Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" 1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and States" "East North Central",17.9,2251,1869,1281,892,741,508 "Illinois",4.8,2186,1911,1451,860,752,571 "Michigan",3.8,1954,1559,962,729,582,359 "Wisconsin",2.3,2605,2091,1258,1105,887,534

2

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Square Footage of West Homes, by Housing Characteristics, 2009" 3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States" "Mountain",7.9,1928,1695,1105,723,635,415 "Mountain North",3.9,2107,1858,912,776,684,336 "Colorado",1.9,2082,1832,722,896,788,311 "Idaho, Montana, Utah, Wyoming",2,2130,1883,1093,691,610,354

3

Square Footage Measurements and Comparisons in 2001 RECS  

U.S. Energy Information Administration (EIA)

A discussion on measurements and comparsions of total square footage as presented in the 2001 Residential Energy Consumption Survey

4

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Square Footage of South Homes, by Housing Characteristics, 2009" 2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and States" "South Atlantic",22.2,1944,1687,1596,771,668,633 "Virginia",3,2227,1977,1802,855,759,692 "Georgia",3.5,2304,1983,1906,855,736,707 "Florida",7,1668,1432,1509,690,593,625 "DC, DE, MD, WV",3.4,2218,1831,1440,864,713,561

5

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" 4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census Region" "Northeast",12.7,2843,2150,1237,1009,763,439 "Midwest",19.2,2721,2249,1664,1019,842,624 "South",29.7,2232,1945,1843,828,722,684 "West",16.9,2100,1712,1009,725,591,348 "Urban and Rural3"

6

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" 0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and States" "New England",5.5,2232,1680,625,903,680,253 "Massachusetts",2.5,2076,1556,676,850,637,277 "CT, ME, NH, RI, VT",3,2360,1781,583,946,714,234 "Mid-Atlantic",15.3,2080,1657,1028,813,647,402

7

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" 6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region" "Northeast",0.5,1030,968,711,524,492,362 "Midwest",1.1,1090,1069,595,400,392,218 "South",3.9,1128,1008,894,423,378,335 "West",1.4,995,867,466,369,322,173 "Urban and Rural3" "Urban",3.5,1002,919,684,396,364,271

8

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" 9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region" "Northeast",20.8,2121,1663,921,836,656,363 "Midwest",25.9,2272,1898,1372,912,762,551 "South",42.1,1867,1637,1549,732,642,607 "West",24.8,1708,1374,800,628,506,294 "Urban and Rural3" "Urban",88.1,1857,1546,1148,728,607,450

9

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" 5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region" "Northeast",7.6,991,897,408,471,426,194 "Midwest",5.6,957,857,518,521,466,282 "South",8.4,924,846,819,462,423,410 "West",6.5,843,606,329,374,269,146 "Urban and Rural3" "Urban",26.9,927,803,531,450,390,258

10

Table 1a. Effective, Occupied, and Vacant Square Footage, 1992  

U.S. Energy Information Administration (EIA) Indexed Site

a. Occupied and Vacant Sq Ft a. Occupied and Vacant Sq Ft Table 1a. Effective, Occupied, and Vacant Square Footage, 1992 Building Characteristics All Buildings (thousand) Total Floorspace (million square feet) Total Occupied Floorspace (million square feet) Total Vacant Floorspace (million square feet) Occupied Square Footage as a Percent of Total All Buildings 4,779 67,072 61,325 5,746 91 Building Floorspace (Square Feet) 1,001 to 5,000 2,678 7,321 6,662 659 90 5,001 to 10,000 966 7,140 6,544 596 91 10,001 to 25,000 641 10,285 9,432 853 91 25,001 to 50,000 274 9,872 8,963 909 90 50,001 to 100,000 114 7,957 7,297 659 91 100,001 to 200,000 70 9,619 8,966 652 93 200,001 to 500,000 25 7,788 7,201 586 92 Over 500,000 9 7,087 6,257 829 88 Principal Building Activity Education 309 8,815 8,221 593 93 Food Sales and Service 413 2,375 2,166

11

Y-12 Lease Summary Address* (Description) Square Footage Lease Term Expiration Date  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 Lease Summary Y-12 Lease Summary Address* (Description) Square Footage Lease Term Expiration Date Onsite Leases 602 Scarboro Rd (New Hope Center) 137,758 square feet Five years 05/04/2012 301 Bear Creek Rd (Jack Case Center) 411,837 square feet Five years 05/04/2012 Offsite Leases 200 Summit Place (Records Storage) 24,585 square feet Five years 5/31/2015 113C Union Valley Rd (Analytical Lab) 18,450 square feet Five years 10/24/2015 115 Union Valley Rd (Warehouse) 28,800 square feet Five years 07/20/2015 1099 Commerce Park Dr. (UPF Project) 64,960 square feet One year 09/30/2011 2410 Cherahala Boulevard (UPF Project) 32,058 square feet Six Months 12/31/2011 Knoxville, Tennessee * Oak Ridge, Tennessee unless noted otherwise.

12

Effective Occupied and Vacant Square Footage in Commercial Buildigs in 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Effective Occupied and Vacant Sq. Ft. Effective Occupied and Vacant Sq. Ft. Effective Occupied and Vacant Square Footage in Commercial Buildings in 1992 -- A Useful Benchmark of Commercial Floorspace Vacancy Rates -- Introduction One of the major approaches to analyzing energy use in end-use sectors is to relate energy use to measures of the extent of utilization of the sector, either in absolute terms or in terms relative to some maximum utilization level. For example, vehicle miles traveled is a measure of vehicle utilization in the transportation sector. The percent of maximum production capability at which an industry or an individual plant is operating is a measure of industrial capacity utilization in the industrial sector. For the commercial buildings sector, two concepts that measure how intensely a building is utilized seem to predominate: the number of hours the building is in operation and the amount of floorspace in the building that is occupied (or conversely, the amount that is vacant).

13

Contractor's Storage Requirements Category Cubic Footage  

NLE Websites -- All DOE Office Websites (Extended Search)

Footage Tunnel of Heat 98.36 Solar fountain 215.16 Tool Boxes 70.1 Bikes 100.66 EV Car Charging Station 22.78 Fuel Cell Booth wCartridges (Part of Hydrogen Booth) 20.79 Fuel...

14

,"Housing Units1","Average Square Footage Per Housing Unit",...  

U.S. Energy Information Administration (EIA) Indexed Site

the U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of...

15

Numerical Investigation of Turbulent Natural Convection in Differentially Heated Square Cavities  

Science Conference Proceedings (OSTI)

This paper deals with the numerical simulation of turbulent natural convection in cavities heated from the side. Three cases are considered: an air?filled square cavity of size 0.75 m

Sonja Schmelter; Gert Lindner; Gudrun Wendt; Regine Model

2011-01-01T23:59:59.000Z

16

Table 5a. Total District Heat Consumption per Effective Occupied Square  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total District Heat Consumption per Effective a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 94 429 84 93 Building Floorspace (Square Feet) 1,001 to 5,000 18 Q Q Q 5,001 to 10,000 11 Q Q Q 10,001 to 25,000 28 65 144 155 25,001 to 50,000 16 Q Q Q 50,001 to 100,000 9 50 79 81 100,001 to 200,000 6 59 76 79 200,001 to 500,000 5 109 71 77 Over 500,000 1 65 62 80 Principal Building Activity Education 22 50 71 78 Food Sales and Service Q Q Q Q Health Care 3 57 100 142 Lodging 9 66 112 116 Mercantile and Service 9 Q Q Q Office 24 110 63 70 Public Assembly 10 23 64 66 Public Order and Safety Q Q Q Q Religious Worship Q Q Q Q Warehouse and Storage

17

Tube vibration in industrial-size test heat exchanger (90/sup 0/ square layout)  

SciTech Connect

Tube vibrations in heat exchangers are being systematically investigated in a series of tests performed with an industrial-size test exchanger. Results from waterflow tests of eleven different tube bundles, in six- and eight-crosspass configurations on a 90/sup 0/ square layout with a pitch-to-diameter ratio of 1.25 are reported. The test cases include full tube bundles, no-tubes-in-window bundles, finned tube bundles, and proposed field and design fixes. The testing focused on identification of the lowest critical flowrate to initiate fluidelastic instability (large amplitude tube motion) and the location within the bundle of the tubes which first experience instability. The test results are tabulated to permit comparison with results obtained from previous tests with a 30/sup 0/ triangular layout tube bundle. Instability criteria are evaluated preliminarily. Pressure drop data are also generated and reported.

Halle, H.; Wambsganss, M.W.

1983-02-01T23:59:59.000Z

18

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage...

19

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage...

20

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) BP Oil Spill Footage...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

22

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

23

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) Re-Building Greensburg The...

24

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

25

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry ...  

U.S. Energy Information Administration (EIA)

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet)

26

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

27

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

28

U.S. Footage Drilled for Natural Gas Exploratory and Developmental...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

29

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

30

U.S. Footage Drilled for Crude Oil Exploratory and Developmental...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

31

U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

32

U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

33

U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

34

U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 26,439...

35

U.S. Footage Drilled for Dry Exploratory and Developmental Wells...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

36

U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

37

U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

38

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850' - June 3 2010 (4 of 4) BP Oil...

39

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini-channel Using Infra-Red thermography  

E-Print Network (OSTI)

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini slug and bubbles, liquid and gas superficial velocities which depend on the volume flow ratio of the channel (Bo) for specific liquid and gas phase. At relatively high Bo (Bo>Bocr1.835) systems gravity force

Khandekar, Sameer

40

Backstage Footage from the ARPA-E Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Backstage Footage from the ARPA-E Summit Backstage Footage from the ARPA-E Summit Backstage Footage from the ARPA-E Summit March 2, 2011 - 6:00am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday morning, Secretary Chu and Governor Arnold Schwarzenegger decided to drop in on a gathering of graduate students at the ARPA-E Energy Innovation Summit. Hailing from 30 different campuses, these students have been strong advocates for the sciences at their respective schools and represent the next generation of energy leaders. See what Secretary Chu, Governor Schwarzenegger and ARPA-E Director Arun Majumdar had to say to these talented young scholars during their surprise visit: John Schueler is a New Media Specialist with the Office of Public Affairs. Addthis

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Punnet square  

NLE Websites -- All DOE Office Websites (Extended Search)

Punnet square Punnet square Name: Pat T Seeman Location: N/A Country: N/A Date: N/A Question: I want to learn any thing and everything about the Punnett square. If any one can tell me about it I would be grateful. Replies: Pat: It would be helpful to know how old you are and what you already know about the Punnet square. In short, it is a mathematical way to predict the possible offspring from two particular parents, given that you know something about their genes. Could you ask something a little more specific, so I'll know exactly what to tell you? Ellen Mayo The Punnet square is a tool used by geneticists and students of genetics to predict the outcome of a cross (mating) between two individuals with a known genotype (set of genes). I suppose it was invented by a person named Punnet (or perhaps his graduate student). The Punnet square is an array of cells that represent all of the possible offspring of the cross. It is made by listing all of the possible gametes (sperm or eggs) of one parent at the head of each column and all of the possible gametes of the other parent at the left of each row of the array. To determine each possible offspring, combine the genotypes of each gamete contributing to a particular offspring (that is, write in a particular cell the genotype of the column and row heading. A simple example to illustrate:

42

Public Response to Residential Grid-Tied PV Systems in Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 15. Square Footage of Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

43

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Water Heating; Preliminary Release Date: ... Total Square Footage of Single-Family Homes (HC10.6) XLS: Total Square Footage of Multi-Family Homes (HC10.7) XLS:

44

Identification of Convection Heat Transfer Coefficient of Secondary Cooling Zone of CCM based on Least Squares Method and Stochastic Approximation Method  

E-Print Network (OSTI)

The detailed mathematical model of heat and mass transfer of steel ingot of curvilinear continuous casting machine is proposed. The process of heat and mass transfer is described by nonlinear partial differential equations of parabolic type. Position of phase boundary is determined by Stefan conditions. The temperature of cooling water in mould channel is described by a special balance equation. Boundary conditions of secondary cooling zone include radiant and convective components of heat exchange and account for the complex mechanism of heat-conducting due to airmist cooling using compressed air and water. Convective heat-transfer coefficient of secondary cooling zone is unknown and considered as distributed parameter. To solve this problem the algorithm of initial adjustment of parameter and the algorithm of operative adjustment are developed.

Ivanova, Anna

2010-01-01T23:59:59.000Z

45

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Prev 2 3 4 5 6 7 8 9 10...

46

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Prev 2 3 4 5 6 7 8 9 10...

47

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Prev 2 3 4 5 6 7 8 9 10...

48

Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget  

SciTech Connect

Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

Not Available

1980-06-01T23:59:59.000Z

49

Sumsets being squares  

E-Print Network (OSTI)

Alon, Angel, Benjamini and Lubetzky recently studied an old problem of Euler on sumsets for which all elements of A + B are integer squares. Improving their result we prove: 1. There exists a set A of 3 positive integers and a corresponding set B ? [0, N] with |B | ? (log N) 15/17, such that all elements of A + B are perfect squares. 2. There exists a set A of 3 integers and a corresponding set B ? [0, N] with |B | ? (log N) 9/11, such that all elements of the sets A, B and A + B are perfect squares. The proofs make use of suitably constructed elliptic curves of high rank. 1

Andrej Dujella; Christian Elsholtz

2013-01-01T23:59:59.000Z

50

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Where does RECS square footage data come from? Where does RECS square footage data come from? RECS 2009 - Release date: July 11, 2012 The size of a home is a fixed characteristic strongly associated with the amount of energy consumed within it, particularly for space heating, air conditioning, lighting, and other appliances. As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of homes with varying characteristics. In-person measurements are vital because many alternate data sources, including property tax records, real estate listings, and, respondent estimates use varying definitions and under-estimate square footage as defined for the purposes of evaluating residential energy consumption.

51

Greedy sums of distinct squares  

Science Conference Proceedings (OSTI)

When a positive integer is expressed as a sum of squares, with each successive summand as large as possible, the summands decrease rapidly in size until the very end, where one may find two 4's, or several 1's. We find that the set of integers for which ... Keywords: Greedy algorithm, differential-difference equations

Hugh L. Montgomery; Ulrike M. A. Vorhauer

2004-01-01T23:59:59.000Z

52

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

Square footage includes attic, garage, and basement square footage. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. Share of Average Home Size (1) Average Home Size...

53

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

square footage tends to be larger than the 1993 measured square footage. (2) Based on the household respondent's description rather than the Federal Government definition. (3) One...

54

Selection of Frequency, Power, and Duration of Heating  

Science Conference Proceedings (OSTI)

...the duration of heating and the power density (kilowatts per square inch of surface exposed to the

55

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... fuel switching capabilities, general energy-saving technologies, energy management activities, square footage, ...

56

Square-free Integers and Infinite products  

E-Print Network (OSTI)

We study few properties of square-free integers in certain equations. Using this property, we derive some infinite products in powers of square free numbers. Also, we present a method, to convert power series and trigonometric series to infinte products. Infinite products of few elementary trigonometric functions and factorials for large numbers are shown as examples.

