Sample records for heat transfer fluids

  1. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  2. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  3. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  4. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  5. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12T23:59:59.000Z

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  6. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  7. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  8. Molten Salt Heat Transfer Fluid (HTF)

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-12T23:59:59.000Z

    Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point than any molten salt mixture available commercially. This allows the HTF to be used in applications in which the expensive parasitic energy costs necessary for freeze protection can be significantly reduced. The higher operating temperature limit significantly increases power cycle efficiency and overall power plan sun-to-net electric efficiency....

  9. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2011-04-12T23:59:59.000Z

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  10. The Advantages of Sealless Pumps in Heat Transfer Fluid Services

    E-Print Network [OSTI]

    Smith, M. D.

    THE ADV ANTAGES OF SEALLESS PUMPS IN HEAT TRANSFER FLUID SERVICES Michael D. Smith Engineering Manager Sundstrand Fluid Handling Arvada, CO ABSTRACT The expectations for heat transfer fluid (HTF) system safety and reliability... of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from the drive motors of m'ost pumps is dissipated to the air. A shaft driven fan wastes...

  11. FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS

    E-Print Network [OSTI]

    Sen, Mihir

    = heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

  12. Using Solid Particles as Heat Transfer Fluid for use in Concentrating...

    Broader source: Energy.gov (indexed) [DOE]

    Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power...

  13. Effects of operating conditions on a heat transfer fluid aerosol

    E-Print Network [OSTI]

    Sukmarg, Passaporn

    2000-01-01T23:59:59.000Z

    of heat transfer fluid aerosols from process leaks. To simulate industrial leaks, aerosol formation from a plain orifice into ambient air is studied by measuring liquid drop sizes and size distributions at various distances from an orifice. Measurements...

  14. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22T23:59:59.000Z

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  15. Heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat pump systems.

    E-Print Network [OSTI]

    Hu, Jinshan

    2007-01-01T23:59:59.000Z

    ??This thesis presents a series of studies on heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat… (more)

  16. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial with heat transfer along the stator, which corresponds to the experiment of Djaoui et al. [2]. Our results

  17. Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law

    E-Print Network [OSTI]

    Boyer, Edmond

    Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

  18. The effects of topology upon fluid-flow and heat-transfer within cellular copper structures

    E-Print Network [OSTI]

    Wadley, Haydn

    and packed beds, but also a function of orientation (open area ratio). The overall heat transfer dependsThe effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular

  19. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Lehigh University: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Terrafore: Heat Transfer and Latent Heat Storage in Inorganic Molten...

  20. Molten salt as a heat transfer fluid for heating a subsurface formation

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2010-11-16T23:59:59.000Z

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  1. Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

  2. 2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in

    E-Print Network [OSTI]

    Maruyama, Shigeo

    2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

  3. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

  4. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Window Frames

    E-Print Network [OSTI]

    1 Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer Arasteh and Dragan Curcija ABSTRACT Accurately analyzing heat transfer in window frame cavities radiation heat-transfer effects.) We examine three representative complex cavity cross-section profiles

  5. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  6. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  7. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  8. NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR

    E-Print Network [OSTI]

    Bahaidarah, Haitham M.

    NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

  9. Heat transfer in porous media with fluid phase changes

    SciTech Connect (OSTI)

    Su, H.J.

    1981-06-01T23:59:59.000Z

    A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

  10. 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics

    E-Print Network [OSTI]

    Maruyama, Shigeo

    6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics April 17-through open-system, therefore the reaction field is close to atmospheric pressure. Our experiments consisted

  11. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  12. Heat transfer to a fluid flowing in an annulus

    E-Print Network [OSTI]

    Logan, Earl

    2012-06-07T23:59:59.000Z

    . ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

  13. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15T23:59:59.000Z

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  14. The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid

    SciTech Connect (OSTI)

    Nakaharai, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Takeuchi, J.; Morley, N.B.; Abdou, M.A. [Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597 (United States); Yokomine, T. [Faculty of Energy Engineering Science, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Kunugi, T. [Department of Nuclear Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Satake, S. [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2007-10-15T23:59:59.000Z

    The influence of a transverse magnetic field on the local and average heat transfer of an electrically conducting, turbulent fluid flow with high Prandtl number was studied experimentally. The mechanism of heat transfer modification due to magnetic field is considered with aid of available numerical simulation data for turbulent flow field. The influence of the transverse magnetic field on the heat transfer was to suppress the temperature fluctuation and to steepen the mean temperature gradient in near-wall region in the direction parallel to the magnetic field. The mean temperature gradient is not influenced compared to the temperature fluctuation in the direction vertical to the magnetic field. (author)

  15. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes

    E-Print Network [OSTI]

    Shiralkar, B. S.

    1968-01-01T23:59:59.000Z

    At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

  16. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which...

  17. International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 8-10 April 2002, Kruger Park, South Africa

    E-Print Network [OSTI]

    Kandlikar, Satish

    HEFAT2002 1st International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics 8 topic in heat transfer. The power dissipation of the computer chips is rapidly increasing. The thermal management of these high power systems provides a complex challenge. Unfortunately, the heat transfer area

  18. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  19. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01T23:59:59.000Z

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF data and discusses the next steps in the project evaluation of air-cooled condenser designs that can take advantage of the performance gains possible with these fluids.

  20. Heat Transfer Fluids Containing Nanoparticles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellnessFebruaryWaterPortalHeat

  1. Nanoscale modification of key surface parameters to augment pool boiling heat transfer and critical heat flux in water and dielectric fluids

    E-Print Network [OSTI]

    Forrest, Eric Christopher

    2009-01-01T23:59:59.000Z

    Surface effects on pool boiling heat transfer and the critical heat flux are well documented but poorly understood. This study investigates the pool boiling characteristics of various fluids, and demonstrates that surface ...

  2. Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials

    E-Print Network [OSTI]

    Tumuluri, Kalpana

    2011-08-08T23:59:59.000Z

    The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled...

  3. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  4. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    SciTech Connect (OSTI)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01T23:59:59.000Z

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  5. Heat Transfer -1 You are given the following information for a fluid with thermal conductivity of k = 0.0284 W/m-K that

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer

  6. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

    2013-02-01T23:59:59.000Z

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  7. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14T23:59:59.000Z

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current commerically used thermal fluids. Also within the past decade nanofluids have gained attention for thermal conductivity enhancment of fluids, but little analysis has been completed on the heat capacity effects of the nanoparticle addition. The idea of ILs or nanofluids as a HTF is not new, as there are several references that have proposed the idea. However, the use of ionic liquid nanofluids containing nanomaterials other than carbon nanotubes has never before been studied. Here, for the first time, nano-particle enhanced ILs (NEILs) have been shown to increase the heat capacity of the IL with no adverse side effects to the ILs thermal stability and, only at high nanoparticle loading, are the IL physical properties affected. An increase of volumetric heat capacity translates into a better heat transfer fluid as more energy is stored per volumetric unit in the solar concentrating section, thus more efficency in increased steam pressure. Results show that the properties of the NEIL are highly dependant on the suspended nanomaterial and careful materials selection is required to fully optimize the nanofluid properties.

  8. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  9. Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production

    SciTech Connect (OSTI)

    Fox, Elise B; Kendrick, Sarah E.; Visser, Ann E.; Bridges, Nicholas J.

    2012-10-15T23:59:59.000Z

    The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200?C in an oxidizing environment and performing subsequent analyses on the aged chemicals.

  10. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  11. Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.

    SciTech Connect (OSTI)

    El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.

    2010-12-01T23:59:59.000Z

    The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.

  12. Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates

    E-Print Network [OSTI]

    McMath, John Grady

    2012-06-07T23:59:59.000Z

    NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

  13. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  14. Analysis Methods and Desired Outcomes of System Interface Heat Transfer Fluid Requirements and Characteristics Analyses

    SciTech Connect (OSTI)

    Cliff B. Davis

    2005-04-01T23:59:59.000Z

    The interface between the Next Generation Nuclear Plant (NGNP) and the hydrogen-generating process plant will contain an intermediate loop that will transport heat from the NGNP to the process plant. Seven possible configurations for the NGNP primary coolant system and the intermediate heat transport loop were identified. Both helium and liquid salts are being considered as the working fluid in the intermediate heat transport loop. A method was developed to perform thermal-hydraulic evaluations of the different configurations and coolants. The evaluations will determine which configurations and coolants are the most promising from a thermal-hydraulic point of view and which, if any, do not appear to be feasible at the current time. Results of the evaluations will be presented in a subsequent report.

  15. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01T23:59:59.000Z

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  16. Numerical method for fluid flow and heat transfer in magnetohydrodynamic flow

    SciTech Connect (OSTI)

    Kim, C.N.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    A new numerical algorithm was developed to provide a fully detailed flow field in liquid metal MHD flow with a relatively large Hartmann number and interaction parameter. The algorithm includes the effects of advection and diffusion, and is capable of predicting momentum and heat transfer in MHD flows. Using this algorithm, an incompressible, viscous, three-dimensional MHD flow in a square duct is investigated at a low magnetic Reynolds number by means of the finite volume method. The velocity and temperature profiles are obtained in the developing region for constant wall temperature. The result shows that large velocities are obtained near the insulating walls parallel to the magnetic field. Also, near the perfectly conducting walls perpendicular to the field, a velocity profile like a Hartmann layer is obtained. In association with the velocity profiles, Nusselt number at the insulating walls (with side layer) is seen to be larger than that at the perfectly conducting walls (with Hartmann layer).

  17. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01T23:59:59.000Z

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  18. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07T23:59:59.000Z

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  19. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  20. Particulate immersed boundary method for complex fluid-particle interaction problems with heat transfer

    E-Print Network [OSTI]

    Zhang, Hao; Trias, F Xavier; Yu, Aibing; Tan, Yuanqiang; Oliva, Assensi

    2015-01-01T23:59:59.000Z

    In our recent work [H. Zhang, F.X. Trias, A. Oliva, D. Yang, Y. Tan, Y. Sheng. PIBM: Particulate immersed boundary method for fluid-particle interaction problems. Powder Technology. 272(2015), 1-13.], a particulate immersed boundary method (PIBM) for simulating fluid-particle multiphase flow was proposed and assessed in both two- and three-dimensional applications. In this study, the PIBM was extended to solve thermal interaction problems between spherical particles and fluid. The Lattice Boltzmann Method (LBM) was adopted to solve the fluid flow and temperature fields, the PIBM was responsible for the non-slip velocity and temperature boundary conditions at the particle surface, and the kinematics and trajectory of the solid particles were evaluated by the Discrete Element Method (DEM). Four case studies were implemented to demonstrate the capability of the current coupling scheme. Firstly, numerical simulation of natural convection in a two-dimensional square cavity with an isothermal concentric annulus was...

  1. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  2. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    SciTech Connect (OSTI)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01T23:59:59.000Z

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  3. Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid

    E-Print Network [OSTI]

    Ravi, Gurunarayana

    2010-01-14T23:59:59.000Z

    at the entrance of the tube. Results were also obtained for the phase change process under hydro dynamically and thermally fully developed conditions. In case of a smooth circular tube with phase change material (PCM) fluid, results of Nusselt number were obtained...

  4. Numerical investigation of transient hydrothermal processes around intrusions: heat-transfer and fluid-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical investigation of transient hydrothermal processes around intrusions: heat the intrusion. Keywords: Hydrothermal processes, numerical modelling, magmatic intrusion, permeability- depth around magmatic intrusions have been obtained through coupled hydrothermal numerical modelling that takes

  5. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  6. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities

    SciTech Connect (OSTI)

    Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid; Arasteh, Dariush

    2008-12-01T23:59:59.000Z

    This paper assesses the accuracy of the simplified frame cavity conduction/convection and radiation models presented in ISO 15099 and used in software for rating and labeling window products. Temperatures and U-factors for typical horizontal window frames with internal cavities are compared; results from Computational Fluid Dynamics (CFD) simulations with detailed radiation modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two with a CFD code and four with a building-component thermal-simulation tool using the Finite Element Method (FEM). This FEM tool addresses convection using correlations from ISO 15099; it addressed radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation model. Calculations were performed using the CFD code with and without fluid flow in the window frame cavities; the calculations without fluid flow were performed to verify that the CFD code and the building-component thermal-simulation tool produced consistent results. With the FEM-code, the practice of subdividing small frame cavities was examined, in some cases not subdividing, in some cases subdividing cavities with interconnections smaller than five millimeters (mm) (ISO 15099) and in some cases subdividing cavities with interconnections smaller than seven mm (a breakpoint that has been suggested in other studies). For the various frames, the calculated U-factors were found to be quite comparable (the maximum difference between the reference CFD simulation and the other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 correlation works best for frames with high U-factors. For more efficient frames, the relative differences among various simulations are larger. Temperature was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.

  7. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  8. Nanofluid heat transfer enhancement for nuclear reactor applications

    E-Print Network [OSTI]

    Buongiorno, Jacopo

    Colloidal dispersions of nanoparticles are known as `nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (i.e., erosion, ...

  9. Laminar Flow Forced Convection Heat Transfer Behavior of Phase Change Material Fluid in Straight and Staggered Pin Microchannels

    E-Print Network [OSTI]

    Kondle, Satyanarayana

    2011-10-21T23:59:59.000Z

    ? Density Subscripts b Bulk i Inlet w Wall 1 Start of melting 2 End of melting Superscripts `` Flux - Average Acronyms CHF Constant heat glux CWT Constant wall temperature PCM Phase change material ix TABLE...:8 microchannel under T boundary condition .............. 52 Figure 32 Nusselt number for square pins geometry using CHF boundary condition ... 55 Figure 33 Nusselt number for circular pins geometry using CHF boundary condition . 55 Figure 34 Fluid...

  10. INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER

    E-Print Network [OSTI]

    Kandlikar, Satish

    INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar surfaces in laboratories to obtain the heat transfer coefficient data. In many process applications however, a fluid stream is employed as the heating medium. The heat transfer data generated with the electrically

  11. Heat transfer to impacting drops and post critical heat flux dispersed flow

    E-Print Network [OSTI]

    Kendall, Gail E.

    1978-01-01T23:59:59.000Z

    Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

  12. Corrosion behavior of several metals in ethylene glycol-base heat-transfer fluids under conditions encountered in solar energy systems

    SciTech Connect (OSTI)

    Zeman, G.J.

