Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

2

Building Technologies Office: Hydronic Heating in Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydronic Heating in Multifamily Buildings Expert Meeting to someone by E-mail Share Building Technologies Office: Hydronic Heating in Multifamily Buildings Expert Meeting on...

3

Building Technologies Office: Water Heating Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

4

Use advisability of heat pumps for building heating and cooling  

Science Conference Proceedings (OSTI)

In the actual economic and energetic juncture, the reduction of thermal energy consumption in buildings became a major, necessary and opportune problem, general significance. The heat pumps are alternative heating installations more energy efficiency ... Keywords: "Geoterm" system, building heating/cooling, energy and economic analysis, heat pump performances, heat pumps, renewable energy sources

Ioan Sârbu; C?lin Sebarchievici

2010-02-01T23:59:59.000Z

5

Heat Recovery in Building Envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

Sherman, Max H.; Walker, Iain S.

2001-01-01T23:59:59.000Z

6

PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS  

E-Print Network (OSTI)

solar space heating system with heat input and building loadBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATINGBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

7

Heat recovery in building envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load. This paper discusses simplified analytical modeling and CFD simulations that examine infiltration heat recovery (IHR) in an attempt to quantify the magnitude of this effect for typical building envelopes. For comparison, we will also briefly examine the results of some full-scale field measurements of IHR based on infiltration rates and energy use in real buildings. The results of this work showed that for houses with insulated walls the heat recovery is negligible due to the small fraction of the envelope that participates in heat exchange with the infiltrating air. However; there is the potential for IHR to have a significant effect for higher participation dynamic walls/ceilings or uninsulated walls. This result implies that the existing methods for evaluating infiltration related building loads provide adequate results for typical buildings.

Walker, Iain S.; Sherman, Max H.

2003-08-01T23:59:59.000Z

8

Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating  

SciTech Connect

BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

2010-09-01T23:59:59.000Z

9

Heat recovery in building envelopes  

E-Print Network (OSTI)

Heating Research Facility (AHHRF) located in Edmonton, Alberta, Canada. The house is of standard wood

Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

10

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

11

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

3. Heating Equipment, Floorspace, 1999" 3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,679,2271,1183,"Q",463,1779,250 "5,001 to 10,000 ..............",8238,7090,745,2848,1350,"Q",1040,2301,"Q" "10,001 to 25,000 .............",11153,9865,1288,3047,3021,307,2047,3994,401

12

Passive solar heating of buildings  

DOE Green Energy (OSTI)

Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five general classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Examples of each are discussed. Passive test rooms built at Los Alamos are described and results are presented. Mathematical simulation techniques based on thermal network analysis are given together with validation comparisons against test room data. Systems analysis results for 29 climates are presented showing that the concepts should have wide applicability for solar heating.

Balcomb, J.D.; Hedstrom, J.C.; McFarland, R.D.

1977-01-01T23:59:59.000Z

13

Active and passive solar heating of buildings  

SciTech Connect

An overview of both active and passive solar heating approaches for buildings is presented. Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Results of simulation analyses are presented for a variety of climates. Active systems utilizing both liquid-heating collectors and air-heating collectors are described. Trends in the recent development of solar heating are discussed.

Balcomb, J.D.

1977-01-01T23:59:59.000Z

14

Building Technologies Office: Utility Solar Water Heating Initiative  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utility Solar Water Heating Initiative Search Search Help Utility Solar Water Heating Initiative EERE Building Technologies Office Utility Solar Water Heating Initiative...

15

Passive solar heating for buildings  

DOE Green Energy (OSTI)

A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. A survey of passive solar heating experience, especially in the U.S., is provided. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

Balcomb, J.D.

1979-01-01T23:59:59.000Z

16

Building Blocks of Tropical Diabatic Heating  

Science Conference Proceedings (OSTI)

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are ...

Samson Hagos

2010-07-01T23:59:59.000Z

17

Direct Use for Building Heat and Hot Water Presentation Slides...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Download...

18

Klamath Apartment Buildings (13) Space Heating Low Temperature...  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

19

Building Technologies Office: HVAC Optimized Heat Exchangers Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Heat Optimized Heat Exchangers Research Project to someone by E-mail Share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Facebook Tweet about Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Twitter Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Google Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Delicious Rank Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Digg Find More places to share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

20

Heat Pump Water Heaters for Commercial Buildings  

Science Conference Proceedings (OSTI)

This technical update from the Electric Power Research Institute (EPRI) reviews the technology of heat pump water heaters (HPWHs) for commercial building applications. The report discusses the technical and conceptual background of heat pump water heaters, laboratory testing as performed at EPRI's laboratory, and implications of the test results. It provides analysis of the climactic applicability, financial scenarios, the air-cooling benefit or detriment of HPWH technology.

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modern Heating Options for Commercial/Institutional Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

reducing the heating energy in buildings using a combination of low temperature boilers, heat recovery strategies and a new approach to geo-thermal systems. His data from...

22

Building America Standing Technical Committee - Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Standing Technical Committee Strategic Plan, v2012a Revised: January 2012 Committee Chair: 2011, 2012 Marc Hoeschele mhoesch@davisenergy.com 530-753-1100 x23 ARBI Page 2 Background on Residential Water Heating According to the U.S. Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS), annual residential water heating totals 2.11 quads of energy annually, or 20% of the energy delivered to residential buildings 1 . Over the past 70 years, gas and electric storage water heaters have been the predominant water heater type in the United States 2 . Recently, gas tankless water heaters have made inroads in market share with current industry projected gas tankless sales estimated at 400,000+ annually, and an

23

Building Energy Software Tools Directory: HEAT3  

NLE Websites -- All DOE Office Websites (Extended Search)

be described in a rectangular grid. HEAT3 can be used for analyses of thermal bridges, heat transfer through corners of a window, heat loss from a house to the ground, to...

24

Building Technologies Office: Cold Climate Heat Pump Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold Climate Heat Pump Cold Climate Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Cold Climate Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Cold Climate Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Google Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Delicious Rank Building Technologies Office: Cold Climate Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Cold Climate Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

25

ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling Upgrades The Building Upgrade...

26

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

27

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

28

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

29

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

30

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

31

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

32

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

33

Building Codes and Regulations for Solar Water Heating Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo...

34

Building Energy Software Tools Directory: HEAT2  

NLE Websites -- All DOE Office Websites (Extended Search)

internal modifications is 100 (one application is analysis of floor heating with many pipes). Conductances and capacities may be written to file. Temperature field may be...

35

Oakland University Human Health Science Building Geothermal Heat...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Oakland University Human Health Science Building Geothermal Heat Pump Systems Project Type Topic 1 Recovery Act - Geothermal...

36

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

37

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

38

FS: heat pump water heaters | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

39

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

40

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modern Heating Options for Commercial/Institutional Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Heating Options for Commercial/Institutional Buildings Modern Heating Options for Commercial/Institutional Buildings Speaker(s): Thomas Durkin Date: February 23, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Moira Howard-Jeweler This seminar presentation will be video-conferenced from our Washington, DC Projects office.) According to USGBC, LBNL, and CBECS data, commercial/institutional buildings use one quarter of all the energy consumed in the US. Depending on the geographic area of the country, heating can be as little as 30% (Houston), or as much as 68% (Minneapolis) of the building total. Mr. Durkin will share his experience in dramatically reducing the heating energy in buildings using a combination of low temperature boilers, heat recovery strategies and a new approach to geo-thermal systems. His data from completed projects shows 50 to 60%

42

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

43

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

44

Heating remote rooms in passive solar buildings  

DOE Green Energy (OSTI)

Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

45

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

46

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

Science Conference Proceedings (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

47

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

determine the building response to the solar heating system.on building comfort of an active solar heating system wherethe building response to a typical h"ydronic solar heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

48

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

49

Heat storage and distribution inside passive-solar buildings  

DOE Green Energy (OSTI)

Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

50

Space heating for office building at Glenwood Springs, Colorado  

DOE Green Energy (OSTI)

Technical assistance in a preliminary design and economic evaluation of a geothermal heating system was provided. The use of a downhole heat exchanger was evaluated, with the objective of reducing costs in this first stage of the project, but was abandoned. The low resource temperature and lack of sufficient aquifer data were the reasons for abandonment of the downhole heat exchanger concept. The use of surface plate heat exchangers was selected as the preferred approach for utilizing the geothermal resource. Brine will be passed through three plate heat exchangers in the building basement. Separate loops of clean circulating fluid will be used to extract heat from the brine in three heat exchangers, with the loops providing heat to the building, a hot tub, and a deicing system. The cooled geothermal fluid from the heat exchangers will be injected to an isolated injection zone at the bottom of the production well. Aquifer tests are required to develop final pump sizes and process flows. The information developed from the work tasks of this project is presented.

Garing, K.L.; Coury, G.E.

1982-03-01T23:59:59.000Z

51

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

52

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

53

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

54

AEDG Implementation Recommendations: Cooling and Heating Loads | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling and Heating Loads Cooling and Heating Loads The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on heating and cooling system design loads for the purpose of sizing systems and equipment should be calculated in accordance with generally accepted engineering standards and handbooks such as ASHRAE Handbook--Fundamentals. Publication Date: Wednesday, May 13, 2009 air_cooling_and_heating_loads.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999

55

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

56

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

57

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

58

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

59

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

60

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

62

Table B37. Water Heating Equipment, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

63

THERM: Two-Dimensional Building Heat-Transfer Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

64

Energy conservation by adaptive control for a solar heated building  

DOE Green Energy (OSTI)

Identification and optimal control techniques are combined to form an adaptive optimal control strategy which is used to minimize the auxiliary energy consumption for a solar heated building. The adaptive optimal control strategy is described and application of the adaptive optimal controller to the heating, ventilating, and air conditioning (HVAC) system in an appropriate building is modeled. The building used is the newly completed National Security and Resources Study Center (NSRSC) at the Los Alamos Scientific Laboratory (LASL). The NSRSC uses an 8000 sq. ft. solar collector to provide energy for heating and cooling the building. A cost functional to define optimal performance of the HVAC system and an identification process to produce a linearized building model are combined to yield an adaptive linear regulator solution. Although solar energy is used for both heating and cooling the NSRSC, only the results from the heating simulation are available for presentation here. Energy savings predicted by the model when compared to a conventional control system are described and an alternate system configuration is briefly discussed. Plans for actual implementation of the adaptive optimal controller are discussed.

Farris, D.R.; Melsa, J.L.; Murray, H.S.; McDonald, T.E.; Springer, T.E.

1977-01-01T23:59:59.000Z

65

PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS  

E-Print Network (OSTI)

INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS Mashuri L.CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS * • Mashuri L.consists of a hydronic solar space heating system with heat

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

66

Feasibility Analysis For Heating Tribal Buildings with Biomass  

DOE Green Energy (OSTI)

This report provides a feasibility study for the heating of Tribal buildings using woody biomass. The study was conducted for the Confederated Salish and Kootenai Tribes of the Flathead Reservation in western Montana. S&K Holding Company and TP Roche Company completed the study and worked together to provide the final report. This project was funded by the DOE's Tribal Energy Program.

Steve Clairmont; Micky Bourdon; Tom Roche; Colene Frye

2009-03-03T23:59:59.000Z

67

Convective heat transfer inside passive solar buildings  

DOE Green Energy (OSTI)

Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

1983-01-01T23:59:59.000Z

68

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

69

Performance estimates for attached-sunspace passive solar heated buildings  

SciTech Connect

Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

McFarland, R.D.; Jones, R.W.

1980-01-01T23:59:59.000Z

70

On Variations of Space-heating Energy Use in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

On Variations of Space-heating Energy Use in Office Buildings Title On Variations of Space-heating Energy Use in Office Buildings Publication Type Journal Article LBNL Report...

71

Heat recovery and thermal storage : a study of the Massachusetts State Transportation Building  

E-Print Network (OSTI)

A study of the energy system at the Massachusetts State Transportation Building was conducted. This innovative energy system utilizes internal-source heat pumps and a water thermal storage system to provide building heating ...

Bjorklund, Abbe Ellen

1986-01-01T23:59:59.000Z

72

Solar energy collector for mounting over windows of buildings for space heating thereof  

SciTech Connect

The ornamental design for a solar energy collector for mounting over windows of buildings for space heating thereof, as shown.

Arrington, P.M.

