect (OSTI)

A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

None

2014-03-11T23:59:59.000Z

404

CO2 Conversion By Nano Heaters  

ScienceCinema (OSTI)

A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

None

2014-06-23T23:59:59.000Z

405

Water-Heating Dehumidifier  

Energy Innovation Portal (Marketing Summaries) [EERE]

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

406

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

407

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

408

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

409

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

410

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

411

Local Option - Special Districts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Special Districts Local Option - Special Districts Local Option - Special Districts < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State Florida Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

412

Development status of coal-fired gas heaters for Brayton-cycle cogeneration systems  

SciTech Connect (OSTI)

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed ''screening'' corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.

Gunn, S.V.; McCarthy, J.R.

1983-01-01T23:59:59.000Z

413

Microsoft Word - district_of_columbia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

414

Microsoft Word - district_of_columbia.doc  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

415

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

416

Ex Parte Memorandum on Grid-Enabled Water Heaters | Department...  

Energy Savers [EERE]

with DOE representatives regarding water heater standards and thermal storage and demand response programs. DOE exparte memo100213 Grid-EnabledWaterHeaterAmendment More...

417

Efficient Residential Water Heaters Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

418

Covered Product Category: Residential Gas Storage Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

419

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

420

Combination fence and solar heater for swimming pools  

SciTech Connect (OSTI)

A combination fence and solar heater for swimming pools comprises a fence shaped for extending about the periphery of the pool to restrict ingress and egress therefrom. A tubular heat exchanger is formed in at least one section of the fence, includes an exterior surface adapted to absorb solar energy, and communicates with the water in the swimming pool. The number of heat exchanger fence sections can be varied in accordance with the climate in which the pool is located. A pump flows the water in the swimming pool through the heat exchanger fence sections during daylight hours, thereby simultaneously heating the water in the pool, and providing an attractive and protective safety barrier about the swimming pool.

Divine, D.L.

1981-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Publishes Notice of Proposed Rulemaking for Residential Water Heater and Certain Commercial Water Heater Test Procedures  

Broader source: Energy.gov [DOE]

The Department of Energy has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters.

422

Materials performance in fluidized-bed air heaters  

SciTech Connect (OSTI)

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

423

Materials performance in fluidized-bed air heaters  

SciTech Connect (OSTI)

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

424

District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984. Volume VII. Appendix C  

SciTech Connect (OSTI)

This volume contains: Hudson No. 2 Limited Retrofit Cost Estimates provided by Stone and Webster Engineering Corp. (SWEC); backup data and basis of estimate for SWEC Heater Plant and Gas Turbine Plant (Kearny No. 12) cost estimates; and Appendices - Analysis of Relevant Tax Laws.

Not Available

1984-01-31T23:59:59.000Z

425

Empire District Electric - Low Income New Homes Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program < Back Eligibility Construction Low-Income Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Total: $1,100 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Insulation: full incremental cost above the appropriate baseline Heat Pumps: $400 Central AC: $400 Refrigerator: $200 Lighting: $100 Provider Empire District Electric Empire District Electric offers rebates for the utilization of energy efficient measures and appliances in new, low-income homes. Rebates are

426

Business Energy Rebate Program (District of Columbia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Business Energy Rebate Program (District of Columbia) Business Energy Rebate Program (District of Columbia) Business Energy Rebate Program (District of Columbia) < Back Eligibility Commercial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Other Program Info Funding Source Sustainable Energy Trust Fund Start Date 05/01/2012 State District of Columbia Program Type State Rebate Program Rebate Amount Varies by equipment type and amount purchased Provider Business Energy Rebate Program The District of Columbia's Sustainable Energy Utility (SEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy-efficient equipment. Only new

427

International District Energy Association  

Broader source: Energy.gov [DOE]

Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

428

Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope  

SciTech Connect (OSTI)

There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

Policht, Veronica; /Loyola U., Chicago /SLAC

2012-08-27T23:59:59.000Z

429

PAD District  

U.S. Energy Information Administration (EIA) Indexed Site

District District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) a 91,429 10,111 26,500 110,165 21,045 21,120 74 1,127 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 Georgia 0 0 24,000 0 0 0 0 0 New Jersey 37,200 0 63,500 4,000 12,000 7,500 31 290 Pennsylvania 42,500 4,920 22,065 16,500 2,945 0 0 240 West Virginia 0 0 600 0 6,100 0 3 1 268,106 95,300 159,000 260,414 9,100 158,868 584 7,104 PAD District II Illinois 83,900 19,900 38,100 16,000 0 70,495 202 2,397 Indiana 27,200 16,800 33,700 27,100 0 10,000 0 653

430

Heater head for a Stirling engine  

SciTech Connect (OSTI)

A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

Darooka, D.K.