Ramesh Kumar Muthumalai

2009-01-13T23:59:59.000Z

57

Elmo bumpy square plasma confinement device  

DOE Patents (OSTI)

The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

Owen, L.W.

1985-01-01T23:59:59.000Z

58

Square Butte Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Square Butte Electric Coop Square Butte Electric Coop Jump to: navigation, search Name Square Butte Electric Coop Place North Dakota Utility Id 17858 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Square_Butte_Electric_Coop&oldid=411602"

59

Solar Energy Squared, LLC | Open Energy Information  

Open Energy Info (EERE)

Squared, LLC Squared, LLC Jump to: navigation, search Logo: Solar Energy Squared, LLC Name Solar Energy Squared, LLC Address 116 Ottenheimer Plaza, President Clinton Avenue Place Little Rock, Arkansas Zip 72201 Sector Solar Product Utility Scale Solar Year founded 2008 Number of employees 1-10 Phone number 501-244-9522 Website http://www.solarenergysquared. Coordinates 34.7472769°, -92.2643659° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7472769,"lon":-92.2643659,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Latin square three dimensional gage master  

DOE Patents (OSTI)

A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

Jones, Lynn L. (Lexena, KS)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

State-space least mean square  

Science Conference Proceedings (OSTI)

In this paper, we present a generalized form of the well-known least mean square (LMS) filter. The proposed filter incorporates linear time-varying state-space model of the underlying environment and hence is termed as state-space LMS (SSLMS). This attribute ... Keywords: Adaptive filtering, SSLMS, State-space LMS, Tracking

Mohammad Bilal Malik; Muhammad Salman

2008-05-01T23:59:59.000Z

62

Optical modelling of square solar concentrator  

Science Conference Proceedings (OSTI)

This paper deals with the optical design of a photovoltaic solar concentrator composed by two squared reflection mirrors. The optical configuration of the device, is based on the Cassegrain telescope and designed in order to maximize the fill factor ... Keywords: photovoltaic, ray tracing, solar cell

Maurizio Carlini; Carlo Cattani; Andrea O. M. Tucci

2007-06-01T23:59:59.000Z

63

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

64

square miles | OpenEI Community  

Open Energy Info (EERE)

0 0 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235190 Varnish cache server square miles Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary of the results at the Solar+Land+Use page on OpenEI.

65

Hybrid least squares multivariate spectral analysis methods  

SciTech Connect

A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

Haaland, David M. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

66

Optical inverse-square displacement sensor  

DOE Patents (OSTI)

This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

Howe, R.D.; Kychakoff, G.

1989-09-12T23:59:59.000Z

67

Optical inverse-square displacement sensor  

DOE Patents (OSTI)

This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

Howe, Robert D. (San Mateo County, CA); Kychakoff, George (King County, WA)

1989-01-01T23:59:59.000Z

68

The correlation of Abiyev's balanced squares with periodic law  

Science Conference Proceedings (OSTI)

For the first time, a perfect algorithm for writing the magic squares has been found by Abiyev. With the help of this algorithm we can write not only magic squares, but also magic cubes from any numbers of any orders. These squares have been called the ... Keywords: algorithm, correlation, magic square, periodic law, sequence, super-heavy

Asker Ali Abiyev

2011-09-01T23:59:59.000Z

69

Square Butte HVDC modulation system field tests  

SciTech Connect

The authors describe field tests conducted at the Square Butte dc system to validate transfer functions of the digital model for dc current and voltage modulation control design. The field tests and digital model results confirm a dominant interarea mode of oscillation of 0.8 hz. Field tests also established spurious responses in rectifier and inverter frequency measurements which appear to be attributable to transducer distortion.

Grund, C.E. (General Electric Co., Schenectady, NY (USA)); Hauer, J.F. (BPA, Portland, OR (US)); Crane, L.P.; Carlson, D.L. (Minnesota Power and Light Co., Duluth, MN (USA)); Wright, S.E. (EPRI, Palo Alto, CA (US))

1990-01-01T23:59:59.000Z

70

Highlighting High Performance: Four Times Square  

DOE Green Energy (OSTI)

4 Times Square is a 48-story environmentally responsible building in New York City. Developed by the Durst Organization, the building is the first project of its size to adopt standards for energy efficiency, indoor ecology, sustainable materials, and responsible construction, operations, and maintenance procedures. Designers used a whole-building approach--considering how the building's systems can work together most efficiently--and educated tenants on the benefits of the design.

Not Available

2001-11-01T23:59:59.000Z

71

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

72

Square-Free Rings And Their Automorphism Group  

E-Print Network (OSTI)

Finite-dimensional square-free algebras have been completely characterized by Anderson and D'Ambrosia as certain twisted semigroup algebras over a square-free semigroup S with coefficients in a field K. D'Ambrosia extended the definition of square-free to artinian rings with unity and showed every square-free ring has an associated division ring D and square-free semigroup S. We show a square-free ring can be characterized as a twisted semigroup ring over a square-free semigroup S with coefficients in a division ring D. Also, to each square-free ring there exists a short exact sequence connecting the outer automorphisms of a square-free ring to certain cohomology groups related to S and D.

Montgomery, Martin W

2008-01-01T23:59:59.000Z

73

Midland, South Dakota geothermal district heating  

SciTech Connect

This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

Lund, J.W.

1997-12-01T23:59:59.000Z

74

Solar design T-square | Open Energy Information  

Open Energy Info (EERE)

design T-square Jump to: navigation, search Name Solar Design T-Square AgencyCompany Organization Brian White Sector Energy Focus Area Renewable Energy, Solar Resource Type...

75

square-mile Black Warrior Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

will inject CO will inject CO 2 into a coalbed methane (CBM) well in Tuscaloosa County, Alabama, to assess the capability of mature CBM reservoirs to receive and adsorb large volumes of CO 2 . Injection began at the test site on June 15; the site was selected because it is representative of the 23,000- square-mile Black Warrior Basin located in northwestern Alabama and northeastern Mississippi. It is estimated that this area has the potential to store in the range of 1.1 to 2.3 Gigatons of CO 2 , which is approximately the amount that Alabama's coal-fired power plants emit in two decades. The targeted coal seams range from 940 to 1,800 feet deep and are one to six feet thick. Approximately 240 tons of CO 2 will be injected over a 45- to 60-day period. More information

76

Finite temperature R-squared quantum gravity  

E-Print Network (OSTI)

The quantum gravity path integral's measure can be written as the product of classical backgrounds and quantum fluctuations about each background. After proving that fluctuations about the background do not diffuse in Hilbert space and obey the laws of many-body statistics, their probability distributions, entropy, and expected background are determined. This background obeys expectation-valued Einstein equations and features an entropy-based positive cosmological constant. From the fluctuation probability distributions, a finite temperature, R-squared, quantum gravity path integral is constructed whose action presents an interaction picture of quantum gravity that `moves with' the expected background in Hilbert space. Within this interaction picture of quantum fluctuations about an expected background, the fields required to describe quantum gravity have been transformed into `ordinary' quantum fields propagating on this `rigid' or `fixed' expected background. Back-reaction has been fully accounted for, and the quantum formulation is manifestly background independent.

C. D. Burton

2013-02-07T23:59:59.000Z

77

Fire opens path to advanced heating  

SciTech Connect

Eleven months after the Shed Restaurant in Stowe, VT was consumed by fire, a brand new Shed is opening for business. Heating the new structure is an innovative application of advanced oilfired heating technology - three tandem units in series (Energy Kinetics` System 2000) which will provide all the heat and hot water necessary for the beautiful 13,000 sq. ft., three-floor building, which includes three second floor apartments. In the case of The Shed, the triple tandem will heat the 7500 square foot main floor, which includes the restaurant and bar; the 3000-square foot second story including the three apartments and the 2500-square foot basement/store room, while also providing hot water for both the restaurant/bar and the apartments. The heating system is described.

Devine, J. [Promotion Management, Inc., Norwood, NJ (United States)

1995-01-01T23:59:59.000Z

78

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

79

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

3. Heating Equipment, Floorspace, 1999" 3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,679,2271,1183,"Q",463,1779,250 "5,001 to 10,000 ..............",8238,7090,745,2848,1350,"Q",1040,2301,"Q" "10,001 to 25,000 .............",11153,9865,1288,3047,3021,307,2047,3994,401

80

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

82

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

3 Total Square Footage of Midwest Homes, by Housing Characteristics, 2009" 3 Total Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Midwest",25.9,58.9,49.2,35.6 "Midwest Divisions and States" "East North Central",17.9,40.2,33.4,22.9 "Illinois",4.8,10.4,9.1,6.9 "Michigan",3.8,7.5,6,3.7 "Wisconsin",2.3,5.9,4.8,2.9 "Indiana, Ohio",7,16.4,13.6,9.4 "West North Central",8.1,18.7,15.8,12.7 "Missouri",2.3,5.5,4.5,4.1 "IA, MN, ND,SD",3.9,9.5,8.2,5.9

83

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 Total Square Footage of Northeast Homes, by Housing Characteristics, 2009" 2 Total Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Northeast",20.8,44.1,34.5,19.1 "Northeast Divisions and States" "New England",5.5,12.3,9.3,3.4 "Massachusetts",2.5,5.1,3.9,1.7 "CT, ME, NH, RI, VT",3,7.2,5.4,1.8 "Mid-Atlantic",15.3,31.7,25.3,15.7 "New York",7.2,13.2,10.6,4.9 "Pennsylvania",4.9,11,8.4,5.9 "New Jersey",3.2,7.6,6.2,4.9 "Urban and Rural3"

84

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 Total Square Footage of West Homes, by Housing Characteristics, 2009" 5 Total Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total West",24.8,42.4,34.2,19.9 "West Divisions and States" "Mountain",7.9,15.2,13.4,8.7 "Mountain North",3.9,8.3,7.3,3.6 "Colorado",1.9,4,3.5,1.4 "Idaho, Montana, Utah, Wyoming",2,4.3,3.8,2.2 "Mountain South",4,7,6.1,5.2 "Arizona",2.3,4.1,3.5,3.5 "New Mexico, Nevada",1.7,2.9,2.6,1.7 "Pacific",16.9,27.2,20.8,11.1

85

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

4 Total Square Footage of South Homes, by Housing Characteristics, 2009" 4 Total Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total South",42.1,78.6,68.9,65.2 "South Divisions and States" "South Atlantic",22.2,43.2,37.5,35.5 "Virginia",3,6.6,5.9,5.4 "Georgia",3.5,8,6.9,6.6 "Florida",7,11.7,10,10.5 "DC, DE, MD, WV",3.4,7.6,6.3,4.9 "North Carolina, South Carolina",5.4,9.4,8.5,8 "East South Central",7.1,13.4,11.8,11 "Tennessee",2.4,4.5,4.1,3.8

86

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

6 Total Square Footage of Single-Family Homes, by Housing Characteristics, 2009" 6 Total Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Single-Family",78.6,190.2,157.3,119.5 "Census Region" "Northeast",12.7,36,27.2,15.7 "Midwest",19.2,52.3,43.2,32 "South",29.7,66.4,57.8,54.8 "West",16.9,35.5,29,17.1 "Urban and Rural3" "Urban",57.7,135.1,111.4,84.4 "Rural",20.9,55.2,45.9,35.2 "Metropolitan and Micropolitan" "Statistical Area"

87

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

8 Total Square Footage of Mobile Homes, by Housing Characteristics, 2009" 8 Total Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Mobile Homes",6.9,7.5,6.8,5.2 "Census Region" "Northeast",0.5,0.5,0.5,0.4 "Midwest",1.1,1.2,1.1,0.6 "South",3.9,4.4,4,3.5 "West",1.4,1.4,1.2,0.7 "Urban and Rural3" "Urban",3.5,3.5,3.2,2.4 "Rural",3.5,4.1,3.6,2.8 "Metropolitan and Micropolitan" "Statistical Area" "In metropolitan statistical area",4.5,4.8,4.3,3.3

88

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

7 Total Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" 7 Total Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total Multi-Family",28.1,26.1,22.7,15.1 "Census Region" "Northeast",7.6,7.5,6.8,3.1 "Midwest",5.6,5.4,4.8,2.9 "South",8.4,7.8,7.1,6.9 "West",6.5,5.5,3.9,2.1 "Urban and Rural3" "Urban",26.9,25,21.6,14.3 "Rural",1.2,1.2,1.1,0.7 "Metropolitan and Micropolitan" "Statistical Area"

89

Preliminary Release: April 19, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Total Square Footage of U.S. Homes, by Housing Characteristics, 2009" Total Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,,"Total Square Footage" ,"Housing Units1","Total2","Heated","Cooled" "Housing Characteristics","Millions","Billions","Billions","Billions" "Total",113.6,223.9,186.8,139.8 "Census Region" "Northeast",20.8,44.1,34.5,19.1 "Midwest",25.9,58.9,49.2,35.6 "South",42.1,78.6,68.9,65.2 "West",24.8,42.4,34.2,19.9 "Urban and Rural3" "Urban",88.1,163.5,136.2,101.1 "Rural",25.5,60.4,50.6,38.7 "Metropolitan and Micropolitan" "Statistical Area"

90

Federal Energy Management Program: Guidance for Developing Baseline...  

NLE Websites -- All DOE Office Websites (Extended Search)

is defined as annual potable water use divided by total gross square footage of facility space (galft2). The facility gross square footage is the same value used for energy...

91

Integrating preconcentrator heat controller  

DOE Patents (OSTI)

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

92

Table B37. Water Heating Equipment, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

93

Lumenhaus Shows Off Solar in Times Square | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lumenhaus Shows Off Solar in Times Square Lumenhaus Shows Off Solar in Times Square Lumenhaus Shows Off Solar in Times Square February 1, 2010 - 10:00am Addthis Photo by Kelly Shimoda Photo by Kelly Shimoda Joshua DeLung How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Virginia Tech's Lumenhaus - a net-zero energy, solar-powered, 650-square-foot home - made a stop in New York on its tour, right in the middle of Times Square. The house was previously featured at the U.S. Department of Energy's Solar Decathlon in October, and the team will head to Madrid in June for Solar Decathlon Europe as the only U.S. team to participate in both competitions. While in Times Square, the team and the house were featured on "Good

94

Models and Algorithms for Distributionally Robust Least Squares ...  

E-Print Network (OSTI)

Feb 12, 2011 ... The ordinary least squares (OLS) problem [7] is a fundamental problem ...... and A. Shapiro, eds., Stochastic Programming, Handbooks in Op-.

95

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

96

Derivation of the coefficient squared probability law in quantum mechanics  

E-Print Network (OSTI)

If one assumes there is probability of perception in quantum mechanics, then unitarity dictates that it must have the coefficient squared form, in agreement with experiment.