1982-09-07T23:59:59.000Z

73

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

74

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

75

Experimental study of natural convection heat transfer through an aperture in passive solar heated buildings  

DOE Green Energy (OSTI)

The objective of this study is to obtain correlations between natural convection heat transfer through an aperture and temperature difference between the two rooms. A one-fifth similitude model of a two-room building is used. The model is filled with Freon gas to satisfy similarity of the experiment to full-scale conditions in air. The experimental apparatus and experimental techniques are explained. Experimental results are presented in terms of Grashof, Nusselt, and Prandtl numbers. The effects of the height, the width, and the vertical position of the apertures are investigated, as is the effect of the room volume.

Yamaguchi, Kenjiro

1984-01-01T23:59:59.000Z

76

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

77

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

78

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

79

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

80

Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Function Multi-Function Fuel-Fired Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Google Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Delicious Rank Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

82

Assessment and Demonstration of Advanced Heat Pumps for Commercial Building Water Heating Applications  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWH) are an alternative to electric resistance or natural gas for domestic water heating. HPWHs are less common than other water heating technologies, but offer the potential for improved energy efficiency and potential for reduction of net CO2 emissions. New products, mainly for residential application, have been introduced to the American market over the last 2 years, which have been previously reviewed by EPRI. This report focuses on commercial applications and provides initi...

2010-12-31T23:59:59.000Z

83

Summer-heat-gain control in passive-solar-heated buildings: fixed horizontal overhangs  

DOE Green Energy (OSTI)

An aspect of passive cooling relates to cooling load reduction by the use of solar controls. When there is a substantial winter heating requirement, and when the winter heating needs are met in part by a passive solar heating system, then the potential aggravation of summer cooling loads by the heating system is an important design issue. A traditional solution is the use of a fixed, horizontal shading overhang. An approach to quantitative design rules for the sizing of a shading overhang to minimize total annual space conditioning energy needs is outlined.

Jones, R.W.

1981-01-01T23:59:59.000Z

84

What`s new in building energy research: Thermal distribution technology. DOE looks at cutting energy losses in a building`s heating and cooling distribution system  

SciTech Connect

The Department of Energy takes a look at cutting energy losses in a building`s heating and cooling distribution system.

1995-11-01T23:59:59.000Z

85

Building Technologies Office: Space Heating and Cooling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

(HVAC) and refrigeration. DOE is conducting research into integration of optimized heat exchanger designs into new products and space conditioning systems. DOE projects...

86

Building Energy Software Tools Directory: HEAT Energy Audit Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

not only compiles data in the field, but produces the reports you need for vendors, inventory control, auditing, invoicing and more. HEAT Energy Audit Tool is flexible,...

87

Integration of Combined Heat and Power Generators into Small Buildings - A Transient Analysis Approach.  

E-Print Network (OSTI)

??Small combined heat and power generators have the potential to reduce energy consumption and greenhouse gas emissions of residential buildings. Recently, much attention has been… (more)

DeBruyn, Adrian Bryan

2007-01-01T23:59:59.000Z

88

Building codes as barriers to solar heating and cooling of buildings  

SciTech Connect

The application of building codes to solar energy systems for heating and cooling of buildings is discussed, using as typical codes the three model building codes most widely adopted by states and localities. Some potential barriers to solar energy systems are found, federal and state programs to deal with these barriers are discussed, and alternatives are suggested. To remedy this, a federal program is needed to encourage state adoption of standards and acceptance of certification of solar systems for code approval, and to encourage revisions to codes based on model legislation prepared for the federal government by the model codes groups.

Meeker, F.O. III

1978-04-01T23:59:59.000Z

89

Solar heating of buildings and domestic hot water  

SciTech Connect

Design criteria and cost analysis methods are presented for the sizing and justification of solar heat collectors for augmentation of potable water heaters and space heaters. Sufficient information is presented to enable engineers to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (WDM)

Beck, E.J. Jr.; Field, R.L.

1976-01-01T23:59:59.000Z

90

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 111.56331078 + Sweden Building 05K0002 + 72.7932960894 + Sweden Building 05K0003 + 111.899416255 + Sweden Building 05K0004 + 72.865497076 + Sweden Building 05K0005 + 285.840707965 + Sweden Building 05K0006 + 128.449958182 + Sweden Building 05K0007 + 63.8377147588 + Sweden Building 05K0008 + 115.128205128 + Sweden Building 05K0009 + 66.5515753129 + Sweden Building 05K0010 + 148.741418764 +

91

Building Energy Software Tools Directory: Heat Pump Design Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Design Model Heat Pump Design Model Heat Pump Design Model logo. Research tool for use in the steady-state simulation and design analysis of air-to-air heat pumps and air conditioners. The program can be used with most of the newer HFC refrigerants as well as with HCFCs and CFCs. The standard vapor-compression cycle is modeled with empirical representations for compressor performance and first-principle region-by-region modeling of the heat exchangers. An online Web version is available that can be used with default configurations or with user-specified component and operating parameters for analyzing the performance of single-speed, air-to-air equipment. User configurations can be saved for later use. Parametric analyses can be made and performance trends plotted online.

92

Building Energy Software Tools Directory: Window Heat Gain  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

93

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

94

North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement  

Science Conference Proceedings (OSTI)

A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

2011-01-01T23:59:59.000Z

95

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

96

Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building  

E-Print Network (OSTI)

In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy simulation program. The study showed that the heat loss from exterior walls, exterior windows and infiltration took three main parts of the total heat loss. Furthermore, the results of on-site measurement are presented with the conclusion that the EnergyPlus program provides sufficient accuracy for this energy simulation application.

Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

2006-01-01T23:59:59.000Z

97

Property:Building/SPElectrtyUsePercHeatPumps | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercHeatPumps SPElectrtyUsePercHeatPumps Jump to: navigation, search This is a property of type String. Heat pumps Pages using the property "Building/SPElectrtyUsePercHeatPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

98

Variable Refrigerant Flow Air Conditioners and Heat Pumps for Commercial Buildings  

Science Conference Proceedings (OSTI)

Multi-split heat pumps have evolved from a technology suitable for residential and light commercial buildings to variable refrigerant flow (VRF) systems that can provide efficient space conditioning for large commercial buildings. VRF systems are enhanced versions of ductless multi-split systems, permitting more indoor units to be connected to each outdoor unit and providing additional features such as simultaneous heating and cooling and heat recovery. VRF systems are very popular in Asia and Europe and...

2008-01-25T23:59:59.000Z

99

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

100

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2HeatPumps SPBreakdownOfElctrcityUseKwhM2HeatPumps Jump to: navigation, search This is a property of type String. Heat pumps Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

102

Commercial building unitary heat pump system with solar heating. Final report, May 1, 1976--October 31, 1977  

DOE Green Energy (OSTI)

A generalized dynamic computer program (SYRSOL) has been developed for the mathematical simulation of the thermal behavior of multi-zone solar heated buildings. The system modeled employs a series of water-to-air heat pumps connected in a closed loop, flat-plate liquid cooled solar collector, a water storage tank, and a cooling tower. Weather data are represented by sinusoids, which provide a convenient and economical alternative to weather tapes. Results indicate that the use of sinusoidal functions for temperature and monthly average values for cloud cover is quite realistic and accurate. Temperature functions for thirteen cities are presented. A preliminary analysis has been done of the feasibility of using solar-energized desiccant dehumidification systems to reduce summer cooling loads. Service hot water production using a water-to-water heat pump from the storage tank is shown to be highly effective and idle solar collectors can be used directly to make service hot water in the summer. A new mathematical heat pump heating model, in which the COP increases linearly with the source water temperature, has been developed and incorporated into SYRSOL. The computer simulation capability has been extended from a heating season to an entire year. The results of some experiments, that have improved the COP of a heat pump, are also reported.

Drucker, E.E.; Ucar, M.; LaGraff, J.E.

1978-05-01T23:59:59.000Z

103

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

104

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

105

Property:Building/SPElectrtyUsePercElctrcHeating | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercElctrcHeating SPElectrtyUsePercElctrcHeating Jump to: navigation, search This is a property of type String. Electric heating Pages using the property "Building/SPElectrtyUsePercElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.28146332495 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 1.35810846872 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 36.3055086974 +

106

Property:Building/SPElectrtyUsePercHeatPumpsUsedForColg | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercHeatPumpsUsedForColg SPElectrtyUsePercHeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used for cooling Pages using the property "Building/SPElectrtyUsePercHeatPumpsUsedForColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.384283126305 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

107

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

108

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

109

Interaction of a solar space heating system with the thermal behavior of a building  

DOE Green Energy (OSTI)

The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

Vilmer, C.; Warren, M.L.; Auslander, D.

1980-12-01T23:59:59.000Z

110

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

111

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

112

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

113

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

114

Innovative Control of Electric Heat in Multifamily Buildings  

E-Print Network (OSTI)

This paper describes the application of web-based wireless technology for control of electric heating in a large multifamily housing complex. The control system architecture and components are described. A web-based application enables remote monitoring of temperature, electric usage and control of peak demand through a temperature-based duty-cycling algorithm developed specifically for the application. Installed costs and energy savings are discussed. A 16% energy-use reduction was confirmed through the first heating season of operation. The response of occupants and management to changes in temperature regime has been a critical aspect of system start-up and commissioning.

Lempereur, D.; Bobker, M.

2004-01-01T23:59:59.000Z

115

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

116

Ground-Coupled Heat and Moisture Transfer from Buildings; Part 2: Application (Preprint)  

DOE Green Energy (OSTI)

In this paper the effects of moisture on the heat transfer from two basic types of building foundations, a slab-on-grade and a basement, are examined. A two-dimensional finite element heat and moisture transfer program is used to show the effects of precipitation, soil type, foundation insulation, water table depth, and freezing on the heat transfer from the building foundation. Comparisons are made with a simple heat conduction model to illustrate the dependency of the soil thermal conductivity on moisture content.

Deru, M.P. (National Renewable Energy Laboratory); Kirkpatrick, A.T. (Colorado State University)

2001-02-21T23:59:59.000Z

117

Using infrared thermography for the study of heat transfer through building envelope components  

Science Conference Proceedings (OSTI)

Heat transfer through building envelope components is typically characterized by one number, the conductance. Such a characterization is best suited for homogeneous samples since it does not quantify or illustrate spatial variations within a sample. However, the growing use of advanced wall and window insulations with existing framing materials has increased the importance of understanding spatial heat transfer effects within building envelope components. An infrared thermography laboratory has been established to provide detailed quantitative and qualitative information on the spatial heat transfer effects of building envelope materials. The use of this facility for more effective product development and more accurate product development and more accurate product characterization is discussed.

Arasteh, D.; Beck, F.; Griffith, B.; Acevedo-Ruiz, M. (Lawrence Berkeley Lab., CA (United States)); Byars, N. (California Polytechnic Univ., San Luis Obispo, CA (United States). Dept. of Engineering Technology)

1991-11-01T23:59:59.000Z

118

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

119

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

Dentz, J.; Henderson, H.

2012-04-01T23:59:59.000Z

120

Virtual sensors for estimation of energy consumption and thermal comfort in buildings with underfloor heating  

Science Conference Proceedings (OSTI)

Evaluating a building's performance usually requires a high number of sensors especially if individual rooms are analyzed. This paper introduces a simple and scalable model-based virtual sensor that allows analysis of a buildings' heat consumption down ... Keywords: Building performance analysis, Energy efficiency, Hybrid HVAC systems, Virtual sensors

Joern Ploennigs; Ammar Ahmed; Burkhard Hensel; Paul Stack; Karsten Menzel

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

122

The integration of water loop heat pump and building structural thermal storage systems  

DOE Green Energy (OSTI)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

123

Building Technologies Office: Heat Pump Laundry Dryer Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

124

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network (OSTI)

. The building is located near the end of the central steam distribution system. Steam from the central steam and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump, it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot

Oak Ridge National Laboratory

125

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

126

Solar heating system for recreation building at Scattergood School  

DOE Green Energy (OSTI)

This project was initiated in May 1976 and was completed in June 1977. A six-month acceptance-testing period followed during which time a number of minor modifications and corrections were made to improve system performance and versatility. This Final Report describes in considerable detail the solar heating facility and the project involved in its construction. As such, it has both detailed drawings of the completed system and a section that discusses the bottlenecks that were encountered along the way.

Heins, C.F.

1978-01-03T23:59:59.000Z

127

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2ElctrcHeating" SPPurchasedEngyPerAreaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

128

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

129

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

130

Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

131

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

132

1-2-3D Heat Transfer Simulation Software for Buildings by Physibel  

NLE Websites -- All DOE Office Websites (Extended Search)

1-2-3D Heat Transfer Simulation Software for Buildings by Physibel Speaker(s): Piet Standaert Date: August 8, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

133

An analysis of heating and cooling conservation features in commercial buildings  

SciTech Connect

One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The database is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1906. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings.