1988-09-06T23:59:59.000Z

431

Diesel particulate filter with zoned resistive heater  

DOE Patents [OSTI]

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

432

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

433

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

434

Lid heater for glass melter  

DOE Patents [OSTI]

A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

435

Regional Districts (Texas)  

Broader source: Energy.gov [DOE]

Adjacent Water Control and Improvement Districts and Municipal Utility Districts can opt to form a Regional District to oversee water issues. Such districts may be created:(1) to purchase, own,...

436

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

437

An Energy-Efficient Self-Regulating Heater for Flow-Through Applications  

Science Journals Connector (OSTI)

Except for the bifilar wire (two strands separately insulated, as in household two-conductor cable, except in miniature, the fabrication of the other heaters is the same. ... The heated reactor was wrapped in foam sheets for insulation and put inside a 25-mm-thick plastic box. ...

Purnendu K. Dasgupta; Ellis L. Loree; Jianzhong Li; Zhang Genfa

2003-06-12T23:59:59.000Z

438

Heat transfer analysis in Stirling engine heat input system  

SciTech Connect (OSTI)

One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1995-12-31T23:59:59.000Z

439

Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters  

SciTech Connect (OSTI)

Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing dirty fuel mixtures, increased fouling of the tubes both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

Yaroslav Chudnovsky; Aleksandr Kozlov

2006-10-12T23:59:59.000Z

440

City-level energy and CO2 reduction effect by introducing new residential water heaters  

Science Journals Connector (OSTI)

Simulation models for a variety of new water heater systems were developed and the models were integrated into a city-level residential energy end-use model for Osaka City. Using the model, the potential of energy conservation and CO2 emission-reduction by introducing new residential water heaters was evaluated at the city-level. Optimal water-heating systems for each household category for primary energy reduction, CO2 emission-reduction, or cost reduction were identified by applying the end-use demand model. The effect of subsidies for installing more efficient systems and the influence of diffusion of these systems on electricity load curves were also discussed.

Yoshiyuki Shimoda; Tomo Okamura; Yohei Yamaguchi; Yukio Yamaguchi; Ayako Taniguchi; Takao Morikawa

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Eliminating air heater plugging and corrosion caused by SCR/SNCR systems for NOx control on coal-fired boilers  

SciTech Connect (OSTI)

In a typical coal-fired power plant the rotary regenerative air heater is responsible for 5-10% of the boiler's total efficiency. The three biggest threats to air heater performance deterioration are corrosion of the heat exchange surfaces, plugging, and air heater leakage through the seals. The article concentrates on the vastly increased level of corrosion and plugging issues associated with installing selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) systems for controlling nitrogen oxide emissions. Some injected ammonia in the SCR process reacts with SO{sub 2} to form ammonium sulphate and bisulphate (ABS) which is deposited on the air heater element surfaces. This can be overcome by applying coatings, using corrosion-resistant steels, reconfiguring the air heaters to a two layer design, improving air heater blowers, improving technologies for removing ammonia 'slip' before it enters the air heater, and using new catalysts that reduce the oxidation of SO{sub 2} to SO{sub 3}. 4 figs.

Guffre, J. [Paragon Airheater Technologies (United States)

2007-10-15T23:59:59.000Z

442

Southern Power District - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Southern Power District - Residential Energy Efficiency Rebate Southern Power District - Residential Energy Efficiency Rebate Programs Southern Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100- $300 Geothermal Heat Pump: $400 Heat Pump (14 Seer minimum): $50 contractor rebate Attic Insulation: $0.15/sq. ft. HVAC Tune-Up: $30 Provider Southern Power District Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who install 14 Seer or

443

Nebraska Public Power District - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Nebraska Public Power District - Residential Energy Efficiency Nebraska Public Power District - Residential Energy Efficiency Rebate Programs Nebraska Public Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Attic Insulation: $300 Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: 14 SEER - $200, 15 SEER - $400, 16+ SEER $600 Ground Source Heat Pumps: $1,200 Variable Capacity Ground Source Heat Pumps: $1,700 Heat Pump > 14 SEER (Contractor): $50 Cooling System Tune-Up: $30 Attic Insulation: $0.15/sq. ft. Provider Nebraska Public Power District The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have

444

Assessment of district energy supply from Schiller Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the Public Service of New Hampshire Schiller Generating Station to supply district heating to potential customers. The project involved analysis of power plant retrofit and comparison of district heating cost to the cost of heat supplied with gas boilers for a housing development in close proximity to the Schiller Station.