Casey Blood

2013-06-02T23:59:59.000Z

97

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

98

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

99

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

100

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

102

Efficient approximate Regularized Least Squares by Toeplitz matrix  

Science Conference Proceedings (OSTI)

Machine Learning based on the Regularized Least Squares (RLS) model requires one to solve a system of linear equations. Direct-solution methods exhibit predictable complexity and storage, but often prove impractical for large-scale problems; iterative ... Keywords: Digital signal processor, Large-scale learning, Levinson-Trench-Zohar algorithm, Regularized Least Squares, Resources limited device, Toeplitz matrix

Sergio Decherchi; Paolo Gastaldo; Rodolfo Zunino

2011-02-01T23:59:59.000Z

103

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

U.S. Energy Information Administration (EIA) Indexed Site

assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor space In Occupied Floor space In Vacant Floor space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4,590 2,600 2,563 37 39 42 8 Building Floorspace (Square Feet) 1,001 to 5,000 2,532 334 331 3 48 51 6 5,001 to 10,000 946 250 247 3 36 38 6 10,001 to 25,000

104

The distribution of prime numbers on the square root spiral  

E-Print Network (OSTI)

Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -second difference- between the numbers, which lie on these spiral-graphs. A mathematical analysis shows, that these spiral graphs are caused exclusively by quadratic polynomials. For example the well known Euler Polynomial x2+x+41 appears on the Square Root Spiral in the form of three spiral-graphs, which are defined by three different quadratic polynomials. All natural numbers,divisible by a certain prime factor, also lie on defined spiral graphs on the Square Root Spiral (or Spiral of Theodorus, or Wurzelspirale). And the Square Numbers 4, 9, 16, 25, 36 even form a highly three-symmetrical system of three spiral graphs, which divides the square root spiral into three equal areas. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. With the help of the Number-Spiral, described by Mr. Robert Sachs, a comparison can be drawn between the Square Root Spiral and the Ulam Spiral. The shown sections of his study of the number spiral contain diagrams, which are related to my analysis results, especially in regards to the distribution of prime numbers.

Harry K. Hahn; Robert Sachs

2008-01-09T23:59:59.000Z

105

Recollecting history : songs, flags and a Syrian square  

E-Print Network (OSTI)

Symbols have played a major role in the development of a Syrian national identity since the beginning of the 20th century. These representations are national, official, and/or public (flag, song, and square), that are ...

Sergie, Lina, 1974-

2003-01-01T23:59:59.000Z

106

Sparse non-linear least squares optimization for geometric vision  

Science Conference Proceedings (OSTI)

Several estimation problems in vision involve the minimization of cumulative geometric error using non-linear least-squares fitting. Typically, this error is characterized by the lack of interdependence among certain subgroups of the parameters to be ...

Manolis I. A. Lourakis

2010-09-01T23:59:59.000Z

107

A Unification of Ensemble Square Root Kalman Filters  

Science Conference Proceedings (OSTI)

In recent years, several ensemble-based Kalman filter algorithms have been developed that have been classified as ensemble square root Kalman filters. Parallel to this development, the singular evolutive interpolated Kalman (SEIK) filter has ...

Lars Nerger; Tijana Janji?; Jens Schrter; Wolfgang Hiller

2012-07-01T23:59:59.000Z

108

Fast Rates for Regularized Least-squares Algorithm  

E-Print Network (OSTI)

We develop a theoretical analysis of generalization performances of regularized least-squares on reproducing kernel Hilbert spaces for supervised learning. We show that the concept of effective dimension of an integral ...

Caponnetto, Andrea

2005-04-14T23:59:59.000Z

109

Least Squares Reconstruction of Doppler Radar Spectra for Irregular PRT  

Science Conference Proceedings (OSTI)

A least squares method for the reconstruction of Doppler spectra of weather radars with irregular pulse repetition time used to increase the range of unambiguous velocity is presented and evaluated. This method is a robust spectral method that is ...

John Kalogiros

2012-12-01T23:59:59.000Z

110

MC Squared Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

MC Squared Energy Services, LLC MC Squared Energy Services, LLC Jump to: navigation, search Name MC Squared Energy Services, LLC Place Illinois Utility Id 56379 Utility Location Yes Ownership R RTO PJM Yes Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0700/kWh Industrial: $0.0747/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=MC_Squared_Energy_Services,_LLC&oldid=411021"

111

Electric Mean Squared Radii of Lambda(1405) in Chiral Dynamics  

E-Print Network (OSTI)

The electric mean squared radii _E of Lambda(1405) are calculated in the chiral unitary model. We describe the Lambda(1405) as a dynamically generated resonance fully in the octet meson and octet baryon scattering. We also consider ``Lambda(1405)'' as a bound state of KbarN. For the later ``Lambda(1405),'' we obtain negative and larger absolute value of electric mean squared radius than that of ordinary baryons, which implies that Lambda(1405) have structure of widely spread K^- around p.

T. Sekihara; T. Hyodo; D. Jido

2008-03-31T23:59:59.000Z

112

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

113

Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981  

DOE Green Energy (OSTI)

The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

Welch, K.M.

1981-01-01T23:59:59.000Z

114

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

115

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

116

A revisit to block and recursive least squares for parameter estimation  

Science Conference Proceedings (OSTI)

In this paper, the classical least squares (LS) and recursive least squares (RLS) for parameter estimation have been re-examined in the light of the present day computing capabilities. It has been demonstrated that for linear time-invariant systems, ... Keywords: Blockwise least squares (BLS), Change detection, Recursive least squares (RLS), Sliding window blockwise least squares (SWBLS), Variable-length window

Jin Jiang; Youmin Zhang

2004-07-01T23:59:59.000Z

117

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

118

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

119

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

120

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

122

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

123

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

124

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

125

Organic light-emitting diodes from homoleptic square planar complexes  

SciTech Connect

Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

Omary, Mohammad A

2013-11-12T23:59:59.000Z

126

Towards Occupancy-Driven Heating and Cooling  

E-Print Network (OSTI)

$100­$200 per home in hardware, and less than $0.10 per square foot in office buildings. It will also a 28% reduction per household in the energy required for heating and cooling, at the cost of only $25. This energy savings is a low hanging fruit: a large amount of energy can be saved at a very low cost

Whitehouse, Kamin

127

Latin-square three-dimensional gage master  

DOE Patents (OSTI)

A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

Jones, L.

1981-05-12T23:59:59.000Z

128

Renewal series and square-root boundaries for Bessel processes  

E-Print Network (OSTI)

We show how a description of Brownian exponential functionals as a renewal series gives access to the law of the hitting time of a square-root boundary by a Bessel process. This extends classical results by Breiman and Shepp, concerning Brownian motion, and recovers by different means, extensions for Bessel processes, obtained independently by Delong and Yor.

Enriquez, Nathanael; Yor, Marc

2008-01-01T23:59:59.000Z

129

A multivariate version of Hoeffding's Phi-Square  

Science Conference Proceedings (OSTI)

A multivariate measure of association is proposed, which extends the bivariate copula-based measure Phi-Square introduced by Hoeffding [22]. We discuss its analytical properties and calculate its explicit value for some copulas of simple form; a simulation ... Keywords: Copula, Empirical copula process, Multivariate measure of association, Nonparametric bootstrap, Nonparametric estimation, Primary, Secondary, Strong mixing, Weak convergence

Sandra Gaier; Martin Ruppert; Friedrich Schmid

2010-11-01T23:59:59.000Z

130

Multi-ring performance of the Kendall square multiprocessor  

SciTech Connect

Performance of the hierarchical shared-memory system of the Kendall Square Research multiprocessor is measured and characterized. The performance of prefetch is measured. Latency, bandwidth, and contention are analyzed on a 4-ring, 128 processor system. Scalability comparisons are made with other shared-memory and distributed-memory multiprocessors.

Dunigan, T.H.

1994-03-01T23:59:59.000Z

131

Precise root-mean-square radius of {sup 4}He  

SciTech Connect

We study the world data on elastic electron-helium scattering to determine the {sup 4}He charge root-mean-square radius. A precise value for this radius is needed as a reference for a number of ongoing studies in nuclear and atomic physics.

Sick, Ingo [Dept. fuer Physik, Universitaet Basel, CH4056 Basel (Switzerland)

2008-04-15T23:59:59.000Z

132

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

133

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

134

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

135

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

136

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

137

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

138

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

139

Mercerville-Hamilton Square, New Jersey: Energy Resources | Open Energy  

Open Energy Info (EERE)

Mercerville-Hamilton Square, New Jersey: Energy Resources Mercerville-Hamilton Square, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2292669°, -74.6693186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2292669,"lon":-74.6693186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Frankfort Square, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Square, Illinois: Energy Resources Square, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5189226°, -87.8031048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5189226,"lon":-87.8031048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New Square, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Square, New York: Energy Resources Square, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.13965°, -74.028612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.13965,"lon":-74.028612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Square ice, alternating sign matrices and classical orthogonal polynomials  

E-Print Network (OSTI)

The six-vertex model with Domain Wall Boundary Conditions, or square ice, is considered for particular values of its parameters, corresponding to 1-, 2-, and 3-enumerations of Alternating Sign Matrices (ASMs). Using Hankel determinant representations for the partition function and the boundary correlator of homogeneous square ice, it is shown how the ordinary and refined enumerations can be derived in a very simple and straightforward way. The derivation is based on the standard relationship between Hankel determinants and orthogonal polynomials. For the particular sets of parameters corresponding to 1-, 2-, and 3-enumerations of ASMs, the Hankel determinant can be naturally related to Continuous Hahn, Meixner-Pollaczek, and Continuous Dual Hahn polynomials, respectively. This observation allows for a unified and simplified treatment of ASMs enumerations. In particular, along the lines of the proposed approach, we provide a complete solution to the long standing problem of the refined 3-enumeration of AMSs.

F. Colomo; A. G. Pronko

2004-11-25T23:59:59.000Z

143

Square wells, quantum wells and ultra-thin metallic films  

E-Print Network (OSTI)

The eigenvalue equations for the energy of bound states of a particle in a square well are solved, and the exact solutions are obtained, as power series. Accurate analytical approximate solutions are also given. The application of these results in the physics of quantum wells are discussed,especially for ultra-thin metallic films, but also in the case of resonant cavities, heterojunction lasers, revivals and super-revivals.

Victor Barsan

2013-07-09T23:59:59.000Z

144

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

145

DESIGN OF PHASE INDUCED AMPLITUDE APODIZATION CORONAGRAPHS OVER SQUARE APERTURES  

Science Conference Proceedings (OSTI)

The purpose of this paper is to present the results of a theoretical study pertaining to the feasibility of Phase Induced Amplitude Apodization (PIAA) units using deformable mirrors (DMs). We begin by reviewing the general derivation of the design equations driving PIAA. We then show how to solve these equations for square apertures and show the performance of pure PIAA systems in the ray optics regime. We tie these design equations into the study of edge diffraction effects and provide a general expression for the field after a full propagation through a PIAA coronagraph. Third, we illustrate how a combination of pre- and post-apodizers yields a contrast of 10{sup -10} even in the presence of diffractive effects, for configuration with neither wavefront errors or wavefront control. Finally, we present novel PIAA configurations over square apertures which circumvent the constraints on the manufacturing of PIAA optics by inducing the apodization with two square DMs. Such solutions rely on pupil size smaller than currently envisioned static PIAA solutions and thus require aggressive pre- and post-apodizing screens in order to mitigate for diffractive effect between the two mirrors. As a result they are associated with significant loss in performance, throughput in particular.

Pueyo, Laurent [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Jeremy Kasdin, N.; Carlotti, Alexis [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Vanderbei, Robert, E-mail: lap@pha.jhu.edu [Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544 (United States)

2011-08-01T23:59:59.000Z

146

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

147

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

148

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

149

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

150

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

151

Rotor-router aggregation on the layered square lattice  

E-Print Network (OSTI)

In rotor-router aggregation on the square lattice Z^2, particles starting at the origin perform deterministic analogues of random walks until reaching an unoccupied site. The limiting shape of the cluster of occupied sites is a disk. We consider a small change to the routing mechanism for sites on the x- and y-axes, resulting in a limiting shape which is a diamond instead of a disk. We show that for a certain choice of initial rotors, the occupied cluster grows as a perfect diamond.

Kager, Wouter

2010-01-01T23:59:59.000Z

152

Positive Scattering Cross Sections using Constrained Least Squares  

Science Conference Proceedings (OSTI)

A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

1999-09-27T23:59:59.000Z

153

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

154

Lecture 3 week 2/3 2012: Solar radiation, the greenhouse, global heat engine  

E-Print Network (OSTI)

... that would be like 13.68 one- hundred watt light bulbs illuminating a one-meter square surface, except that light bulbs put about 80% of their 100 watts of power into heat/infrared radiation. Given the distance

155

Estimated Decadal Changes in the North Atlantic Meridional Overturning Circulation and Heat Flux 19932004  

Science Conference Proceedings (OSTI)

Results from a global 1 model constrained by least squares to a multiplicity of datasets over the interval 19922004 are used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes ...

Carl Wunsch; Patrick Heimbach

2006-11-01T23:59:59.000Z

156

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

157

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

158

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

159

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

160

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

DOE Green Energy (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

Not Available

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

162

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

163

U.S. uranium drilling in footage, 2004- 2011  

Annual Energy Outlook 2012 (EIA)

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent...

164

Directional Distributions and Mean Square Slopes in the Equilibrium and Saturation Ranges of the Wave Spectrum  

Science Conference Proceedings (OSTI)

Field observations show that the crosswind component constitutes a significant portion of the ocean surface mean square slope. The average ratio between the crosswind and upwind mean square slope components is 0.88 in slick-covered ocean ...

Paul A. Hwang; David W. Wang

2001-05-01T23:59:59.000Z

165

Dudley Square : a public building as a catalyst for urban revitalization  

E-Print Network (OSTI)

Dudley Square in Roxbury, Massachusetts serves as the economic and commercial center for Boston's minority community. Between 1650 and 1950 the Dudley Square area grew in importance to become a major economic center outside ...

Raymond, Harold Ray

1990-01-01T23:59:59.000Z

166

A square root analog to digital converter to optimally convert photonic signals for computed tomography  

E-Print Network (OSTI)

The arrival of photons at a given location is a Poisson process with an associated shot noise which rises with the square root of the number of photons received. An analog-to-digital converter (ADC) with a square root ...

Bieniosek, Matthew (Matthew F.)

2010-01-01T23:59:59.000Z

167

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870??1230 1600??2250 Fe, Si, alkalis Solar Turbines ? 4??8 OD ? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25??46 Multiple 870??1370 1600??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 ? 30 ? 46 Multiple Clean (good), alkalis (poor) Radiant...

168

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

169

Recent developments: PKI square dish for the Soleras Project  

Science Conference Proceedings (OSTI)

The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.

Rogers, W.E.