Sutherland, R.J.

1990-01-01T23:59:59.000Z

134

An analysis of heating and cooling conservation features in commercial buildings  

SciTech Connect

One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The database is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1906. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings.

Sutherland, R.J.

1990-12-31T23:59:59.000Z

135

Study of thermosiphon and radiant panel passive heating systems for metal buildings  

DOE Green Energy (OSTI)

A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

1983-01-01T23:59:59.000Z

136

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

Dentz, J.; Henderson, H.; Varshney, K.

2013-10-01T23:59:59.000Z

137

Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use  

SciTech Connect

This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

2012-01-01T23:59:59.000Z

138

Field Measurement of Heating System in a Hotel Building in Harbin  

E-Print Network (OSTI)

Heating energy consumption in winter is an important component of the whole building energy consumption in the severe cold zone in north China. This paper presents a heating water system of a hotel building in Harbin, finishes the testing of its heating energy consumption in winter under operational conditions, and presents an stimation index of the performance of an exchanger, pump and motor. Analysis of device running conditions based on testing data is conducted. Results show that low stream supply temperature and wide-range flow fluctuation mainly lead to unhealthy working conditions of the device and excessive energy consumption, and a corresponding improved method is presented.

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

139

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network (OSTI)

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over the last thirty years, a number of simulation models have been developed to calculate the performance of the ground heat exchanger (GHX). The several computer programs can evaluate the GCHP systems as a part of the whole-building energy simulation. This paper briefly presents a general introduction to GSHP systems and the GCHP system, and reviews the currently developed GCHP models and compares computer programs for a GCHP design. In addition, GHX models which play an important role on the GCHP performance are reviewed. Finally, several widely recognized computer simulation programs for building energy analysis are compared regarding their GCHP simulation capability.

Do, S. L.; Haberl, J. S.

2010-08-01T23:59:59.000Z

140

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces  

Science Conference Proceedings (OSTI)

Information on the statistical mean convective heat transfer coefficient (CHTC"S"M) for a building surface, which represents the temporally-averaged CHTC over a long time span (e.g. the lifetime of the building), could be useful for example for the optimisation ... Keywords: Building facade, Building orientation, CFD, Convective heat transfer coefficient, Low-Reynolds number modelling, RANS, Wind climate

Thijs Defraeye; Jan Carmeliet

2010-12-01T23:59:59.000Z

142

Development of an integrated building load-ground source heat pump model as a test bed to assess short- and long-term heat pump and ground loop performance.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) have the ability to significantly reduce the energy required to heat and cool buildings. Historically, deployment of GSHP's in the… (more)

Gaspredes, Jonathan Louis

2012-01-01T23:59:59.000Z

143

A Large-Eddy Simulation Study of Bottom Heating Effects on Scalar Dispersion in and above a Cubical Building Array  

Science Conference Proceedings (OSTI)

Thermal effects on scalar dispersion in and above a cubical building array are numerically investigated using the parallelized large-eddy simulation model (PALM). Two cases (no heating and bottom heating) are simulated, and scalar dispersion ...

Seung-Bu Park; Jong-Jin Baik; Young-Hee Ryu

144

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

145

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

146

Behavioral determinants of energy consumption in a centrally-heated apartment building  

Science Conference Proceedings (OSTI)

This paper discusses tenant perceptions and behavior regarding heating and ventilation in multifamily buildings. Data were collected at a 60-unit subsidized housing complex for senior citizens. The building has central steam heating and the fuel is neither billed nor metered to individual apartments. Winter indoor temperatures average 26/sup 0/C (79/sup 0/F). In order to explain behavior more fully than the simple statement ''tenants don't pay for the heat,'' we show how the tenants and maintenance staff act as a self-regulating system that determines heating system operation through local optimization. Using data from ethnographic interviews and a questionnaire survey of all the residents, the authors give quantitative measures of reported comfort and strategies for controlling comfort. They also discuss thee factors which tenants consider important for thermal comfort and their choices among various heat control strategies. For examples, why do only 35% use radiator valves to control the heat while 84% use windows. Implications are discussed for new construction and retrofit, as well as for equity and management policies. The authors argue that a proper understanding of the behavioral context in multifamily buildings is essential, both to avoid ineffective and costly retrofits and to suggest low-cost measures which address the behavioral determinants of energy use.

De Cicco, J.M.; Kempton, W.

1987-01-01T23:59:59.000Z

147

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for one-dimensional heat conduction in a solid only needs todifferent models to compute heat conduction through opaqueone-dimensional heat conduction through multi-layered

Wetter, Michael

2013-01-01T23:59:59.000Z

148

Solar heating panel: Parks and Recreation Building, Saugatuck Township Park and Recreation Commission. Final report  

DOE Green Energy (OSTI)

This report is an account of the design and installation of a solar heating system on an existing building in Saugatuck, MI, using existing technology. The purpose of this program is to demonstrate the possibilities of alternative energy, educate local craftsmen, and make the building more useful to the community. The structure of the building is described. The process of insulating the structure is described. The design of the solar panel, headers, and strong box full of rocks for heat storage is given complete with blueprints. The installation of the system is also described, including photographs of the solar panel being installed. Included is a performance report on this system by Purbolt's Inc., which describes measurements taken on the system and outlines the system's design and operation. Included also are 12 slides of the structure and the solar heating system. (LEW)

Not Available

1980-12-04T23:59:59.000Z

149

Evaluating the performance of passive-solar-heated buildings  

DOE Green Energy (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

150

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

in the Evolving Electricity Generation and Deliveryfor meeting building electricity and heat requirementswas funded by the Office of Electricity Delivery and Energy

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

151

Method of energy load management using PCM for heating and cooling of buildings  

DOE Patents (OSTI)

A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

Stovall, T.K.; Tomlinson, J.J.

1996-03-26T23:59:59.000Z

152

Method of energy load management using PCM for heating and cooling of buildings  

DOE Patents (OSTI)

A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

Stovall, Therese K. (Knoxville, TN); Tomlinson, John J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

153

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalwith absorption chillers that use waste heat for cooling (

Stadler, Michael

2010-01-01T23:59:59.000Z

154

Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6  

DOE Green Energy (OSTI)

The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

MOSS, TIMOTHY A.

2002-03-01T23:59:59.000Z

155

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

156

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

Science Conference Proceedings (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

157

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

Marseille, T.J.; Schliesing, J.S.

1990-09-01T23:59:59.000Z

158

Interaction of lighting, heating, and cooling systems in buildings  

SciTech Connect

The interaction of building lighting and HVAC systems, and the effects on cooling load and lighting system performance, are being evaluated using a full-scale test facility at the National Institute of Standards and Technology. The results from a number of test configurations are described, including lighting system efficiency and cooling load due to lighting. The effect of lighting and HVAC system design and operation on performance is evaluated. Design considerations are discussed.

Treado, S.J.; Bean, J.W.

1992-03-01T23:59:59.000Z

159

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

160

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

162

Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint  

DOE Green Energy (OSTI)

A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

Deru, M.; Judkoff, R.; Neymark, J.

2002-08-01T23:59:59.000Z

163

Simple procedure for assessing thermal comfort in passive solar heated buildings  

DOE Green Energy (OSTI)

The Fanger thermal comfort equation is linearized and used to develop a procedure for assessing thermal comfort levels in passive solar heated buildings. In order to relate comfort levels in nonuniform environments to uniform conditions, a new thermal index called the equivalent uniform temperature is introduced.

Wray, W.O.

1979-01-01T23:59:59.000Z

164

Roof shading and wall glazing techniques for reducing peak building heating and cooling loads. Final report  

SciTech Connect

The roof shading device proved to be effective in reducing peak building cooling loads under both actual testing conditions and in selected computer simulations. The magnitude of cooling load reductions varied from case to case depending on individual circumstances. Key variables that had significant impacts on its thermal performance were the number of months of use annually, the thermal characteristics of the roof construction, hours of building use, and internal gains. Key variables that had significant impacts upon economic performance were the costs of fuel energy for heating and cooling, and heating and cooling equipment efficiency. In general, the more sensitive the building is to climate, the more effective the shading device will be. In the example case, the annual fuel savings ($.05 psf) were 6 to 10% of the estimated installation costs ($.50 to .75 psf). The Trombe wall installation at Roxborough High School proved to be effective in collecting and delivering significant amounts of solar heat energy. It was also effective in conserving heat energy by replacing obsolete windows which leaked large amounts of heat from the building. Cost values were computed for both solar energy contributions and for heat loss reductions by window replacement. Together they amount to an estimated three hundred and ninety dollars ($390.00) per year in equivalent electric fuel costs. When these savings are compared with installation cost figures it is apparent that the Trombe wall installation as designed and installed presents a potentially cost-effective method of saving fuel costs. The study results indicate that improved Trombe wall efficiency can be achieved by making design and construction changes to reduce or eliminate outside air leakage into the system and provide automatic fan control.

Ueland, M.

1981-08-01T23:59:59.000Z

165

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

166

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

167

Available Technologies: Convection Heat Pump  

APPLICATIONS OF TECHNOLOGY: Solar thermal systems; Heating and cooling systems for buildings; Refrigeration; Compressed air source; Recycling waste heat from chimneys

168

Economic analysis of wind-powered farmhouse and farm building heating systems. Final report  

DOE Green Energy (OSTI)

The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

1981-01-01T23:59:59.000Z

169

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network (OSTI)

and towns have (some) district heating, and DH currently supplies 1% of heating for buildings in Norway.2 to district heating if there is a supply. According to HP industry representatives, howeverProject Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12

170

Design methodologies for energy conservation and passive heating of buildings utilizing improved building components. Progress report No. 3, January 15--April 15, 1978  

DOE Green Energy (OSTI)

The recently completed MIT Solar Building 5 demonstrates direct gain solar space heating through the use of new architectural finish materials. February 1978 measurements are summarized. Results indicate the building performed nearly as expected.

Habraken, N.J.; Johnson, T.E.

1978-04-01T23:59:59.000Z

171

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

172

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

173

Central unresolved issues in thermal energy storage for building heating and cooling  

DOE Green Energy (OSTI)

This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

Swet, C.J.; Baylin, F.

1980-07-01T23:59:59.000Z

174

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

175

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open  

Open Energy Info (EERE)

HeatPumpsUsedForColg HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used for cooling Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.250906049624 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

176

Monitoring of the performance of a solar heated and cooled apartment building. Final report  

DOE Green Energy (OSTI)

An all-electric apartment building was retrofitted for solar heating and cooling and hot water. The resulting system consists of an array of 1280 square feet of Northrup concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vessel, a 25-ton Arkla Industries absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. With support from the State of Texas Energy Development Fund and the Department of Energy the system was fully instrumented for monitoring.

Vliet, G.C.; Srubar, R.L.

1980-03-01T23:59:59.000Z

177

Monitoring of the performance of a solar heated and cooled apartment building. Final report  

SciTech Connect

An all-electric apartment building in Texas was retrofitted for solar heating and cooling and hot water. The system consists of an array of 1280 square feet of Northrup concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vessel, a 25-ton Arkla Industries absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. The system was fully instrumented for monitoring. Detailed descriptions are given of the solar system, the performance monitoring system, and the data reduction processes. Results are presented and discussed. (WHK)

Vliet, G.C.; Srubar, R.L.

1980-03-01T23:59:59.000Z

178

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

to a typical h"ydronic solar heating system for differentlarger by the active solar heating system. its, Schiller,Klein, and J, A. Duffie, "Solar Heating Design", (New York:

Vilmer, Christian

2013-01-01T23:59:59.000Z

179

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

Pant Rfict Fan coil heat exchanger effectiveness. c min Fanis modeled as a fan-coil heat exchanger. The fan coil outputsystem with a fan-coil heat exchanger sized for a solar

Vilmer, Christian

2013-01-01T23:59:59.000Z

180

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for convective and radiative heat transfer yielded a twofoldModeling of Heat Transfer in Rooms in the Modelica “of California. MODELING OF HEAT TRANSFER IN ROOMS IN THE

Wetter, Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

Air Leakage, and Heat Conduction Gains William 1. Fisk,0.75 to 0.90; thus, heat conduction decreased the coolingby air leakage or heat conduction, because these ducts are

Fisk, W.J.