    1980-01-01T23:59:59.000Z

    The corrosion behavior of aluminum, copper, and iron in inhibited ethylene glycol-ASTM corrosive water solutions was evaluated in a laboratory loop under isothermal and heat-flux conditions for 1000 h at temperatures between 378 and 413/sup 0/K, in static autoclave tests at 450/sup 0/K for 500 h, and by potentiodynamic polarization measurements at temperatures between 298 and 348/sup 0/K. The effect of time, temperature, and ethylene glycol concentration of the heat-transfer fluid on the extent of inhibitor depletion was determined from analyses of the reserve alkalinity, pH, and inhibitor content of the solutions. The performance of an electrochemical sensor as a monitor of fluid quality was also evaluated. A heat flux of 0.4 to 1.0 kW/m/sup 2/ did not have a significant effect on the corrosion behavior of the various materials at temperatures between 378 and 413/sup 0/K. The corrosion rates of aluminum, copper, and iron in the 50 volume percent inhibited ethylene glycol-corrosive water solution decreased as a function of time during the 1000-h test. At 413/sup 0/K, the corrosion rate of copper was considerably higher than that of iron or aluminum at low flow velocity. Significant degradation of the fluid quality, as indicated by the measurement of the pH, reserve alkalinity, and inhibitor concentrations, occurred after several hundred hours at temperatures of approx. 450/sup 0/K.

  13. HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS

    E-Print Network [OSTI]

    Heperkan, H.

    2013-01-01T23:59:59.000Z

    11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

  14. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1/120 5. Heat transfer Ron Zevenhoven �bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B�88 �bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer �bo Akademi

  15. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

  16. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  17. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01T23:59:59.000Z

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  18. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01T23:59:59.000Z

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  19. Convective heat transfer in rotating, circular channels

    E-Print Network [OSTI]

    Hogan, Brenna Elizabeth

    2012-01-01T23:59:59.000Z

    Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

  20. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  1. Numerical model of mixed convection heat transfer between a series of vertical parallel plates with planar heat sources

    E-Print Network [OSTI]

    Watson, James Christopher

    2012-06-07T23:59:59.000Z

    Heat transfer between a series of vertical parallel plates with planar heat sources has been studied numerically. The series of plates formed a series of channels, or cooling passages, in which fluid could flow. Heat dissipation from the heat...

  2. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  3. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  4. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The University of Arizona, Arizona Statue University (ASU), and Georgia Institute of Technology is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  5. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

  6. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  7. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  8. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect (OSTI)

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08T23:59:59.000Z

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  9. Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography

    E-Print Network [OSTI]

    Gerardi, Craig Douglas

    2009-01-01T23:59:59.000Z

    A high-speed video and infrared thermography based technique has been used to obtain detailed and fundamental time- and space-resolved information on pool boiling heat transfer. The work is enabled by recent advances in ...

  10. Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets

    E-Print Network [OSTI]

    Thole, Karen A.

    Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical the formation of streamwise vortices and increase heat transfer between a working fluid and the surface on which the winglets are placed. This study investigates the use of delta winglets to augment heat transfer on the tube

  11. Electrohydrodynamically enhanced condensation heat transfer

    E-Print Network [OSTI]

    Wawzyniak, Markus

    2012-06-07T23:59:59.000Z

    In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

  12. MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER

    E-Print Network [OSTI]

    Lahey, Richard T.

    MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

  13. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect (OSTI)

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01T23:59:59.000Z

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  14. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15T23:59:59.000Z

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  15. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E. (Kennewick, WA); Wegeng, Robert S. (Richland, WA); Whyatt, Greg A. (West Richland, WA); King, David L. (Richland, WA); Brooks, Kriston P. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

    2009-04-21T23:59:59.000Z

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  16. FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL

    E-Print Network [OSTI]

    Bahrami, Majid

    FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL ANALYTE transfer in microfluidic devices with applica- tion to optothermal analyte preconcentration and manipula the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been

  17. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  18. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOE Patents [OSTI]

    Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM); Wheatley, John C. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  19. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOE Patents [OSTI]

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1985-05-14T23:59:59.000Z

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.

  20. Microchannel crossflow fluid heat exchanger and method for its fabrication

    DOE Patents [OSTI]

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1982-08-31T23:59:59.000Z

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  1. Thermal Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

  2. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  3. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  4. SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke

    E-Print Network [OSTI]

    Kandlikar, Satish

    SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke Systems upon the understanding of the fundamental heat transfer processes that occur in these systems. There have been great advancements in our understanding of the heat transfer and fluid flow mechanisms

  5. Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

  6. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  7. Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation

    E-Print Network [OSTI]

    Wei, Dongming

    Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tube­Nusselt problem 1. Introduction Heat transfer to incompressible viscous non-Newto- nian fluids is a problem

  8. On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure

    E-Print Network [OSTI]

    Beckermann, Christoph

    On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure E. A. Ellinger* and C. To enhance heat transfer, the porous layers are located in regions where the melting rates for a pure the porous layer and the pure fluid layer cause strong variations in heat transfer, melt convection

  9. ME 519: THEORY OF HEAT TRANSFER Instructor

    E-Print Network [OSTI]

    Lin, Xi

    ME 519: THEORY OF HEAT TRANSFER Fall 2014 Instructor: Class time: Classroom: Office Hours: Prof Tuesday 4­5pm or by appointment Class description This course will cover the fundamentals of heat transfer. An introductory course in heat transfer (ME 419 or equivalent) is pre-requisite. Grading 20% Homework 25% Exam 1

  10. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  11. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  12. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  13. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  14. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  15. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  16. An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling

    E-Print Network [OSTI]

    Choi, Jungho

    2005-02-17T23:59:59.000Z

    studies have investigated the fluid flow and heat transfer behavior in high Reynolds number flows. Blair [7,8] investigated the effect of grid generated turbulence on flat plate heat transfer. He showed that turbulent heat transfer coefficient in flow... AN EXPERIMENTAL INVESTIGATION OF TURBINE BLADE HEAT TRANSFER AND TURBINE BLADE TRAILING EDGE COOLING A Dissertation by JUNGHO CHOI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  17. A cut-cell method for adaptive high-order discretizations of conjugate heat transfer problems

    E-Print Network [OSTI]

    Ojeda, Steven Matthew

    2014-01-01T23:59:59.000Z

    Heat transfer between a conductive solid and an adjacent convective fluid is prevalent in many aerospace systems. The ability to achieve accurate predictions of the coupled heat interaction is critical in advancing ...

  18. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  19. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  20. Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

  1. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  2. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

    1990-01-01T23:59:59.000Z

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  3. Condensation heat transfer in square, triangular, and semi-circular mini-channels Melanie Derby a

    E-Print Network [OSTI]

    Peles, Yoav

    , and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States b Department was the coolant. The heat transfer rate was obtained through a coolant-side energy balance. To obtain condensation. An energy balance on the fluid-to-fluid heat exchanger measured heat duty while sensors in two obstructed

  4. Abstract--The use of structured porous media is a proposed technique to achieve higher heat transfer coefficients by

    E-Print Network [OSTI]

    Pulsifer, John

    transfer coefficients by increasing the specific surface area for heat transfer while aiming to maintain pressure drop for a given heat transfer performance. A comprehensive thermo-fluid model called MERLOT [1] was used to assess the use of porous heat transfer media for fusion plasma facing component applications

  5. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  6. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  7. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  8. Numerical simulation of the fluid flow and heat transfer processes during scavenging in a two-stroke engine under steady-state conditions

    SciTech Connect (OSTI)

    Castro Gouveia, M. de; Reis Parise, J.A. dos; Nieckele, A.O. (Pontificia Univ. Catolica, Rio de Janeiro (Brazil))

    1992-05-01T23:59:59.000Z

    A numerical simulation of the scavenging process in a two-stroke flat-piston model engine has been developed. Air enters the cylinder circumferentially, inducting a three-dimensional turbulent swirling flow. The problem was modeled as a steady-state axisymmetric flow through a cylinder with uniform wall temperature. The steady-state regime was simulated by assuming the piston head fixed at the bottom dead center. The calculation was performed employing the {kappa}-{epsilon} model of turbulence. A comparison of the results obtained for the flow field with available experimental data showed very good agreement, and a comparison with an available numerical solution revealed superior results. The effects of the Reynolds number, inlet port angles, and engine geometry on the flow and in-cylinder heat transfer characteristics were investigated. The Nusselt number substantially increases with larger Reynolds numbers and a smaller bore-to-stroke ratio. It is shown that the positioning of the exhaust value(s) is the main parameter to control the scavenging process.

  9. Radiative heat transfer between dielectric bodies

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-16T23:59:59.000Z

    The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

  10. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  11. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  12. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  13. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  14. Liquid-vapour phase change and multiphase flow heat transfer in single micro-channels using pure liquids and nano-fluids 

    E-Print Network [OSTI]

    Wang, Yuan

    2011-11-22T23:59:59.000Z

    Heat management in high thermal-density systems such as CPU chips, nuclear reactors and compact heat exchangers is confronting rising challenges due to ever more miniaturized and intensified processes. While searching ...

  15. Dynamics of heat transfer between nano systems

    E-Print Network [OSTI]

    Svend-Age Biehs; Girish S. Agarwal

    2012-10-18T23:59:59.000Z

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

  16. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

  17. Optimization of Phase Change Heat Transfer in Biporous Media

    E-Print Network [OSTI]

    Reilly, Sean

    2013-01-01T23:59:59.000Z

    in Compressed Open- Celled Foams”. Numerical Heat Transfer,open the need to effectively estimate the heat transfer inopen porosities for different packed bed of spheres arrangements. The scaled heat transfer

  18. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  19. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, T.D.

    1997-08-26T23:59:59.000Z

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  20. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL)

    1984-01-01T23:59:59.000Z

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  1. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  2. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation

    SciTech Connect (OSTI)

    Fleming, W.H. Jr.

    1999-10-20T23:59:59.000Z

    This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

  4. ME 339 Heat Transfer ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 339­ Heat Transfer Page 1 ABET EC2000 syllabus ME 339 ­ Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives

  5. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    SciTech Connect (OSTI)

    Spring, J.P.; McLaughlin, D.M. [The Pennsylvania State University, 201 Shields Building University Park, PA 16802 (United States)

    2006-07-01T23:59:59.000Z

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local heat transfer was found to be greatest at locations immediately downstream of the grid, and as the flow moved further downstream from the grid it became more developed, thus causing the heat transfer to diminish. The amount of heat transfer enhancement was found to depend not only on the spacer grid design, but also on the local Reynolds number. It was seen that decreasing Reynolds number leads to greater heat transfer enhancement. (authors)

  6. Heat transfer enhancement in a channel with porous baffles

    E-Print Network [OSTI]

    Ko, Kang-Hoon

    2005-02-17T23:59:59.000Z

    with staggered positioned porous baffles. A numerical procedure was implemented, in conjunction with a commercially available Navier-Stokes solver, to model the turbulent flow in porous media. The Brinkman-Forchheimer-Extended Darcy model was used for modeling... fluid flow through the porous baffles. Conventional, one- equation, and two-equation models were used for heat transfer modeling. The accuracy and characteristics of each model were investigated and discussed. The results were compared...

  7. Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger

    E-Print Network [OSTI]

    Singh, K. P.

    1979-01-01T23:59:59.000Z

    The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

  8. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  9. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect (OSTI)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01T23:59:59.000Z

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  10. Heat Transfer in Underground Rail Tunnels

    E-Print Network [OSTI]

    Sadokierski, Stefan

    2007-01-01T23:59:59.000Z

    The transfer of heat between the air and surrounding soil in underground tunnels ins investigated, as part of the analysis of environmental conditions in underground rail systems. Using standard turbulent modelling assumptions, flow profiles are obtained in both open tunnels and in the annulus between a tunnel wall and a moving train, from which the heat transfer coefficient between the air and tunnel wall is computed. The radial conduction of heat through the surrounding soil resulting from changes in the temperature of air in the tunnel are determined. An impulse change and an oscillating tunnel air temperature are considered separately. The correlations between fluctuations in heat transfer coefficient and air temperature are found to increase the mean soil temperature. Finally, a model for the coupled evolution of the air and surrounding soil temperature along a tunnel of finite length is given.

  11. Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money

    E-Print Network [OSTI]

    Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

    1984-01-01T23:59:59.000Z

    -drllt fIn lb. FI~-to_heot-roccvery .ylt8m Stoek gl' ..---::-----'1 _._.__.@_.; -+ Farcod?drall fan le. Air-prohe8ting syotem UBing I ....Hransfer ayltem Three typical arrangements for recovering waste heat from furnace flue gas Fig. 1 *Trademark... heat transfer fluid and thence to selected heat "user" sites (Figure 1C). This basic method often offers an attractive investment return, particu larly in applications where stack gas exit tempera tures exceed 316?C (600?F) and the furnace duty...

  12. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21T23:59:59.000Z

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  13. Augmentation of condensation heat transfer with electrohydrodynamics on vertical enhanced tubes

    E-Print Network [OSTI]

    Motte, Edouard

    1994-01-01T23:59:59.000Z

    for various heat loads . 48 . 49 . 58 NOMENCLATURE cr D ha k Nu qual Re V area, m', or current, A specific heat at constant pressure, J/kgK diameter, m electric field strength, V/m gravity, (9. 81 m/s') heat transfer coefficient, W... fluorocarbon or a hydrocarbon, the temperature of heat addition from the primary fluid to the secondary working fluid tends to be lower, thereby increasing the amount of heat rejected. In many cases the waste heat can be rejected through a condensation...

  14. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    SciTech Connect (OSTI)

    McHugh, P.R.

    1995-10-01T23:59:59.000Z

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  15. Numerical methods in heat transfer

    SciTech Connect (OSTI)

    Emery, A.F.; Douglass, R.W.

    1988-01-01T23:59:59.000Z

    This book contains nine papers. Some of the titles are: Numerical calculation of bubble growth in nucleate boiling from inception through departure; An evaluation of a translator for finite element data to resistor/capacitor data for the heat diffusion; Thermophoretic deposition due to jet impingement on an inclined plane; and A three-dimensional boundary-fitted coordinate system.

  16. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    Analysis of heat transfer in unlooped and looped pulsating heat pipes M.B. Sha®i and A. Faghri of Mechnical Engineering, New Mexico State University, Las Cruces, USA Keywords Heat transfer, Condensation, Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

  17. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26T23:59:59.000Z

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  18. Heat transfer analysis in Stirling engine heat input system

    SciTech Connect (OSTI)

    Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

    1995-12-31T23:59:59.000Z

    One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

  19. Self supporting heat transfer element

    DOE Patents [OSTI]

    Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  20. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  1. Power systems utilizing the heat of produced formation fluid

    DOE Patents [OSTI]

    Lambirth, Gene Richard (Houston, TX)

    2011-01-11T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  2. Experimental and numerical study of laminar forced convection heat transfer for a dimpled heat sink

    E-Print Network [OSTI]

    Park, Do Seo

    2009-05-15T23:59:59.000Z

    characteristics in a laminar and a turbulent airflow condition. A relative dimple depth in the range of 0.06 to 0.24 and a SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations) method with multiblock grids were used to evaluate the flow change and heat....3) 4.3 Computation Procedure The computations of the fluid flow field and heat transfer were performed using CFD by Fluent software, version Fluent 6.2.16. Gambit 2.2.30 was used for the development of the computational grid. 4.3.1 Computational...