1984-03-01T23:59:59.000Z

170

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

171

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

172

A virtual square grid-based coverage algorithm of redundant node for wireless sensor network  

Science Conference Proceedings (OSTI)

A virtual square grid-based coverage algorithm (VSGCA) is proposed in this paper. Each sensor node divides its sensing range into virtual square grids, if all the grids are covered by neighbors, the target node is redundant node. Compared with some previous ... Keywords: Coverage, Energy conservation, Square grid, Wireless sensor network (WSN)

Yanheng Liu; Longxiang Suo; Dayang Sun; Aimin Wang

2013-03-01T23:59:59.000Z

173

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

174

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network (OSTI)

Faade heating is a special application of radiant heating and cooling technology and is used to enhance the indoor comfort level of offices, hotels and museums. Mullion radiators are typically used to implement faade heating. This paper analyzes the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts the measured temperatures with a root mean squared error (RMSE) of the hot water return temperature, the mullion surface temperature, and the window surface temperature of 0.90F, 0.98F and 1.15F, respectively. The factors which affect the heating capacity of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion surface temperature are quasi-linear functions often water supply temperature. Mullion surface temperature, indoor air temperature gradient on the glazing surface within one foot from mullions is much higher than in the central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost no influence by the mullion surface temperature. Also, the conductive thermal resistance of the mullion double tubes with fillings between two tubes plays a decisive role in controlling the mullion and window frame temperatures.

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

175

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

176

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

177

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

178

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

179

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

180

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fossil fuel-fired peak heating for geothermal greenhouses  

SciTech Connect

This report examines the capital and operating costs for fossil fuel-fired peak heating systems in geothermally (direct use) heated greenhouses. Issues covered include equipment capital costs, fuel requirements, maintenance and operating costs, system control and integration into conventional hot water greenhouse heating systems. Annual costs per square foot of greenhouse floor area are developed for three climates: Helena, MT; Klamath Falls, OR and San Bernardino, CA, for both boiler and individual unit heater peaking systems. In most applications, peaking systems sized for 60% of the peak load are able to satisfy over 95% of the annual heating requirements and cost less than $0.15 per square foot per year to operate. The propane-fired boiler system has the least cost of operation in all but Helena, MT climate.

Rafferty, K.

1996-12-01T23:59:59.000Z

182

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

183

Heating systems for heating subsurface formations  

Science Conference Proceedings (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

184

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

185

www.eia.gov  

U.S. Energy Information Administration (EIA)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 ... Average House Square Footage ... United States Cooling Degree Days RKI000:cdd_NewEngland

186

Building on Success  

NLE Websites -- All DOE Office Websites (Extended Search)

scientific community. And, more than 10 percent of Sandia's building square footage is LEED (Leadership in Energy and Environmental Design) certified. Key facilities include: The...

187

Building Energy Code and End Use Benchmarking: Improving energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

is experiencing tremendous growth, with gross square footage expected to triple by 2030. While most developed countries have put a heavy emphasis on improving energy...

188

Newer U.S. homes are 30% larger but consume about as much energy ...  

U.S. Energy Information Administration (EIA)

The increase in energy for air conditioning also reflects this population migration as well as higher use of central air conditioning and increased square footage.

189

U.S. General Services Administration Energy Management Case Study  

NLE Websites -- All DOE Office Websites (Extended Search)

format best suits GSA staff needs * Normalize energy usage data for variables such as weather and square footage * Carry out comparisons between locations to identify best...

190

Radiofrequency plasma heating: proceedings  

SciTech Connect

The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately. (WRF)

Swenson, D.G. (ed.)

1985-01-01T23:59:59.000Z

191

LDA - Measurements of Transitional Flows Induced by a Square Rib  

Science Conference Proceedings (OSTI)

New fundamental measurements are presented for the transition process in flat plate boundary layers downstream of two-dimensional square ribs. By use of laser Doppler anemometry (LDA) and a large Matched-Index-of-Refraction (MIR) flow system, data for wall-normal fluctuations and Reynolds stresses were obtained in the near wall region to y+<0.1 in addition to the usual mean streamwise velocity component and its fluctuation. By varying velocity and rib height, the experiment investigated the following range of conditions: k+ = 5.5 to 21, 0.3

Becker, S.; Durst, F.; Stoots, Carl Marcel; Condie, Keith Glenn; McEligot, Donald Marinus

2002-03-01T23:59:59.000Z

192

Science With The Australian Square Kilometre Array Pathfinder  

E-Print Network (OSTI)

The future of cm and m-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries that will be 50 times more sensitive than any existing radio facility. Most of the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from a few hundred MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is a technology demonstrator aimed in the mid-frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phased-array feed systems on parabolic reflectors. The large field-of-view makes ASKAP an unprecedented synoptic telescope that will make substantial advances in SKA key science. ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of two sites selected by the international community as a potential location for the SKA. In this paper, we outline an ambitious science program for ASKAP, examining key science such as understanding the evolution, formation and population of galaxies including our own, understanding the magnetic Universe, revealing the transient radio sky and searching for gravitational waves.

Simon Johnston

2007-11-14T23:59:59.000Z

193

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

194

Thin?film conducting microgrids as transparent heat mirrors  

Science Conference Proceedings (OSTI)

A new type of transparent heat mirror for solar?energy applications has been fabricated by chemically etching a Sn?doped In2O3 film to form a transparent conducting microgrid. For square openings 2.5 ?m on a side

John C. C. Fan; Frank J. Bachner; R. A. Murphy

1976-01-01T23:59:59.000Z

195

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

196

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

197

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

198

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

199

GHPs Save Heating Cost and Improve Air Quality in Poultry Farm  

E-Print Network (OSTI)

: 40-50' wide, 400-500' length § Bird density: 1 square foot/bird, 20,000 birds1 GHPs Save Heating Cost and Improve Air Quality in Poultry Farm per house § Heating and cooling required § Intensive ventilation to maintain air

200

Sustainable Building Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Sustainable Building Tax Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Nonprofit Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Personal Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sustainable Building Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Sustainable Building Tax Credit (Corporate) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Corporate Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

202

The ordered distribution of natural numbers on the square root spiral  

E-Print Network (OSTI)

Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the Square Root Spiral (also named as the Spiral of Theodorus or Wurzel Spirale or Einstein Spiral). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36,... form a highly three-symmetrical system of three spiral graphs, which divides the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the golden mean (or golden section), which behaves as a self-avoiding-walk-constant in the lattice-like structure of the square root spiral.

Harry K. Hahn; Kay Schoenberger

2007-12-13T23:59:59.000Z

203

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

The impact of increasing home size on energy demand The impact of increasing home size on energy demand RECS 2009 - Release date: April 19, 2012 Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than

204

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

205

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

206

Investigation of the heat pipe arrays for convective electronic cooling  

E-Print Network (OSTI)

A combined experimental and analytical investigation was conducted to evaluate a heat pipe convective cooling device consisting of sixteen small copper/water heat pipes mounted vertically in a 4x4 array 25.4 mm square. The analytical portion of the investigation focused on determination of the maximum heat transport capacity and the resistance of the individual heat pipes. The resistance of each beat pipe was found to be 2.51 K/Watt, or more than 3 times smaller than the resistance produced by a solid copper rod with the same dimensions. The maximum predicted heat rejection for the module was over 50 Watts, or a power density in excess of 7.75 Watts/CM2. In the experimental portion of the investigation, two different modules were tested. The first module utilized ten circular aluminum fins mounted on the condenser end of each heat pipe to enhance heat rejection, while the second contained only the sixteen copper/water heat pipes. The effects of flow velocity, input power, and base plate temperature on the overall thermal resistance and the heat rejection capacity were determined, as well as the pressure drop resulting from each module. The finned heat pipe array was found to have a lower overall thermal resistance and thus, a higher heat rejection capacity, but also resulted in a significantly larger pressure drop than the array without fins. The results of the heat pipe array experiments were also compared with experimental and empirical results obtained from flow over a flat plate 25.4 mm square.

Howard, Alicia Ann Harris

1993-01-01T23:59:59.000Z

207

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

208

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

209

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

210

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremesfrom scorching heat in...

211

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

212

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

213

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

214

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

215

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

216

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

217

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

218

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

219

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

220

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

222

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

223

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

224

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

225

Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification  

Science Conference Proceedings (OSTI)

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental ... Keywords: Classification, Complex-valued radial basis function network, D-optimality experimental design, Fisher ratio of class separability measure, Orthogonal least squares algorithm, Regression

S. Chen; X. Hong; C. J. Harris; L. Hanzo

2008-10-01T23:59:59.000Z

226

Generation of pornographic blacklist and its incremental update using an inverse chi-square based method  

Science Conference Proceedings (OSTI)

This study presented an inverse chi-square based web content classification system that works along with an incremental update mechanism for incremental generation of pornographic blacklist. The proposed system, as indicated from the experimental results, ... Keywords: Incremental update, Inverse chi-square function, Pornographic blacklist, Web content classification

Lung-Hao Lee; Cheng-Jye Luh

2008-09-01T23:59:59.000Z

227

Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation  

Science Conference Proceedings (OSTI)

Fractional derivatives provide a general approach for modeling transport phenomena occurring in diverse fields. This article describes a Least Squares Spectral Method for solving advection-dispersion equations using Caputo or Riemann-Liouville fractional ... Keywords: Advection-dispersion, Anomalous diffusion, Anomalous transport, Caputo derivative, Fractional derivative, Least-Squares, Riemann-Liouville derivative, Riesz derivative, Spectral Method

Alfredo RaL Carella; Carlos Alberto Dorao

2013-01-01T23:59:59.000Z

228

Algorithm 741: least-squares solution of a linear, bordered, block-diagonal system of equations  

Science Conference Proceedings (OSTI)

A package of Fortran subroutines is presented for the least-squares solution of a system of overdetermined, full-rank, linear equations with single-bordered block-diagonal structure. This structure allows for a natural sequential processing, one block ... Keywords: bordered block-diagonal equations, least-squares solutions, sparse systems

Richard D. Ray

1995-03-01T23:59:59.000Z

229

Applying least squares support vector machines to the airframe wing-box structural design cost estimation  

Science Conference Proceedings (OSTI)

This research used the least squares support vector machines (LS-SVM) method to estimate the project design cost of an airframe wing-box structure. We also compared the estimation performance using back-propagation neural networks (BPN) and statistical ... Keywords: Airframe structure, Back-propagation neural networks, Cost estimation, Least squares support vector machines, Response surface methodology

S. Deng; Tsung-Han Yeh

2010-12-01T23:59:59.000Z

230

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

231

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

232

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

233

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

234

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

235

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

236

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

237

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

238

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

239

Urban Heat Catastrophes  

NLE Websites -- All DOE Office Websites (Extended Search)

The curve shows the heat index, which reflects the combined effect of temperature and humidity. Last year's Chicago heat wave created a great deal of human discomfort and,...

240

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

242

Neutron imaging of alkali metal heat pipes  

Science Conference Proceedings (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

243

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

244

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

245

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

246

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

247

Woven heat exchanger  

DOE Patents (OSTI)

In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, Roger R. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

248

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

249

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

250

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

251

Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report  

Science Conference Proceedings (OSTI)

The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

Not Available

1980-08-01T23:59:59.000Z

252

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

253

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

254

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

255

Heat pipe system  

SciTech Connect

A heat pipe diode device for transferring heat from a heat source component to a heat sink wall is described. It contains a heat pipe body member attached to the best source; the heat source having a wall forming at least a portion of the normal evaporator section of the heat pipe diode; a working fluid within the body member; a cover for the heat pipe diode forming at least a portion of the heat sink wall; the cover forming the normal condenser for the heat pipe diode; a wick connected between the condenser and the evaporator of the heat pipe diode; means for retaining the wick adjacent the heat pipe wall; a wick support plate adjacent to the cover; the wick being attached to the support plate; means for holding the wick in contact with the cover; and means, responsive to excessive temperatures at the heat sink wall, for moving the support plate and a portion of the wick away from the cover to thereby substantially reduce heat flow in the reverse direction through said heat pipe diode device.

Kroebig, H.L.; Riha, F.J. III

1974-12-03T23:59:59.000Z

256

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat...

257

Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared April 28, 2011 - 11:28am Addthis David H. Bailey | Photo Courtesy of Lawrence Berkely National Lab David H. Bailey | Photo Courtesy of Lawrence Berkely National Lab Linda Vu What are the key facts? Australian researchers have found the sixty-trillionth binary digit of Pi-squared. The calculation would have taken a single computer processor unit (CPU) 1,500 years to calculate, but it took just a few months on IBM's "BlueGene/P" supercomputer, which is designed to run continuously at one quadrillion calculations per second. Pi is one of the most mysterious numbers in mathematics and can never be expressed as a finite decimal number -- humanity will never have

258

Approximate square-root-time relaxation in glass-forming liquids  

E-Print Network (OSTI)

We present data for the dielectric relaxation of 43 glass-forming organic liquids, showing that the primary (alpha) relaxation is often close to square-root-time relaxation. The better an inverse power-law description of the high-frequency loss applies, the more accurately is square-root-time relaxation obeyed. These findings suggest that square-root-time relaxation is generic to the alpha process, once a common view, but since long believed to be incorrect. Only liquids with very large dielectric losses deviate from this picture by having consistently narrower loss peaks. As a further challenge to the prevailing opinion, we find that liquids with accurate square-root-time relaxation cover a wide range of fragilities.

Albena I. Nielsen; Tage Christensen; Bo Jakobsen; Kristine Niss; Niels Boye Olsen; Ranko Richert; Jeppe C. Dyre

2007-12-17T23:59:59.000Z

259

Ocean Interpolation by Four-Dimensional Weighted Least SquaresApplication to the Waters around Australasia  

Science Conference Proceedings (OSTI)

A new four-dimensional ocean interpolation system based on locally weighted least squares fitting is presented. A loess filter is used to interpolate irregularly spaced data onto a uniform grid. This involves projecting the data onto quadratic ...

K. R. Ridgway; J. R. Dunn; J. L. Wilkin

2002-09-01T23:59:59.000Z

260

Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient  

Science Conference Proceedings (OSTI)

Several skill scores are defined, based on the mean-square-error measure of accuracy and alternative climatological standards of reference. Decompositions of these skill scores are formulated, each of which is shown to possess terms involving 1) ...

Allan H. Murphy

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters  

Science Conference Proceedings (OSTI)

This paper considers implications of different forms of the ensemble transformation in the ensemble square root filters (ESRFs) for the performance of ESRF-based data assimilation systems. It highlights the importance of using mean-preserving ...

Pavel Sakov; Peter R. Oke

2008-03-01T23:59:59.000Z

262

Least Squares Retrieval of Microburst Winds from Single-Doppler Radar Data  

Science Conference Proceedings (OSTI)

A least squares (LS) method is developed for retrieving low-altitude winds from single-Doppler radar scans. The method is tested with Denver airport microburst data and the results compared with the previously developed simple adjoint (SA) ...

Chong-Jian Qiu; Qin Xu

1996-06-01T23:59:59.000Z

263

Latent heat accumulating greenhouse  

Science Conference Proceedings (OSTI)

This invention relates to a latent heat accumulating greenhouse utilizing solar heat. The object of the invention is to provide a greenhouse which is simple in construction, of high efficiency for heat absorbing and capable of much absorbing and accumulating of heat. A heat accumulating chamber partitioned by transparent sheets is provided between the attic and a floor surface facing north in the greenhouse. A blower fan is disposed to confront an opening provided at the lower portion in said heat accumulating chamber. Also, in the heat accumulating chamber, a heat accumulating unit having a large number of light transmitting windows and enclosing a phase transformation heat accumulating material such as CaC1/sub 2/.6H/sub 2/O, Na/sub 2/SO/sub 4/.10H/sub 2/O therein is detachably suspended in a position close to windowpanes at the north side.