2011-01-01T23:59:59.000Z

182

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water...

183

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

184

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

185

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

solar heat; • refrigeration loads that can be met either by standard equipment or absorption equivalents; • hot-water and space-heating

Stadler, Michael

2010-01-01T23:59:59.000Z

186

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

solar thermal collectors, absorption chillers, and storageCHP, often with absorption chillers that use waste heat forand • heat-driven absorption chillers. Figure 1 shows a

Stadler, Michael

2010-01-01T23:59:59.000Z

187

Semi-empirical method for estimating the performance of direct gain passive solar heated buildings  

DOE Green Energy (OSTI)

The sunspot code for performance analysis of direct gain passive solar heated buildings is used to calculate the annual solar fraction for two representative designs in ten American cities. The two representative designs involve a single thermal storage mass configuration which is evaluated with and without night insulation. In both cases the solar aperture is double glazed. The results of the detailed thermal network calculations are then correlated using the monthly solar load ratio method which has already been successfully applied to the analysis of both active solar heated buildings and passive thermal storage wall systems. The method is based on a correlation between the monthly solar heating fraction and the monthly solar load ratio. The monthly solar load ratio is defined as the ratio of the monthly solar energy transmitted through the glazing aperture to the building's monthly thermal load. The procedure using the monthly method for any location is discussed in detail. In addition, a table of annual performance results for 84 cities is presented, enabling the designer to bypass the monthly method for these locations.

Wray, W.O.; Balcomb, J.D.; McFarland, R.D.

1979-01-01T23:59:59.000Z

188

Using Remote Control Systems for the Re-Commissioning of Heating Plants of School Building  

E-Print Network (OSTI)

The objective of this work is to develop a semi-automatic commissioning tool that can be implemented in Remote Control Systems to help building operators test the performance of heating plants in school buildings. The work was carried out with the city of Paris and the tool was adapted to the requirements of end-users who are operating more than 700 schools. This semi-automatic commissioning tool could help to reduce costs and time for commissioning tasks of a large number of buildings. It also helps to improve the commissioning process, to have a whole building functional testing approach and make the commissioning procedure available for different users with different skills. This work was carried out as part of an IEA Annex 40 research project, an international research group focused on energy saving technologies and activities that support their application in practice.

Vaezi-Nejad, H.; Detaille, C.; Jandon, M.; Bruyat, F.

2004-01-01T23:59:59.000Z

189

Microgrids: An emerging paradigm for meeting building electricityand heat requirements efficiently and with appropriate energyquality  

Science Conference Proceedings (OSTI)

The first major paradigm shift in electricity generation,delivery, and control is emerging in the developed world, notably Europe,North America, and Japan. This shift will move electricity supply awayfrom the highly centralised universal service quality model with which weare familiar today towards a more dispersed system with heterogeneousqualities of service. One element of dispersed control is the clusteringof sources and sinks into semi-autonomous mu grids (microgrids).Research, development, demonstration, and deployment (RD3) of mu gridsare advancing rapidly on at least three continents, and significantdemonstrations are currently in progress. This paradigm shift will resultin more electricity generation close to end-uses, often involvingcombined heat and power application for building heating and cooling,increased local integration of renewables, and the possible provision ofheterogeneous qualities of electrical service to match the requirementsof various end-uses. In Europe, mu grid RD3 is entering its third majorround under the 7th European Commission Framework Programme; in the U.S.,one specific mu grid concept is undergoing rigorous laboratory testing,and in Japan, where the most activity exists, four major publiclysponsored and two privately sponsored demonstrations are in progress.This evolution poses new challenges to the way buildings are designed,built, and operated. Traditional building energy supply systems willbecome much more complex in at least three ways: 1. one cannot simplyassume gas arrives at the gas meter, electricity at its meter, and thetwo systems are virtually independent of one another; rather, energyconversion, heat recovery and use, and renewable energy harvesting mayall be taking place simultaneously within the building energy system; 2.the structure of energy flows in the building must accommodate multipleenergy processes in a manner that permits high overall efficiency; and 3.multiple qualities of electricity may be supplied to various buildingfunctions.

Marnay, Chris; Firestone, Ryan

2007-04-10T23:59:59.000Z

190

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01T23:59:59.000Z

191

Evaluating Incentives for Solar Heating ...  

Science Conference Proceedings (OSTI)

Page 1. t ~ Ii '.:)' NBSIR 76-1127(IE') Evaluating Incentives for Solar Heating Rosalie T. Ruegg Building Economics Section ...

2008-03-05T23:59:59.000Z

192

Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings  

E-Print Network (OSTI)

This paper presented the concept, prototype application, operational performance and benefits relating to a novel solar assisted water heating system for building services. It was undertaken through dedicated theoretical analysis, computer simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat, and therefore enhance overall solar energy yield. The evaluation approaches derived from the first-law thermodynamics and the standard/hybrid system performance coefficients (COP/COPPV/T) were developed for the comprehensive assessments. Under the featured weather conditions, the mean electrical, thermal and overall energetic efficiencies of the module were tested around 9.12%, 38.13% and 47.25% respectively. Whilst the COP and COPPV/T values of entire system were measured at about 5.51 and 8.81 averagely. Moreover, a general comparison of this prototype system against the conventional solar/air energy systems was simply discussed.

Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

2012-01-01T23:59:59.000Z

193

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps for residential buildings are increasingly used. According to some studies, this figure exceeds 50% (Kilkis et al of new calculation methods. However, in terms of heat transfer modelling, there are several analytical

Paris-Sud XI, Université de

194

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

195

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

196

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation… (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

197

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

198

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

199

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

200

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

202

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

203

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

204

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

205

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

206

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

207

Solar heat regulator  

Science Conference Proceedings (OSTI)

A solar heat regulating device is described for selectively heating with sunlight the air inside a building having a window and shielding and insulating the air inside the building from the heat of sunlight outside the building including: a frame for mounting the solar heat regulating device inside the building and adjacent to the window; a plurality of hollow vanes, each of the vanes having at least one passageway for passing air therethrough; the vanes having a heat absorptive surface on a first side thereof which allows solar radiation impinging on the heat absorptive surface to heat the air contained in the one passageway of the vanes; the vanes having a heat reflective surface on a second side of the vanes which reflects the solar radiation impinging on the second side of the vanes and shields the inside of the building from solar radiation impinging on the vanes; and the vanes having side portions extending between the first and second sides of the vanes, the side portions, and the first and second sides forming the one passageway through each of the vanes, the side portions and the first and second sides of the vanes terminating in top end and bottom end portions.

Boynton, S.L.

1987-04-07T23:59:59.000Z

208

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

209

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

210

Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydronic Hydronic Heating in Multifamily Buildings Jordan Dentz The ARIES Collaborative October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

211

Evacuated-Tube Heat-Pipe Solar Collectors Applied to the Recirculation Loop in a Federal Building: Preprint  

DOE Green Energy (OSTI)

This paper describes the design, simulation, construction, and initial performance of a solar water heating system (a 360-tube evacuated-tube heat-pipe solar collector, 54 m2 in gross area, 36 m2 in net absorber area) installed at the top of the hot water recirculation loop in the Social Security Administration's Mid-Atlantic Center in Philadelphia. When solar energy is available, water returning to the hot water storage tank is heated by the solar array. This new approach, in contrast to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated-tube solar collectors. The simplicity of this approach and its low installation costs support the deployment of solar energy in existing commercial buildings, especially where the roof is some distance away from the water heating system, which is often in the basement. Initial performance measurements of the system are reported.

Walker, A.; Mahjouri, F.; Stiteler, R.

2004-06-01T23:59:59.000Z

212

Instrumentation and performance analysis of the New Mexico Department of Agriculture solar heated and cooled building. Final report  

DOE Green Energy (OSTI)

An instrumentation system was designed and installed on the New Mexico Department of Agriculture (NMDA) building to evaluate the performance of the solar system. The NMDA building is the first specifically designed solar heated and cooled building constructed in the United States. The solar system utilizes the flat plate collectors with liquid as the thermal transfer fluid, hot and cold storage tanks, and an absorption chiller. Over two years of operating experience now exists in regard to the NMDA building. Operation of the NMDA building heating, ventilation and air conditioning (HVAC) system involves three modes. The full heating mode utilizes the collected solar thermal energy for space heating. The full cooling mode utilizes the energy input from the solar collectors in driving the absorption chiller to provide space cooling. The intermediate mode requires heating during the morning hours and cooling during the afternoon. Cooling for the intermediate mode utilizes the cooling tower due to the low ambient relative humidity. The requirement of auxiliary energy is met with a gas fired boiler within the building. The instrumentation system installed on the NMDA building monitored solar insolation, 45 temperatures, 15 flow rates, the rate of electrical energy consumption, local meterology and the relative humidity. The data was recorded on a 15 minute time interval during daylight and every hour during the night.

San Martin, R.L.; Fenton, D.L.

1978-08-01T23:59:59.000Z

213

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

214

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

215

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating & Cooling Systems Water Heating Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood-...

216

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

217

Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976  

DOE Green Energy (OSTI)

This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

Hoffman, H.W.; Kedl, R.J.

1976-11-01T23:59:59.000Z

218

Performance analysis of dedicated heat-pump water heaters in an office building  

SciTech Connect

An evaluation is made of the performance of two generic dedicated heat pump water heaters (HPWHs) in supplying the domestic hot water (DHW) needs of a medium-sized office building in Colorado. Results are based on preliminary data measurements, and assumptions are made to compensate for a faulty flow meter. A stand-alone heat pump plumbed to a conventional tank obtains a coefficient of performance (COP) of 2.4 but only delivers load water temperatures of about 41/sup 0/C (105/sup 0/F) because of the 15,142 L/day (4000 gal/day) recirculating loop flow. An industrial-grade stand-alone HPWH will replace this unit. An integral heat pump/tank unit is being tested, but results are not available because of compressor starting problems. Recirculating loop losses account for 75% of the energy delivered by the HPWHs. These losses could be reduced by 75% if the recirculating loop were insulated, thus reducing the DHW fuel costs by 50%. The insulation expense could be paid in less than 3 years by savings in DHW fuel costs.

Morrison, L.

1981-05-01T23:59:59.000Z

219

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

220

Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results  

Science Conference Proceedings (OSTI)

Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is ...

Christopher P. Loughner; Dale J. Allen; Da-Lin Zhang; Kenneth E. Pickering; Russell R. Dickerson; Laura Landry

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

222

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

223

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

224

Monitoring of the performance of a solar-heated-and-cooled apartment building. Final report  

DOE Green Energy (OSTI)

A 12-unit student apartment building was retrofitted for solar heating and cooling and hot water. The retrofit of the all-electric building resulted in a system consisting of an array of 1280 square feet of concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vesel, a 25-ton absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. The system was fully instrumented for temperature, flow rate, electrical power, and meteorological measurements. The data indicate that 11.2% of the cooling load was met by solar and 8.2% of the total load (cooling plus hot water) was met by solar. The performance of the collector array was determined to be approximately 60% of that suggested by the manufacturer. Steady-state chiller operation exhibited a C.O.P. very close to the manufacturer's specified performance values, but the time-averaged chiller C.O.P. is degraded due to cycling. The composite solar fraction (8.2%) is less than solar cooling only (11.2%) because there was no solar domestic hot water delivery during this monitoring period. The evaluation of system performance for the cooling season indicates a lower performance than expected. However, system performance in the cooling mode can be improved by better adjustment of the thermostats and controls. Continued data collection and analysis should be performed, to improve system operations, assess performance limits, and compare results with design projections.

Vliet, G.C.; Srubar, R.L.

1980-03-01T23:59:59.000Z

225

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network (OSTI)

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

226

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

227

Geothermal heat pumps in Pierre  

SciTech Connect

There are two municipal connected heat pumps in Pierre, South Dakota: the South Dakota Discovery Center and Pierre City Hall.Both systems now utilize plate heat exchanger between the city water loop and the building loop. This article describes the geothermal system used in Pierre for both space heating and cooling of municipal buildings.

Wegman, S. [South Dakota Public Utilities Commission, Pierre, SD (United States)

1997-12-01T23:59:59.000Z

228

A Large-Eddy Simulation Study of Bottom-Heating Effects on Scalar Dispersion in and above a Cubical Building Array  

Science Conference Proceedings (OSTI)

Thermal effects on scalar dispersion in and above a cubical building array are numerically investigated using the parallelized large-eddy simulation model (PALM). Two cases (no heating and bottom heating) are simulated, and scalar dispersion ...