  3. Heat Transfer between Graphene and Amorphous SiO2

    E-Print Network [OSTI]

    B. N. J. Persson; H. Ueba

    2010-07-22T23:59:59.000Z

    We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  4. Fluid Circulation and Heat Extraction from Engineered Geothermal...

    Open Energy Info (EERE)

    from Engineered Geothermal Reservoirs Abstract A large amount of fluid circulation and heat extraction (i.e., thermal power production) research and testing has been conducted...

  5. A numerical model of convective heat transfer in a three dimensional channel with baffles

    E-Print Network [OSTI]

    Lopez Buso, Jorge Ricardo

    2012-06-07T23:59:59.000Z

    to minimize the effects of the temperature. Chandrupatla and Sastri (1977) used a finite difference method to study laminar heat transfer and fluid flow for Non-Newtonian fluids. In the limiting case of Newtonian fluids their results showed good agreement... and Sastri (1977) for developing laminar flow in a rectangular smooth channel. Figure 4. 1 shows the numerically predicted centerline axial velocity compared with the experimental data of Goldstein and Kreid (1967). The agreement between the numerical...

  6. Flexible profile approach to the conjugate heat transfer problem

    E-Print Network [OSTI]

    M. -N. Sabry

    2008-01-07T23:59:59.000Z

    The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.

  7. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  8. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink

    E-Print Network [OSTI]

    Peles, Yoav

    Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali KosÃ?ar, Yoav Peles-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer

  9. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1982-02-01T23:59:59.000Z

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchange system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl conbustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Non-dimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  10. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

  11. Transient Heat Transfer in TCAP Coils

    SciTech Connect (OSTI)

    Steimke, J.L.

    1999-03-09T23:59:59.000Z

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.

  12. Chemically Reactive Working Fluids

    Broader source: Energy.gov (indexed) [DOE]

    commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

  13. Hydrodynamics, heat transfer and flow boiling instabilities in microchannels 

    E-Print Network [OSTI]

    Barber, Jacqueline Claire

    2010-01-01T23:59:59.000Z

    Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

  14. Experimental evaluation of heat transfer characteristics of silica nanofluid

    E-Print Network [OSTI]

    Zhang, Zihao, S.B. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The laminar convective heat transfer characteristics were investigated for silica nanofluid. An experimental loop was built to obtain heat transfer coefficients for single-phase nanofluids in a circular conduit in laminar ...

  15. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  16. Situ soil sampling probe system with heated transfer line

    DOE Patents [OSTI]

    Robbat, Jr., Albert (Andover, MA)

    2002-01-01T23:59:59.000Z

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  17. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere

  18. Proceeding of the 1st International Forum on Heat Transfer

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Proceeding of the 1st International Forum on Heat Transfer November 24-26, 2004, Kyoto, Japan Paper No. HEAT TRANSFER PROBLEMS RELATED WITH CARBON NANOTUBES BY MOLECULAR DYNAMICS-BASED SIMULATIONS Dynamics Simulation, Thermal Conductance ABSTRACT Several heat transfer problems related to single

  19. Heat transfer from nanoparticles: a corresponding state analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer from nanoparticles: a corresponding state analysis Samy Merabia , Sergei Shenogin that inhibits the formation of an insulating vapor film. heat transfer | nanoparticles | liquids | phase transitions Introduction Sub-micron scale heat transfer is attracting a growing inter- est, motivated by both

  20. STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON

    E-Print Network [OSTI]

    Camci, Cengiz

    Chapter V STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON SURFACES Composite Heat Transfer Surface Liquid Crystal Image Processing Technique V . 4 Experimental Results and Discussion Test Conditions and Data Analysis Application to Endwall Heat Transfer Problem Further Application

  1. 16 Heat Transfer and Air Flow in a Domestic Refrigerator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

  2. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  3. Dt2boool2> Nora Heat Transfer Correlations

    E-Print Network [OSTI]

    Dt2boool2> Nora Heat Transfer Correlations in Nuclear Reactor Safety Calculations VW �Aiiatt�aii #12;fcflison cufiMiMltt lor yhdyiifci aomicantfgy RIS0-M-25O4 6«.*). HEAT TRANSFER of work 26 3. PRESENT KNOWLEDGE 27 3.1. General considerations 27 3.2. Heat transfer in different flow

  4. Proceedings of NHTC'00: 34 th National Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of NHTC'00: 34 th National Heat Transfer Conference Pittsburgh, Pennsylvania, August 20 ON SINGLE- AND TWO-PHASE HEAT TRANSFER CHARACTERISTICS IN A MICROCHANNEL Michael S June Graduate Student study investigates the heat transfer characteristics of single and two-phase flows in a 200 m wide

  5. Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference July 19-23, 2009, San Francisco, CA, USA HT2009-88261 SIMULATION OF FOCUSED RADIATION PROPAGATION AND TRANSIENT HEAT TRANSFER IN TURBID-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical

  6. innovati nAdvanced Heat Transfer Technologies Increase Vehicle

    E-Print Network [OSTI]

    innovati nAdvanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping with industry to develop and demonstrate advanced heat transfer technologies such as jet impingement cooling for thermal grease and significantly enhances direct heat transfer from the electronics. A series of nozzles

  7. RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1 C. JOHANNES Service de Recherches Appliquées, L boiling, forced convection heat transfer. Relations between critical nucleate flux and some parameters confronted with the problem of calculating the heat transfer from the helium to the superconducting material

  8. Introduction to Computational Fluid Dynamics 424512 E #2Introduction to Computational Fluid Dynamics 424512 E #2 --rzrz IntroductionIntroduction toto ComputationalComputational Fluid DynamicsFluid DynamicsIntroductionIntroduction toto ComputationalComputa

    E-Print Network [OSTI]

    Zevenhoven, Ron

    transferExample: stationary heat transfer Stationary heat transfer, 2-D (Laplace eq'n): with a grid fluid flow (and heat,(and heat, massmass transfer)transfer) ((lecturelecture 4 of 5)4 of 5) Ron #2 -- rzrz Example: stationary heat transferExample: stationary heat transferExample: stationary heat

  9. DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION

    E-Print Network [OSTI]

    Yee, G.

    2010-01-01T23:59:59.000Z

    Forced Convection Heat Transfer in Curved RectangularInfluence of Curvature on Heat Transfer to IncompressibleT. , "Forced Convective Heat Transfer in a Curved Channel

  10. Heat Transfer Operators Associated with Quantum Operations

    E-Print Network [OSTI]

    Ç. Aksak; S. Turgut

    2011-04-14T23:59:59.000Z

    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

  11. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels

    SciTech Connect (OSTI)

    Das, A.K.; Das, P.K.; Saha, P. [Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2010-11-15T23:59:59.000Z

    Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnels for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)

  12. TOPAZ3D. 3-D Finite Element Heat Transfer

    SciTech Connect (OSTI)

    Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

    1992-02-24T23:59:59.000Z

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  13. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  14. Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Numerical study of high heat ¯ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b , Shigeo simulation model of boiling heat transfer is proposed based on a numerical macrolayer model [S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings

  15. Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers

    E-Print Network [OSTI]

    Thole, Karen A.

    Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A transfer along the tube wall of the compact heat exchanger through the use of winglets placed of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation

  16. Journal of Enhanced Heat Transfer, 19 (5): 457476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Journal of Enhanced Heat Transfer, 19 (5): 457­476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT microfin tubes, most of the heat transfer and friction factor studies were focused on the turbulent region. However, there is a lack of information about the heat transfer and friction factor behavior of microfin

  17. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28T23:59:59.000Z

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  18. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  19. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01T23:59:59.000Z

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  20. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    E-Print Network [OSTI]

    Soti, Atul Kumar; Sheridan, John

    2015-01-01T23:59:59.000Z

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  1. MERLOT: a model for flow and heat transfer through porous media for high heat flux applications

    E-Print Network [OSTI]

    Raffray, A. René

    MERLOT: a model for flow and heat transfer through porous media for high heat flux applications A Abstract Fusion power plant studies have found helium to be an attractive coolant based on its safety tend to provide modest heat transfer performance due to their inherently low heat capacity and heat

  2. Radial heat transfer from a moving plasma

    E-Print Network [OSTI]

    Johnson, James Randall

    1966-01-01T23:59:59.000Z

    . The plasma temperature is assumed constant axially and rad'ally and equal to the value at the exit of tl. e arc. chamber. This temperature was used in the determ'r. a- tion of the Nusselt number a, d the Reynolds number used in the above correlatior... and measured values and estimated the accuracy of the heat flux data to be within Measurements of the total continuum radiatior. or simply the energy transferred by radiation from a wall stabilized argon plasma arc were made by Barzelay (14), Comparisons...

  3. Thermal conductivity and heat transfer in superlattices

    SciTech Connect (OSTI)

    Chen, G.; Neagu, M.; Borca-Tasciuc, T.

    1997-07-01T23:59:59.000Z

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  4. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL SecretaryHazmat work opensHeat Transfer

  5. Outside heat transfer coefficients for atmospheric coolers

    E-Print Network [OSTI]

    George, David Mark

    1950-01-01T23:59:59.000Z

    for the same conditions of operation is given by Robinson ()i. 9). TABLE I Comparison of various authors' values of outside heat transfer coefficients Btugour x square foot x F ~ ) Adams (1 ) 1001 1041 915 74, 6 1021 981 910 Clarke 945 997 841... ozeventing any recycling of the wet air. "M~4~ 1 f jc, : 1 C. X L, w 38 Cooled water fro~ the tower is centrifugally pmnoed through a 2 inch pipe to a rotameter and a I and operated control valve, Figure 8, before entering a 1 1/g inch by 5 foot...

  6. Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer

    E-Print Network [OSTI]

    Martin, Timothy

    Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

  7. Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.

    E-Print Network [OSTI]

    Chuduk, Svetlana

    2010-01-01T23:59:59.000Z

    ??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

  8. Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures

    E-Print Network [OSTI]

    Lu, Ming-Chang

    2010-01-01T23:59:59.000Z

    using boiling heat transfer, it opens up a new direction forusing boiling heat transfer. This opens up a new direction

  9. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01T23:59:59.000Z

    Goss. (1998). “Local heat transfer in open frame cavities ofthe local heat transfer in cavities open to the exterior

  10. FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...

    Broader source: Energy.gov (indexed) [DOE]

    FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

  11. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  13. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  14. CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011

    E-Print Network [OSTI]

    Dyer, Bill

    ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik

  15. Proceedings of NHTC'00 34th National Heat Transfer Conference

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Proceedings of NHTC'00 34th National Heat Transfer Conference Pittsburgh, Pennsylvania, August 20­22, 2000 NHTC2000-12151 HEAT TRANSFER IN A FUEL CELL ENGINE J. Musser and C.Y. Wang Department-4848 E-mail: cxw31@psu.edu KEYWORDS: PEM, Fuel Cell Engine, Heat Generation, Current Density, System

  16. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01T23:59:59.000Z

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  17. Flow and Heat-Transfer Apparatus, Instrumentation and Data Acquisition Method

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    friction and convective heat transfer characteristics of nanofluids. Instead of a usual closed-loop system where pumps and after-cooling units are required, the developed apparatus utilizes nitrogen pressure-driven flow to test a single batch of fluid. This reduces the complexity of the system while improving its

  18. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01T23:59:59.000Z

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  19. IntroductiontoProcessEngineering(PTG) 5. Heat transfer

    E-Print Network [OSTI]

    Zevenhoven, Ron

    #5/6 IntroductiontoProcessEngineering(PTG) VST rz13 1/114 5. Heat transfer Ron Zevenhoven Ã?boProcessEngineering(PTG) VST rz13 Three heat transfer mechanisms Conduction Convection Radiation 2/114 Pic: BÃ?88 #12;#5/6 IntroductiontoProcessEngineering(PTG) VST rz13 3/114 5.1 Conductive heat transfer #5/6 Introductionto

  20. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  1. Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley National Laboratory...

  2. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01T23:59:59.000Z

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  3. Heat transfer and pressure drop in tape generated swirl flow

    E-Print Network [OSTI]

    Lopina, Robert F.

    1967-01-01T23:59:59.000Z

    The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

  4. 2.51 Intermediate Heat and Mass Transfer, Fall 2001

    E-Print Network [OSTI]

    Lienhard, John H., 1961-

    Analysis, modeling, and design of heat and mass transfer processes with application to common technologies. Unsteady heat conduction in one or more dimensions, steady conduction in multidimensional configurations, numerical ...

  5. Proceedings of HT'03 2003 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Walker, D. Greg

    Proceedings of HT'03 2003 Summer Heat Transfer Conference July 21­23, 2003, Las Vegas, Nevada, USA HT2003-47016 A NEW TECHNIQUE FOR HEAT FLUX DETERMINATION D.G. Walker Department of Mechanical@vt.edu ABSTRACT A new method for estimating heat fluxes from heating rate measurements and an approach to measure

  6. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  7. E-Print Network 3.0 - advanced heat transfer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Evaluations Alternate... and Diagnostic Center (EADC) Ground Coupled Heat Pumps Heat and Mass Transfer in Attic Systems Industrial... and Heat Transfer...

  8. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  9. Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating

    E-Print Network [OSTI]

    Geb, David; Zhou, Feng; Catton, Ivan

    2012-01-01T23:59:59.000Z

    the Hydraulic Drag and Heat Transfer Coefficients in PorousT. E. W. , 1929, “Heat Transfer: A Liquid Flowing Through a5] Locke, G. L. , 1950, “Heat Transfer and Flow Friction

  10. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  11. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  12. Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel

    E-Print Network [OSTI]

    Aussillous, Pascale

    Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

  13. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01T23:59:59.000Z

    860. Batchelor, G.K. 1954. Heat transfer by free convectionfree convection. In: Heat Transfer and Turbulent BuoyantHEAT2, A PC-program for heat transfer in two dimensions.