Yano, N.; Ito, H.; Makido, I.

1985-04-16T23:59:59.000Z

264

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

265

Matching method and exact solvability of discrete PT-symmetric square wells  

E-Print Network (OSTI)

Discrete PT-symmetric square wells are studied. Their wave functions are found proportional to classical Tshebyshev polynomials of complex argument. The compact secular equations for energies are derived giving the real spectra in certain intervals of non-Hermiticity strengths Z. It is amusing to notice that although the known square well re-emerges in the usual continuum limit, a twice as rich, upside-down symmetric spectrum is exhibited by all its present discretized predecessors.

Miloslav Znojil

2006-05-24T23:59:59.000Z

266

An optical pattern recognition architecture implementing the mean-square-error correlation algorithm  

DOE Patents (OSTI)

The present invention relates to optical computing and image and pattern recognition systems and techniques in general and, more particularly, to an optical architecture for accomplishing real-time two-dimensional pattern recognition by implementing the so-called Mean-Square-Error'' correlation algorithm (also referred to as the Difference-Squared Error'' algorithm) for discriminating, i.e., recognizing two-dimensional patterns in gray-scale images. 16 figs.

Molley, P.A.

1990-03-26T23:59:59.000Z

267

Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems  

DOE Green Energy (OSTI)

This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

Cummings, J.; Withers, C.

2011-12-01T23:59:59.000Z

268

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

269

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

270

Laundry heat recovery system  

SciTech Connect

A laundry heat recovery system includes a heat exchanger associated with each dryer in the system, the heat exchanger being positioned within the exhaust system of the dryer. A controller responsive to the water temperature of the heat exchangers and the water storage for the washer selectively circulates the water through a closed loop system whereby the water within the exchangers is preheated by the associated dryers. By venting the exhaust air through the heat exchanger, the air is dehumidified to permit recirculation of the heated air into the dryer.

Alio, P.

1985-04-09T23:59:59.000Z

271

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

272

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

273

Table 5b. Relative Standard Errors for Total District Heat Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total District Heat Consumption per b. Relative Standard Errors for Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 11 16 16 16 Building Floorspace (Square Feet) 1,001 to 5,000 27 78 76 76 5,001 to 10,000 38 60 51 51 10,001 to 25,000 18 43 36 35 25,001 to 50,000 24 68 51 51 50,001 to 100,000 18 40 30 30 100,001 to 200,000 27 33 35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging 30 40 30 29 Mercantile and Service 40 74 59 58 Office 23 28 26 27 Public Assembly 25 33 25 26 Public Order and Safety

274

Empirically corrected HEAT method for calculating atomization energies  

SciTech Connect

We describe how to increase the accuracy ofthe most recent variants ofthe HEAT method for calculating atomization energies of molecules by means ofextremely simple empirical corrections that depend on stoichiometry and the number ofunpaired electrons in the molecule. Our corrections reduce the deviation from experiment for all the HEAT variants. In particular, our corrections reduce the average absolute deviation and the root-mean-square deviation ofthe 456-QP variant to 0.18 and 0.23 kJoule/mol (i.e., 0.04 and 0.05 kcallmol), respectively.

Brand, Holmann V [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

275

Solar heating and hot water system installed at Listerhill, Alabama  

DOE Green Energy (OSTI)

The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

Not Available

1978-12-01T23:59:59.000Z

276

Wind heat transfer coefficient in solar collectors in outdoor conditions  

Science Conference Proceedings (OSTI)

Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)

Kumar, Suresh; Mullick, S.C. [Centre for Energy Studies, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

2010-06-15T23:59:59.000Z

277

SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER  

SciTech Connect

A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)

Roach, P.R.

1962-01-01T23:59:59.000Z

278

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

279

Electric Resistance Heating  

Energy.gov (U.S. Department of Energy (DOE))

Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to...

280

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heat pipe fabrication  

SciTech Connect

A heat pipe is disclosed which is fabricated with an artery arranged so that the warp and weave of the wire mesh are at about a 45/sup 0/ angle with respect to the axis of the heat pipe.

Leinoff, S.; Edelstein, F.; Combs, W.

1977-01-18T23:59:59.000Z

282

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

283

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

Analysis of. Nonlinear Heat Transfer Problems." Report no.Berkeley, Ca. , APPENDIX A. HEAT TRANSFER BY CONDUCTION ANDMeeting, Technical Session on Heat Transfer in Nuclear Waste

Chan, T.

2010-01-01T23:59:59.000Z

284

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

285

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

CLOSED-FORM INTEGRAL SOLUTIONS FOR LINEAR HEAT CONDUCTION.For linear heat conduction in a homogeneous, isotropiclaw of similitude for linear heat conduction was utilized to

Chan, T.

2010-01-01T23:59:59.000Z

286

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

287

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

288

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

289

Flue heat reclaimer  

Science Conference Proceedings (OSTI)

A flue heat reclaimer is constructed to be mounted on the exterior of a flue duct of a heater and provide a spiral-shaped heat transfer passage extending around the flue duct. A fan causes air to flow through the heat transfer passage so that the temperature of this air is elevated by reason at its extended heat transfer relationship with the flue duct.

Paolino, R.J.

1983-05-03T23:59:59.000Z

290

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

291

HEAT TRANSFER MEANS  

DOE Patents (OSTI)

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

Fraas, A.P.; Wislicenus, G.F.

1961-07-11T23:59:59.000Z

292

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

293

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

294

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

295

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

296

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

297

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

298

Justice Square  

E-Print Network (OSTI)

into sunrise in Mashhad, Iran Sound of EKG Monitors fadesMORNING TITLE CARD: MASHHAD, IRAN The CALL TO PRAYER soundsBENHAM If we can get you into Iran you have a good chance at

Deratany, Jay Paul

2013-01-01T23:59:59.000Z

299

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

300

 

U.S. Energy Information Administration (EIA) Indexed Site

6: End Uses of Minor Energy Sources 6: End Uses of Minor Energy Sources (CBECS89.A06) Ques- tion- naire Variable Variable Variable Variable item Description Name Position Format CASEID Building identifier BLDGID4 1- 5 Census region REGION4 7- 7 $REGION. Census division CENDIV4 9- 9 $CENDIV. B2 Square footage SQFTC4 11- 12 $SQFTC. Principal building activity PBA4 14- 15 $ACTIVTY. C1D Propane used in past 12 months PRUSED4 17- 17 $YESNO. C3AD Propane used for main heating PRHT14 19- 19 $YESNO. C3BD Propane used for secondary heating PRHT24 21- 21 $YESNO.

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

 

U.S. Energy Information Administration (EIA) Indexed Site

File 4: Building Shell, Equipment, and Multibuilding Facilities File 4: Building Shell, Equipment, and Multibuilding Facilities (CBECS89.A04) Ques- tion- naire Variable Variable Variable Variable item Description Name Position Format CASEID Building identifier BLDGID4 1- 5 Census region REGION4 7- 7 $REGION. Census division CENDIV4 9- 9 $CENDIV. B2 Square footage SQFTC4 11- 12 $SQFTC. Principal building activity PBA4 14- 15 $ACTIVTY. D2 Tenants control amount of heat HTCNTL4 17- 17 $YESNO. D3 Heating controlled by thermostat HTTHRM4 19- 19 $YESNO.

302

Residential Energy Consumption Survey: housing characteristics, 1982  

Science Conference Proceedings (OSTI)

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, wood consumption, indoor temperatures, and weather. The 1982 survey included a number of questions on the reasons households make energy conservation improvements to their homes. Results of these questions are presented. Discussion also highlights data pertaining to: trends in home heating fuels, trends in conservation improvements, and characteristics of households whose energy costs are included in their rent.

Thompson, W.

1984-08-01T23:59:59.000Z

303

 

U.S. Energy Information Administration (EIA) Indexed Site

File 14: Imputation Flags for End Uses File 14: Imputation Flags for End Uses (CBECS89.A14) Ques- tion- naire Variable Variable Variable Variable item Description Name Position Format CASEID Building identifier BLDGID4 1- 5 Census region REGION4 7- 7 $REGION. Census division CENDIV4 9- 9 $CENDIV. B2 Square footage SQFTC4 11- 12 $SQFTC. Principal building activity PBA4 14- 15 $ACTIVTY. F3 Year construction was completed YRCONC4 17- 18 $YRCONC. Imputed main heating ZHT14 20- 20 $ZVAR. Imputed secondary heating ZHT24 22- 22 $ZVAR.

304

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

305

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

306

Plasma heat pump and heat engine  

Science Conference Proceedings (OSTI)

A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

2010-08-15T23:59:59.000Z

307

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

law of similitude for linear heat conduction was utilized tothe analogy between heat conduction and fluid flow in porthe effects of heat conduction through the vermiculite heat

Chan, T.

2010-01-01T23:59:59.000Z

308

Heat pump apparatus  

DOE Patents (OSTI)

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

309

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

310

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The active microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA); Roberts, Gary L. (West Richland, WA); Call, Charles J. (Pasco, WA); Wegeng, Robert S. (Richland, WA); Wang, Yong (Richland, WA)

2001-01-01T23:59:59.000Z

311

Switchable heat pipe assembly  

SciTech Connect

The heat pipe assembly is formed into an H-shape or a Y-shape. The H-shaped configuration comprises two heat pipes, each having condenser and evaporator sections with wicking therein coupled by a tube with wick at their evaporator sections. The Y-shaped configuration utilizes a common evaporator section in place of the two evaporator sections of the H-shaped configuration. In both configurations, the connection between the vapor spaces of the two heat pipes equalizes vapor pressure within the heat pipes. Although both heat pipes have wicks, they have sufficient fluid only to saturate a single pipe. If heat is applied to the condenser section of one of the pipes, this heat pipe becomes inoperative since all the fluid is transferred to the second pipe which can operate with a lower thermal load.

Sun, T.H.; Basiulis, A.

1977-02-15T23:59:59.000Z

312

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

313

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

314

Carbon Material Based Heat Exchanger for Waste Heat Recovery ...  

Industrial processing plants Nuclear power Solar power ... Carbon Material Based Heat Exchanger for Waste Heat Recovery from Engine Exhaust Contact:

315

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

316

PreHeat: controlling home heating using occupancy prediction  

Science Conference Proceedings (OSTI)

Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more efficiently heat homes by using occupancy sensing and occupancy prediction to automatically control home heating. We deployed PreHeat in five homes, three in the ... Keywords: energy, environment, home heating, prediction, sensing

James Scott; A.J. Bernheim Brush; John Krumm; Brian Meyers; Michael Hazas; Stephen Hodges; Nicolas Villar

2011-09-01T23:59:59.000Z

317

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

318

Advanced Online Flux Mapping of CANDU PHWR by Least-Squares Method  

Science Conference Proceedings (OSTI)

A least-squares method that solves both the core neutronics design equations and the in-core detector response equations on the least-squares principle is presented as a new advanced online flux-mapping method for CANada Deuterium Uranium (CANDU) pressurized heavy water reactors (PHWRs). The effectiveness of the new flux-mapping method is examined in terms of online flux-mapping calculations with numerically simulated true flux distribution and detector signals and those with the actual core-follow data for the Wolsong CANDU PHWRs in Korea. The effects of core neutronics models as well as the detector failures and uncertainties of measured detector signals on the effectiveness of the least-squares flux-mapping calculations are also examined.The following results are obtained. The least-squares method predicts the flux distribution in better agreement with the simulated true flux distribution than the standard core neutronics calculations by the finite difference method (FDM) computer code without using the detector signals. The adoption of the nonlinear nodal method based on the unified nodal method formulation instead of the FDM results in a significant improvement in prediction accuracy of the flux-mapping calculations. The detector signals estimated from the least-squares flux-mapping calculations are much closer to the measured detector signals than those from the flux synthesis method (FSM), the current online flux-mapping method for CANDU reactors. The effect of detector failures is relatively small so that the plant can tolerate up to 25% of detector failures without seriously affecting the plant operation. The detector signal uncertainties aggravate accuracy of the flux-mapping calculations, yet the effects of signal uncertainties of the order of 1% standard deviation can be tolerable without seriously degrading the prediction accuracy of the least-squares method. The least-squares method is disadvantageous because it requires longer CPU time than the existing FSM. Considering ever-increasing computer speed and the improved operational safety margin of CANDU reactors gained by accurate flux-mapping calculations, however, it is concluded that the least-squares method presents an effective alternative to the existing flux-mapping method for CANDU reactors.

Hong, In Seob [Seoul National University (Korea, Republic of); Kim, Chang Hyo [Seoul National University (Korea, Republic of); Suk, Ho Chun [Korea Atomic Energy Research Institute (Korea, Republic of)

2005-07-15T23:59:59.000Z

319

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

320

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

322

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

323

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

324

Water-heating dehumidifier  

DOE Patents (OSTI)

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

325

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

326

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

327

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

328

Heat rejection system  

DOE Patents (OSTI)

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

329

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

330

Heat and mass exchanger  

Science Conference Proceedings (OSTI)

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

331

Heat pipe technology issues  

SciTech Connect

Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory has involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW/cm/sup 2/ axially and 300 W/cm/sup 2/ radially at temperatures in the 1400 to 1500 K range. Operation at conditions in the 10 kW/cm/sup 2/ range has been sustained for periods of up to 1000 hours without evidence of performance degradation. The effective length for heat transport in these heat pipes was from 1.0 to 1.5 M. Materials used were molybdenum alloys with lithium employed as the heat pipe operating fluid. Shorter, somewhat lower power, molybdenum heat pipes have been life tested at Los Alamos for periods of greater than 25,000 hours at 1700 K with lithium and 20,000 hours at 1500/sup 0/K with sodium. These life test demonstrations and the attendant performance limit investigations provide an experimental basis for heat pipe application in space reactor design and represent the current state-of-the-art of high temperature heat pipe technology.

Merrigan, M.A.

1984-04-01T23:59:59.000Z

332

Heat pump arrangement  

SciTech Connect

The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

Abrahamsson, T.; Hansson, K.

1981-03-03T23:59:59.000Z

333

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625??658...

334

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

335

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

336

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full recipe that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

337

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

338

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

339

Controlling the Heat Transfer  

Science Conference Proceedings (OSTI)

Through experimental validation that air conduction is shown to be typically the dominant thermal transport mechanism in the contact region, the heat conduction

340

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Levy path integral approach to the solution of the fractional Schrdinger equation with infinite square well  

E-Print Network (OSTI)

The solution to the fractional Schr\\"odinger equation with infinite square well is obtained in this paper, by use of the L\\'evy path integral approach. We obtain the even and odd parity wave functions of this problem, which are in accordance with those given by Laskin in [Chaos 10 (2000), 780--790].