Hitchko, M. [Public Service Company of New Hampshire, Portsmouth, NH (United States); Major, W. [Joseph Technology Corporation, Inc., Woodcliff Lake, NJ (United States)

1995-06-01T23:59:59.000Z

445

Prospection of Swedish District Heating.  

E-Print Network [OSTI]

?? Due to the environment degradation and threats of the climate change, how to develop the technologies to use renewable energy and improve current energy (more)

Zeng, Yuming

2013-01-01T23:59:59.000Z

446

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

447

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect (OSTI)

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

448

MHD oxidant intermediate temperature ceramic heater study. Final report  

SciTech Connect (OSTI)

The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

Carlson, A.W.; Chait, I.L.; Saari, D.P.; Marksberry, C.L.

1981-09-01T23:59:59.000Z

449

Omaha Public Power District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

450

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network [OSTI]

Zasulauks ­ wood-chips fired boiler house, (20 MWth) in 2013/05 · DHP Ziepniekkalns ­ wood-chips fired cogeneration unit, (4 MWel, 22 MWth) in 2013/2. · DHP Vecmlgrvis ­ wood-chips fired boilers, (2x7 MWth) in 2010, Nuremberg, 15-16.10.2013 · Cooling load is close to the set up chiller capacity · HP/chiller is designed

Oak Ridge National Laboratory

451

Underground Storage Tank Management (District of Columbia)  

Broader source: Energy.gov [DOE]

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

452

Applied Solutions Webinar: Insights Into District Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

453

Electric Resistance Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

454

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating  

E-Print Network [OSTI]

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, the HAARP heater is the most powerful ionospheric heater, with 3.6GW of effective power using HF heating, Cyclones and localized heating Fran De Aquino Maranhao State University, Physics Department, S

Paris-Sud XI, Université de

455

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

456

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

square feet) All Buildings* Heated Buildings Heating Equipment (more than one may apply) Heat Pumps Furnaces Individual Space Heaters District Heat Boilers Packaged Heating Units...

457

Energy Efficient Design of a Waste Heat Rejection System  

E-Print Network [OSTI]

, and oil preheaters. The heating requirements for these heat sinks are generally met by burning fossil fuels or even by using electric heaters while available waste heat is rejected to the surrounding environment using devices such as cooling towers...

Mehta, P.

458

Solar Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

459

Major Source Permits (District of Columbia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) < Back Eligibility Utility Commercial Industrial Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment The District reviews designs for new pollution sources and design modifications for existing sources. Permits are issued to allow sources to emit limited and specified amounts of pollution as allowed by air quality laws and regulations. Major sources include power plants, heating plants, and large printing facilities. Three types of permits are issued: pre-construction review permits; new source review permits; and operating permits. These permits include conditions intended to minimize emissions of

460

Building Technologies Office: HVAC and Water Heater Field Tests Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

Note: This page contains sample records for the topic "heaters district heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TVA Partner Utilities- Energy Right Water Heater Program  

Broader source: Energy.gov [DOE]

The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each...

462

TVA Partner Utilities- Energy Right Water Heater Program  

Broader source: Energy.gov [DOE]

The Tennessee Valley Authority (TVA) energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local...

463

Making Water Heaters More Efficient | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters More Efficient Making Water Heaters More Efficient Jigar Shah 2013.11.13 As children, many of us grow up wanting to make some sort of lasting positive impact on...

464

Covered Product Category: Commercial Gas Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

465

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

466

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

Lu, Alison

2011-01-01T23:59:59.000Z

467

Local Option - Improvement Districts for Energy Efficiency and Renewable  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Improvement Districts for Energy Efficiency and Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Biofuels Alternative Fuel Vehicles Bioenergy Solar Hydrogen & Fuel Cells Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type PACE Financing

468

EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

469

An Overview of the New Residential Water Heater Efficiency Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for residential water heaters last month that will save an estimated 2.6 quads of energy over 30 years. For most product sizes sold, the new standards can be met with modest changes, such as adding more insulation to today's conventional tank-style water heaters. For the most common size electric water heater (50 gallons), the standards will save 4 percent, while for the most common size gas water heater (40 gallons), the new standards will save 3 percent. However, for the biggest products (those with over 55 gallons in storage capacity, which is about 9% and 4% of the electric and gas storage water heater markets, respectively), the new

470

Advanced refinery process heater. Annual report, October 1983-September 1984  

SciTech Connect (OSTI)