  14. Measurement and analysis of gas turbine blade endwall heat transfer

    E-Print Network [OSTI]

    Lee, Joon Ho

    2001-01-01T23:59:59.000Z

    the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

  15. Enhanced surfaces lead to increased heat transfer and power density.

    E-Print Network [OSTI]

    Enhanced surfaces lead to increased heat transfer and power density. Inverters are used in hybrid researchers are using the coating to improve heat transfer in automotive power electron- ics devices. Photo electric vehicles (HEVs) and electric vehicles (EVs) to con- vert DC battery power into a form that can

  16. Heat transfer in proteinwater interfaces Anders Lervik,ab

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in protein­water interfaces Anders Lervik,ab Fernando Bresme,*ac Signe Kjelstrup of the heat diffusion equation we compute the thermal conductivity and thermal diffusivity of the proteins by about 4 nm.4 It is expected that the energy transfer between these sites may involve the concerted

  17. Enhanced radiative heat transfer between nanostructured gold plates

    E-Print Network [OSTI]

    R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-03-07T23:59:59.000Z

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  18. Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime

    E-Print Network [OSTI]

    Lee, Jeongik

    2007-01-01T23:59:59.000Z

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  19. Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime

    E-Print Network [OSTI]

    Lee, Jeongik

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  20. Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions. [PWR

    SciTech Connect (OSTI)

    Anklam, T. M.; Miller, R. J.; White, M. D.

    1982-03-01T23:59:59.000Z

    Results are reported from a series of uncovered-bundle heat transfer and mixture-level swell tests. Experimental testing was performed at Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF). The THTF is an electrically heated bundle test loop configured to produce conditions similar to those in a small-break loss-of-coolant accident. The objective of heat transfer testing was to acquire heat transfer coefficients and fluid conditions in a partially uncovered bundle. Testing was performed in a quasi-steady-state mode with the heated core 30 to 40% uncovered. Linear heat rates varied from 0.32 to 2.22 kW/m.rod (0.1 to 0.68 kW/ft.rod). Under these conditions peak clad temperatures in excess of 1050 K (1430/sup 0/F) were observed, and total heat transfer coefficients ranged from 0.0045 to 0.037 W/cm/sup 2/.K (8 to 65 Btu/h.ft/sup 2/./sup 0/F). Spacer grids were observed to enhance heat transfer at, and downstream of, the grid. Radiation heat transfer was calculated to account for as much as 65% of total heat transfer in low-flow tests.

  1. Heat transfer between elastic solids with randomly rough surfaces

    E-Print Network [OSTI]

    B. N. J. Persson; B. Lorenz; A. I. Volokitin

    2009-08-27T23:59:59.000Z

    We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

  2. Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid

    SciTech Connect (OSTI)

    Zhao, Nannan; Fu, Benwei [Institute of Marine Engineering and Thermal Science, College of Marine Engineering, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026 (China); Ma, H. B., E-mail: mah@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States)

    2014-06-30T23:59:59.000Z

    Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98?nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.

  3. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  4. FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES

    E-Print Network [OSTI]

    FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES.............................................................................................................7 Composite Materials...................................................................................................7 Material Properties

  5. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03T23:59:59.000Z

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  6. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01T23:59:59.000Z

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  7. Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux

    E-Print Network [OSTI]

    Phillips, Bren Andrew

    2011-01-01T23:59:59.000Z

    The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...

  8. Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry

    E-Print Network [OSTI]

    Gaskill, Travis

    2012-02-14T23:59:59.000Z

    The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...

  9. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems

    E-Print Network [OSTI]

    Erickson, David

    Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems David Erickson microfluidic/biochip systems must have the ability to rapidly reject this heat to the surroundings. Generally it is the ability to dissipate this heat that limits the strength of the applied electric field and thus the maximum

  10. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  11. Downflow heat transfer in a heated ribbed vertical annulus with a cosine power profile

    SciTech Connect (OSTI)

    Anderson, J.L.; Condie, K.G.; Larson, T.K.

    1991-10-01T23:59:59.000Z

    Experiments designed to investigate downflow heat transfer in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2c series, which was a follow on series to the ECS-2b series, conducted specifically to provide additional data on the effect of different powers at the same test conditions, for use in evaluation of possible power effects on the aluminum temperature measurements. Electrical powers at 90%, 100%, and 110% of the power required to result in the maximum aluminum temperature at fluid saturation temperature were used at each set of test conditions previously used in the ECS-2b series. The ECS-2b series was conducted in the same test rig as the previous ECS-2b series. Data and experimental description for the ECS-2b series is provided in a previous report. 18 refs., 25 figs., 3 tabs.

  12. AndreiG.Fedorov Title: George W. Woodruff Professorship in Heat Transfer, Combustion and

    E-Print Network [OSTI]

    Garmestani, Hamid

    AndreiG.Fedorov Title: George W. Woodruff Professorship in Heat Transfer, Combustion and Energy Research Areas of Interest Heat Transfer, combustion, and energy systems Bioengineering, lab ionization and imaging for bioanalytical mass spectrometry Thermal radiation heat transfer Thermal

  13. Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels

    E-Print Network [OSTI]

    Tseng, H.; Pilon, L.; Warrier, G.

    2006-01-01T23:59:59.000Z

    Single-phase convective heat transfer in microchannels: aand Newell, M. E. , 1967. Heat transfer in fully developed3 /s at 130 W. Water CGA Heat Transfer Coefficient, h (W/m 2

  14. A two-fluid model for relativistic heat conduction

    SciTech Connect (OSTI)

    López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

    2014-01-14T23:59:59.000Z

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  15. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink

    E-Print Network [OSTI]

    Qu, Weilin

    Experimental and numerical study of pressure drop and heat transfer in a single-phase micro Received 6 July 2001; received in revised form 26 October 2001 Abstract The pressure drop and heat transfer-dimensional heat transfer characteristics of the heat sink were analyzed numerically by solving the conjugate heat

  16. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10T23:59:59.000Z

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  17. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of aqueous suspensions of multi-walled carbon nanotubes

    E-Print Network [OSTI]

    Garg, Paritosh

    2009-05-15T23:59:59.000Z

    Through past research, it is known that carbon nanotubes have the potential of enhancing the thermal performance of heat transfer fluids. The research is of importance in electronics cooling, defense, space, transportation applications and any other...

  18. Heat transfer during film condensation of a liquid metal vapor

    E-Print Network [OSTI]

    Sukhatme, S. P.

    1964-01-01T23:59:59.000Z

    The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

  19. Survey and evaluation of techniques to augment convective heat transfer

    E-Print Network [OSTI]

    Bergles A. E.

    1965-01-01T23:59:59.000Z

    This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced ...

  20. Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results

    E-Print Network [OSTI]

    LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

  1. Heat transfer between anisotropic nanopartricles: Enhancement and switching

    E-Print Network [OSTI]

    Roberta Incardone; Thorsten Emig; Matthias Krüger

    2014-02-21T23:59:59.000Z

    We theoretically study heat transfer between two anisotropic nanoparticles in vacuum, and derive closed expressions in terms of the anisotropic dipole polarizabilities. We show that transfer between two small spheroids can be many times as large as the one for two spheres of same volumes. Such increase with anisotropy is also found for the heat emission of an isolated small spheroid. Furthermore, we observe a strong dependence of transfer on the relative orientation, yielding the interpretation as a heat transfer switch. The switch quality, given as the ratio of transfer in the ``on'' and ``off'' positions, is observed to be as large as $10^3$ in the near field and even larger in the far field.

  2. Heat transfer characteristics of a two-pass trapezoidal channel and a novel heat pipe

    E-Print Network [OSTI]

    Lee, Sang Won

    2009-06-02T23:59:59.000Z

    large variation of the local heat (mass) transfer distribution in the turn and downstream of the turn. The local heat (mass) transfer was high near the end wall and the downstream outer wall in the turn and was relatively low in two regions near...

  3. Heat Transfer Research 44(1), 130 (2013) ENTROPY GENERATION ANALYSIS

    E-Print Network [OSTI]

    Zhang, Yuwen

    Heat Transfer Research 44(1), 1­30 (2013) ENTROPY GENERATION ANALYSIS FOR A PULSATING HEAT­vapor phase 2 Kim, Zhang, & Choi Heat Transfer Research NOMENCLATURE A area, m2 Qin,s,l sensible heat transfer into cp specific heat at constant liquid slug, W pressure, Qout,s,l sensible heat transfer out cv specific

  4. Heat transfer enhancement resulting from induction electrohydrodynamic pumping

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Approved as to style and content by: Jamal Seyed- Yagoobi (Chair...

  5. Mpemba effect, Newton cooling law and heat transfer equation

    E-Print Network [OSTI]

    Vladan Pankovic; Darko V. Kapor

    2012-12-11T23:59:59.000Z

    In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

  6. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  7. Film cooling and heat transfer of steam through an inclined injection hole

    E-Print Network [OSTI]

    Chen, Hun Way

    1983-01-01T23:59:59.000Z

    transfer coefficient at blowing rate M 0. 5 . . . . . . . . . . . . . . . . 37 NOMENCLATURE Symbol Description area circumference of the cross sectional area Cp D E, , Es, Es drag coefficient specific heat diameter of the injection hole minor... the experimental data at low blowing rates; however, the extension to higher injection rates is not correct, and an injected fluid other than air is not discussed. Goldstein [2] reviewed a number of semi- empirical correlations and predictions for two...

  8. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01T23:59:59.000Z

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  9. Technical Note Theoretical analysis of film condensation heat transfer

    E-Print Network [OSTI]

    Zhao, Tianshou

    transfer coefficient of steam condensing inside an equilateral triangular channel is found. They divided the condensation area on the micro-fin surface into the flooded and the unflooded areasTechnical Note Theoretical analysis of film condensation heat transfer inside vertical mini

  10. Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. (Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.)

    1994-02-01T23:59:59.000Z

    Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.

  11. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    , University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

  12. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  13. Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board

    E-Print Network [OSTI]

    Chen, Y.; Zhang, J.

    2006-01-01T23:59:59.000Z

    In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...

  14. Active heat transfer enhancement in integrated fan heat sinks

    E-Print Network [OSTI]

    Staats, Wayne Lawrence

    2012-01-01T23:59:59.000Z

    Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

  15. Plasma actuated heat transfer Subrata Roya

    E-Print Network [OSTI]

    Roy, Subrata

    identify mechanisms to actuate essentially stagnant fluid just downstream of the cooling hole by employing Laboratory and Test Facility, Mechanical and Aerospace Engineering, University of Florida, Gainesville in the vicinity of an actuator using an electrodynamic mechanism that induces attachment of cold jet to the work

  16. Pool boiling heat transfer characteristics of nanofluids

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

  17. Heat transfer in a thermoelectric generator for diesel engines

    SciTech Connect (OSTI)

    Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

    1995-12-31T23:59:59.000Z

    This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

  18. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01T23:59:59.000Z

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  19. Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers

    E-Print Network [OSTI]

    Thole, Karen A.

    Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance used to increase heat transfer by initiating new boundary layer growth and increasing surface area

  20. Heat Transfer Enhancement: Second Generation Technology

    E-Print Network [OSTI]

    Bergles, A. E.; Webb, R. L.

    1984-01-01T23:59:59.000Z

    substantial benefits for the process and electric utility industries. Most process fluid, particularly water, have higher surface tension' than the fluorocarbon refrigerants. Thus, the closely spaced fins used by the refrigeration in~us? try (748-1378 fins... of refrigerants. A variety of structured surfaces are applied to the outside to enhance shell-side boiling of refrigerants (Fig. 5). These include various formed surfaces (a,b,c,d) and a porous metal lic matrix (e). These surfaces operate primarily...

  1. ME 544 Advanced Heat Transfer Spring 2013 Time: 2pm-3pm MWF

    E-Print Network [OSTI]

    1 ME 544 Advanced Heat Transfer Spring 2013 Time: 2pm-3pm MWF Location: B4 Instructor: Dr. Allan and engineering applications of heat transfer including conduction, convection, and radiation. Course Learning, convection, and radiation heat transfer modes. 2. Determine the dominant modes of heat transfer, and apply

  2. Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    62 TC02-007 Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal-tube and 1000m micro-tube. In the single-phase heat transfer experiments, the fully-developed flow heat transfer were also measured using thermocouples (TC). The results showed that the heat transfer coefficient

  3. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have...

  4. "Developing novel heat transfer diagnostics for nanosystems."

    E-Print Network [OSTI]

    Acton, Scott

    and development of electronic devices, power generation modules, and waste energy harvesting techniques alloys. Thermal conductivity of bismuth-doped III-V alloys Thermoelectric power generation (TPG) has become an increasingly popular technology for waste heat recovery in the last few years. The efficiency

  5. Heat transfer coefficients in three phase fluidized beds

    SciTech Connect (OSTI)

    Suh, I.S.; Jin, G.T.; Kim, S.D.

    1985-03-01T23:59:59.000Z

    In order to obtain a semitheoretical correlation for the heat transfer coefficients in three phase fluidized beds, Deckwer's semitheoretical correlation for the heat transfer coefficients in the bubble column, which was derived from Higbie's surface renewal theory of interphase mass transfer with the concept of isotropic turbulence, has been extended to three phase fluidized beds with the modification of the energy dissipation rate. One of the desirable characteristics of three phase fluidized beds is the uniformity of temperature in the bed. The intense longitudinal and transverse turbulent mixing in a fluidized bed may induce the uniform fields of temperature and solids concentration. For highly exothermic reactions, the uniform temperature in the bed is essential to avoid the local hot spots. In order to control the uniform temperature of three phase fluidized beds, the addition or removal of heat in the bed is required and the information on heat transfer surface and the bed is essential to designing the heat exchanger. Recently, Chiu and Ziegler (1983) determined wall-to-bed heat transfer coefficients in three phase fluidized bed (5.08 cm ID) of glass beads and cylindrical gamma alumina particles which were fluidized by cocurrent flow of air and water. Their data were correlated in terms of the modified Colburn j factor. Kato et al. (1981) measured wall-to-bed heat transfer coefficients in three phase fluidized beds of 5.2 and 12.0 cm internal diameter. Four different sizes of glass beads (0.42-2.2 mm) were fluidized by air and aqueous carboxymethyl cellulose solutions. The coefficients increased with decrease in liquid viscosity and with increase in gas and liquid velocity.

  6. Thermodynamics of enhanced heat transfer: a model study

    E-Print Network [OSTI]

    Karen Hovhannisyan; Armen E. Allahverdyan

    2010-07-20T23:59:59.000Z

    Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot. It also shares some (but not all) physical features of the Carnot bound.