Dong Jianping

2013-01-14T23:59:59.000Z

342

Gravity as the square of Yang-Mills: implications for N=8 Supergravity  

E-Print Network (OSTI)

The pure gravity Lagrangian can be written as the "square" of the pure Yang-Mills Lagrangian to second order in coupling constants. This paper uses this form of the gravity Lagrangian as a starting point to arrive at a compact light-cone superspace Lagrangian for N=8 Supergravity to order $\\kappa$^2.

Sudarshan Ananth

2009-02-18T23:59:59.000Z

343

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function  

E-Print Network (OSTI)

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because

Dunham, Scott

344

Use of multiple 4$pi$ radiation sources for quasi-uniform irradiation of square surfaces  

SciTech Connect

The question of distance and location of multiple 4 pi radiation sources from square planar target surfaces is addressed, with the constraint that the surface be irradiated with 80% uniformity. Results of computer calculations are presented, giving source location coordinates for optimum use of the sources under the uniformity constraint. (auth)

Clark, R.W.; Freiwald, D.A.

1973-11-01T23:59:59.000Z

345

Revenue forecasting using a least-squares support vector regression model in a fuzzy environment  

Science Conference Proceedings (OSTI)

Revenue forecasting is difficult but essential for companies that want to create high-quality revenue budgets, especially in an uncertain economic environment with changing government policies. Under these conditions, the subjective judgment of decision ... Keywords: Genetic algorithms, Least-squares support vector regression, Membership function, Revenue forecasting

Kuo-Ping Lin; Ping-Feng Pai; Yu-Ming Lu; Ping-Teng Chang

2013-01-01T23:59:59.000Z

346

2012 Special Issue: Orthogonal least squares based complex-valued functional link network  

Science Conference Proceedings (OSTI)

Functional link networks are single-layered neural networks that impose nonlinearity in the input layer using nonlinear functions of the original input variables. In this paper, we present a fully complex-valued functional link network (CFLN) with multivariate ... Keywords: Complex-valued neural network, Function approximation, Functional link network, Multivariate polynomial, Orthogonal least squares

Md. Faijul Amin; Ramasamy Savitha; Muhammad Ilias Amin; Kazuyuki Murase

2012-08-01T23:59:59.000Z

347

Total least squares in fuzzy system identification: An application to an industrial engine  

Science Conference Proceedings (OSTI)

Takagi-Sugeno fuzzy models have proved to be a powerful tool for the identification of nonlinear dynamic systems. Their generic nonlinear model representation is particularly useful if information about the structure of the nonlinearity is available. ... Keywords: Gas engine, Identification algorithms, Local model networks, Nonlinear system identification, Steady-state constraints, Takagi-Sugeno fuzzy models, Total least squares

Stefan Jakubek; Christoph Hametner; Nikolaus Keuth

2008-12-01T23:59:59.000Z

348

Contributed paper: Robust digital watermarking in PDTDFB domain based on least squares support vector machine  

Science Conference Proceedings (OSTI)

Geometric distortion is known as one of the most difficult attacks to resist, for it can desynchronize the location of the watermark and hence causes incorrect watermark detection. It is a challenging work to design a robust image watermarking scheme ... Keywords: Gaussian-Hermite moment, Geometric distortion, Image watermarking, Least squares support vector machine (LS-SVM), Shiftable complex directional pyramid (PDTDFB)

Hong-Ying Yang, Xiang-Yang Wang, Yan Zhang, Miao E-Nuo

2013-10-01T23:59:59.000Z

349

DIVERGENCE-FREE AND CURL-FREE WAVELETS ON THE SQUARE FOR NUMERICAL SIMULATIONS  

E-Print Network (OSTI)

DIVERGENCE-FREE AND CURL-FREE WAVELETS ON THE SQUARE FOR NUMERICAL SIMULATIONS SOULEYMANE KADRI Grenoble cedex 9, France August 30, 2011 Abstract We present a construction of divergence-free and curl-free and integration. We introduce new BMRAs and wavelets for the spaces of divergence-free and curl-free vector

Paris-Sud XI, Université de

350

Weighted least-squares finite elements based on particle imaging velocimetry data  

Science Conference Proceedings (OSTI)

The solution of the Navier-Stokes equations requires that data about the solution is available along the boundary. In some situations, such as particle imaging velocimetry, there is additional data available along a single plane within the domain, and ... Keywords: Data assimilation, Finite element, Least-squares, Particle imaging velocimetry

J. J. Heys; T. A. Manteuffel; S. F. McCormick; M. Milano; J. Westerdale; M. Belohlavek

2010-01-01T23:59:59.000Z

351

Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction  

Science Conference Proceedings (OSTI)

Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and ... Keywords: caudoviruses, feature selection, herpesviruses, least-squares support vector machines, replication origins

Raul Cruz-Cano; David S. H. Chew; Kwok-Pui Choi; Ming-Ying Leung

2010-07-01T23:59:59.000Z

352

Neural data fusion algorithms based on a linearly constrained least square method  

Science Conference Proceedings (OSTI)

Two novel neural data fusion algorithms based on a linearly constrained least square (LCLS) method are proposed. While the LCLS method is used to minimize the energy of the linearly fused information, two neural-network algorithms are developed to overcome ...

Youshen Xia; H. Leung; E. Bosse

2002-03-01T23:59:59.000Z

353

Analyzing currency crises' real effects with partial least squares sensitivity analysis  

Science Conference Proceedings (OSTI)

The effects of a currency crisis on a country's economy depend on non-linear relations among several variables that characterize the economic, financial, legal, and socio-political structure of the country at the onset of the crisis. We seek to determine ... Keywords: Currency crises, partial least squares, variable selection

Ismael E. Arciniegas Rueda; Fabio A. Arciniegas; Mark J. Embrechts

2008-01-01T23:59:59.000Z

354

Physical modelling and particle swarm design of coplanar waveguide square spiral inductor  

Science Conference Proceedings (OSTI)

This paper presents simple lumped element equivalent circuit for the coplanar waveguide (CPW) square spiral inductor. The circuit is based on physical modelling which takes into consideration the parasitic effects inherent in the CPW spiral inductor. ... Keywords: circuit modelling, coplanar waveguide, inductor, particle swarm optimization

N. I. Dib; J. I. Ababneh

2008-03-01T23:59:59.000Z

355

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network (OSTI)

and towns have (some) district heating, and DH currently supplies 1% of heating for buildings in Norway.2 to district heating if there is a supply. According to HP industry representatives, howeverProject Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12

356

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

357

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

358

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

359

Heat Pipe Integrated Microsystems  

SciTech Connect

The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

1999-03-30T23:59:59.000Z

360

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

362

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

363

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

364

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

365

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

366

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

367

Solar heat regulator  

Science Conference Proceedings (OSTI)

A solar heat regulating device is described for selectively heating with sunlight the air inside a building having a window and shielding and insulating the air inside the building from the heat of sunlight outside the building including: a frame for mounting the solar heat regulating device inside the building and adjacent to the window; a plurality of hollow vanes, each of the vanes having at least one passageway for passing air therethrough; the vanes having a heat absorptive surface on a first side thereof which allows solar radiation impinging on the heat absorptive surface to heat the air contained in the one passageway of the vanes; the vanes having a heat reflective surface on a second side of the vanes which reflects the solar radiation impinging on the second side of the vanes and shields the inside of the building from solar radiation impinging on the vanes; and the vanes having side portions extending between the first and second sides of the vanes, the side portions, and the first and second sides forming the one passageway through each of the vanes, the side portions and the first and second sides of the vanes terminating in top end and bottom end portions.

Boynton, S.L.

1987-04-07T23:59:59.000Z

368

Unstable heat pipes  

DOE Green Energy (OSTI)

Heat pipes are an important feature of models of vapor-dominated geothermal reservoirs. Numerical experiments reveal that a vapor-dominated heat pipe is unstable if pressure is controlled at shallow levels. This instability is discussed in physical terms, and some implications for geothermal reservoirs are considered. 9 refs., 10 figs.

McGuinness, M.J.; Pruess, K.

1987-10-01T23:59:59.000Z

369

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

370

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

371

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

372

Use advisability of heat pumps for building heating and cooling  

Science Conference Proceedings (OSTI)

In the actual economic and energetic juncture, the reduction of thermal energy consumption in buildings became a major, necessary and opportune problem, general significance. The heat pumps are alternative heating installations more energy efficiency ... Keywords: "Geoterm" system, building heating/cooling, energy and economic analysis, heat pump performances, heat pumps, renewable energy sources

Ioan Srbu; C?lin Sebarchievici

2010-02-01T23:59:59.000Z

373

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

374

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

375

Heat pipe development status  

SciTech Connect

Test heat pipes have been operated in the 1400 K to 1700 K range for periods in excess of 20,000 hours with the objective of understanding and controlling corrosion and failure mechanisms. The results of a post test analysis of one of these heat pipes that was operated for 25,216 hours at 1700 K are reviewed and the implications for heat pipe lifetime discussed. An in-process report of an investigation of transient heat pipe behavior is presented. This investigation is being conducted as a result of restart problems encountered during life test of a 2 m. radiation cooled heat pipe. The results of a series of shut-down tests from power and temperature are given and probable causes of the restart problem discussed.

Merrigan, M.A.

1984-01-01T23:59:59.000Z

376

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

377

Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars  

SciTech Connect

Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

Kurek, Harry; Wagner, John

2010-01-25T23:59:59.000Z

378

Solar heating and hot water system installed at St. Louis, Missouri. Final report  

DOE Green Energy (OSTI)

Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

Not Available

1980-04-01T23:59:59.000Z

379

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

380

Commercial laundry heat recovery system  

SciTech Connect

In a commercial laundry that is connected to a source of fresh water and generates heated waste water, a method is described for recovering heat from the heated waste comprising the steps of: (a) pumping the heated waste water through a heat exchanger; (b) introducing fresh water into the heat exchanger to receive heat from the waste water through a heat transfer effected by the heat exchanger; (c) withdrawing a first proportion of the heated fresh water at a first temperature; (d) conveying the first proportion of the heated fresh water to cold water storage tank; (e) withdrawing a second proportion of the heated fresh water at a second temperature higher than the first temperature; (f) conveying the second proportion of the heated fresh water to a hot water storage tank.

Kaufmann, R.O.

1986-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

382

Heating Facilities, Stepping Stones Rehabilitation Center, Klamath Falls, Oregon.  

DOE Green Energy (OSTI)

The Stepping Stones Rehabilitation Center is leased from Klamath County and operated by the Klamath Council on Alcohol and Drugs. Buildings consist of interconnected and adjoining buildings laid out in a U configuration, with a total floor plan area of about 13,000 square feet. Construction is conventional single story, with tile roofs, masonry facing on the walls, and single glazed windows. Heating is by room wall convectors using low pressure steam. Steam is generated in an oil fired boiler. It is economically feasible to heat Stepping Stones using a water to water heat pump. Low temperature geothermal water from a relatively shallow well would be boosted from 80/sup 0/F to a 150/sup 0/F in the heat pump. This hot water would supply space heating requirements and potable hot water. The existing boiler, steam and condensate piping, and room convectors would be removed. The water to water heat pump, new piping, and room convectors would be installed. Estimated capital cost is $140,000. Annual energy savings in fuel oil purchases is about 26,000 gallons with a first year value of about $19,000. This savings, less operating costs, when applied with escalation considerations over a period of twenty years, results in a present worth of $91,778 when discounted at 10%. This is the amount of surplus generated after the payment of all obligations, when the project is financed with 10% bonds.

Not Available

1980-03-01T23:59:59.000Z

383

Heat Exchangers for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat to water in a storage tank. Heat-transfer fluids, such as antifreeze, protect the solar collector from freezing in cold weather. Liquid-to-liquid heat exchangers have...

384

Water heater heat reclaimer  

SciTech Connect

This invention relates to the conservation of energy in a domestic gas water heater by utilizing the hot exhaust gases in a gas water heater for the preheating of the incoming unheated water into the water heater. The exhaust gases from a domestic gas water heater carry wasted heat and the present invention provides a mean to reclaim part of the wasted heat for the preheating of the incoming unheated water during hot water usage periods. During non hot water usage periods the heat in the exhaust gases is not reclaimed to prevent overheating of the water and also to prevent the formation of water deposit in the preheating assembly or heat reclaimer. During the non hot water usage periods the heat produced in the water heater is normally needed only to maintain the desired water temperature of the stored water in the water tank of the water heater. Due to the rapid heating or recovery rate, the present invention enables the use of a smaller water heater. The use of a smaller water heater reduces the normal heat loss from the stored hot water thereby further reduces energy consumption.

Wie, C.T.

1983-08-09T23:59:59.000Z

385

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

386

Fundamental heat transfer experiments of heat pipes for turbine cooling  

SciTech Connect

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

Yamawaki, S. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Yoshida, T.; Taki, M.; Mimura, F. [National Aerospace Lab., Tokyo (Japan)

1998-07-01T23:59:59.000Z

387

Square-wave switching by crossed-polarization gain modulation in vertical-cavity semiconductor lasers  

Science Conference Proceedings (OSTI)

We study experimentally and theoretically the effects of crossed-polarization reinjection (XPR) on the output characteristics of a vertical-cavity semiconductor laser. We find a set of parameters values for which each polarization component develops a square-wave modulation at a period close to twice the reinjection delay. We analyze the regularity of this modulation in terms of the laser pumping current and of the reinjection level. These observations are numerically reproduced within the spin-flip model modified to account for XPR. In particular, the degradation of the square-wave switching is linked to the finite value of the spin-flip rate, and it occurs when the current approaches the boundaries of polarization bistability.

Mulet, J.; Giudici, M.; Javaloyes, J.; Balle, S. [Institut Mediterrani d'Estudis Avancats, CSIC UIB, E-07071 Palma de Mallorca (Spain)

2007-10-15T23:59:59.000Z

388

Method for exploiting bias in factor analysis using constrained alternating least squares algorithms  

DOE Patents (OSTI)

Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.

Keenan, Michael R. (Albuquerque, NM)

2008-12-30T23:59:59.000Z

389

Stirling engine heating system  

SciTech Connect

A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

Johansson, L.N.; Houtman, W.H.; Percival, W.H.

1988-06-28T23:59:59.000Z

390

Squares of White Noise, SL(2,C) and Kubo - Martin -Schwinger States  

E-Print Network (OSTI)

We investigate the structure of Kubo - Martin - Schwinger (KMS) states on some extension of the universal enveloping algebra of SL(2,C}. We find that there exists a one-to-one correspondence between the set of all covariant KMS states on this algebra and the set of all probability measures d\\mu on the real half-line, which decrease faster than any inverse polynomial. This problem is connected to the problem of KMS states on square of white noise algebra.

D. V. Prokhorenko

2007-05-26T23:59:59.000Z

391

Magnetic Reversal of an Artificial Square Ice: Dipolar Correlation and Charge Ordering  

SciTech Connect

Magnetic reversal of an artificial square ice pattern subject to a sequence of magnetic fields applied slightly off the diagonal axis is investigated via magnetic force microscopy of the remanent states that result. Sublattice independent reversal is observed via correlated incrementally pinned flip cascades along parallel dipolar chains, as evident from analysis of vertex populations and dipolar correlation functions. Weak dipolar interactions between adjacent chains favour antialignment and give rise to weak charge ordering of 'monopole' vertices during the reversal process.