Seung-Bu Park; Jong-Jin Baik; Young-Hee Ryu

2013-08-01T23:59:59.000Z

229

A bottom-up engineering estimate of the aggregate heating andcooling loads of the entire U.S. building stock  

SciTech Connect

A recently completed project for the U.S. Department of Energy's (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential and commercial energy consumption surveys (RECS, CBECS) to estimate the total heating and cooling loads in U.S. buildings attributable to different shell components such as windows, roofs, walls, etc., internal processes, and space-conditioning systems. This information is useful for estimating the national conservation potentials for DOE's research and market transformation activities in building energy efficiency. The prototypical building descriptions and DOE-2 input files were developed from 1986 to 1992 to provide benchmark hourly building loads for the Gas Research Institute (GRI) and include 112 single-family, 66 multi-family, and 481 commercial building prototypes. The DOE study consisted of two distinct tasks : (1) perform DOE-2 simulations for the prototypical buildings and develop methods to extract the heating and cooling loads attributable to the different building components; and (2) estimate the number of buildings or floor area represented by each prototypical building based on EIA survey information. These building stock data were then multiplied by the simulated component loads to derive aggregated totals by region, vintage, and building type. The heating and cooling energy consumption of the national building stock estimated by this bottom-up engineering approach was found to agree reasonably well with estimates from other sources, although significant differences were found for certain end-uses. The main added value from this study, however, is the insight it provides about the contributing factors behind this energy consumption, and what energy savings can be expected from efficiency improvements for different building components by region, vintage, and building type.

Huang, Yu Joe; Brodrick, Jim

2000-08-01T23:59:59.000Z

230

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

231

Solar heating and cooling of buildings, Phase 1 (non-residential). Recommendation for solar heating and cooling demonstrations as an integrated package  

SciTech Connect

Recommendations to ERDA of four solar heating and cooling demonstration projects are presented. Recommendations include (1) the Westchester Work Center Building owned by Bell Telephone Company of Pennsylvania, (2) the Scottsdale County Courts Building in Scottsdale, Arizona, (3) Howard Johnson's Inc. Hotel in North Miami, Florida, and (4) a combination warehouse, manufacturing facility offered by Mr. John I. Ladd of Ladd Brothers, Pueblo, Colorado. A conceptual diagram and a fact sheet is included for each proposed demonstration site. The combined estimated cost for the four projects is $334,586. (WHK)

1976-02-12T23:59:59.000Z

232

Solar heating and cooling of buildings, Phase 1 (non-residential). Recommendation for solar heating and cooling demonstrations as an integrated package  

DOE Green Energy (OSTI)

Recommendations to ERDA of four solar heating and cooling demonstration projects are presented. Recommendations include (1) the Westchester Work Center Building owned by Bell Telephone Company of Pennsylvania, (2) the Scottsdale County Courts Building in Scottsdale, Arizona, (3) Howard Johnson's Inc. Hotel in North Miami, Florida, and (4) a combination warehouse, manufacturing facility offered by Mr. John I. Ladd of Ladd Brothers, Pueblo, Colorado. A conceptual diagram and a fact sheet is included for each proposed demonstration site. The combined estimated cost for the four projects is $334,586. (WHK)

None

1976-02-12T23:59:59.000Z

233

Solar heating and cooling of buildings: activities of the private sector of the building community and its perceived needs relative to increased activity  

SciTech Connect

A description of the state of affairs existing in the private sector of the building community between mid-1974 and mid-1975 with regard to solar heating and cooling of buildings is presentd. Also, information on the needs perceived by the private sector with regard to governmental actions (besides research) required to induce widespread application of solar energy for the heating and cooling of buildings is given. The information is based on surveys, data obtained at workshops, sales literature of manufacturers, symposia, and miscellaneous correspondence. Selected interests and projects of individuals and organizations are described. (WHK)

1976-01-01T23:59:59.000Z

234

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

235

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

236

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

237

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

238

Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building  

E-Print Network (OSTI)

This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage characteristics of the PCECW according to phase change energy-storage theory, which is used as the storage-heat body in the “light" inner wallboards, compared to the normal “heavy" inner wallboards. Through computer simulation, we measured the effects on the heating and energy consumption of the room when the enthalpy, thermal coefficient and thickness of the PCECW were changed. The results show that the PCECW the phase change wall could effectively reduce the temperature fluctuation and the winter heating energy consumption in the residential building.

Yue, H.; Chen, C.; Liu, Y.; Guo, H.

2006-01-01T23:59:59.000Z

239

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

240

Design methodologies for energy conservation and passive heating of buildings utilizing improved building components. Progress report, 1 August 1977--31 October 1977  

DOE Green Energy (OSTI)

Construction of the experimental building demonstrating light weight ceiling thermal storage tiles, transparent insulation assemblies, and specialized louvers is well underway. Difficulties in acquiring materials have put the building two weeks behind schedule. A superior heat mirror product is being used in place of the original proposed transparent insulation for the south windows. Negotiations are underway to acquire superior logging devices at no additional cost for monitoring the building.

Habraken, J.; Johnson, T.E.

1977-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

242

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

243

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

244

Passive solar heating of building with attached greenhouse. Final report, August 31, 1979-August 30, 1980  

DOE Green Energy (OSTI)

Research has been conducted on the attached-greenhouse type of passive solar heating system in the north-central region. The thermal performance of attached-greenhouse buildings was analyzed in order to determine the component sizes and configurations which optimize performance. The analytical method is dynamic computer simulation using a thermal network model and actual hourly meteorological and solar radiation data from the north-central region. The project has consisted of a large number of computer simulation runs and resulting performance estimates for certain designs. Conclusions on design guidelines emerge from the results. The overall result of the project is the development of specific design guidelines useful to architects and builders.

Jones, R W

1980-08-01T23:59:59.000Z

245

Passive solar heating of buildings with attached greenhouse. Progress report, November 30, 1979-February 28, 1980  

SciTech Connect

Research is being conducted on the attached-greenhouse type of passive solar heating system in the north-central region. The thermal performance of attached-greenhouse buildings is being analyzed in order to determine the component sizes and configurations which optimize performance. The analytical method is dynamic computer simulation using a thermal network model and actual hourly meteorological and solar radiation data from the north-central region. Progress has consisted of a large number of computer simulation runs resulting in performance estimates for certain designs. Preliminary conclusions on design guidelines are suggested by the results. The overall aim of the project is the development of specific design guidelines useful to architects and builders.

Jones, R.W.

1980-02-01T23:59:59.000Z

246

Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index  

E-Print Network (OSTI)

This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results show that transfer efficiency is not influenced by the climate, and the influence is in accordance with that in other climates. The article also presents data on the energy consumption caused by the improvement of the transfer efficiency of the outdoor pipe network and the operating efficiency of the boiler, and the calculated formula for the building heat consumption index on the condition of saving 65 percent energy.

Fang, X.; Wang, Z.; Liu, H.

2006-01-01T23:59:59.000Z

247

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

248

A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design  

Science Conference Proceedings (OSTI)

A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

Qu, Ming [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Yin, Hongxi [School of Engineering Education, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2061 (United States); Archer, David H. [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

2010-02-15T23:59:59.000Z

249

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

250

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

251

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

2009-11-16T23:59:59.000Z

252

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

253

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia.  

E-Print Network (OSTI)

??Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house… (more)

Charoenvisal, Kongkun

2008-01-01T23:59:59.000Z

254

Toxicological evaluation of liquids proposed for use in direct contact liquid--liquid heat exchangers for solar heated and cooled buildings  

DOE Green Energy (OSTI)

This report contains the results of the toxicological evaluation part of the project entitled, ''Direct Contact Liquid-Liquid Heat Exchangers for Solar Heated and Cooled Buildings.'' Obviously any liquid otherwise suitable for use in such a device should be subjected to a toxicological evaluation. 34 liquids (24 denser than water, 10 less dense) have physical and chemical properties that would make them suitable for use in such a device. In addition to the complexity involved in selecting the most promising liquids from the standpoint of their chemical and physical properties is added the additional difficulty of also considering their toxicological properties. Some of the physical and chemical properties of these liquids are listed. The liquids are listed in alphabetical order within groups, the denser than water liquids are listed first followed by those liquids less dense than water.

Buchan, R.M.; Majestic, J.R.; Billau, R.

1976-09-01T23:59:59.000Z

255

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

256

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

257

Definition: Heat pump | Open Energy Information  

Open Energy Info (EERE)

pump pump Jump to: navigation, search Dictionary.png Heat pump Heating and/or cooling equipment that, during the heating season, draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside[1] View on Wikipedia Wikipedia Definition A heat pump is a device that transfers heat energy from a heat source to a heat sink against a temperature gradient. Heat pumps are designed to move thermal energy opposite the direction of spontaneous heat flow. A heat pump uses some amount of external high-grade energy to accomplish the desired transfer of thermal energy from heat source to heat sink. While compressor-driven air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to

258

Modeling with finite element the convective heat transfer in civil building EPS insulated walls  

Science Conference Proceedings (OSTI)

In this paper we present the analysis of convective heat transfer in the walls of a house insulated with polystyrene. In the first part we make an evaluation of the insulation that is currently used in the houses. We start the simulation using a real ... Keywords: convective heat transfer, dew-point, finite element, polystyrene insulation

Madalina Xenia Calbureanu; Mihai Lungu; Dragos Tutunea; Raluca Malciu; Alexandru Dima

2010-10-01T23:59:59.000Z

259

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

and Duffie [17], the fan give 185 % of the design heat loadfan coil heating system sized at 130 % of design load tofan coil output power of 32 kW (110 kBtu/hr), or about three times the design

Vilmer, Christian

2013-01-01T23:59:59.000Z

260

Design manual for solar heating of buildings and domestic hot water  

SciTech Connect

This manual presents design and cost analysis methods for sizing and payback estimating of solar heat collectors for augmentation of portable water heaters and space heaters. Sufficient information is presented to enable almost anyone to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (MOW)

Field, R.L.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar collector related research and development in the United States for heating and cooling of buildings  

DOE Green Energy (OSTI)

Some of the research funded by the Research and Development Branch of the Heating and Cooling Division of Solar Energy of the United States Energy Research and Development Administration is described. Specifically, collector and collector materials research is reported on during FY-1977. The R and D Branch has funded research in open and closed cycle liquid heating flat plate collectors, air heating flat plate collectors, heat pipe collectors, concentrating collectors, collector heat transfer studies, honeycomb glazings, evacuated tube collectors, ponds both salt gradient and viscosity stabilized, materials exposure testing, collector testing standards, absorber surface coatings, and corrosion studies. A short description of the nature of the research is provided as well as a presentation of the significant results.

Collier, R.K.

1978-01-01T23:59:59.000Z

262

Development of solar assisted heat pumps for the heating and cooling of buildings. Volume II. Final technical report, February 1, 1978-June 30, 1980  

DOE Green Energy (OSTI)

A second volume containing the appendices to the report on the development of high efficiency vapor compression cycle heat pumps for use in solar assisted heat pump (SAHP) systems is presented. A water source heat pump and a solar powered absorption chiller are studied for their feasibility in improving the performance of a SAHP system. A two speed multiple level heat pump compressor is analyzed. The product data for two advanced water source heat pump models are provided along with operating instructions for a parallel compressor water source heat pump. Marketing data for SAHP systems are included.

Not Available

1980-01-01T23:59:59.000Z

263

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870â??1230 1600â??2250 Fe, Si, alkalis Solar Turbines â?¦ 4â??8 OD Ã? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25â??46 Multiple 870â??1370 1600â??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 Ã? 30 Ã? 46 Multiple Clean (good), alkalis (poor) Radiant...

264

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

265

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

266

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

267

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

268

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

269

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

270

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

271

Simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type  

DOE Green Energy (OSTI)

Two methods are presented for estimating the annual solar heating performance of a building utilizing a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation and with or without a reflector. The method is accurate to +-3% as compared with hour-by-hour computer simulations.

Balcomb, J.D.; McFarland, R.D.

1978-01-01T23:59:59.000Z

272

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

273

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

274

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

275

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

276

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

277

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

278

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

279

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

280

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

282

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

Standard (Trane) 14% York 12% Nordyne 12% Rheem 9% Lennox 9% Others 3% Total 100% Note(s): Source(s): 5,833,354 1) Does not include water-source or ground-source heat pumps....