  7. heat transfer | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectricsecretaryguidanceheat transfer

  8. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-11-01T23:59:59.000Z

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  9. Comparison of binary mixture heat and mass transfer analysis with single-component heat and mass transfer analysis in the design of GAX absorber/desorber[Generator-Absorber heat eXchange

    SciTech Connect (OSTI)

    Cao, J.; Christensen, R.N.

    2000-07-01T23:59:59.000Z

    The GAX cycle is an elegant way of achieving higher effect performance with single-stage configuration. One of the key components of the GAX cycle is the absorber/desorber heat exchanger, which carries out internal heat recovery. This paper investigated two different models for the design of an absorber/desorber in the GAX system. In model A, single-component forced convective boiling with the physical properties of the mixture was assumed for the cocurrent desorption process, which is basically an approximation technique adopted widely so far. In model B, the multi-component effect of the binary mixture on the forced convective boiling transfer was considered. Significant degradation of heat and mass transfer was observed under binary mixture boiling condition as opposed to the single-component boiling. The results show that about 57% of extra heat transfer area would be needed under the case being investigated if the fluid is considered as a binary mixture rather than a single-component fluid. This paper provides a basic guideline for designing a properly sized GAX absorber-desorber.

  10. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  11. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01T23:59:59.000Z

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  12. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01T23:59:59.000Z

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  13. Enhanced heat transfer using wire-coil inserts for high-heat-load applications.

    SciTech Connect (OSTI)

    Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

    2002-09-20T23:59:59.000Z

    Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

  14. Heat transfer education : Keeping it relevant and vibrant.

    SciTech Connect (OSTI)

    Khounsary, A. M.

    1998-08-14T23:59:59.000Z

    The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to incorporate illustrative and insightful industrial examples and case studies reducible to order-of-magnitude analyses; (4) a reinforcement of real-world problem-solving abilities in students by introducing them to examples that emphasize multidisciplinary issues in modern thermal management problems and finally (5) industrial collaboration that would provide the educator with meaningful thermal management case studies (and possible funding), the student with an appreciation of industrial practices, and the industrial sponsor with access to academia for assistance in problem solving. Also suggested is an effective regular review program to provide assessment, feedback, and suggestions for quality control to interested institutions on their teaching methodology and materials.

  15. Radiative heat transfer in 2D Dirac materials

    E-Print Network [OSTI]

    Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

    2015-02-02T23:59:59.000Z

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  16. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community CollegeFeatures

  17. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon (Flossmoor, IL)

    1999-01-01T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  18. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  19. Effect of turbulent heat transfer on continuous ingot solidification

    SciTech Connect (OSTI)

    Shyy, W.; Chen, M.H. (Univ. of Florida, Gainesville, FL (United States). Dept. of Aerospace Engineering); Pang, Y.; Wei, D.Y. (GE Aircraft Engines, Engineering Materials Technology Labs., Lynn, MA (United States)); Hunter, G.B. (GE Aircraft Engines, Engineering Materials Technology Labs., Cincinnati, OH (United States))

    1993-01-01T23:59:59.000Z

    For many continuous ingot casting processes, turbulent heat transfer in the molten pool plays a critical role which, along with buoyancy and surface tension, is responsible for the quality of the end products. Based on a modified low Reynolds number K-[epsilon] two-equation closure, accounting for the phase change and mushy zone formation, the effect of turbulent heat transfer on the solidification characteristics during titanium alloy ingot casting in an electron beam melting process is investigated. The overall heat transfer rate is enhanced by turbulent transport via two sources, one through the correlated velocity and temperature fluctuations present for both single- and multi-phase flows, and the other through the correlated velocity and release of latent heat fluctuations which are unique to the flows with phase change. The roles played by both mechanisms are identified and assessed. The present turbulence model predicts that although the mushy zone defined by the mean temperature field is generally of substantial thickness as a result of the convection effect, the actual instantaneous zone thickness varies substantially due to turbulence effect. This finding is in contrast to the traditionally held viewpoint, based on the conduction analysis, of a generally thin mushy zone. The impact of turbulent heat transfer on local dendrite formation and remelting is illustrated and the issues involved in model development highlighted.

  20. Heat transfer and film cooling with steam injection

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    for both coolants was determined for similar blowing rates and was used as a basis for comparisons. Heat transfer coefficients were calcula- ted from the experimental data using a transient analysis. DEDICATION To my wife and family. ACKNOWLEDGEMENTS... LIST OF TABLES PAGE TABLE 1 Variation in the Blowing Rate ------------ 55 TABLE 2 TABLE 3 Typical Air Film Cooling Effectiveness Data Typical Steam Film Cooling Effectiveness Data 62 62 1X LIST OF FIGURES PAGE Figure 1 Comparison of Heat...

  1. Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects

    E-Print Network [OSTI]

    Matthias Krüger; Giuseppe Bimonte; Thorsten Emig; Mehran Kardar

    2012-07-16T23:59:59.000Z

    We present a detailed derivation of heat radiation, heat transfer and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal non-equilibrium. The results can be expressed as basis-independent trace formulae in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave-expansions, we transform the results for radiation, transfer and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nano-spheres is typically invalid. We derive asymptotic formulae for heat transfer and non-equilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nano-sphere can levitate above a plate with the repulsive non-equilibrium force overcoming gravity -- an effect that is not due to radiation pressure.

  2. High-heat-flux removal by phase-change fluid and particulate flow

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

    1993-07-01T23:59:59.000Z

    A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

  3. A simplistic model of cyclic heat transfer phenomena in closed spaces

    SciTech Connect (OSTI)

    Lee, K.

    1983-08-01T23:59:59.000Z

    Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.

  4. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    Specifically, the primary heat transfer fluid (HTF), which transmits the collected solar power to power cycle Evaluate Chemically Reacting Working Fluids (CRWFs) as HTFs...

  5. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01T23:59:59.000Z

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  6. EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION

    E-Print Network [OSTI]

    Besser, Ronald S.

    and conventional packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas transport limitations of conventional lab reactors [3,4,5,6]: the fast surface chemistry of the exothermic1 EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION X. Ouyang, R.S. Besser

  7. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  8. Thermodynamics of enhanced heat transfer: a model study

    E-Print Network [OSTI]

    Hovhannisyan, Karen; 10.1088/1742-5468/2010/06/P06010

    2010-01-01T23:59:59.000Z

    Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary ...

  9. Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n , Craig R contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat, radiative heat transfer was considered relatively unimportant in the mantle. Earlier experimental work

  10. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01T23:59:59.000Z

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  11. MHD Effects on Heat Transfer in a Molten Salt Blanket

    SciTech Connect (OSTI)

    Smolentsev, Sergey; Miraghaie, Reza; Abdou, Mohamed [University of California (United States)

    2005-04-15T23:59:59.000Z

    Heat transfer in closed channel flows of molten salts (MS)s, such as FLiBe or FLiNaBe, has been considered under specific reactor conditions. MHD effects have been accessed for two blanket concepts: self-cooled MS blanket, and dual-coolant MS blanket. The effect of heat transfer degradation due to turbulence reduction by a magnetic field in the First Wall channels of the self-cooled blanket was analyzed with the K-{epsilon} model of turbulence. In the dual-coolant blanket, the MS flow is laminar. A 2-D MHD code was used to calculate the laminar velocity profile first. Then, the temperature field was calculated using a 3-D temperature code. Reasonable interface temperatures below the material limit of 550 deg. C, and low heat escape from the breeder zone have been demonstrated. Model limitations and the ways of their improvement are also discussed.

  12. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01T23:59:59.000Z

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  13. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  14. E-Print Network 3.0 - accurate heat transfer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pennsylvania State University Collection: Engineering 11 Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Summary: in large scatter and were not able to...

  15. FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...

    Broader source: Energy.gov (indexed) [DOE]

    FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

  16. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  17. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01T23:59:59.000Z

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  18. Optimization of the configuration and working fluid for a micro heat pipe thermal control device

    E-Print Network [OSTI]

    Coughlin, Scott Joseph

    2006-04-12T23:59:59.000Z

    of a micro heat pipe system containing a working fluid with physical properties having been speciffcally selected such that the heat pipes, as a whole, vary in effective thermal conductance, thereby providing a level of temperature regulation...

  19. A visualization comparison of convective flow boiling heat transfer augmentation devices

    E-Print Network [OSTI]

    Lundy, Brian Franklin

    1998-01-01T23:59:59.000Z

    The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...

  20. Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates

    E-Print Network [OSTI]

    Hery, Travis M

    2011-01-01T23:59:59.000Z

    Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

  1. FALL 2011 EMEC 326 DR. RUHUL AMIN HEAT TRANSFER 201 C Roberts Hall

    E-Print Network [OSTI]

    Dyer, Bill

    FALL 2011 EMEC 326 DR. RUHUL AMIN HEAT TRANSFER 201 C Roberts Hall Phone: 994-6295 POLICY STATEMENT, convection, and radiation formulations. Introduction to heat transfer equipment. Course credit: 4

  2. Heat transfer during film condensation of potassium vapor on a horizontal plate

    E-Print Network [OSTI]

    Meyrial, Paul M.

    1968-01-01T23:59:59.000Z

    The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

  3. Remote administration and user experience evaluation of the iLab Heat Transfer Project site

    E-Print Network [OSTI]

    Graham, Rodney K

    2006-01-01T23:59:59.000Z

    The iLab Heat Transfer Project provides a means for students to remotely execute, via a web interface, experiments related to the topic of heat transfer. The website associated with this project provides instructors with ...

  4. Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler

    SciTech Connect (OSTI)

    Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

    1994-11-01T23:59:59.000Z

    Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

  5. Fundamental heat transfer processes related to phase change thermal storage media

    SciTech Connect (OSTI)

    Sparrow, E. M.; Ramsey, J. W.

    1981-01-01T23:59:59.000Z

    Research on fundamental heat transfer processes which occur in phase-change thermal storage systems is described. The research encompasses both melting and freezing, and includes both experiment and analysis. The status of four research problems is discussed. One of the freezing problems was focused on investigating, via experiment, the extent to which freezing can be enhanced by the attachment of fins to the external surface of a cooled vertical tube situated in a liquid phase-change medium. Very substantial enhancements were encountered which neutralize the degradation of freezing due to the thermal resistance of the frozen layer and to natural convection in the liquid phase. The second of the freezing problems was analytical in nature and sought to obtain solutions involving both the phase-change medium and the heat transfer fluid used either to add heat to or extract heat from the medium. For freezing on a plane wall, it was possible to obtain a closed-form analytical solution, while for freezing about a coolant-carrying circular tube, a new numerical methodology was devised to obtain finite-difference solutions. For melting, quantitative design-quality heat transfer coefficients were determined experimentally for melting adjacent to a heated vertical tube. These experiments explored the effects of solid-phase subcooling and of open versus closed top containment on the coefficients. A dimensionless correlation enables these results to be used for a wide range of phase-change media. Studies on melting of a phase-change material situated within a circular tube are in progress.

  6. Hypersonic Heat Transfer and Anisotropic Visualization with a Higher Order Discontinuous Galerkin Finite Element Method

    E-Print Network [OSTI]

    Peraire, Jaime

    Hypersonic Heat Transfer and Anisotropic Visualization with a Higher Order Discontinuous Galerkin;Hypersonic Heat Transfer and Anisotropic Visualization with a Higher Order Discontinuous Galerkin Finite used to predict heat transfer to a cylinder in a hypersonic flow. The strong shock is captured

  7. Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov Department be considered as an effective way of the reduction of heat transfer to the surface in this area [1 the viscous layer is blown completely off the surface, and heat transfer is zero. The effect of injecting

  8. Numerical computation of 3D heat transfer in complex parallel convective exchangers using generalized Graetz modes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical computation of 3D heat transfer in complex parallel convective exchangers using insights into the most con- tributing structure to exchanges and transfers. Several examples of heat, whilst many other can be found in a recent review [12]. As quoted in [12] conjugate heat transfer

  9. Heat Transfer Engineering, 29(9):793804, 2008 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Heat Transfer Engineering, 29(9):793­804, 2008 Copyright C Taylor and Francis Group, LLC ISSN: 0145 for Laminar and Turbulent Flow Convection Heat Transfer in a Horizontal Tube Using Artificial Neural Network was used to develop empirical correlations for laminar and turbulent heat transfer in a horizontal tube

  10. Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau-sud Campus Polytechnique RD 128 91127 Palaiseau cedex, France Heat transfer between two plates of polar far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling

  11. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  12. Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming

    E-Print Network [OSTI]

    Fröhlich, Peter

    Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming for Scientists and Engineers Assignment 6: Heat Transfer Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne to Programming for Scientists and Engineers is all about heat transfer and how to simulate it. There are three

  13. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth

    E-Print Network [OSTI]

    Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations

  14. Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-12, 2007, Vancouver, British Columbia, CANADA HT2007-32219 VALIDATION OF A GENERAL HEAT TRANSFER, Stillwater, OK 74078, USA E-mail: ghajar@ceat.okstate.edu ABSTRACT A general heat transfer correlation

  15. MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed-mail (Sergey Smolentsev): Sergey@fusion.ucla.edu Heat transfer in closed channel flows of molten salts (MS of the concept is that the flows in the FW channels are turbulent to provide a high heat transfer coefficient

  16. FliHy experimental facilities for studying open channel turbulent flows and heat transfer

    E-Print Network [OSTI]

    Abdou, Mohamed

    FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due

  17. Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China

  18. Heat Transfer Engineering, 27(5):2338, 2006 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Heat Transfer Engineering, 27(5):23­38, 2006 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630600559538 Transitional Heat Transfer in Plain Horizontal, Oklahoma, USA In this study, the heat transfer behavior in the transition region for plain horizontal tubes

  19. Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow MILIVOJE M@niu.edu * www.kostic.niu.edu Abstract: - An apparatus for exploring friction and heat transfer characteristics flow. Initial turbulent friction and heat transfer measurements for silica and carbon nanotube (CNT

  20. Heat Transfer Engineering, 28(6):525540, 2007 Copyright C Taylor and Francis Group, LLC

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Heat Transfer Engineering, 28(6):525­540, 2007 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630701193906 Heat Transfer Measurements, Flow Pattern Maps, Stillwater, Oklahoma, USA Local heat transfer coefficients and flow parameters were measured for air

  1. FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due

  2. Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1

    E-Print Network [OSTI]

    Thole, Karen A.

    1 Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1 , R. A. Stephan2 , and K 23681-2199 #12;2 Abstract Louvered fins provide a method for improving the heat transfer performance for evaluating the spatially-resolved louver heat transfer coefficients using various reference temperatures

  3. Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar

    E-Print Network [OSTI]

    Kandlikar, Satish

    Flow Boiling Heat Transfer Coefficient In Minichannels ­ Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found

  4. Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005

  5. Heat transfer from multiple row arrays of low aspect ratio pin fins Seth A. Lawson a,

    E-Print Network [OSTI]

    Thole, Karen A.