Activity during the first year of this project has focused on the conceptual design of the prototype heater and on the development of a custom-designed Pyrocore ceramic fiber burner for the heater. Three different concepts for the prototype heater have been produced, one of them modeled after a vertical cylindrical design and the other two resembling box-type heaters. All three concepts take advantage of the Pyrocore burner's flameless characteristic to make the heater more compact. Concerning the development of the burners, two different geometries were considered. Subscale prototypes of each type of burner were fabricated and tested. The more successful burners used actively-cooled edges to maintain the integrity of the gas-tight seals. Work on this project in the second year will include the design and fabrication of the 10 MMBtu/hr prototype heater, using the most feasible heater and burner designs developed during the first year.

Schreiber, R.J.; Gotterba, J.A.; Minden, A.C.

1984-10-01T23:59:59.000Z

471

Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future  

SciTech Connect (OSTI)

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EEREs primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this project: (1) a low-cost, high-temperature heat exchanger, (2) a new radiant heat transfer system, and (3) a hybrid or integral advanced process heater that incorporates a high surface area ceramic heat exchanger and burner combined with either a metallic or ceramic radiant tube and heat transfer elements.

Thomas D. Briselden

2007-10-31T23:59:59.000Z

472

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

473

Radiation Tolerant Programmable Power Supply for the LHC Beam Screen Heaters  

E-Print Network [OSTI]

For the next LHC run, it is required to install 200W of heating capacity per LHC beam screen heater to regenerate the beam screen by desorption of gas trapped on its walls. In the LHC, there are 272 beam screen heaters and the associated electronics limit presently the heating capacity to 25W. Those electronics are, for the most part, installed inside the LHC tunnel and exposed to its radiation environment. This paper describes the development of a new programmable power supply card that will be integrated into the existing LHC radiation tolerant electronic infrastructure used by the cryogenic system. Radiation tests were undertaken to qualify a power switch capable of coping with the 230Vrms grid voltage and an analog signal multiplexer; these components are required respectively for satisfying the higher power requirements and for reducing the overall cost by using a single analog to digital converter to sample all the signals.

Casas, J

2014-01-01T23:59:59.000Z

474

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

from controlling heat loss through the distribution pipes.distribution system configurations; a collection of analytical heat lossdistribution system configurations; a collection of analytical heat loss

Lutz, Jim

2012-01-01T23:59:59.000Z

475

Control Strategy for Domestic Water Heaters during Peak Periods and its Impact on the Demand for Electricity  

Science Journals Connector (OSTI)

Because they store hot water, water heaters are easily-shifted loads that can be controlled to reduce peak demands. However, load shifting may have some detrimental consequences on the domestic hot water supply temperature if the heating element is deactivated for a long period of time. Furthermore, a new peak may be caused if a significant number of heaters are reactivated at the same time. This study presents a control strategy for water heaters that minimizes the pick-up demand when the heating elements are reactivated at the end of a load shifting period and that ensures, in all cases, the client's hot water supply. The study is based on a simulation model of a water heater that was experimentally validated and takes into account the diversity of the population's hot water withdrawal profile. More specifically, the data of 8,167 real water withdrawal profiles of several clients were input into the simulation model in order to evaluate the performance of water heaters under different operating conditions.

Alain Moreau

2011-01-01T23:59:59.000Z

476

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Building Energy Efficiency Standards .. 4 Multi-Family Water Heating.. 4 Pipe HeatBuilding Energy Efficiency Standards The scope of this task included the following subtasks; Multi-Family Water Heating, Pipe Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

477

Cogeneration Personal Property Tax Credit (District of Columbia) |  

Broader source: Energy.gov (indexed) [DOE]

Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Program Info Start Date 07/25/2012 State District of Columbia Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Energy Division The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012. Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun

478

Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system  

E-Print Network [OSTI]

,?C Gcoal,T/Day Ts1v,?C Tr1v,?C Tw2argv,?C Gcoalv,T/Day Figure 4. Verified Model Responses With Operational Data 2.4 Properties Analysis From The Verified Model Simulations Based on the verified model, the factors ]1,25.1,1.1[],,[ ?enhex fff.../s HV heating value, J/Kg kp proportional gain ki integral gain KF heat transfer coefficient, W/? q heat per unit area, W/m2 Q heat, W t time, s T temperature, ? TD temperature difference, ? u control signal 30 ?? ? factors Subscripts 1, 2...

Zhong, L.

2014-01-01T23:59:59.000Z

479

Geothermal district piping - A primer  

SciTech Connect (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z