Stein A.; Morgan J.P.; Langridge S.; Marrows C.H.

2011-10-13T23:59:59.000Z

392

Extended Grimus-Stockinger theorem and inverse square law violation in quantum field theory  

E-Print Network (OSTI)

We study higher-order corrections to the Grimus-Stockinger theorem dealing with the large-distance asymptotic behavior of the wave-packet modified neutrino propagator within the framework of field-theoretical description of the neutrino oscillation phenomenon. We discuss the possibility that these corrections are responsible for breakdown of the classical inverse-square law (ISL) at the macroscopic distances. In particular the ISL violation can be an explanation of the well-known reactor antineutrino anomaly.

Naumov, Vadim A

2013-01-01T23:59:59.000Z

393

Extended Grimus-Stockinger theorem and inverse square law violation in quantum field theory  

E-Print Network (OSTI)

We study higher-order corrections to the Grimus-Stockinger theorem dealing with the large-distance asymptotic behavior of the wave-packet modified neutrino propagator within the framework of field-theoretical description of the neutrino oscillation phenomenon. We discuss the possibility that these corrections are responsible for breakdown of the classical inverse-square law (ISL) at the macroscopic distances. In particular the ISL violation can be an explanation of the well-known reactor antineutrino anomaly.

Vadim A. Naumov; Dmitry S. Shkirmanov

2013-09-04T23:59:59.000Z

394

Heat Transfer Fluids for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating Systems Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

395

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat...  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to:...

396

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow,...

397

Waste Heat Recovery from Industrial Process Heating Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am...

398

Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report  

DOE Green Energy (OSTI)

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

Not Available

1979-06-01T23:59:59.000Z

399

Semi-flexible interacting self-avoiding trails on the square lattice  

E-Print Network (OSTI)

Self-avoiding walks self-interacting via nearest neighbours (ISAW) and self-avoiding trails interacting via multiply-visited sites (ISAT) are two models of the polymer collapse transition of a polymer in dilute solution. On the square lattice it has been established numerically that the collapse transition of each model lies in a different universality class. It has been shown that by adding stiffness to the ISAW model a second low temperature phase eventuates and a more complicated phase diagram ensues with three types of transition that meet at a multi-critical point. For large enough stiffness the collapse transition becomes first-order. Interestingly, a phase diagram of a similar structure has been seen to occur in an extended ISAT model on the triangular lattice without stiffness. It is therefore of interest to see the effect of adding stiffness to the ISAT model. We have studied by computer simulation a generalised model of self-interacting self-avoiding trails on the square lattice with a stiffness parameter added. Intriguingly, we find that stiffness does not change the order of the collapse transition for ISAT on the square lattice for a very wide range of stiffness weights. While at the lengths considered there are clear bimodal distributions for very large stiffness, our numerical evidence strongly suggests that these are simply finite-size effects associated with a crossover to a first-order phase transition at infinite stiffness.

A Bedini; A L Owczarek; T Prellberg

2012-10-30T23:59:59.000Z

400

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water...

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FEMP-Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet details solar water heating and how to use the sun to heat domestic water in any climate. Document explains how solar water heating helps to save energy, reduce utility costs, and preserve the environment.

402

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Liquid Heating Solar liquid heating systems use a collector with a heat transfer or "working" fluid such as water, antifreeze (usually non-toxic propylene...

403

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Solar Air Heating Solar air heating systems use air as the working fluid for absorbing and transferring solar energy. Solar air collectors (devices to heat air...

404

Solar home heating in Michigan  

Science Conference Proceedings (OSTI)

This booklet presents the fundamentals of solar heating for both new and existing homes. A variety of systems for space heating and household water heating are explained, and examples are shown of solar homes and installations in Michigan.

Not Available

1984-01-01T23:59:59.000Z

405

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

406

Determination of a control parameter in a one-dimensional parabolic equation using the moving least-square approximation  

Science Conference Proceedings (OSTI)

In this paper the approximation of moving least-square (MLS) is used for finding the solution of a one-dimensional parabolic inverse problem with source control parameter. Comparing with other numerical methods based on meshes such as finite difference ... Keywords: inverse problem, meshless method, moving least-square approximation, overspecification, parabolic equation

Rongjun Cheng

2008-09-01T23:59:59.000Z

407

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

408

Cover Heated, Open Vessels  

SciTech Connect

This revised ITP steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

409

Solar Heating Contractor Licensing  

Energy.gov (U.S. Department of Energy (DOE))

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

410

HEAT TRANSFER METHOD  

DOE Patents (OSTI)

A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

Gambill, W.R.; Greene, N.D.

1960-08-30T23:59:59.000Z

411

Heat Exchangers - Chapter 11  

NLE Websites -- All DOE Office Websites (Extended Search)

P.E. Gene Culver Geo-Heat Center Klamath Falls, Oregon 97601 11.1 INTRODUCTION Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved...

412

Frac fever heats up  

Science Conference Proceedings (OSTI)

Hydraulic fracturing, or fraccing, is a source of great opportunity for surfactant researchers and manufacturers. Frac fever heats up Publications aocs articles book books cdrom cdroms detergents echapters fats inform international journal journ

413

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

414

Greywater heat exchanger  

SciTech Connect

A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

Holmberg, D.

1983-11-21T23:59:59.000Z

415

PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS  

E-Print Network (OSTI)

solar space heating system with heat input and building loadBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATINGBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

416

Heat Rate Program Guidelines  

Science Conference Proceedings (OSTI)

Power plant facilities with performance or heat rate improvement programs perform better than those that do not have those programs. A heat rate improvement program typically provides sufficient information for decision making with respect to timely maintenance actions and/or operational adjustments. Monitoring the performance of any power plant component includes the trending of parameters that also describe the performance of other plant components, providing insight and information on improving ...

2012-12-31T23:59:59.000Z

417

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

418

Classical Heat Exchanger Analysis  

Science Conference Proceedings (OSTI)

The industry methodology for heat exchanger performance and uncertainty analysis has been successful in dealing with the requirements of the Nuclear Regulatory Commission (NRC) issued in 1989 for safety-related service water systems, but has been found to have several significant limitations. The general objective of this report is to improve the industry performance and uncertainty analysis methodology and guidelines for implementation and analysis of heat exchanger performance. ...

2013-05-31T23:59:59.000Z

419

Freezable heat pipe  

SciTech Connect

A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

Ernst, Donald M. (Leola, PA); Sanzi, James L. (Lancaster, PA)

1981-02-03T23:59:59.000Z

420

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

28 28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 34 32 Q (*) Q 56.9 52.2 Q (*) Q 5,001 to 10,000 .......................... 36 33 Q (*) Q 49.4 44.7 Q 0.1 Q 10,001 to 25,000 ........................ 28 25 1 (*) Q 26.7 23.8 1.4 0.1 Q 25,001 to 50,000 ........................ 17 16 Q (*) 1 19.1 17.8 Q (*) 0.6 50,001 to 100,000 ...................... 29 26 1 Q 1 15.6 14.1 0.7 Q 0.5 100,001 to 200,000 .................... 37 35 Q Q 1 12.5 11.5 Q Q 0.5 200,001 to 500,000 .................... 36 25 Q Q 2 10.5 7.4 2.4 Q 0.5 Over 500,000 ............................. 10 Q Q Q 2 2.1 Q Q Q 0.4 Principal Building Activity Education .................................. 47 45 2 Q Q 25.4 23.9 0.8 Q 0.3 Food Sales ................................ Q Q Q Q Q Q Q Q Q Q Food Service ............................. Q Q Q Q Q Q Q Q Q Q

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

634 634 578 46 1 Q 116.4 106.3 8.4 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 169 146 16 Q Q 99.9 86.2 9.5 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

422

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Buildings.............................. Buildings.............................. 1,644 1,429 131 Q 72 0.10 0.09 0.01 Q (*) Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 228 Q (*) Q 0.41 0.38 Q (*) Q 5,001 to 10,000 .......................... 262 237 Q 1 Q 0.36 0.32 Q (*) Q 10,001 to 25,000 ........................ 201 179 11 (*) Q 0.19 0.17 0.01 (*) Q 25,001 to 50,000 ........................ 124 115 Q (*) 4 0.14 0.13 Q (*) (*) 50,001 to 100,000 ...................... 209 188 10 Q 7 0.11 0.10 0.01 Q (*) 100,001 to 200,000 .................... 270 250 Q Q 10 0.09 0.08 Q Q (*) 200,001 to 500,000 .................... 258 183 Q Q 11 0.08 0.05 0.02 Q (*) Over 500,000 ............................. 72 Q Q Q 15 0.02 Q Q Q (*) Principal Building Activity Education .................................. 342 322 11 Q Q 0.18 0.17 0.01 Q (*) Food Sales ................................

423

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

636 636 580 46 1 Q 114.0 103.9 8.3 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 171 147 16 Q Q 93.6 80.6 8.9 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

424

The distribution of natural numbers divisible by 2,3,5,11,13 and 17 on the Square Root Spiral  

E-Print Network (OSTI)

The natural numbers divisible by the Prime Factors 2, 3, 5, 11, 13 and 17 lie on defined spiral graphs, which run through the Square Root Spiral. A mathematical analysis shows, that these spiral graphs are defined by specific quadratic polynomials. Basically all natural number which are divisible by the same prime factor lie on such spiral graphs. And these spiral graphs can be assigned to a certain number of Spiral Graph Systems, which have a defined spatial orientation to each other. This document represents a supplementation to my detailed introduction study to the Square Root Spiral, and it contains the missing diagrams and analyses, showing the distribution of the natural numbers divisible by 2, 3, 5, 11, 13 and 17 on the Square Root Spiral. My introduction study to the Square Root Spiral can be found in the arxiv-archive. The title of this study : The ordered distribution of the natural numbers on the Square Root Spiral.

Harry K. Hahn

2008-01-29T23:59:59.000Z

425

Heat flow of Oregon  

DOE Green Energy (OSTI)

An extensive new heat flow and geothermal gradient data set for the State of Oregon is presented on a contour map of heat flow at a scale of 1:1,000,000 and is summarized in several figures and tables. The 1:1,000,000 scale heat flow map is contoured at 20 mW/m/sup 2/ (0.5 HFU) intervals. Also presented are maps of heat flow and temperature at a depth of 1 km averaged for 1/sup 0/ x 1/sup 0/ intervals. Histograms and averages of geothermal gradient and heat flow for the State of Oregon and for the various physiographic provinces within Oregon are also included. The unweighted mean flow for Oregon is 81.3 +- 2.7 mW/m/sup 2/ (1.94 +- 0.06 HFU). The average unweighted geothermal gradient is 65.3 +- 2.5/sup 0/C/km. The average heat flow value weighted on the basis of geographic area is 68 +- 5 mW/m/sup 2/ (1.63 +- 0.12 HFU) and the average weighted geothermal gradient is 55.0 +- 5/sup 0/C/km.

Blackwell, D.D.; Hull, D.A.; Bowen, R.G.; Steele, J.L.

1978-01-01T23:59:59.000Z

426

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

427

Radial flow heat exchanger  

DOE Patents (OSTI)

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

428

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

429

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

430

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

431

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

432

Radiant Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

heating because it eliminates duct losses. People with allergies often prefer radiant heat because it doesn't distribute allergens like forced air systems can. Hydronic...

433

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

434

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

435

Heat Pumps | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces...

436

Available Technologies: Convection Heat Pump  

APPLICATIONS OF TECHNOLOGY: Solar thermal systems; Heating and cooling systems for buildings; Refrigeration; Compressed air source; Recycling waste heat from chimneys

437

Hydronic Heating: A Practical Overview  

Science Conference Proceedings (OSTI)

This booklet is a hydronic-heating primer for utility representatives, contractors, and homeowners. Its purpose is to foster a general knowledge and interest in modem hydronic heating.

2000-03-10T23:59:59.000Z

438

Energy Basics: Electric Resistance Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance...

439

Heat pumps | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Heat pumps Jump to: navigation, search TODO: Add description List of Heat pumps Incentives Retrieved from "http:en.openei.orgw...

440

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

DOE Green Energy (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bread Basket: a gaming model for estimating home-energy costs  

SciTech Connect

An instructional manual for answering the twenty variables on COLORADO ENERGY's computerized program estimating home energy costs. The program will generate home-energy cost estimates based on individual household data, such as total square footage, number of windows and doors, number and variety of appliances, heating system design, etc., and will print out detailed costs, showing the percentages of the total household budget that energy costs will amount to over a twenty-year span. Using the program, homeowners and policymakers alike can predict the effects of rising energy prices on total spending by Colorado households.

1982-01-01T23:59:59.000Z

442

Active Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Linear Concentrator Systems for Concentrating Solar Power Image of a heat exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating...

443

Experimental Investigation of Bendable Heat Pipes.  

E-Print Network (OSTI)

??Heat pipes are highly conductive heat transfer devices. They use the latent heat of the working fluid for efficient heat transfer over a very small (more)

ODHEKAR, DHANANJAY

2005-01-01T23:59:59.000Z

444

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

445

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

446

Heat exchanger device and method for heat removal or transfer  

Science Conference Proceedings (OSTI)

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P. (San Ramon, CA)

2012-07-24T23:59:59.000Z

447

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

448

Heat exchanger-accumulator  

DOE Patents (OSTI)

What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

Ecker, Amir L. (Dallas, TX)

1980-01-01T23:59:59.000Z

449

 

Buildings Energy Data Book (EERE)

4 Characteristics of U.S. Housing by Census Division and Region, as of 2005 4 Characteristics of U.S. Housing by Census Division and Region, as of 2005 Share of Average Home Size (1) Average Home Size Census Division U.S. Housing Stock (total square feet) (heated square feet) Northeast 19% 2,423 1,664 New England 5% 2,552 1,680 Middle Atlantic 14% 2,376 1,658 Midwest 23% 2,566 1,927 East North Central 16% 2,628 1,926 West North Central 7% 2,424 1,930 South 37% 2,295 1,551 South Atlantic 20% 2,370 1,607 East South Central 6% 2,254 1,544 West South Central 11% 2,184 1,455 West 22% 1,963 1,366 Mountain 7% 2,149 1,649 Pacific 15% 1,878 1,238 Total 100% 2,309 1,618 Note(s): 1) Total Square footage includes attic, garage, and basement square footage

450

New and retrofit solar hot water installations in Florida, January--June 1977  

SciTech Connect

The purpose of this project was to ascertain the number of solar hot water installations in new buildings versus the number retrofitted to existing buildings in Florida during the January to June period of 1977. The methodology was to survey all installations started, in progress, or completed during that period. A by-product of the survey is a comprehensive list of manufacturers and another of distributors and installers in Florida. The survey excludes space heating and cooling and pool heating applications. However, the latter is being considered for a separate survey. Installations included are in the single-family and multi-family residential, commercial, industrial and public sectors. In the single-family residential sector, care has been taken to determine a new or retrofit breakdown, average square footage of collector per installation, average cost per square foot of collector in Florida, and subsequently, using F-CHART and system sizing programs developed at the Center, the fraction of load supplied by solar and its equivalent barrels of oil saved per year. In the multi-family residential, commercial, industrial and public sectors, specific information on each installation has been provided. This information includes new or retrofit, ownership, type of collector and manufacturer, square footage of installation, design percentage energy by solar, suxiliary fuel, system cost, and federal grants, if any.