    Heat transfer from multiple row arrays of low aspect ratio pin fins Seth A. Lawson a, , Alan A 18 March 2011 Available online 5 May 2011 Keywords: Pin fins Heat transfer augmentation Array to enhance heat transfer. In modern gas turbines, for exam- ple, airfoils are designed with sophisticated

  6. The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic

    E-Print Network [OSTI]

    Salamon, Peter

    The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic is only slightly dependent on the heat transfer law considered. In the limit of an infinite number of trays even this column with resistance to transfer of heat becomes reversible. 1 #12;Keywords Diabatic

  7. Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary air

    E-Print Network [OSTI]

    Boyer, Edmond

    Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary;1 A wall heat transfer correlation for the baffled- rotary kilns with secondary air flow and recycled industrial applications suggests examining the heat transfer phenomena in order to improve the multi

  8. HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer

  9. HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

  10. Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a , Rafik ABSI 2 abenzaoui@gmail.com Keywords: turbulent flows, heat transfer, forced convection, low Reynolds number model data for Re = 150. Introduction Turbulent flow with heat transfer mechanism is of great importance from

  11. Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,

    E-Print Network [OSTI]

    Kandlikar, Satish

    Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

  12. Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey

    E-Print Network [OSTI]

    Camci, Cengiz

    Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey EXPERIMENTAL TURBINE AERO-HEAT TRANSFER STUDIES IN ROTATING RESEARCH FACILITIES Cengiz Camci Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering The Pennsylvania State University 233

  13. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  14. Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application to Crystal University of New York at Stony Brook Stony Brook N.Y. 11794 ABSTRACT Radiative heat transfer plays simulating radiative heat transfer in the crystal and in the region above the melt containing gas under

  15. A FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVERADIATIVE HEAT TRANSFER EQUATIONS \\Lambda

    E-Print Network [OSTI]

    ­differential equations that model steady­state combined conductive­radiative heat transfer. This system of equations­Brakhage algorithm. Key words. conductive­radiative heat transfer, multilevel algorithm, compact fixed point problems integro­differential equations that model steady­state combined conductive­radiative heat transfer

  16. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results

    E-Print Network [OSTI]

    Kandlikar, Satish

    Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

  17. Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model

    E-Print Network [OSTI]

    Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.

    2011-01-01T23:59:59.000Z

    surface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,Experimental study of heat transfer in turbulent flows over

  18. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01T23:59:59.000Z

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  19. Thermo-mechanical simulations in double-sided heat transfer power assemblies.

    E-Print Network [OSTI]

    Boyer, Edmond

    Thermo-mechanical simulations in double-sided heat transfer power assemblies. E. Woirgard; I. Favre In power assemblies, heat transfer due to the die self- heating is one of the most important point on time life assemblies. Heat has to be evacuated toward the base- plate not to weaken the solder joint under

  20. Barr and Showman: Heat Transfer in Europa's Icy Shell 405 Heat Transfer in Europa's Icy Shell

    E-Print Network [OSTI]

    Europa's ice shell controls the thermal evolution of its interior and provides a source of energy surface features with steady-state thermal convection is challeng- ing, even with tidal heating, because convects, can the ocean be thermodynamically stable? What role might compositional heterogeneity play

  1. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect (OSTI)

    Triplett, C.E.

    1996-12-01T23:59:59.000Z

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  2. Blowdown Heat Transfer Separate-Effects Program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    White, J.D.; Cook, D.H.; Craddick, W.G.; Felde, D.K.; Flanders, R.M.; Hagar, R.C.; Mailen, G.S.; Ott, L.J.; Yoder, G.L.

    1980-09-01T23:59:59.000Z

    Two transient film boiling tests were run - one in upflow, the other in downflow. The purpose of these tests was to provide experimental heat transfer data that could be used in an assessment of several film boiling correlations used in current thermal-hydraulic computer codes. The tests were designed to provide accurate posttest calculations of heat fluxes, surface temperatures, and local fluid conditions. THe Upflow Film Boiling Test 3.03.6AR was run on May 21, 1980, in the THTF. This test resulted in single-phase fluid flow at the test section inlet (subcooled) during the time the bundle was in high-flow film boiling. Furthermore, no flow reversal occurred during the test. Preliminary posttest analysis indicates that the calculation of mass flows at the inlet to the test section should result in numbers with relatively small uncertainties. We are optimistic that local fluid conditions can be calculated for this test with an accuracy sufficient for correlation evaluation. 7 figs.

  3. Determination of the controlling process in coupled heat and mass transfer

    SciTech Connect (OSTI)

    Bell, B.; Kakavas, T.; Herold, K.E. [Univ. of Maryland, College Park, MD (United States). Center for Environmental Energy Engineering

    1996-12-31T23:59:59.000Z

    The influence of non-condensable gases on condensation is well known going back to Nusselt. The non-condensables tend to form a blanket around the cooled surface which can significantly slow condensation rates by introducing a controlling mass transfer resistance. The coupled heat and mass transfer process that results has a significant impact on the optimum design of compact condenser bundles. One of the questions that arises in analyzing such a coupled process is which of the two processes is controlling the overall transfer process? One way to quantify a solution to this problem is to take a thermodynamic perspective and to compute the entropy generation associated with each of the individual processes. Then, the process that contributes the largest entropy generation is viewed as the controlling process. The result of such a determination provides insight as to how to augment the overall transfer process. The approach taken in this study is to use available CFD (computational fluid dynamics) codes to formulate and solve the condenser problem to gain insight into the coupled process. The resulting temperature, velocity and concentration data can then be analyzed to determine the entropy generation associated with each of the processes. Results are presented for a series of simplified geometries that define the magnitude of the effects contributed by each of the transfer processes.

  4. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  5. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  6. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-Print Network [OSTI]

    Edwards, Bronwyn K

    2009-01-01T23:59:59.000Z

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  7. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01T23:59:59.000Z

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  8. PTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T

    E-Print Network [OSTI]

    Zevenhoven, Ron

    = Q34 = h4 ­ h3 = 2173,3 kJ/kg d. Heat input = Q15 = h1 ­ h5 = h1 ­ h4 + 4 (pump power) = 2831,0 kPTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T Heat transfer coefficient from Nunumber, which for natural convection

  9. Direct fired heat exchanger

    SciTech Connect (OSTI)

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01T23:59:59.000Z

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  10. Couette flow regimes with heat transfer in rarefied gas

    SciTech Connect (OSTI)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  11. Natural convection heat transfer from a plate in a semicircular enclosure

    SciTech Connect (OSTI)

    Moore, G.A.; Hollands, K.G.T. (Univ. of Waterloo, Ontario (Canada))

    1992-02-01T23:59:59.000Z

    The present paper is about characterizing the two-dimensional convective transfer across the air-filled region between a flat plate and a semicircular cylindrical enclosure. In the subject geometry, a long thin plate at uniform temperature is contained coaxially and symmetrically in a long semicircular trough closed at the top and having a uniform but different temperature. Heat flows across the air-filled region between the two by both natural convection and gaseous conduction. The problem of characterizing the free convective component of this heat transfer - that is, the component caused by bulk fluid motion - is treated experimentally by using a heat balance technique, with the measurements being repeated at different pressures, in order to cover a wide Rayleigh number range, from Ra {approximately} 10 to Ra {approximately} 10{sup 8}. Nusselt number versus Rayleigh number plots are presented for each of several combinations of plate-to-trough spacing and tilt angle, and the plots are correlated by equations. The problem of characterizing the conductive component is treated by numerically solving the steady diffusion equation in the air-filled region, and the results are correlated as a function of the spacing and the plate thickness.

  12. Heat Transfer Fluids Containing Nanoparticles (08-066) - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellnessFebruaryWaterPortal

  13. Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water.Organic Polymers ShowSolar

  14. High Operating Temperature Liquid Metal Heat Transfer Fluids | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ)Department of Energy Metalof

  15. Grid-independent Issue in Numerical Heat Transfer

    E-Print Network [OSTI]

    Yao Wei; Wang Jian; Liao Guangxuan

    2006-09-26T23:59:59.000Z

    Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.

  16. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeat Transfer in GE Jet Engines Click to

  17. Effects of slitted fins on the heat transfer and pressure drop characteristics of a compact heat exchanger

    SciTech Connect (OSTI)

    Kim, C.H.; Yun, J.Y. [LG Electronics Living System Research Lab., Seoul (Korea, Republic of)

    1996-12-31T23:59:59.000Z

    A compact heat exchanger which consists of air-cooled aluminum fins and copper tubes circulating refrigerant has been used in a cooling system for a long time. There are two key parameters to be seriously considered for a design of the heat exchanger and its performance improvement. These are the heat transfer rate and pressure drop coefficient which varies with the change of the tube size, its arrangement and the fin configuration. In here, a numerical study was carried to understand the effect of the fin configuration on the heat transfer and pressure drop of the heat exchanger. The diameter and the arrangement of tubes were fixed but three different types of the fin configuration were used to see its effect on the heat transfer capacity and the static pressure drop. The calculation results were compared with that of a flat plate fin. From the comparison, it was found that the slitted fins have higher pressure drop; however, they have higher heat transfer rate. It means that the simpler of the fin configuration, the lower pressure drop and heat transfer coefficients are obtained. It is mainly due to the discretisation of the thermal boundary layer on the fin surface to maximize the heat transfer to air. The slitted sides of fins act like obstacles in the airflow path. From the experimental result, it was found that the same trend in the variation of the heat transfer rate and the pressure drop with the change of the fin configuration was obtained.

  18. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01T23:59:59.000Z

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  19. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01T23:59:59.000Z

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  20. Study of natural convection heat transfer above a horizontal heated plate using a laser specklegram technique

    E-Print Network [OSTI]

    Cheeti, Satish K.R.

    1993-01-01T23:59:59.000Z

    flow from the horizontal isothermal plate. 15. Study of the effect of aspect ratio (AR) of the heated surface on the global Nusselt number for Ra = 104 50 NOMENCLATURE a distance between the test section and the second parabolic mirror (mm) b... plane of a CCD-camera (mm) h heat transfer coefficient. K Gladstone ? Dale constant for air ( m'/kg) . K, thermal conductivity of air ((tj)/m-'C) L Length of the test section measured along the optical axis m magnification of the second (parabolic...

  1. Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

  2. Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland

    E-Print Network [OSTI]

    Graaf, Martin de

    Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland M. de Graaf #12;Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland Martin de is used to calculate surface heat fluxes over glaciers. As determination of surface fluxes still

  3. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberDecember 2000

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, October­December 2000 Multidimensional are optical tomographyof tissue, remote sensing of oceansand atmospheres, laser material processing radiative heat transfer in participat- ing media in recent years. However, the analysis of radiative heat

  4. Characterization of the effect of Froude number on surface waves and heat transfer in inclined turbulent

    E-Print Network [OSTI]

    Abdou, Mohamed

    describes wave/heat transfer phenomena in inclined turbulent open surface water flows. The experiments wereCharacterization of the effect of Froude number on surface waves and heat transfer in inclined Abstract Interfacial heat transport in open channel turbulent flows is strongly dependent on surface waves

  5. Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

  6. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01T23:59:59.000Z

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  7. Taylor bubble-train flows and heat transfer in the context of Pulsating Balkrishna Mehta, Sameer Khandekar

    E-Print Network [OSTI]

    Khandekar, Sameer

    Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes Balkrishna Mehta Nusselt number Heat transfer enhancement a b s t r a c t Understanding the performance of Pulsating Heat Pipes (PHPs) requires spatio-temporally coupled, flow and heat transfer information during the self

  8. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-Print Network [OSTI]

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  9. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    )" #12;1. Introduction Brazed aluminium heat exchangers are composed of flat tubes on the refrigerant exchangers with round tube, such as charge reduction and higher heat transfer coefficient. But, according are thus not suitable to small-channel heat exchangers. As a consequence, the refrigerant distribution

  10. A method of correlating heat transfer data for surface boiling of liquids

    E-Print Network [OSTI]

    Rohsenow, Warren M.

    1951-01-01T23:59:59.000Z

    A method based an a logical uxplanation of the meani of beat transfer associated with the boiling process is presented for correlating heat transfer data for nucleate boiling of liquids for the case of pool boiling. Tbe ...

  11. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2012-07-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  12. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    SciTech Connect (OSTI)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01T23:59:59.000Z

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  13. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect (OSTI)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31T23:59:59.000Z

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  14. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. A phase-field method for 3D simulation of two-phase heat transfer

    E-Print Network [OSTI]

    X. Zheng

    2014-12-04T23:59:59.000Z

    stationary grids, different modes of heat transfer (e.g. convection/conduction), as well as its ... flow systems with sharp-interface models, moving-grid methods.

  16. E-Print Network 3.0 - accident heat transfer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident situations involving hundreds of kilograms... of the expansion, heat transfer is small and therefore fuel-coolant mixing and hydro- dynamics must be considered... from the...

  17. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect (OSTI)

    Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL

    2010-08-01T23:59:59.000Z

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  18. Extensions and enhancements to the iLab heat transfer project site

    E-Print Network [OSTI]

    Saylor, David P. (David Patrick)

    2005-01-01T23:59:59.000Z

    The iLab Heat Transfer Project website started four years ago to enable web access to experiments related to movement of heat through transport processes. This thesis details improvements made to the site which extend and ...

  19. Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces

    E-Print Network [OSTI]

    Buongiorno, Jacopo

    In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux ...

  20. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01T23:59:59.000Z

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  1. Direct-contact closed-loop heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1984-01-01T23:59:59.000Z

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  2. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.

    SciTech Connect (OSTI)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

    2006-07-01T23:59:59.000Z

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

  3. Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines

    SciTech Connect (OSTI)

    Mazzotta, D.W. (Univ. of Pittsburgh); Chyu, M.K. (Univ. of Pittsburgh); Alvin, M.A.