283

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

284

Heating systems for heating subsurface formations  

Science Conference Proceedings (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

285

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

286

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

287

InterTechnology Corporation proposed systems level plan for solar heating and cooling commercial buildings. National Solar Demonstration Program. Executive summary  

DOE Green Energy (OSTI)

The goals of the National Solar Heating and Cooling Demonstration Program for non-residential buildings are embodied in the following: (1) Demonstrate the ultimate economic and technical feasibility of solar heating and combined heating and cooling. (2) Stimulate industry to produce and market solar equipment. (3) Stimulate a commercial market for solar systems. The systems level plan is designed to address the above stated goals as they relate to the building community associated with the commercial sector of the economy. (WDM)

None

1976-05-01T23:59:59.000Z

288

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

DOE Green Energy (OSTI)

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

289

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

but solar thermal and absorption cooling are attractive, andthermal heat collection, and heat-activated cooling can befrom solar thermal Total heat load Heat for cooling Heat

Stadler, Michael

2009-01-01T23:59:59.000Z

290

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

grid, the few buildings equipped with Combined Heat andthe grid system. 29 Source: EPA Combined Heat and Powergrid system. 21 Alternatively, a CHP system collects the wasted heat

Ferraina, Steven

2014-01-01T23:59:59.000Z

291

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

292

Update on maintenance and service costs of commercial building ground-source heat pump systems  

Science Conference Proceedings (OSTI)

An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

Cane, D.; Garnet, J.M.

2000-07-01T23:59:59.000Z

293

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

294

Radiofrequency plasma heating: proceedings  

SciTech Connect

The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately. (WRF)

Swenson, D.G. (ed.)

1985-01-01T23:59:59.000Z

295

Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regions.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed… (more)

Balasubramanian, Siddharth

2012-01-01T23:59:59.000Z

296

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

297

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

298

Traditional vs. alternative energy house heating source  

Science Conference Proceedings (OSTI)

The article discusses the economic analysis of two different heating systems. The first uses fossil fuel (Liquidized naphtha gas- LNG) to heat the building and domestic hot water. The second uses geothermal energy to do the same job. In both systems ... Keywords: borehole heat exchanger, economic analysis, geothermal energy, heat pump, heating system, net present value

S. Poberžnik; D. Goricanec; J. Krope

2007-05-01T23:59:59.000Z

299

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

300

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

302

Efficient, Low-cost Microchannel Heat Exchanger  

? Buildings (chillers, cooling towers, heat pump water heaters) ... ? Renewable energy (concentrated solar power, residential solar hot water,

303

Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)  

DOE Green Energy (OSTI)

Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billion m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

Watts, R.L.; Gurwell, W.E.; Nelson, T.A.; Smith, S.A.

1979-06-01T23:59:59.000Z

304

Solar-assisted heat pumps for the heating and cooling of buildings. Six month technical report, November 6, 1978-May 5, 1979  

DOE Green Energy (OSTI)

Phase I of this study deals with the determination of the most cost-effective SAHP (Solar-assisted Heat Pump) system. The series (solar-assisted), parallel (solar-boosted), and standard heat pump systems with electric resistance heat backup are emphasized. Performance characteristics of all major SAHP components are determined and used in conjunction with the TRNSYS simulation program to obtain heating and cooling system performance for four different climates: Phoenix, Arizona; New York, New York; Fort Worth, Texas; and Madison, Wisconsin. Material and installation costs are obtained for the SAHP components and are used in a life-cycle cost analysis to determine the economic viability of the various systems. Ground coupling, evacuated tube collectors, and power demand distributions are studied. A marketing analysis is performed to assess the potential of SAHP systems in the residential marketplace. The results of this study indicate that solar-boosted heat pumps (parallel) will be more cost effective than solar-assisted (series) heat pumps for the foreseeable future. Since all components for solar-boosted heat pumps are now commercially available, no further development work is needed to optimize the heat pumps for such a system. Furthermore, SAHP systems are not currently cost effective when compared to standard air-to-air heat pumps, nor is there evidence that they will be in the foreseeable future.

Not Available

1979-05-01T23:59:59.000Z

305

Energy Efficiency Improvements Through the Use of Combined Heat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Combined Heat and Power (CHP) in Buildings Combined technology helps Federal energy managers meet mission critical energy needs Buildings Cooling, Heating and Power...

306

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents (OSTI)

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

307

heating | OpenEI Community  

Open Energy Info (EERE)

heating heating Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

308

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

309

Microgrids for Commercial Building Combined Heat and Power and Power and  

E-Print Network (OSTI)

biofuels), photovoltaics (PV), fuel cells, local heat and electricity storage, etc. Trends emerging at a consistent level of PQR throughout large regions. For example, PQR targets are consistent virtually all cost, point A, which in Fig. 3 occurs to the left of the current U.S. target of about 3-4 nines, point

310

Solar heat pipe feedback turbogenerator  

SciTech Connect

The conversion of radiant heat to electricity by a heat pipe-turbogenerator combination is described. The heat pipe-tubogenerator assembly is suitably externally insulated, as by a vacuum shield, to prevent heat losses and heat is recovered from the condenser portion of the heat pipe and returned to the evaporator portions. An application of the generic invention is discussed which it is employed on wall or roof portions of a building and serves as at least a partial supporting structure for these. In another application the solar heat pipe feedback turbogenerator may be incorporated in or used with reflective means, such as reflective sheet material of large area positioned to direct solar radiation onto the evaporator section of the heat pipe. The reflective means may be changed in position to follow the sun to produce maximum power during operation.

Decker, B.J.

1978-10-24T23:59:59.000Z

311

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

U.S. Heating and Air-Conditioning System Manufacturer Shipments, by Type (Including Exports) 2005 Value of 2000 2005 2007 2009 2010 Shipments Equipment Type (1,000s) (1,000s) (1,000s) (1,000s) (1,000s) ($million) (7) Air-Conditioners (1) 5,346 6,472 4,508 3,516 3419 5,837 Heat Pumps 1,539 2,336 1,899 1,642 1,748 2,226 Air-to-Air Heat Pumps 1,339 2,114 1,899 1,642 1748 1,869 Water-Source Heat Pumps (2) 200 222 N.A. N.A. N.A. 357 Chillers 38 37 37 25 29 1,093 Reciprocating 25 24 30 20 24 462 Centrifugal/Screw 8 6 7 5 5 566 Absorption (3) 5 7 N.A. N.A. N.A. 64 Furnaces 3,681 3,624 2,866 2,231 2,509 2,144 Gas-Fired (4) 3,104 3,512 2,782 2,175 2453 2,081 Electric 455 N.A. N.A. N.A. N.A. N.A. Oil-Fired (5) 121 111 84 56 56 63 Boilers (6) 368 370 N.A. N.A. N.A. N.A. Note(s): Source(s): 1) Includes exports and gas air conditioners (gas units <10,000 units/yr) and rooftop equipment. Excludes heat pumps, packaged terminal air

312

Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel cold. This may be due  

E-Print Network (OSTI)

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems University single sided buried contact solar cell. Buried contact solar cells used in building-integrated application at G8 Summit Building, England. #12;ELEG620: Solar Electric Systems University of Delaware, ECE

313

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

314

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

315

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

316

Heating Energy Meter Validation for Apartments  

E-Print Network (OSTI)

Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second-stage buildings of the Kouan residential area in Baotou. Through the collection and processing of heat meters' data, reliability of data is analyzed, the main influencing factors for heat meters are discussed, and recommendations for heating pricing are presented.

Cai, B.; Li, D.; Hao, B.

2006-01-01T23:59:59.000Z

317

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

318

FEMP--Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

319

Optimal design of seasonal storage for 100% solar space heating in buildings  

DOE Green Energy (OSTI)

An analysis is presented of seasonal solar systems that contain water as the sensible heat storage medium. A concise model is developed under the assumption of a fully mixed, uniform temperature, storage tank that permits efficient simulation of long-term (multi-day) system performance over the course of the year. The approach explicitly neglects the effects of short-term (sub-daily) fluctuations in insolation and load, effects that will be extremely small for seasonal solar systems. This approach is useful for examining the major design tradeoffs of concern here. The application considered is winter space heating. The thermal performance of seasonal solar systems that are designed to supply 100% of load without any backup is solved for, under ''reference year'' monthly normal ground temperature and insolation conditions. Unit break-even costs of seasonal storage are estimated by comparing the capital and fuel costs of conventional heating technologies against those of a seasonal solar system. A rough comparison between the alternatives for more severe winters was made by examining statistical variations in winter season conditions over the past several decades. (MHR)

Mueller, R.O.; Asbury, J.G.; Caruso, J.V.; Connor, D.W.; Giese, R.F.

1978-01-01T23:59:59.000Z

320

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in...

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

322

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

323

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

324

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

325

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

326

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

327

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

328

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

329

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

330

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

331

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

332

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

333

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

334

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

335

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How...

336

Handbook of heat transfer applications (2nd edition)  

Science Conference Proceedings (OSTI)

The applications of heat transfer in engineering problems are considered. Among the applications discussed are: mass transfer cooling; heat exchangers; and heat pipes. Consideration is also given to: heat transfer in nonNewtonian fluids; fluidized and packed beds; thermal energy storage; and heat transfer in solar collectors. Additional topics include: heat transfer in buildings; cooling towers and ponds; and geothermal heat transfer.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

337

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

338

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

339

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

340

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Urban Heat Catastrophes  

NLE Websites -- All DOE Office Websites (Extended Search)

The curve shows the heat index, which reflects the combined effect of temperature and humidity. Last year's Chicago heat wave created a great deal of human discomfort and,...

342

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

343

Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings. Final report, January 1, 1979-May 30, 1980  

DOE Green Energy (OSTI)

The technical and economic feasibility of using a direct contact liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while thare is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

Karaki, S.; Brothers, P.

1980-06-01T23:59:59.000Z

344

MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE  

E-Print Network (OSTI)

for cooling-dominated commercial buildings utilize supplemental heat rejecters such as cooling towers, fluid of supplemental heat rejecters for cooling dominated buildings allows the design of smaller borehole fields. Heat

345

Passive solar heating and analysis  

Science Conference Proceedings (OSTI)

Passive solar heating experience and analysis techniques are reviewed with emphasis on annual auxiliary heat requirement. The role of analysis in the design of passive solar buildings is discussed. Selected results for existing systems are presented for locations in Saudi Arabia and climatically similar locations in the US. Advanced systems in the research stage are described.

Jones, R.W.

1984-01-01T23:59:59.000Z

346

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

347

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

348

Solar water heating: FEMP fact sheet  

DOE Green Energy (OSTI)

Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

Clyne, R.

1999-09-30T23:59:59.000Z

349

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

350

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

351

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

352

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

353

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

354

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

355

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

356

Woven heat exchanger  

DOE Patents (OSTI)

In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, Roger R. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

357

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

358

NUMERICAL DETERMINATION AND TREATMENT OF CONVECTIVE HEAT TRANSFER COEFFICIENT IN THE COUPLED BUILDING ENERGY AND CFD SIMULATION  

E-Print Network (OSTI)

for the correct prediction of the convective heat. A finer grid resolution in CFD does not always lead to a more conservation equations of flow on these grid cells. As shown in Figure 1(a), CFD calculates convective heat1 NUMERICAL DETERMINATION AND TREATMENT OF CONVECTIVE HEAT TRANSFER COEFFICIENT IN THE COUPLED

Chen, Qingyan "Yan"

359

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network (OSTI)

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from/into the ground. This paper summarizes the authors' studies on heat transfer in ground-coupled heat pump systems. Taking the fluid axial convective heat transfer and thermal “short-circuiting” among U-tube legs into account, a quasi-3-D model has been solved for heat transfer inside boreholes. The transient 2-D temperature response in a semi-infinite medium with a line-source of finite length has also been derived for heat conduction outside boreholes. In order to investigate the impact of groundwater advection on the performance of ground heat exchangers, an analytical solution is obtained for a line heat source in an infinite porous medium with groundwater advection. These explicit expressions have more solid theoretical basis, and can be easily incorporated into computer programs for thermal analysis and engineering design of ground heat exchangers.