1978-04-01T23:59:59.000Z

451

Heat recovery in building envelopes  

E-Print Network (OSTI)

Heating Research Facility (AHHRF) located in Edmonton, Alberta, Canada. The house is of standard wood

Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

452

The effect of interelement dipole coupling in patterned ultrathin single crystal Fe square arrays  

SciTech Connect

The correlation between the magnetic properties and the interelement separation in patterned arrays of ultrathin single crystal Fe films of 12 monolayers (ML) grown on GaAs(100) has been studied. The critical condition to form single domain remanent states in the square elements was found to be 10 {mu}m in size and 20 {mu}m for the interelement separation. The coercivity was also found to increase with the increasing interelement separation in the patterned arrays. These results are attributed to the competition between the large in-plane uniaxial anisotropy, the demagnetizing field, and interelement dipole coupling as determined semiqualitatively by the ferromagnetic resonance measurements.

Sun Li; Zhai Ya [Department of Physics, Southeast University, Nanjing 211189 (China); Department of Electronics, Spintronics and Nanodevice Laboratory, University of York, York YO10 5DD (United Kingdom); Wong Pingkwanj; Zhang Wen; Xu Yongbing [Department of Electronics, Spintronics and Nanodevice Laboratory, University of York, York YO10 5DD (United Kingdom); Zou Xiao; Wu Jing [Department of Physics, University of York, York YO10 5DD (United Kingdom); Luo Linqiang; Zhai Hongru [National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093 (China)

2011-02-01T23:59:59.000Z

453

Spin-projection orientations in the plane square-lattice Ising model with periodic boundary conditions  

E-Print Network (OSTI)

The periodic boundary conditions changed the plane square-lattice Ising model to the torus-lattice system which restricts the spin-projection orientations. Only two of the three important spin-projection orientations, parallel to the x-axis or to the y-axis, are suited to the torus-lattice system. The infinitesimal difference of the free-energies of the systems between the two systems mentioned above makes their critical temperatures infinitely close to each other, but their topological fundamental groups are distinct.

You-gang Feng

2005-06-24T23:59:59.000Z

454

Science with the Square Kilometer Array: Motivation, Key Science Projects, Standards and Assumptions  

E-Print Network (OSTI)

The Square Kilometer Array (SKA) represents the next major, and natural, step in radio astronomical facilities, providing two orders of magnitude increase in collecting area over existing telescopes. In a series of meetings, starting in Groningen, the Netherlands (August 2002) and culminating in a `science retreat' in Leiden (November 2003), the SKA International Science Advisory Committee (ISAC), conceived of, and carried-out, a complete revision of the SKA science case (to appear in New Astronomy Reviews). This preface includes: (i) general introductory material, (ii) summaries of the key science programs, and (iii) a detailed listing of standards and assumptions used in the revised science case.

C. Carilli; S. Rawlings

2004-09-12T23:59:59.000Z

455

Modular heat exchanger  

DOE Patents (OSTI)

A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

Culver, Donald W. (Poway, CA)

1978-01-01T23:59:59.000Z

456

The Neural Heat Exchanger  

E-Print Network (OSTI)

The "Neural Heat Exchanger" is an alternative, supervised learning method for multi-layer neural nets. It is inspired by the physical heat exchanger. Unlike backprop, it is entirely local. This makes its parallel implementation trivial. It was first presented during occasional talks since 1990, and is closely related to Hinton et. al.'s recent Helmholtz Machine (1995). For the first time, this paper presents the basic ideas in written form. To fully understand the Neural Heat Exchanger's advantages and limitations, however, much theoretical and empirical work remains to be done. 1 Introduction Most conventional supervised algorithms for multi-layer neural nets are not local in space and time. Backprop, for instance, requires a global control mechanism that first propagates activation signals through all successive layers, then waits until the error signals come back, then changes the weights. Many suspect, however, that the brain does use an entirely local algorithm. One advantage of...

Jrgen Schmidhuber

1996-01-01T23:59:59.000Z

457

Flat plate heat exchangers  

SciTech Connect

A lightweight flat plate heat exchanger comprised of two or more essentially parallel flat plates which are formed and arranged to provide fluid flow passages between the plates. New combinations of plastic plates include the usage of transparent plastic foam and honeycomb structures. Improved shapes of flow passages include the usage of flow nozzles, flow diffusers, and jet pumps to increase fluid flow and heat transfer. The invention includes the usage of transparent plastic foam plates which are shaped to concentrate solar energy onto plastic tubes. Clear plastic tubes containing black heat transfer fluid are included. The invention includes the usage of spiral flow channels within plastic foam plates. Six different embodiments of the invention are included. Five of the embodiments could be used as efficient lightweight solar collectors.

Berringer, R.T.

1981-09-29T23:59:59.000Z

458

Industrial Heat Recovery - 1982  

E-Print Network (OSTI)

Two years ago I summarized 20 years of experience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. At the end of that paper I concluded with brief advice on 'How to specify heat recovery equipment.' The two years which have elapsed since then have convinced me that proper specification assures the most reliable equipment at the lowest price. The most economical specification describes the operating and site data but leaves the design details for the supplier. A true specialist will be able to provide you with the latest technology at the best possible price. This paper explores the impact of specifications on heat recovery equipment and its associated cost.

Csathy, D.

1982-01-01T23:59:59.000Z

459

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

460

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

1989-06-07T23:59:59.000Z

462

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

463

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

464

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

465

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

466

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

467

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Details Activities (4) Areas (2) Regions (0) Abstract: High heat flow in the Zuni Mountains, New Mexico, U.S.A., has been explained by the possible presence of a buried felsic pluton. Alternately, high K, U, Th abundances have been proposed to account for part of the high heat flow. The mean radiogenic heat contribution for 60 samples of Precambrian core rocks is 7.23 μcal/gm-yr, which is slightly

468

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

Based on the status quo that conventional energy sources are more and more reduced and environmental pollution is increasingly serious, this paper presents a new model system of conserving energy and environmental protection, namely, a Solar Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar heat collector is solved by latent heat storage. In order to obtain such system running conditions and effects in different heating periods, an experiment has been carried out during the whole heating period in Harbin, China. The experimental results show that this system is much better for heating in initial and late periods than that in middle periods. The average heating coefficient is 6.13 for heating in initial and late periods and 2.94 for heating in middle periods. At the same time, this paper also predicts system running properties in other regions.

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

469

Textures in Polygonal Arrangements of Square Nanoparticles in Nematic Liquid Crystals Matrices  

E-Print Network (OSTI)

A systematic analysis of defect textures in facetted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau-de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects, are absorbed by the nanoparticle's corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.

Paul M. Phillips; N. Mei; Ezequiel R. Soule; Linda Reven; Alejandro D. Rey

2013-11-21T23:59:59.000Z

470

Wrought Superalloy Heat Treatment  

Science Conference Proceedings (OSTI)

Table 5   Effect of heat treatment on the properties of A-286...tensile strength Elongation % Reduction in area, % MPa ksi MPa ksi Life, h Elongation, % Reduction in area, % 980 °C (1800 °F) for 1 h, oil quench (OQ)

471

Rf heating of mirrors  

SciTech Connect

A brief overview is presented of potential uses for rf heating of plasmas in mirror devices. While some discussion relating to past experiments is given, the main emphasis is devoted to a review of potential experiments in presently existing devices, and devices under construction or planning. Some predictions are made for plasmas in mirror reactors.

Porkolab, M.

1980-04-09T23:59:59.000Z

472

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

473

Solar heating and you  

SciTech Connect

This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

1994-08-01T23:59:59.000Z

474

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

475

Heating element support clip  

DOE Patents (OSTI)

An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

Sawyer, William C. (Salida, CA)

1995-01-01T23:59:59.000Z

476

Mapping Heat Flux  

Science Conference Proceedings (OSTI)

An infrared camera technique designed for remote sensing of airwater heat flux has been developed. The technique uses the differential absorption of water between 3.817 and 4.514 microns. This difference causes each channels radiance to ...

Walt McKeown; Richard Leighton

1999-01-01T23:59:59.000Z

477

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in  

E-Print Network (OSTI)

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in 1984, this facility has an 11-story jail wing attached to a two-story County administrative wing

478

Efficient Local Error Parameterizations for Square Root or Ensemble Kalman Filters: Application to a Basin-Scale Ocean Turbulent Flow  

Science Conference Proceedings (OSTI)

In large-sized atmospheric or oceanic applications of square root or ensemble Kalman filters, it is often necessary to introduce the prior assumption that long-range correlations are negligible and force them to zero using a local ...

Jean-Michel Brankart; Emmanuel Cosme; Charles-Emmanuel Testut; Pierre Brasseur; Jacques Verron

2011-02-01T23:59:59.000Z

479

Field Performance of Heat Recovery Chillers and Heat Recovery Heat Pumps  

Science Conference Proceedings (OSTI)

Heat recovery chillers and heat recovery heat pumps operate at high efficiency and excellent economy by simultaneously providing both heating and cooling. Although this technology has been in use for more than thirty years and all major chiller manufacturers offer heat recovery models, applications are not yet widespread. One of the barriers to using this technology is the lack of measured performance information on the devices. This project was undertaken to identify and summarize existing sources of pe...

1994-05-18T23:59:59.000Z

480

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

Note: This page contains sample records for the topic "heated square footage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Variable conductance heat pipe enhancement  

SciTech Connect

This patent describes a heat pipe. It comprises a tubular hollow heat pipe having an evaporator end and an opposite condenser end, the heat pipe having a cross-sectional area and having a condenser length extending from the condenser end the condenser length including an active length where evaporated fluid condenses; an evaporatable and condensable fluid in the heat pipe for evaporating when receiving heat near the evaporation end and for condensing when giving up heat in the active length; a noncondensable gas near the condenser end and in the condenser length of the heat pipe; a restriction member fixed in the heat pipe near the condenser end, the restriction member extending only along a portion of the condenser length and being spaced away from the evaporation end of the heat pipe, the restriction member having a varied cross-sectional area along the length of the restriction member which is less than the cross-sectional area of the heat pipe for confining the gas and a portion of the fluid in the active condenser length, to an area around the restriction member and in the heat pipe; and a fixed ligament connected between the restriction member and the heat pipe for fixing the restriction member in the heat pipe, the ligament being fixed between the condenser end of the heat pipe end and an end of the restriction member which is closest to the condenser end.

Kneidel, K.E.

1991-09-03T23:59:59.000Z

482

Energy Basics: Ductless, Mini-Split Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

483

Geothermal-heating facilities for Carson Elementary School and Wind River Middle School  

DOE Green Energy (OSTI)

Carson Elementary School and Wind River Middle School are located in Carson, Washington, adjacent to the Wind River. Both schools are operated by the Stevenson-Carson School District. Carson Elementary, comprised of 49,000 square feet, was constructed in several phases beginning in 1951. The construction is variable, but is characterized by large expanses of single glass and uninsulated masonry areas. An oil fired steam boiler supplies a variety of terminal equipment. Wind River Middle School was built in 1972 and, as a result, exhibits much greater insulation levels. The 38,000 square foot structure is heated entirely by an electric resistance terminal reheat system. Carson Hot Springs Resort, located approximately one half mile from the schools, exhibits temperatures of 124/sup 0/F. In addition, geological work is in progress to better define the local geothermal resource. The feasibility of geothermal use at the school for space heating purposes is examined.

Not Available

1982-02-01T23:59:59.000Z

484

Optimization of Heat Exchanger Cleaning  

E-Print Network (OSTI)

The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach, economic incentives for heat exchanger cleaning are evaluated using linear, exponential, and exponential finite decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods.

Siegell, J. H.

1986-06-01T23:59:59.000Z

485

Heat pipe transient response approximation.  

SciTech Connect

A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.

Reid, R. S. (Robert Stowers)

2001-01-01T23:59:59.000Z

486

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

487

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

488

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

489

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

490

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

491

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

492

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

493

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

494

HEAT EXCHANGER DEVICE AND METHOD FOR HEAT REMOVAL OR TRANSFER ...  

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a ...

495

Heating Degree Day Data Applied to Residential Heating Energy Consumption  

Science Conference Proceedings (OSTI)

Site-specific total electric energy and heating oil consumption for individual residences show a very high correlation with National Weather Service airport temperature data when transformed to heating degree days. Correlations of regional total ...

Robert G. Quayle; Henry F. Diaz

1980-03-01T23:59:59.000Z

496

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

497

A Square Prism Urban Canopy Scheme for the NHM and Its Evaluation on Summer Conditions in the Tokyo Metropolitan Area, Japan  

Science Conference Proceedings (OSTI)

A single-layered square prism urban canopy (SPUC) scheme for the Japan Meteorological Agency nonhydrostatic model (NHM) was developed. This scheme considers the urban canopy layer with square prismshaped buildings. The basic concept of this ...

Toshinori Aoyagi; Naoko Seino

2011-07-01T23:59:59.000Z

498

A blow-up criterion for compressible viscous heat-conductive flows  

E-Print Network (OSTI)

We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.

Jiang, Song

2010-01-01T23:59:59.000Z

499

Guidance for Developing Baseline and Annual Water Use | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Developing Baseline and Annual Water Use Guidance for Developing Baseline and Annual Water Use Guidance for Developing Baseline and Annual Water Use Potable water use intensity is defined as annual potable water use divided by total gross square footage of facility space (gal/ft2). The facility gross square footage is the same value used for energy use intensity reduction goals. Executive Order (E.O.) 13423 requires Federal agencies to develop a potable water use intensity baseline for fiscal year (FY) 2007. Agencies must report total potable water consumption and gross facility square footage against that baseline. To avoid additional reporting requirements, E.O. 13423 does not require agencies to report square footage of irrigated turf or landscape. Potable water used for landscape irrigation must be reported in total potable water

500

Upgrading Below Grade Spaces: A Look Inside the Remodeling Industry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Below Grade Spaces: Below Grade Spaces: A Look Inside the Remodeling Industry Steve Schirber Cocoon steve@cocoon-solutions.com How do we insulate a basement? How do we insulate a basement? It all starts with the consumer! What is the Consumer buying and why? What is the Consumer buying and why? 1. Square footage What is the Consumer buying and why? 1. Square footage 2. Finishes What is the Consumer buying and why? 1. Square footage 2. Finishes 3. An experience What is the Consumer buying and why? 1. Square footage 2. Finishes 3. An experience 4. Performance Who does the Consumer buy from and why? Who does the Consumer buy from and why? 1. DIY/Box store Who does the Consumer buy from and why? 1. DIY/Box store 2. Friend/Relative Who does the Consumer buy from