    2007-05-01T23:59:59.000Z

    Hydrogen or coal-derivative syngas turbines promise increased efficiency with exceptionally low NOx emissions compared to the natural gas based turbines. To reach this goal, turbine inlet temperature (TIT) will need to be elevated to a level exceeding 1700°C [1, 2]. The thermal load induced by such a temperature increase alone will lead to immense challenges in maintaining material integrity of turbine components. In addition, as working fluid in the gas path will primarily be steam, possibly mixed with carbon oxides, the aero-thermal characteristic in a hydrogen turbine is expected to be far different from that of air/nitrogen enriched gas stream in a gas turbine. For instance, steam has distinctly higher density and specific heat in comparison to a mixture of air and combustion gases as they are expanded in a conventional gas turbine. Even if the temperature limits remain about the same, the expansion in a hydrogen turbine will have to proceed with a greater enthalpy drop and therefore requires a larger number of stages. This also implies that the flow areas may need to be expanded and blade span to be enlarged. Meanwhile, a greater number of stages and hot surfaces need to be protected. This also suggests that current cooling technology available for modern day gas turbines has to be significantly improved. The ultimate goal of the present study is to systematically investigate critical issues concerning cooling technology as it is applicable to oxy-fuel and hydrogen turbine systems, and the main scope is to develop viable means to estimate the thermal load on the turbine “gas side”, that is eventually to be removed from the “coolant side”, and to comparatively quantify the implication of external heat load and potential thermal barrier coating (TBC) degradation on the component durability and lifing. The analysis is based on two well-tested commercial codes, FLUENT and ANSYS.

  4. Abstract. Tailored porous media is a proposed method of achieving higher heat transfer coefficients while seeking to

    E-Print Network [OSTI]

    Raffray, A. René

    Abstract. Tailored porous media is a proposed method of achieving higher heat transfer coefficients general porous flow model (MERLOT [1]). The Model of Energy- transfer Rate for fLow in Open transfer performance. The low heat capacities and low heat transfer coefficients, h, of gas coolants

  5. Measurements of heat and mass transfer coefficients during absorption of water vapor by lithium bromide and (Li,K,Na)NO sub 3 mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.; Linkous, R.L.; Klatt, L.N.

    1991-01-01T23:59:59.000Z

    A knowledge of heat and mass transfer coefficients in heat pump fluids, plays an important role in the design of absorption machines. Heat and mass transfer coefficients as well as subcooling are measured for absorption of water vapor in (Li, K, Na)No{sub 3} and Lithium Bromide (LiBr) mixtures.The rate of absorption of water vapor is obtained from the difference in concentration of mixtures between inlet and outlet streams across the absorber. In situ concentrations of aqueous salt mixtures over temperature ranges between 80 to 135 {degrees}C were calculated from density measurements. This technique of measurement is a reliable and convenient but not a very accurate ({plus minus}0.8 wt% salt) method of measuring the in situ salt concentration. Results show that the subcooling at the absorber exit is not only a property of the fluid, but depends strongly on the process conditions. The subcooling in LiBr mixtures without additive is shown to vary between 2.2 and 24.3 {degrees}C and the film heat transfer coefficient between 1365.2 and 801.1 W/m{sup 2}.K respectively, depending upon process conditions. These empirical results will prove to be of value to heat pump manufacturers because they have a strong bearing on costs and performance. Heat and mass transfer coefficients in aqueous salt solutions ate presented as a function of dimensionless numbers. 12 refs., 3 figs., 4 tabs.

  6. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01T23:59:59.000Z

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  7. RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS Kyunghan Kim to incorporate transient radiation heat transfer in tissue welding and soldering with use of ultrafast lasers are performed between laser welding and laser soldering. The use of solder is found to substantially enhance

  8. Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater

    E-Print Network [OSTI]

    Zheng, H.; Fan, X.; Li, A.

    2006-01-01T23:59:59.000Z

    . It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

  9. Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates

    E-Print Network [OSTI]

    Fan, Shanhui

    Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide://jap.aip.org/authors #12;Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide-infinite bodies of the dielectric-coated silicon carbide and uncoated silicon carbide. The permittivity

  10. Bibliography of US patents on augmentation of convective heat and mass transfer-II

    SciTech Connect (OSTI)

    Webb, R.L.; Bergles, A.E.; Junkhan, G.H.

    1983-12-01T23:59:59.000Z

    Patents are an important source of information on the potential commercialization of augmented heat transfer technology. This report presents a bibliography of US patents pertinent to that technology. The total number of patents cited is 454. They are presented in three separate lists: by patent number, alphabetically by first inventor, and by augmentation technique (with secondary arrangement according to mode of heat transfer).

  11. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Bahrami, Majid

    1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July. INTRODUCTION Passive cooling is a widely preferred method for electronic and power electronic devices since, #12;2 Copyright © 2012 by ASME is convective heat transfer coefficient and is thermal conductivity

  12. Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds

    E-Print Network [OSTI]

    Magdeburg, Universität

    Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds Ch. Nagaiah1 adaptive numerical results of heat and mass transfer in fluidized beds using higher order time stepping injection. The numerical results are tested with different time stepping methods for different spatial grid

  13. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

  14. MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY

    E-Print Network [OSTI]

    MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY Michael Wetter, Wangda Zuo describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings National Lab- oratory started the development of the free open- source Modelica "Buildings" library

  15. Effect of surface conditions on boiling heat transfer of refrigerants in shell-and-tube evaporators

    SciTech Connect (OSTI)

    Danilova, G.N.; Dyundin, V.A.; Borishanskaya, A.V.; Soloviyov, A.G.; Vol'nykh, Y.A.; Kozyrev, A.A.

    1990-01-01T23:59:59.000Z

    Experimental results are presented for the boiling heat transfer performance of R 22 and R 717 on surfaces with porous metallized coatings. A calculational-theoretical model is given for predicting the heat transfer of refrigerants boiling on a bundle of finned tubes.

  16. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 19, No. 1, JanuaryMarch 2005

    E-Print Network [OSTI]

    Al-Qahtani, Mohammad

    developed turbulent nonrotating tube flow Dh, D = hydraulic diameter, m h = heat transfer coefficient, W/m2 Program, Department of Civil Engineer- ing. Senior Member AIAA. Professor, Turbine Heat Transfer thermal efficiency, gas-turbine stages are being de- signed to operate at increasingly high inlet

  17. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams

  18. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  19. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  20. A vectorized heat transfer model for solid reactor cores

    SciTech Connect (OSTI)

    Rider, W.J.; Cappiello, M.W.; Liles, D.R.

    1990-01-01T23:59:59.000Z

    The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core mass is of primary interest in design and safety assessment. One significant safety feature of these reactors is the capability to withstand a loss of pressure and forced cooling in the primary system and still maintain peak fuel temperatures below the safe threshold for retaining the fission products. To accurately assess the performance of gas-cooled reactors during these types of transients, a Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions. Also, HERA has been used to analyze a depressurized loss of forced cooling transient in a HTGR with a very detailed three-dimensional input model. The results compare favorably with other means of analysis and provide further validation of the models and methods. 18 refs., 11 figs.

  1. Hierarchical Modeling for Population-Based Heat Exchanger Design

    E-Print Network [OSTI]

    Geb, David

    2013-01-01T23:59:59.000Z

    layer," Journal of Fluids Engineering, 117(1), pp. 181-journal. Ser. 2, Fluids engineering, heat transfer, power,Networks," Journal of Fluids Engineering, 125(6), pp. 1051-

  2. Energy and Momentum Transfer via Coulomb Frictions in Relativistic Two Fluids

    E-Print Network [OSTI]

    Katsuaki Asano; Shizuo Iwamoto; Fumio Takahara

    2006-11-04T23:59:59.000Z

    We numerically calculate the energy and momentum transfer rates due to Coulomb scattering between two fluids moving with a relative velocity. The results are fitted by simple functions. The fitting formulae are useful to simulate outflows from active galactic nuclei and compact high energy sources.

  3. Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate

    E-Print Network [OSTI]

    Clayton Otey; Shanhui Fan

    2011-10-10T23:59:59.000Z

    Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, and provides new physical insights for designing experiments aiming to explore enhanced thermal transfer.

  4. Heat transfer in the trailing edge cooling channels of turbine blades

    E-Print Network [OSTI]

    Kumaran, T. K.

    1989-01-01T23:59:59.000Z

    Foundation and from the funded research contract (RF5810) through Dr. Han. NOMENCLATURE A area of heat transfer in the pin fin channel AI, area of heat transfer in the long ejection segments Az cross-sectional area, of trailing edge ejection holes A..., ?minimum flow cross-sectional area in the pin fin channel C'~ discharge coefficient Cp specific heat of air 1 diameter of trailing edge ejection holes D diameter of pins f overall friction factor h?heat transfer coefficient in the n th segment...

  5. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  6. Micro and nanostructured surfaces for enhanced phase change heat transfer

    E-Print Network [OSTI]

    Chu, Kuang-Han, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Two-phase microchannel heat sinks are of significant interest for thermal management applications, where the latent heat of vaporization offers an efficient method to dissipate large heat fluxes in a compact device. However, ...

  7. Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid

    E-Print Network [OSTI]

    Attard, Phil

    Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid

  8. Characterization of Fuego for laminar and turbulent natural convection heat transfer.

    SciTech Connect (OSTI)

    Francis, Nicholas Donald, Jr. (,; .)

    2005-08-01T23:59:59.000Z

    A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).

  9. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    by a heating lamp emitting in the visible and near infraredwith heating in a furnace at 400 o C. The infrared lamp was

  10. Vibration damping and heat transfer using material phase changes

    DOE Patents [OSTI]

    Kloucek, Petr (Houston, TX); Reynolds, Daniel R. (Oakland, CA)

    2009-03-24T23:59:59.000Z

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  11. Dual-circuit embossed-sheet heat-transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1982-08-23T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  12. Finite element analysis of conjugate heat transfer in axisymmetric pipe flows

    E-Print Network [OSTI]

    Fithen, Robert Miller

    1987-01-01T23:59:59.000Z

    Temperature Page 43 se NOMENCLATURE specific heat of fluid at constant pressure variational operator test function dimensionless pipe thickness (t/R) non ? dimensional axial coordinate surface traction matrix Ky M?. nr Pe Sue!i wall...

  13. Determination of heat transfer and friction characteristics of an adapted inclined louvered fin

    SciTech Connect (OSTI)

    T'Joen, C.; Steeman, H.-J.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium)

    2006-03-01T23:59:59.000Z

    An experimental study of a fin-and-tube heat exchanger was performed. To this end a test rig was constructed to measure the heat transfer rate on the air and waterside of the heat exchanger. A wide range of Reynolds numbers on the airside was investigated. The resulting data was used to determine the convective heat transfer correlation (expressed using the Colburn factor) and the friction factor on the airside. The fin type used in the heat exchanger of this research is an adaptation of the standard inclined louvered type. A thorough error analysis was performed, to validate the results. (author)

  14. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect (OSTI)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01T23:59:59.000Z

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  15. Numerical simulation of the heat transfer in amorphous silicon nitride membrane-based microcalorimeters

    E-Print Network [OSTI]

    Hellman, Frances

    Numerical simulation of the heat transfer in amorphous silicon nitride membrane July 2003 Numerical simulations of the two-dimensional 2D heat flow in a membrane-based microcalorimeter have been performed. The steady-state isotherms and time-dependent heat flow have been calculated

  16. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-11-05T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  17. A FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER

    E-Print Network [OSTI]

    air flow measurement. A water source heat pump provided chilled water to a fan-coil unit which in turn on volumetric air flow measurement and an overall room heat balance. Analysis was directed at results fromA FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER: DESIGN

  18. Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate

    E-Print Network [OSTI]

    Otey, Clayton

    2011-01-01T23:59:59.000Z

    Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, ...

  19. Eurotherm Seminar N81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81-1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION

    E-Print Network [OSTI]

    Boyer, Edmond

    Eurotherm Seminar N°81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81- 1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION AND CONVECTION IN A HIGH for the packed bed. The comparison between the radiative heat transfer and the exchanges by conduction and forced

  20. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07T23:59:59.000Z

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  1. Low temperature barriers with heat interceptor wells for in situ processes

    DOE Patents [OSTI]

    McKinzie, II, Billy John (Houston, TX)

    2008-10-14T23:59:59.000Z

    A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

  2. Grid-region heat transfer in a gas solid fluidized bed

    SciTech Connect (OSTI)

    Wang, R.C.

    1986-01-01T23:59:59.000Z

    The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

  3. Waste Heat Recovery by Organic Fluid Rankine Cycle

    E-Print Network [OSTI]

    Verneau, A.

    1979-01-01T23:59:59.000Z

    Ntry Temperature T 3 -t. cond?'lsotion L.-S Uql.id ctITlpressiCTI 6-7 htating in IiqJid state 7-1 boiling 2OO'C\\ ?-_...,( With fluids whose expansion is ending far from the saturation curve, to obtain good efficiency neces sitates the use of an exchanger-recuperator... been investigated for use in RANKINE Cycles, Many parameters must be ta ken into account in addition to the shape of the saturation curve just mentioned, Included are - chemical stability over the entire operating range. It depends not only...

  4. CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1990-01-01T23:59:59.000Z

    In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

  5. Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)

    SciTech Connect (OSTI)

    Khrustalyov, Yu. V., E-mail: yuri.khrustalyov@gmail.com; Vaulina, O. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-05-15T23:59:59.000Z

    New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.

  6. A new predictive dynamic model describing the effect of1 the ambient temperature and the convective heat transfer2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the convective heat transfer2 coefficient on bacterial growth3 4 H. Ben Yaghlenea,b* , I. Leguerinela , M. Hamdib Ratkowsky "square root" model and a simplified two-parameter20 heat transfer model regarding an infinite air temperature, the convective heat transfer22 coefficient and the growth parameters of the micro

  7. Molecular Dynamics Simulation of Heat Transfer Issues of Nanotubes. > Yasuhiro Igarashi, Yuki Taniguchi, Yasushi Shibuta and Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Molecular Dynamics Simulation of Heat Transfer Issues of Nanotubes. ·> Yasuhiro Igarashi, Yuki 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Heat transfer between single-walled carbon nanotubes, which was 0.105 µm. In other words, when the length of SWNT is 0.105 µm, the radial heat transfer

  8. Fusion Engineering and Design 81 (2006) 549553 Numerical analysis of MHD flow and heat transfer in a

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Engineering and Design 81 (2006) 549­553 Numerical analysis of MHD flow and heat transfer January 2006 Abstract MHD flow and heat transfer have been analyzed for a front poloidal channel blanket; Magnetohydrodynamics; Heat transfer 1. Introduction Using flow channel inserts (FCIs) made

  9. EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 Eindhoven (The Netherlands)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 to be governed by heat transfer and time microscales of turbulence through the inner sublayer. Physical interpreta- tions are given to relate the observed heat transfer correlation and these turbulence transition

  10. PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    PIV flow measurements for heat transfer characterization in two-pass square channels with smooth the correlation between the high- Reynolds number turbulent flow and wall heat transfer characteristics in a two number (Re) of 30,000. The PIV measurement results were compared with the heat transfer experimental data

  11. Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method

    E-Print Network [OSTI]

    Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential

  12. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  13. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams

    E-Print Network [OSTI]

    Kreeger, A. H.

    on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat... recovery that typically can save energy equivalent to 40% of the furnace firing rate. Previous attempts to recovery energy conven tionally on this type of furnace were unsuccessful due to fouling. The resolution of this fouling problem by using...