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

360

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

362

National program plan for research and development in solar heating and cooling for building, agricultural, and industrial applications  

DOE Green Energy (OSTI)

The main feature of the directed program is the focus on specific approaches, called paths, to the application of solar energy. A path is the linking of a method of energy collection or rejection with a particular application. Eleven such paths are identified for building applications and eleven for agricultural and industrial process applications. Here, an overview is given of the program plan. The 11 paths to the solar heating and cooling of buildings and the 11 paths for agricultural and industrial process applications are described. Brief descriptions of these tasks and of the non-engineering tasks are included. The importance of each non-engineering task to the overall R and D program is indicated. (MHR)

Not Available

1978-08-01T23:59:59.000Z

363

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

364

Ductless, Mini-Split Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems,...

365

Heat pipe system  

SciTech Connect

A heat pipe diode device for transferring heat from a heat source component to a heat sink wall is described. It contains a heat pipe body member attached to the best source; the heat source having a wall forming at least a portion of the normal evaporator section of the heat pipe diode; a working fluid within the body member; a cover for the heat pipe diode forming at least a portion of the heat sink wall; the cover forming the normal condenser for the heat pipe diode; a wick connected between the condenser and the evaporator of the heat pipe diode; means for retaining the wick adjacent the heat pipe wall; a wick support plate adjacent to the cover; the wick being attached to the support plate; means for holding the wick in contact with the cover; and means, responsive to excessive temperatures at the heat sink wall, for moving the support plate and a portion of the wick away from the cover to thereby substantially reduce heat flow in the reverse direction through said heat pipe diode device.

Kroebig, H.L.; Riha, F.J. III

1974-12-03T23:59:59.000Z

366

Consumer demand analysis: solar heating and cooling of buildings. Final report  

DOE Green Energy (OSTI)

This study concerns the acceptability of solar heating and cooling to homebuyers for residential applications. The study assesses the extent of homeowner awareness of solar technologies, estimates the acceptability of elevated first costs including willingness to trade higher initial costs for life cycle savings, and investigates the impact of solar aesthetics. Also explored are other areas of potential concern to homeowners in evaluating a solar alternative as well as positive motivations that would encourage purchase. Finally, the socioeconomic and attitudinal characteristics of individuals more likely to purchase a solar home rather than a conventional home were studied. The results are based on group depth interviews and personal interviews with active homeseekers, top executives of large residential development firms, and architects. The sample was split evenly between Denver, Colorado and the Philadelphia, Pa./Wilmington, Del. areas. Implications of the results for the commercialization of solar energy and possible public policy decisions are also discussed.

Scott, J.E.

1976-09-01T23:59:59.000Z

367

Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat  

Science Conference Proceedings (OSTI)

BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

None

2010-09-01T23:59:59.000Z

368

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

369

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat...

370

Solar heating apparatus  

SciTech Connect

The disclosure concerns a collector for solar heating apparatus which is adapted for vertical mounting and utilizes air as the heat exchange medium. The collector comprises a glazed insulated box containing a group of energy transfer units, each of which is formed by a pair of similar open top metal foil pans having flat bottom walls which are in abutment and outwardly flaring conical side walls. The pans carry a black energy-absorbing coating and preferably their abutting walls contain registering air flow openings. The energy transfer units are stacked in interfitting relationship in rows and columns, with the axes of adjacent interfitted units in each row and in each column extending in mutually perpendicular directions. The collector may be combined with a fan unit adapted to fit a standard window, thereby providing a portable, economical, auxiliary heater for a room of a building.

Decker, C.R.

1981-06-09T23:59:59.000Z

371

Latent heat accumulating greenhouse  

Science Conference Proceedings (OSTI)

This invention relates to a latent heat accumulating greenhouse utilizing solar heat. The object of the invention is to provide a greenhouse which is simple in construction, of high efficiency for heat absorbing and capable of much absorbing and accumulating of heat. A heat accumulating chamber partitioned by transparent sheets is provided between the attic and a floor surface facing north in the greenhouse. A blower fan is disposed to confront an opening provided at the lower portion in said heat accumulating chamber. Also, in the heat accumulating chamber, a heat accumulating unit having a large number of light transmitting windows and enclosing a phase transformation heat accumulating material such as CaC1/sub 2/.6H/sub 2/O, Na/sub 2/SO/sub 4/.10H/sub 2/O therein is detachably suspended in a position close to windowpanes at the north side.

Yano, N.; Ito, H.; Makido, I.

1985-04-16T23:59:59.000Z

372

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

373

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest winter nights, compared to 175% to 250% for air-source heat pumps on cool

374

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

Science Conference Proceedings (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

375

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

376

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

377

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

378

Laundry heat recovery system  

SciTech Connect

A laundry heat recovery system includes a heat exchanger associated with each dryer in the system, the heat exchanger being positioned within the exhaust system of the dryer. A controller responsive to the water temperature of the heat exchangers and the water storage for the washer selectively circulates the water through a closed loop system whereby the water within the exchangers is preheated by the associated dryers. By venting the exhaust air through the heat exchanger, the air is dehumidified to permit recirculation of the heated air into the dryer.

Alio, P.

1985-04-09T23:59:59.000Z

379

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

380

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heat Pump Water Heating Modeling in EnergyPlus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

382

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

383

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

8 8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used elsewhere. 1) 2005 average stock age is for gas- and oil-fired steam and hot water boilers. Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels, January 2010, p. 10 for service and average lifetimes, and units to be replaced; ASHRAE, 1999 ASHRAE Handbook: HVAC Applications, Table 3, p. 35.3 for boilers service lifetimes; and

384

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

385

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

386

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

but solar thermal and absorption cooling are attractive, andthermal heat collection, and heat-activated cooling can bethe cooling offset by utilization of solar thermal heat,

Stadler, Michael

2009-01-01T23:59:59.000Z

387

Water Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous)...

388

Energy Saving Absorption Heat Pump Water Heater  

energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs are limited to using toxic ammonia water ...

389

Line Heat-Source Guarded Hot Plate  

Science Conference Proceedings (OSTI)

Line Heat-Source Guarded Hot Plate. Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. ...

2012-03-06T23:59:59.000Z

390

Measurement of performance of solar-heated office buildings. Final report, June 1, 1982-October 31, 1983  

DOE Green Energy (OSTI)

Prudential Insurance Company is building two new office buildings that are a showcase of innovative energy efficient design and solar energy utilization. In order for this effort to be fully successful, the actual performance of these buildings needs to be monitored. This report summarizes the progress made during the first year. A thorough theoretical analysis has been carried out, using the DOE2.1 computer simulation code. This analysis has been supplemented by shorthand calculations and by special models to provide an independent check of the coding and to evaluate certain features, e.g. the double wall, that cannot be modeled by DOE2.1. A steady state shorthand method has been developed to calculate annual energy use; it is a modification of the ASHRAE bin method and agrees with the computer simulation within about 15% for cooling and 2% for heating. Energy savings due to daylighting have been evaluated using both shorthand methods and the computer code DOE2.1b. The calculations of annual energy use that were performed at the design stage have been reproduced, and changes during later design phases, e.g. the outdoor air flow rate, have been identified. Even without a variety of further energy savings that appear feasible, these buildings promise to be among the most efficient in the current stock of office buildings. A 100-channel instrumentation and data acquisition system has been designed, and installation should be complete by February 1984. Extensive software has been prepared to confront the model predictions with field data.

Norford, L.N.; Rabl, A.; Socolow, R.H.

1984-01-01T23:59:59.000Z

391

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

392

Electric Resistance Heating  

Energy.gov (U.S. Department of Energy (DOE))

Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to...

393

Heat pipe fabrication  

SciTech Connect

A heat pipe is disclosed which is fabricated with an artery arranged so that the warp and weave of the wire mesh are at about a 45/sup 0/ angle with respect to the axis of the heat pipe.

Leinoff, S.; Edelstein, F.; Combs, W.

1977-01-18T23:59:59.000Z

394

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

395

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

Analysis of. Nonlinear Heat Transfer Problems." Report no.Berkeley, Ca. , APPENDIX A. HEAT TRANSFER BY CONDUCTION ANDMeeting, Technical Session on Heat Transfer in Nuclear Waste

Chan, T.

2010-01-01T23:59:59.000Z

396

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

397

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

CLOSED-FORM INTEGRAL SOLUTIONS FOR LINEAR HEAT CONDUCTION.For linear heat conduction in a homogeneous, isotropiclaw of similitude for linear heat conduction was utilized to

Chan, T.

2010-01-01T23:59:59.000Z

398

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

399

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

Buildings Technologies Reference Case, Second Edition (Revised), Sept. 2007, p. 26-31. Efficiency U.S. Average Best-Available Parameter Efficiency New Efficiency New Efficiency...

400

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management, (CHP in cost minimizing microgrids that are able to adopt and

Stadler, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

402

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

403

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

404

Flue heat reclaimer  

Science Conference Proceedings (OSTI)

A flue heat reclaimer is constructed to be mounted on the exterior of a flue duct of a heater and provide a spiral-shaped heat transfer passage extending around the flue duct. A fan causes air to flow through the heat transfer passage so that the temperature of this air is elevated by reason at its extended heat transfer relationship with the flue duct.

Paolino, R.J.

1983-05-03T23:59:59.000Z

405

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

406

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

cooling offset storage natural gas combustion solar thermalnatural gas-fired genset, solar thermal collectors, an absorption chiller and both electrical and heat storage.

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

407

Solar heating unit  

SciTech Connect

A solar heating unit is disclosed for disposition exteriorly of a building window for heating the air within the space interiorly of the window embodying a casing with a transverse divider for creating a rear passage and a front passage which are in communication in their lower portions. The upper end of the rear passage connects with the forward end of a rearwardly extending lower duct having a cool air inlet at the rearward end thereof. The upper end of the front passage connects with the forward end of an upper duct progressing rearwardly above the lower duct and with there being a warm air outlet at the rearward extremity thereof. A heat exchanger is disposed within the front passage for impingement thereon of solar radiation passing through a transparent panel defining the front of said casing. A thermal responsive closure is provided at the upper end of said front passage for closing same when the temperature within the front passage has descended to a predetermined level.

Grisbrook, R.B.

1978-10-24T23:59:59.000Z

408

HEAT TRANSFER MEANS  

DOE Patents (OSTI)

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

Fraas, A.P.; Wislicenus, G.F.

1961-07-11T23:59:59.000Z

409

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

410

Comparison of Energy Needed to Heat Greenhouses and Insulated Frame Buildings Used in Aquaculture1  

E-Print Network (OSTI)

be as low as $4 to $6 per square foot. Construction costs for wood or metal frame buildings are greater than for the structure can be as low as $1 per square foot, but plastic covered greenhouse structures have structure is easy to construct on almost any site and has a low initial cost. Building material costs

Watson, Craig A.

411

Frame Heat Transfer Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

412

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

413

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

414

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

415

Heat Pump Markets UK in Europe  

E-Print Network (OSTI)

,000 units Total: 200,000 units 48% 19% 26% 0% 7% boilers heat pumps solar thermal micro chp & FC district% boilers heat pumps solar thermals micro chp & FC district heating 2010 2020Sales to new build 15% 51% 18 to Renewables Boiler non- con. Boilers con. Boiler Boiler + ST ST Boiler condensing Boiler non-condensing Boiler

Oak Ridge National Laboratory

416

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

417

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

418

Plasma heat pump and heat engine  

Science Conference Proceedings (OSTI)

A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

2010-08-15T23:59:59.000Z

419

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

law of similitude for linear heat conduction was utilized tothe analogy between heat conduction and fluid flow in por­the effects of heat conduction through the vermiculite heat

Chan, T.

2010-01-01T23:59:59.000Z

420

Heat pump apparatus  

DOE Patents (OSTI)

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

422

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The active microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA); Roberts, Gary L. (West Richland, WA); Call, Charles J. (Pasco, WA); Wegeng, Robert S. (Richland, WA); Wang, Yong (Richland, WA)

2001-01-01T23:59:59.000Z

423

Switchable heat pipe assembly  

SciTech Connect

The heat pipe assembly is formed into an H-shape or a Y-shape. The H-shaped configuration comprises two heat pipes, each having condenser and evaporator sections with wicking therein coupled by a tube with wick at their evaporator sections. The Y-shaped configuration utilizes a common evaporator section in place of the two evaporator sections of the H-shaped configuration. In both configurations, the connection between the vapor spaces of the two heat pipes equalizes vapor pressure within the heat pipes. Although both heat pipes have wicks, they have sufficient fluid only to saturate a single pipe. If heat is applied to the condenser section of one of the pipes, this heat pipe becomes inoperative since all the fluid is transferred to the second pipe which can operate with a lower thermal load.

Sun, T.H.; Basiulis, A.

1977-02-15T23:59:59.000Z

424

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network (OSTI)

Products or systems that heat, cool and heat domestic water, which are also referred to as integrated systems, have been available for several years. The concept is simple and appeals to consumers. This paper presents methods for evaluating the potential savings by using an integrated system that heats water by desuperheating discharge gas in the refrigeration cycle. The methods may be applied for any specific location, and their accuracy will depend on the accuracy of building loads and water usage estimates. Power demand can also be affected by electric water heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks.

Cawley, R.

1992-05-01T23:59:59.000Z

425

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

426

Carbon Material Based Heat Exchanger for Waste Heat Recovery ...  

Industrial processing plants Nuclear power Solar power ... Carbon Material Based Heat Exchanger for Waste Heat Recovery from Engine Exhaust Contact:

427

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

428

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

429

PreHeat: controlling home heating using occupancy prediction  

Science Conference Proceedings (OSTI)

Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more efficiently heat homes by using occupancy sensing and occupancy prediction to automatically control home heating. We deployed PreHeat in five homes, three in the ... Keywords: energy, environment, home heating, prediction, sensing

James Scott; A.J. Bernheim Brush; John Krumm; Brian Meyers; Michael Hazas; Stephen Hodges; Nicolas Villar

2011-09-01T23:59:59.000Z

430

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

431

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest

432

Active Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL What does this mean for me? If you live in a cold climate and have unobstructed access to the sun during the heating season, an active solar heating system might make sense for you. You can buy a manufactured active solar system or build your own.

433

Heat pipe theory and practice: a sourcebook  

SciTech Connect

An introduction to heat pipe operating principles, types, and applications followed by a comprehensive treatment of heat pipe theory, design, and manufacture are presented. The organization of heat pipe theory provides parallel treatment of the fundamental laws of thermodynamics, heat transfer, fluid mechanics, and materials science during heat pipe analysis. For the problem-solving convenience of practicing engineers, design procedures are developed summarizing theoretical information. Methods of summarizing voluminous research information are presented in detail. Current practices in the manufacture of heat pipes are described. Current and potential applications of the heat pipe to energy systems discussed are: heat exchangers, heat recovery for HVAC systems, residential buildings, industrial processes, gasification plants, and thermal storage subsystems.

Chi, S.W.

1976-01-01T23:59:59.000Z

434

Model document for code officials on solar heating and cooling of buildings. First draft  

DOE Green Energy (OSTI)

The primary purpose of this document is to promote the use and further development of solar energy through a systematic categorizing of all the attributes in a solar energy system that may impact on those requirements in the nationally recognized model codes relating to the safeguard of life or limb, health, property, and public welfare. Administrative provisions have been included to integrate this document with presently adopted codes, so as to allow incorporation into traditional building, plumbing, mechanical, and electrical codes. In those areas where model codes are not used it is recommended that the requirements, references, and standards herein be adopted to regulate all solar energy systems. (MOW)

Not Available

1979-03-01T23:59:59.000Z

435

Water-heating dehumidifier  

DOE Patents (OSTI)

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

436

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

437

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

containing water. In the winter, heat from the relatively warmer ground goes through the heat exchanger into the building. In the summer, hot air from the building is pulled...

438

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

SciTech Connect

We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

Blum, Helcio; Sathaye, Jayant

2010-05-14T23:59:59.000Z

439

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

440

Heat rejection system  

DOE Patents (OSTI)

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

442

Heat and mass exchanger  

Science Conference Proceedings (OSTI)

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

443

Heat pipe technology issues  

SciTech Connect

Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory has involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW/cm/sup 2/ axially and 300 W/cm/sup 2/ radially at temperatures in the 1400 to 1500 K range. Operation at conditions in the 10 kW/cm/sup 2/ range has been sustained for periods of up to 1000 hours without evidence of performance degradation. The effective length for heat transport in these heat pipes was from 1.0 to 1.5 M. Materials used were molybdenum alloys with lithium employed as the heat pipe operating fluid. Shorter, somewhat lower power, molybdenum heat pipes have been life tested at Los Alamos for periods of greater than 25,000 hours at 1700 K with lithium and 20,000 hours at 1500/sup 0/K with sodium. These life test demonstrations and the attendant performance limit investigations provide an experimental basis for heat pipe application in space reactor design and represent the current state-of-the-art of high temperature heat pipe technology.

Merrigan, M.A.

1984-04-01T23:59:59.000Z

444

Heat pump arrangement  

SciTech Connect

The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

Abrahamsson, T.; Hansson, K.

1981-03-03T23:59:59.000Z

445

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

446

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

447

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

448

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

449

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

450

Controlling the Heat Transfer  

Science Conference Proceedings (OSTI)

Through experimental validation that air conduction is shown to be typically the dominant thermal transport mechanism in the contact region, the heat conduction

451

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

452

Annual collection and storage of solar energy for the heating of buildings. Report No. 2. Annual progress report, May 1976--July 1977  

DOE Green Energy (OSTI)

A new system for year-round collection and storage of solar heated water for heating of buildings has been designed and constructed at the University of Virginia. The system is composed of an energy storage sub-system which stores hot water in an underground pool and of a solar collector sub-system which acts not only to collect solar energy throughout the year but also to limit the evaporative and convective heat losses from the storage system. The annual collection and storage system began operation in late February 1977. Data are presented which illustrates the transient heat transfer which occurs during the start-up phase of operation. Thermal performance results are presented illustrating the efficiency of the solar collector and the variation of solar energy input to storage during a typical day's operation in May. Data are also presented which show the transient build-up of energy storage in the earth which surrounds the storage pool. An analog model has been developed to analyze the transient energy phenomena which occur within the earth surrounding the pool. These include transient heat losses from the pool to the earth and energy storage within the earth. Results of the analog model for idealized conditions are confirmed by exact mathematical solutions and by numerical analysis using a digital computer.

Beard, J. T.; Iachetta, F. A.; Lilleleht, L. U.; Dickey, J. W.

1977-07-01T23:59:59.000Z

453

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

454

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

455

Heat Pipe Integrated Microsystems  

SciTech Connect

The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

1999-03-30T23:59:59.000Z

456

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

457

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

458

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

459

Unstable heat pipes  

DOE Green Energy (OSTI)

Heat pipes are an important feature of models of vapor-dominated geothermal reservoirs. Numerical experiments reveal that a vapor-dominated heat pipe is unstable if pressure is controlled at shallow levels. This instability is discussed in physical terms, and some implications for geothermal reservoirs are considered. 9 refs., 10 figs.

McGuinness, M.J.; Pruess, K.

1987-10-01T23:59:59.000Z

460

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "heated buildings heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

462

Definition: Passive solar heating | Open Energy Information  

Open Energy Info (EERE)

solar heating solar heating Jump to: navigation, search Dictionary.png Passive solar heating Using the sun's energy to heat a building; the windows, walls, and floors can be designed to collect, store, and distribute solar energy in the form of heat in the winter (and also to reject solar heat in the summer).[1] View on Wikipedia Wikipedia Definition Related Terms Daylighting, Passive Solar, heat, energy References ↑ http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250 Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Passive_solar_heating&oldid=480581" Category: Definitions What links here Related changes Special pages Printable version Permanent link

463

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

464

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

465

Heat pipe development status  

SciTech Connect

Test heat pipes have been operated in the 1400 K to 1700 K range for periods in excess of 20,000 hours with the objective of understanding and controlling corrosion and failure mechanisms. The results of a post test analysis of one of these heat pipes that was operated for 25,216 hours at 1700 K are reviewed and the implications for heat pipe lifetime discussed. An in-process report of an investigation of transient heat pipe behavior is presented. This investigation is being conducted as a result of restart problems encountered during life test of a 2 m. radiation cooled heat pipe. The results of a series of shut-down tests from power and temperature are given and probable causes of the restart problem discussed.

Merrigan, M.A.

1984-01-01T23:59:59.000Z

466

Transparent solar heat collector  

SciTech Connect

Infrared solar radiation is absorbed by a transparent converter glass for conversion of the infrared radiation into thermal energy. Liquid or air forms a transparent fluid medium that is conducted into heat transfer contact with the glass to carry the thermal energy away from the glass to a point of utilization. In one embodiment, the transparent converter glass consists of sintered particles of infrared absorptive glass located within a collector space formed within an all-glass panel. The panel includes glass walls extending outwardly of the walls forming the collector space. In a further embodiment, the transparent converter glass consists of elongated strips of infrared absorptive glass carried by support members so that the strips extend in a parallel, spaced-apart relation to form a venetian blind-like structure between glass panels. In a still further embodiment, the transparent converter glass consists of a slab of infrared absorptive glass extending vertically within a building structure to form a passageway for the flow of convectivelydriven air between the glass slab and two window panels forming a dry airspace therebetween. Instead of a thick unitary glass slab, smaller bricks of infrared absorptive glass are arranged to form courses of an internal wall within a building structure adjacent a glass window.

Deminet, C.

1980-08-12T23:59:59.000Z

467

Supercharger for Heat Pumps in Cold Climates  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercharger for Heat Supercharger for Heat Pumps in Cold Climates Thomas J. Walter Mechanical Solutions, Inc. tjw@mechsol.com 518-320-8552 April 3, 2013 DOE SBIR Grant No. SC0006162 Concept is similar to superchargers for piston engine aircraft 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Electrically driven heat pumps are an effective method of extracting heat from ambient air. As air temperature falls, however, heat pump performance falls off, essentially limiting their year round usefulness to

468

Supercharger for Heat Pumps in Cold Climates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercharger for Heat Supercharger for Heat Pumps in Cold Climates Thomas J. Walter Mechanical Solutions, Inc. tjw@mechsol.com 518-320-8552 April 3, 2013 DOE SBIR Grant No. SC0006162 Concept is similar to superchargers for piston engine aircraft 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Electrically driven heat pumps are an effective method of extracting heat from ambient air. As air temperature falls, however, heat pump performance falls off, essentially limiting their year round usefulness to

469

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Conference Proceedings (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

470

Storage of heat and coolth in hollow-core concrete slabs. Swedish experience, and application to large, American-style buildings  

DOE Green Energy (OSTI)

The Folksam office building in Farsta, near Stockholm, has operated since December 1977 with an energy use for direct space heating of only 60 kWh/m/sup 2/ (19,000 Btu/ft/sup 2/), which is only half the Stockholm average for new buildings. To this 60 kWh/m/sup 2/ must be added the typical electric use of another 60 kWh/m/sup 2/ for lights, equipment, fans, etc. Even though Stockholm has 3580 deg-day (C), new Swedish buildings are so well insulated that their temperature floats upwards during most winter working days. In the Folksam building, this surplus heat from 40 full-occupied hours per week is stored in hollow-core concrete slabs, and then is used to compensate for the heat losses during the remaining 128 unoccupied hours. The energy transport/storage system necessary to keep the indoor temperature comfortable, summer and winter, is called Thermodeck, and is described in detail.

Anderson, L.O.; Bernander, K.G.; Isfaelt, E.; Rosenfeld, A.H.

1979-10-26T23:59:59.000Z

471

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

472

Commercial laundry heat recovery system  

SciTech Connect

In a commercial laundry that is connected to a source of fresh water and generates heated waste water, a method is described for recovering heat from the heated waste comprising the steps of: (a) pumping the heated waste water through a heat exchanger; (b) introducing fresh water into the heat exchanger to receive heat from the waste water through a heat transfer effected by the heat exchanger; (c) withdrawing a first proportion of the heated fresh water at a first temperature; (d) conveying the first proportion of the heated fresh water to cold water storage tank; (e) withdrawing a second proportion of the heated fresh water at a second temperature higher than the first temperature; (f) conveying the second proportion of the heated fresh water to a hot water storage tank.

Kaufmann, R.O.

1986-07-29T23:59:59.000Z

473

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

474

STORAGE OF HEAT AND COOLTH IN HOLLOW-CORE CONCRETE SLABS. SWEDISH EXPERIENCE, AND APPLICATION TO LARGE, AMERICAN-STYLE BUILDINGS  

E-Print Network (OSTI)

different slabs, each with a heat capacity of 100 Wh/m2~ Thefloor slabs have a large heat capacity (100 Wh/m2K - where Krequired, but the concrete heat capacity will still handle

Andersson, L.O.

2011-01-01T23:59:59.000Z

475

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

Trehu, Anne; Kannberg, Peter

2011-06-30T23:59:59.000Z

476

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

Science Conference Proceedings (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low he