  14. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.

    1982-06-10T23:59:59.000Z

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  15. Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels

    E-Print Network [OSTI]

    H. S. Park

    2008-01-07T23:59:59.000Z

    Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.

  16. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  17. Investigation of boiling heat transfer at a surface with a system of cylindrical cavities under conditions of free motion

    SciTech Connect (OSTI)

    Danilova, G.N.; Reznikov, V.I.

    1988-01-01T23:59:59.000Z

    The authors propose a mathematical model for the intensification of boiling heat transfer and the subsequent increase in thermal efficiency of the cylindrical heat transfer surfaces in an evaporative cooling system. The boiling curves for water, ethanol, and freon 113 are calculated for a surface with artificial nucleation sites. The model incorporates such coolant properties as surface tension, specific heat, and vaporization heat.

  18. Design, Feasibility, and Testing of Instrumented Rod Bundles to Improve Heat Transfer Knowledge in PWR Fuel Assemblies

    SciTech Connect (OSTI)

    Bergeron, A. [CEA, Saclay (France); Chataing, T.; Garnier, J. [CEA, Genoble (France); Decossin, E.; Peturaud, P. [EDF/R and D, Chatou (France); Yagnik, S.K. [Electric Power Research Institute - EPRI (United States)

    2007-07-01T23:59:59.000Z

    Two 5 x 5 test rod bundles mimicking the PWR fuel assembly have been adapted into two suitable test loop facilities, respectively, to carry out sufficiently detailed hydraulic and thermal measurements in identical geometric configuration. The objective is to investigate heat transfer phenomena in single-phase as well as with onset of nucleate boiling (ONB). The accuracy and reproducibility of the temperature measurements using the sliding-traversing thermocouple device under typical PWR conditions has been demonstrated in the thermal test facility. In the hydraulic loop, a Laser Doppler Velocimetry (LDV) system to precisely scan the local axial velocity component in each sub-channel has been implemented. The approach is to utilize mean sub-channel axial velocity distributions and pressure drop data from the hydraulic loop and the global boundary conditions (Pressure, Temperature, flow rate) from the thermal loop to simulate sub-channels in appropriate T/H codes. This permits computation of sub-channel averaged fluid temperatures (as well as mass velocity) in various subchannels within the test bundle. Subsequently, in conjunction with the wall temperatures and applied heat flux values from the thermal loop, it is possible to develop a complete map of heat transfer coefficients along the 9 instrumented central heater rods. Locations downstream of spacer grids would be of special interest. Depending on pressure, mass velocity and heat flux conditions of a given test, the inlet temperature will be a parameter to be varied so that the ONB boundary can be observed within the bundle. Detailed designs of the test section, required loop modifications, and adaptation of specialized instrumentation and data acquisition systems have been accomplished in both test loops. Further we have established that based on such detailed rod surface temperature and sub-channel axial velocity measurements, it is possible to achieve sufficient accuracy in the temperature measurements to meet the objective of improving the heat transfer correlations applicable to PWR cores. (authors)

  19. Effects of surface parameters on boiling heat transfer phenomena

    E-Print Network [OSTI]

    Truong, Bao H. (Bao Hoai)

    2011-01-01T23:59:59.000Z

    Nanofluids, engineered colloidal dispersions of nanoparticles in fluid, have been shown to enhance pool and flow boiling CHF. The CHF enhancement was due to nanoparticle deposited on the heater surface, which was verified ...

  20. Local heat transfer distribution in a triangular channel with smooth walls and staggered ejection holes

    E-Print Network [OSTI]

    Moon, Sung-Won

    1999-01-01T23:59:59.000Z

    Transient liquid crystal experiments have been conducted to determine the distribution of the local heat transfer coefficient in a triangular channel with smooth wails and ejection holes along one or two of the wails. The end of the test channel...

  1. Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...

  2. Residential Slab-On-Grade Heat Transfer in Hot Humid Climates

    E-Print Network [OSTI]

    Clark, E.; Ascolese, M.; Collins, W.

    1989-01-01T23:59:59.000Z

    Heat transfer through an uninsulated slab on grade is calculated using a simple method developed by Kusuda. The seasonal and annual slab loads are graphed as a function of annual average soil temperature, Tm, for a variety of floor system...

  3. Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels

    E-Print Network [OSTI]

    Ko, Min Seok

    2009-05-15T23:59:59.000Z

    This dissertation presents a numerical simulation of three-dimensional flow and heat transfer in a channel with a backward-facing step. Flow was considered to be steady, incompressible, and laminar. The flow medium was treated to be radiatively...

  4. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01T23:59:59.000Z

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  5. L3:THM.CLS.P7.03 Bubble Condensation Heat Transfer in Subcooled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phase CFD codes requires the use of a closure relation that describes energy (heat) transfer from the vapor to liquid phase. In this study, seven correlations found in the...

  6. Some aspects of the computer simulation of conduction heat transfer and phase change processes

    SciTech Connect (OSTI)

    Solomon, A. D.

    1982-04-01T23:59:59.000Z

    Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.

  7. Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals

    E-Print Network [OSTI]

    Deane, Charles William

    1969-01-01T23:59:59.000Z

    A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

  8. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    E-Print Network [OSTI]

    Xiao, Rong

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties ...

  9. Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer

    E-Print Network [OSTI]

    Xiao, Rong, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

  10. Convective Heat Transfer Enhancement in Nanofluids: Real Anomaly or Analysis Artifact?

    E-Print Network [OSTI]

    Prabhat, Naveen

    The nanofluid literature contains many claims of anomalous convective heat transfer enhancement in both turbulent and laminar flow. To put such claims to the test, we have performed a critical detailed analysis of the ...

  11. The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes

    E-Print Network [OSTI]

    Traviss, Donald P.

    1971-01-01T23:59:59.000Z

    The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

  12. Heat and mass transfer in bubble column dehumidifiers for HDH desalination

    E-Print Network [OSTI]

    Tow, Emily W

    2014-01-01T23:59:59.000Z

    Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers ...

  13. Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids

    E-Print Network [OSTI]

    Chintada, Sailesh Raju

    1998-01-01T23:59:59.000Z

    and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest...

  14. ASME 2008 Summer Heat transfer Conference August 10-14, 2008, Jacksonville, FL., USA

    E-Print Network [OSTI]

    Bahrami, Majid

    ASME 2008 Summer Heat transfer Conference August 10-14, 2008, Jacksonville, FL., USA HT2008, University of Victoria Victoria, BC , V8W 2Y2, Canada ABSTRACT Accurate information on the temperature eld

  15. Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines

    E-Print Network [OSTI]

    Schwaenen, Markus

    2012-07-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . 46 C. Computational procedure . . . . . . . . . . . . . . . . . . . 48 1. Solver settings and grid for URANS study . . . . . . . 48 2. LES study . . . . . . . . . . . . . . . . . . . . . . . . 52 D. Results... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1. Orthogonal decomposition URANS . . . . . . . . . . . 59 2. Orthogonal decomposition LES . . . . . . . . . . . . . 62 E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 V OPTIMIZING TURBULENT HEAT TRANSFER USING...

  16. Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01T23:59:59.000Z

    A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

  17. DEVELOPMENT OF PIV TECHNIQUE UNDER MAGNETIC FIELDS AND MEASUREMENT OF TURBULENT PIPE FLOW OF FLIBE SIMULANT FLUID

    E-Print Network [OSTI]

    Abdou, Mohamed

    sufficiently large heat transfer using high Prandtl number fluid coolant, high turbulence is required, and the heat transfer characteristics of low Prandtl number fluids are con heat transfer (low film temperature drop) to cool first wall structures. In order to obtain

  18. Linear Kinetic Heat Transfer: Moment Equations, Boundary Conditions, and Knudsen

    E-Print Network [OSTI]

    Struchtrup, Henning

    ] and phonons [6], and the radiative transfer equation [7]. The solution of any kinetic equation is usually][25], radiative transfer [7][26], and phonon transport in crystals [6]. Despite the long history, and success method, and the methods employed in [18][19][20], are based solely on the transport equations in the bulk, and

  19. Numerical analysis of turbulent heat transfer in a nuclear reactor coolant channel

    E-Print Network [OSTI]

    Garrard, Clarence William

    1965-01-01T23:59:59.000Z

    NUMERICAL ANALYSIS OF TURBULENT HEAT TRANSFER IN A NUCLEAR REACTOR COOLANT CHANNEL A Thesis Clarence William Garrard, Jr. Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree... of' MASTER OF SC1ENCE May, 1965 Ma)or Subject Nuclear Engineering NUMERICAL ANALYSIS OF TURBULENT HEAT TRANSFER 1N A NUCLEAR REACTOR COOLANT CHANNEL A Thesis By Clarence William Garrard, Jr. Approved as to style and content by; Head...

  20. A PC simulation of heat transfer and temperature distribution in a circulating wellbore

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    A PC SIMULATION OF HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN A CIRCULATING WELLBORE A Thesis by ROBERT DUANE PIERCE Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1987 Major Subject: Petroleum Engineering A PC SIMULATION OF HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN A CIRCULATING WELLBORE A Thesis by ROBERT DUANE PIERCE Approved as to style and content by; Hans C . Juvkam...

  1. AN EXPERIMENTAL AND THEORETICAL STUDY OF HEAT TRANSFER WITH COMBUSTION

    E-Print Network [OSTI]

    Heperkan, Hasan A.

    2013-01-01T23:59:59.000Z

    specific heat of ceramic thermal conductivity of ceramic kwthermal penetration depth is much smaller than the characterlstic dimensions of the gauge. The ceramic

  2. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    samples are exposed to an incandescent lamp. Acknowledgmentin a furnace or by an incandescent lamp. It was observedwhen heated by an incandescent lamp than within furnace.

  3. ON CONVECTIVE HEAT TRANSFER IN BUILDING ENERGY ANALYSIS

    E-Print Network [OSTI]

    Gadgil, Ashok Jagannath

    2013-01-01T23:59:59.000Z

    Tien; Int. J. Heat Mass Trans Balcomb 1 s Weber and Wray; ininsulation-filled wall. Balcomb's group at LASL has carried

  4. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  5. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  6. Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts

    E-Print Network [OSTI]

    Tennessee, University of

    02FCC-140 Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts Kalyana transfer in modeling the performance of diesel oxidation catalysts. Many modeling studies have assumed experimental measurements of CO and hydrocarbon oxidation in diesel exhaust re- veal that actual mass

  7. An experimental, theoretical and numerical investigation of corona wind heat transfer enhancement

    E-Print Network [OSTI]

    Owsenek, Brian Leonard

    1993-01-01T23:59:59.000Z

    Corona wind heat transfer enhancement is a non-mechanical means of augmenting transfer coefficients in free and low-velocity convection flow fields. Ions formed near the surface of a high-voltage electrode are forced along the electric field lines...

  8. Author's personal copy Radiative heat transfer in enhanced hydrogen

    E-Print Network [OSTI]

    Pilon, Laurent

    tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here and the glass samples. In brief, the radiation emitted by the incandescent lamp is concentrated between 0

  9. Heat Transfer Applications for the Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Thoram, Srikanth

    2011-10-21T23:59:59.000Z

    from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700 degrees F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature...

  10. Local shell-to-shell energy transfer via nonlocal Interactions in fluid turbulence

    E-Print Network [OSTI]

    Mahendra K. Verma; Arvind Ayyer; Olivier Debliquy; Shishir Kumar; Amar V. Chandra

    2005-10-19T23:59:59.000Z

    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wavenumber shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimension, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the near-by shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.

  11. Resonant behavior in heat transfer across weak molecular interfaces

    SciTech Connect (OSTI)

    Sklan, Sophia R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Alex Greaney, P. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvalis, Oregon 97331 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-21T23:59:59.000Z

    Molecular dynamics (MD) simulations are used to study, in detail, the transfer of thermal (vibrational) energy between objects with discrete vibrational spectra to those with a semi-continuum of spectra. The transfer of energy is stochastic and strongly dependent on the instantaneous separation between the bodies. The insight from the MD simulations can be captured with a simple classical model that agrees well with quantum models. This model can be used to optimize systems for efficient frequency selective energy transfer, which can be used in designing a chemical sensor through nanomechanical resonance spectroscopy.

  12. Calculation of unsteady-state heat and mass transfer in steam injection wells

    E-Print Network [OSTI]

    Ruddy, Kenneth Edward

    1986-01-01T23:59:59.000Z

    and mass transfer computation. Results obtained from this study were compared to field data and re- sults obtained from a semi-unsteady-state heat transfer and steady-state mass transfer model. As actual downhole steam quality measurements were...- hole pressure, temperature, and quality data from steam injection wells is virtually nonexistent in the literature. One limitation is that no downhole tool has been developed to reliably measure steam quality. Be- cause of the lack of field data from...

  13. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19T23:59:59.000Z

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  14. Heat and Mass Transfer Wrme-und Stoffbertragung

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    transfer coefficient (W m-2 K-1 ) Greek symbols a Thermal diffusivity (m2 s-1 ) e Surface emissivity q article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin

  15. Numerical Modelling of Combined Heat Transfers in a Double Skin Faade -Full Scale Laboratory

    E-Print Network [OSTI]

    , thermal comfort, visual comfort or energy gain [1]. In the current context of global warming, depletion heat transfers are also taken into account to obtain a global coupling between the different phenomena on two levels: during the winter period, the solar energy is used to heat the air in the façade [2], and

  16. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 16, No. 3, JulySeptember 2002

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 16, No. 3, July­September 2002 Three against the sizes of time increment and grid cell and angular discrete order are examined. The false order in SN approximation n = number of angular discretization Q = radiative heat ux R = re ectance r

  17. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David Gordon (Winchester, MA)

    2002-01-01T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  18. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, David Gordon

    2001-04-17T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  19. Heat exchanger containing a component capable of discontinuous movement

    DOE Patents [OSTI]

    Wilson, D.G.

    1993-11-09T23:59:59.000Z

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.

  20. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture

    SciTech Connect (OSTI)

    Bhuwakietkumjohn, N.; Rittidech, S. [Heat Pipe and Thermal Tools Design Research Laboratory (HTDR), Faculty of Engineering, Mahasarakham University, Mahasarakham 44150 (Thailand)

    2010-11-15T23:59:59.000Z

    The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis was established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)